
Instructions for Preparing the MPI Standard

Document

Message Passing Interface Forum

December 9, 2020

1 Introduction

This document provides guidance on editing the MPI standard documents.
The MPI standard uses LaTeX, a powerful markup language where items
are marked based on the content, rather than low-level control of individual
formatting options as in WYSIWYG (what you see is what you get) markup.
LaTeX is a high level interface over TeX, a powerful and general purpose
typesetting language. LaTeX permits the use of TeX, which gives it extra
power but also makes it easy to introduce the sort of inconsistent formatting
that is the bane of documents produced with WYSIWYG systems.

Section 2 covers accessing and editing the document. Section 3 covers
use of markup in the document. This includes formatting the text and, in
Section 3.13, markup used to automate testing of code examples. Section 4
covers some special considerations for creating the PDF file for the standard.
Section 5 covers how to create the document. Section 6 covers the process
to be followed in making changes to the document. Section 7 provides some
examples of what not to do in the document. Section 8 discusses some of the
subtle issues in word choices in a standard, such as where to use should and
where to use shall. Finally, Section 9 covers topics not discussed elsewhere.

2 Accessing the Document

The MPI standard documents are maintained in a git repository, in github.

com/mpi-forum. Instructions on accessing the MPI standard, identifying
problems, suggesting improvements, and creating update candidates to be
applied to the standard may be found in the wiki associated with that repos-
itory. Those instructions will not be duplicated here. However, a few com-
ments here clarify some of the procedures.

1

github.com/mpi-forum
github.com/mpi-forum

It is important, even for the master editor of the document, to follow
both the workflow for updating the document and the style of using git.
In particular, updates should be small and focused on a single issue. For
example, if while working on an issue, you discover a mis-spelled word, do
not fix that mis-spelling. That should be done as a separate change, and
especially committed as a separate change. Yes, this is inconvenient and can
cause useful fixes to be lost (because of that inconvenience), but hard-core
git users will object if you don’t do this.

As part of the workflow, changes to the document that are ready to be
applied (and have been approved by the MPI Forum or are considered minor
document changes under the control of the document editor) are packaged
up as pull requests. A pull request is really a set of edits to the MPI standard,
usually created as a branch off of the current state of the MPI standard. In
the recommended workflow, developing this change is done in a private copy
of the repository. This allows the change to be tested with respect to the
current state of the document. However, most users are not permitted to
commit changes directly back to the repository. Instead, the workflow is to
push these changes to a special repository created by the user. This repos-
itory is used for nothing other than communicating the update as a pull
request; in particular, there is no need for this special repository to be up-
to-date, and it must not be used to test the update. Once the pull request
is made, the MPI document editor can choose to apply the pull request,
and can follow steps to test the pull request before applying it. The work-
flow for pull requests is documented at https://github.com/mpi-forum/

mpi-issues/wiki/Creating-Simple-Pull-Request. Note that pull re-
quests must merge cleanly before an item can be brought up for a vote.
Instructions for the document editor to test this pull request are still under
construction.

3 Formatting the Document

For compatibility with the widest variety of editors, text should be wrapped
to fit with 80 columns. Edits should avoid reflowing text as this compli-
cates identifying real changes in the document. The document follows the
conventions and spelling of American English.

3.1 Basic Formatting

For the most part, text should not use TeX (or LaTeX) formatting com-
mands. In particular, font or size changes should not be used. Formatting

2

https://github.com/mpi-forum/mpi-issues/wiki/Creating-Simple-Pull-Request
https://github.com/mpi-forum/mpi-issues/wiki/Creating-Simple-Pull-Request

of MPI names and C and Fortran code is handled with the macros defined be-
low. You may use \emph to emphasize text, as in \emph{emphasize}. The
command \mpicode may be used for miscellaneous language-independent
code for which there are no appropriate MPI macros. The command \code

should be used for code in a specific language, such as C or Fortran. Note
that most uses of text font selection, including “face” (such as bold or sans
serif), are erroneous. That is, you should use the appropriate markup for
the kind of content, rather than change the font. The commands \textbf

and \textsf should almost never be used. See Section 3.7 for the LaTeX
commands to be used with different MPI objects.

TeX has a very sophisticated system for hyphenating words. However, it
will not hyphenate a word that already contains a hyphen. If you want TeX
to hyphenate such a word (e.g., implementation-dependent), use \hyphen/

instead of the hyphen, as in

implementation\hyphen/dependent

Hyphenation should never be used for MPI names. This is discussed more
below.

Spaces are significant in LaTeX. Attempting to make the LaTeX source
look more like a C program (some MPI document authors have done that)
introduces unintended additional spacing that is jarring to the eye and can
interfere with tools used to find changes in the document.

References to other parts of the standard should use only the section
label; macros to make this relatively easy are described below in Section 7.
They should not also include the page number, as this is often misleading,
since the page number will refer to the beginning of the section but the
typical use of these is to point to the entire body of the section, which almost
certainly spans multiple pages, or to a specific page within the section, but
not necessarily the first page of the section. See Section 7 for some examples
of how to refer within the document in a way that permits the generation
of versions with and without page numbers.

LaTeX defines many environments and many others may be added to
LaTeX. To preserve a uniform appearance, use only these environments or
the ones specifically defined for the MPI standard in Section 3.6. Most of
these are well-known; where there is some subtle feature, this is noted (e.g.,
between “center” and “centering”).

array Use for a tabular layout of data in an equation.

center This environment should be used to center tables and text outside
of figures.

3

centering This environment should be used to center figures (it does not
add additional space around the figure).

description Use for labeled lists. See Section 3.4 for more on the use of
this environment.

displaymath Use for displayed equations (that is, an equation that is sep-
arated from the text).

enumerate Use for numbered lists.

eqnarray Use for displaying several equations in a single block, with each
equation lined up with the others (typically at the =)

example This environment should be used for example program fragments.
See Section 3.5 for more on the use of this environment.

figure Note that captions (with the \caption command) go below figures.

itemize Use for unnumbered lists.

obeylines Use when each newline in the source file should cause a new line
in the output. This should only be used in special cases, such as a list
of contributors.

tabbing This environment is discouraged; please use one of the others, such
as tabular. It provides a way to line up different columns in a block
of text.

table Note that captions (with the \caption command) go above tables
(tables themselves are created with the tabular or tabularx envi-
ronment). Table placement should use either [tb] or (only for large
tables) [p]. Never use the “here” option ([h]).

tabular Used to create tables.

tabularx An enhanced version of tabular, it includes a new column type,
X, that provides an automatically-sized column for a paragraph of text.
See http://ctan.math.utah.edu/ctan/tex-archive/macros/latex/
required/tools/tabularx.pdf for more information.

verbatim Use this for code examples (see more below on special require-
ments for code) and for other fixed-width text. For example, this is
often used in the text to show the code for two processes side by side.
If a verbatim is not used for a code example, it must be prefixed with

4

http://ctan.math.utah.edu/ctan/tex-archive/macros/latex/required/tools/tabularx.pdf
http://ctan.math.utah.edu/ctan/tex-archive/macros/latex/required/tools/tabularx.pdf

%%HEADER

%%SKIP

%%ENDHEADER

This keeps the tool that checks the code examples from trying to com-
pile the contents of the verbatim.

Verbatim An alternative form of verbatim that allows the use of TeX com-
mands within the Verbatim environment. Note that this should not
be used for code examples, as it interferes with the automated checks
that tests that the code examples compile.

To include a graphic image, use \includegraphics. This command can
rescale the size of the image. A typical use (from the Collectives chapter) is

\includegraphics[width=4in]{figures/mycoll-fig2}

Figures should be provided in PDF (pdf) format. Figures should be placed
in the figures directory, not in the chapter’s directory.

Explicit linebreaks should be avoided unless they are used where a line-
break is always required, such as at the end of a line of declarations. Use
\gb (for “good break”) to tell LaTeX where it may be better to break a
line. The reason for using this is that if subsequent edits to the text change
the flow of the paragraph, the line breaks will be adjusted accordingly. If
\gb doesn’t work (it uses TeX linebreak penalties to suggest a good spot at
which to break the line, but does not force it), try \vlgb. This is a version
of \gb that may add a larger amount of whitespace to the line, making a
break there more likely.

In cases where you need to force a linebreak, use \flushline. This
ensures that the line is broken at that point, and that the line is not right
justified.

Because MPI names (e.g., function names, constants, objects) are long
and never hyphenated or broke across a line, TeX may be unable to find
a good set of line breaks and/or line spacing, resulting in either overfull
lines (names extending right into the margin) or very poor spacing between
words. In this case, use \flushline to force a line break; the line will not
be right justified. This is not a perfect solution, but it is less ugly than the
alternatives, and avoids any confusion over whether a dash (-) is part of the
name of an MPI term. An example of the use of \flushline in this case is
shown below, taken from the Datatype chapter:

5

In Fortran, the functions

\mpifunc{MPI_TYPE_CREATE_HVECTOR},\flushline % force break

\mpifunc{MPI_TYPE_CREATE_HINDEXED},

...

References to section, table, figure, or enumerated list items should not
use the number that appears in the document. Instead, they should make
use of the LaTeX command \label and \sectionref or \ref. The \label

command creates a symbolic label for the most recent command that creates
a number. For example,

\section{Communication Calls}

\label{sec:onesided-putget}

creates the label sec:onesided-putget. This section can then be refered
to with the \sectionref command:

\sectionref{sec:onesided-putget} describes the ...

The command \sectionref will output the text “Section” followed by the
section number, including the TeX commands to avoid splitting the section
name and number across a line. The \label command may also be used
after a \caption command to get the number of a figure or table, and after
the \item command in an enumerated list to get the number of that item.
This approach is used in the One-Sided Communications chapter to refer
to the different RMA rules. Using the \label and \sectionref or \ref

commands ensure that the references remain correct even if a new numbered
item is inserted into the document.

When referencing another part of the document, refer to a section. For
example, use

Consider the code fragment in Example~\ref{ex:1sided-fence}.

Note the use of the tie (~) between the name and the use of \ref. This pre-
vents TeX from breaking the line between the “Example” and the example
number. It is incorrect to leave out the tie.

Previous versions of the standard sometimes also provided the page num-
ber; while that is somewhat helpful for printed copies, the section informa-
tion is adequate and many users will use on-line versions, where the section
reference will provide a direct link to the relevant page. Rather than use
inconsistent style, the text standard is to only use the Section number (and
similarly for all other cross references). Do not use the section name either.

To make it easy to produce the correct output and to provide the option
of including page numbers, use the following macros:

6

Instead of Use

Section~\ref{secname} \sectionref{secname}

Annex~\ref{secname} \annexref{secname}

Sections~\ref{s1} to~\ref{s2} \sectionrange{s1}{s2}

Example~\ref{exname} \namedref{Example}{exname}

The macro \namedref should be used for references with other names, such
as the last one in the list above that shows how to refer to an Example.

3.2 Page references in the Change-Log

The change log requires special care. Because the change log includes
changes from all versions of the MPI standard, there is a real risk that
references that use symbolic label names that are correct in one version will
become incorrect in a subsequent version. Page references should be avoided;
if necessary, they should refer to specific official version of the standard.

3.3 Describing a Change-Log entry

A change-log entry should be a short description of the change. It should
not repeat the change. For example, including an “advice to implementors”
in the change log is incorrect. Rather, the text should point to the change.
Note that this may need to point to a specific page in line in a specific
version of the standard.

Note that many entries violate this. See, for example, the entry
#32, 17.1.19 on type create f90 xxx.

This is essential, as only the standard text is definitive. The change-log
should only be used to provide a short summary for readers interested in
the changes, not the exact details. Readers must be encouraged to read
about the change in the context of the change, not the short summary in
the change log.

3.4 Descriptions of Terms and MPI Objects

The description environment should be used in most cases where one or
more terms or MPI objects or constants are being described with more than
a few words. For example,

\begin{description}

\item[\infokey{no_locks}]If set to \mpicode{true} ...

\item[\infokey{accumulate_ordering}]Controls the ordering of ...

\end{description}

7

Note the use of the \item[name] form—it is incorrect to use \item{name}

in a description environment.
In the special case of a list of constants with very short descriptions, the

constlist environment may be used. For example

\begin{constlist}

\noconstitem{Name}{Meaning}

\constitem{MPI_MAX}{maximum}

\constitem{MPI_MIN}{minimum}

\constitem{MPI_SUM}{sum}

...

\end{constlist}

\constitem is a macro that uses \const in for the first argument (thus
ensuring that the item is indexed properly and in the correct font). This is
built on the LaTeX list environment. While the \item command can be used
for list headings and other lines that don’t define a constant, \noconstitem
ensures that the output is properly formatted and should be used if possible.
In some cases, two or three constants are needed in the list; for these cases,
use \constitemtwo and \constitemthree respectively. This is shown in
this example:

\begin{constlist}

...

\constitemtwo{MPI_MAX}{MPI_MIN}{C integer, Fortran integer,

Floating point,}

\end{constlist}

The \paragraph command should be used for topics and items that
should appear in the table of contents. Do not use \paragraph*{...}—use
a description environment instead.

Do not use an en- or em-dash in formatting a list of terms or names; use
the description environment as shown above.

3.5 Presenting Examples

Examples should be presented in the example environment, beginning with
a short description of the example. Short entries for the example should be
included as well. For example:

\begin{example}

One sentance description of example.

8

\Exindex{language}{short description}{routines}

\exindex{other example index entry}

....

\end{example}

The “language” in \Exindex may be either C or Fortran. The “routines”
may be a single routine name or a comma-separated list of routines. The
“short description” should be just a few words, as it will appear in the index.
\Exindex must be used within an example environment.

The \exindex command was used for MPI versions through MPI-3.1.
The \Exindex command has been added in preparation for MPI-4.0 in order
to improve the value of the indices. You can continue to use \exindex for
the cases where an entry is desired in the examples index without naming an
MPI function. The \Exindex command adds entries to both the Examples
index and the MPI Function index. Uses of \exindex that just list an MPI
function should be changed to use \Exindex.

See Section 3.13 for code examples (within this example environment)
and Section 3.14 for language-independent examples. The example envi-
ronment should be used for code examples, for examples that illustrate the
behavior of MPI routines, and for other examples within the document. Do
not use \paragraph or other ad hoc LaTeX formatting for examples; unfor-
tunately, there are such uses in the MPI-1 through MPI-3.2 documents.

3.6 MPI Environments

There are several environments that are used for special comments to the
reader (advice to user, implementors, and rationale) and for lists of constants
and functions.

constlist A list of MPI constants.

funcdef The environment used for many MPI function definitions. There
are related environments funcdef2 (to force a line break in the argu-
ment list between the first and second arguments) and funddefna (for
functions with no arguments). funcdef takes one argument, which
is the language-independent declaration (complete with arguments),
followed by one or more \funcarg arguments that define each param-
eter.

implementors Advice for implementers

mpicodeblock Used for language-independent code examples

9

mpi-binding This is used to describe an MPI binding. The contents of this
environment are processed by a separate python program, creating a
new file that contains the LaTeX commands for the function bindings.
For example, pt2pt.tex is processed to create pt2pt-rendered.tex,
which is used to create the MPI standard document.

rationale Rationale for a choice in the MPI standard.

users Advice for user

3.7 MPI Objects

There are special macros that aid in formatting and automatically indexing
MPI items, such as functions, constants, and strings, as well as language-
specific items, such as C or Fortran datatype names for types defined by
MPI (such as MPI Status.

Each of these macros has a base form, which will format the argument
and add it to the appropriate index. Variaions of these are defined following
a regular pattern: <basename>[short][main][index|skip]. The suffix names
have the following effect

short Use when the argument name is short, and when the use of the
command causes an unsightly line break. These macros do not use
the \gb command to allow linebreaks before the name.

main Use when this use defines the name—this creates an index entry that
identifies this use as the location where the name is defined.

index Use to index the name only. The term will not be formatted into
the document.

skip The opposite of the index option, this does not include the name in the
index. These are used to add a name without indexing the name. This
is typically used to format partial names or names with XXX (used as
a “wildcard” for some routine descriptions).

For example, \mpifunc is used for language-independent references to MPI
funcations, such as \mpifunc{MPI_Send}. \mpifuncskip only adds the
name to the MPI Function index, as in \mpifuncskip{MPI_Send}. Not
all combinations are defined for all basenames, and not all combinations
make sense. The suffixes index and skip are mutually exclusive, as are
main and skip. If you need a combination that is not currently supported,
contact the document editor.

10

Table 1: Commands for fomatting and indexing MPI names.
Object Type Macro Base Name Notes

MPI Function \mpifunc MPI language-independent function
names. Indexes function name in the
MPI Function index. Name must be
in all uppercase

C Function \cfunc Functions in the C binding for MPI
Fortran Function \ffunc Functions in the Fortran binding for

MPI

MPI parameter \mpiarg Parameters used in the description of
an MPI routine

C parameter \carg Parameters used in the C binding of
an MPI function

Fortran parameter \farg Like \carg, for Fortran.

MPI datatype \mpidtype MPI Datatype handles
MPI callback name \mpicallback For language-independent names
MPI callback type \mpiccallbackdef For C function declaration typedef

for MPI callbacks, e.g.,
MPI Comm copy attr function

MPI-defined C type \mpictype For types such as MPI Aint
MPI-defined Fortran
type

\mpiftype For types such as TYPE(MPI Status)

MPI-defined Fortran
kind type

\mpiftypekind For types such as INTEGER
(KIND=MPI OFFSET KIND)

C type \ctype For C language types, e.g., double
Fortran type \ftype For Fortran language types, e.g.,

INTEGER

MPI info key \infokey For info key strings
MPI info value \infoval For info key values
MPI error code \error For predefined MPI Error codes and

classes
MPI string \mpistring For string values defined by MPI
Other MPI constant \mpiconst For items such as assert values

(MPI MODE NOSUCCEED), keyvals,
split types, and the like

C datatype \ctype Use for C datatypes, such as double
Fortran datatype \ftype Use for Fortran datatypes, such as

INTEGER

11

The base commands are shown in Table 1.

The command \mpiconst is a special case. It takes an optional argument
that specifies the font size, and can be used to specify the use of a smaller
font. For example, \mpiconst[1]{MPI_SUCCESS} formats MPI SUCCESS
with a font size one smaller than the default.1

Occasionally, the standard uses a shorthand to describe a number of
similar functions, as in MPI FILE IXXX. Use the command \XXX/ to indicate
the XXX as in

\mpifunc{MPI_FILE_I\XXX/}

this ensures that a consistent style is used in the document. Do not use . . .
for this purpose.

3.7.1 MPI Object Examples

This section provides a few examples of the use of the MPI Object macros.

MPI functions in the language-independent binding are always in up-
percase, as in \mpifunc{MPI_BCAST}. To refer to an argument of an MPI
function in the language-independent binding, use \mpiarg as in
\mpiarg{array_of_handles}. A short argument name may be refered
to with \mpiargshort{n}, but should only be used when the \mpiarg com-
mand caused a unsightly line break. MPI Datatypes use \mpidtype{MPI_DOUBLE}.
MPI C language types, such as MPI Aint, use \mpictype{MPI_Aint}. MPI
Fortran language types, such as TYPE(MPI Status), use \mpiftype(MPI_Status)}.
A special case are the “kind types,” such as INTEGER(KIND=MPI OFFSET KIND).
These use \mpiftypekind{OFFSET}.

3.7.2 NULL used in text

The term “NULL” is used in several different ways in the standard. Use the
following for each type of use:

Null pointer Use \code{NULL}

Null MPI Object Use \constskip{NULL}

1Defining this to use an integer for how many steps smaller avoids the use of an explicit
font size, which could cause problems if the default font size were ever changed.

12

3.7.3 true and false used in text

When used in the context of the language-independent routines, the values
true and false should be written as \mpicode{true} and \mpicode{false}

respectively. It is incorrect to use any version of \const or \mpiconst for
these values.

3.8 MPI Terms

The MPI document introduces a number of terms, such as “message” and
“send buffer.” These should be marked as \mpitermdef{message} where
the term is first used and defined, and as \mpiterm{send buffer} at subse-
quent uses. These macros will generate an index entry for each use, as well
as formatting the term in bold for the definition use (\mpitermdef) and in
italics for other uses (\mpiterm). Use \mpitermni where the term should
not be indexed but be properly formatted in the text. Use \mpitermindex

to add an index entry for a term without adding the term to the text; this is
appropriate for adding a more specific index entry for a term. For example,
this text is used in the Point-to-point chapter to add an index entry for
send/receive operations:

Initiate a nonblocking communication request for a

\mpitermni{send and

receive}\mpitermindex{send-receive!nonblocking} operation.

Note that the \mpitermindex immediately follows the \mpitermni command—
this is important, as extraneous spaces will be inserted into the PDF other-
wise.

Some chapters have used bold and/or emphitalics for terms and con-
cepts. These should be changed to use \mpiterm and \mpitermdef as ap-
propriate.

A special case is index entries for terms that refer to section titles. These
are formatted in boldface in the index, and the commands are placed im-
mediately after the section commend.

\mpitermtitleindex Add the name to the term index, with the page num-
ber in bold face.

\mpitermtitleindexsubmain Adds two entries, a main entry that concate-
nates the two arguments, and a second entry, with the first argument
a sub-entry to the second argument. For example,

13

\mpitermtitleindexsubmain{Point-to-Point}{Communication}

results in:

Point-to-Point Communication, 23

Communication,

Point-to-Point, 23

(page numbers are in boldface).

\mpitermtitleindexmainsub Similar to \mpitermtitleindexsubmain, but
shows the second argument as a sub-entry of the first argument and
as a top-level entry. For example,

\mpitermtitleindexmainsub{Message}{Envelope}

results in:

Message

Envelope, 27

Envelope, 27

(page numbers are in boldface).

3.9 Standard Names

The macros in Table 2 ensure that the name “MPI” is in the proper font
and size. The / that follows the name is used to ensure that spaces are
preserved (otherwise, TeX removes the blanks after a TeX command from
the output).

An example usage is
It is highly desirable that \MPI/ not use...

will appear as
It is highly desirable that MPI not use...

In some cases, we need to indicate future versions of MPI. These macros
allow the chapter authors to indicate that version symbolically. Before pro-
ducing a releasable version of the MPI document, these macros must be
replaced with the specific MPI versions intended.

\MPInext/ The next release of the MPI standard. This will normally be a
minor version, for example, MPI-3.2, but could be a major version if
that is the next MPI version to be released.

\MPInextoh/ The next major version of the MPI standard after the next
version. The reason for this macro is that this version is the first MPI
version in which items deprecated in \MPInext/ can be removed.

14

Table 2: Macros to properly format different versions of the MPI standard.
Command MPI Version

\MPI/ or \mpi/ MPI (no specific version)
\MPIIV/ or \mpiiv/ MPI-4
\MPIIVDOTO/ or \mpiivdoto MPI-4.0
\MPIIII/ or \mpiiii/ MPI-3
\MPIIIIDOTI/ or \mpiiiidoti/ MPI-3.1
\MPIIIIDOTO/ or \mpiiiidoto/ MPI-3.0
\MPIII/ or \mpiii/ MPI-2
\MPIIDOTO/ or \mpiidoto/ MPI-1.0
\MPIIDOTI/ or \mpiidoti/ MPI-1.1
\MPIIDOTII/ or \mpiidotii/ MPI-1.2
\MPIJOD/ or \mpijod/ MPI-JOD
\MPIRT/ MPI/RT (real time)

For historical reasons, a similar approach is used for RMA (remote mem-
ory access): \RMA/ should be used instead of RMA.

3.10 Defining MPI Functions

The environment funcdef (also mentioned about in the MPI environments)
is used to define the language-independent form of an MPI function.
\begin{funcdef} takes one additional argument, like this:

\begin{funcdef}{MPI_FOO(bd_handle, root, comm)}

This is then followed by one more more \funcarg commands. \funcarg

takes three arguments: intent of the argument, the name of the argument,
and a brief description of the argument. For example

\funcarg{\IN}{root}{rank of broadcast root}

The MPI notion of IN, OUT, and INOUT arguments is slightly different from
that in some programming language descriptions. See the description in
Section 2.3 (Procedure Specification) of the MPI Standard for more details,
but roughly, they are

\IN Argument (or the object to which the argument refers) is not changed.

\OUT Argument (or the object to which the argument refers) is an output
result only.

15

\INOUT Argument (or the object to which the argument refers) is both input
and output.

A complete example, simplified from that of MPI BCAST, is

\begin{funcdef}{MPI_FOO(bd_handle, root, comm)}

\funcarg{\INOUT}{bd_handle}{Handle to buffer descriptor.

On root, this is the send buffer descriptor, elsewhere,

this is the receive buffer descriptor.}

\funcarg{\IN}{root}{rank of broadcast root}

\funcarg{\IN}{comm}{communicator handle}

\end{funcdef}

Note that if these are used in the text, they should be written as, e.g., \IN{}
if they are followed by a space. Otherwise, TeX ignores the space after the
macro.

3.11 Bindings

Bindings in the MPI document are now managed by a source-to-source trans-
lation process. This section describes the LaTeX macros that are used to
render the bindings. Edits to the bindings should be done by working with
the mpi-binding environment; see the document for examples of this envi-
ronment.

Bindings specify how an MPI operation or object is expressed in a par-
ticular programming language. These are best updated by following an
example with a similar format. There are a few things to remember in us-
ing these to ensure that the bindings are formatted properly. When using
\mpibind, each argument declaration must use a tie (~) instead of a space,
as in

\mpibind{MPI_Get_elements_x(const~MPI_Status~*status, %

MPI_Datatype~datatype, MPI_Count~*count)}

The ties prevent the argument from being split across two lines.
When using \mpifbind or \mpifnewbind, it is possible that one of the

declaration lines will be too long to fit on a single line on the page. In
that case, add \bindindent/ to force an explicit linebreak, followed an
indent of the same amount used in the C bindings—do not use other spacing
commands). For example,

\mpifbind{MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS, %

ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)\fargs %

16

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), %

NEWTYPE,\bindindent/IERROR\\ INTEGER(KIND=MPI_ADDRESS_KIND) %

ARRAY_OF_DISPLACEMENTS(*)}

Note the use of \fargs to separate the list of parameters from their dec-
laration. Also note the use of the TeX comment character %—while this is
correct, it is more common in the document to put the entire argument on
a single line. This is one of the few exceptions to the rule of no more than
80 characters per line.

There are a number of other functions to properly format function bind-
ings:

\mpifsubbind Used for Fortran subroutines, for example, for the error han-
dler function.

\mpifnewsubbind Used for Fortran abstract interface for a subroutine; this
is the “modern” Fortran version of \mpifsubbind.

\mpifnewnonebind This is a special case and is used to provide text ex-
planing that no binding was defined. It is used in the chapter on
deprecated interfaces.

\mpibindnotint This is used for the few C routines that do not return an
int, e.g., for MPI Wtime.

\mpiemptybindidx This is used for C routines that do not return an int,
such as the handle conversion routines, and allows you to specify the
indexed name as the third argument (the second argument is for the
return type, e.g., MPI Comm).

3.12 Indexing

The MPI standard has five separate indices:

� Examples Index

� Constant and predefined Handle Index

� Declarations

� Callback Functions

� Functions

17

There is no separate “concept” index, though the examples index contains
references to some important MPI concepts.

For entries that have subitems, e.g., you want the index to look like

foo

bar 27

foobar 721

use an exclamation point, as in

\exindex{foo!bar}%

...

\exindex{foo!foobar}%

In most cases, you should not use either a hyphen or a comma in an
index entry—instead, use the “!” form. Index entries should be short; do
not use sentances. Index entries should be just a few words at most.

In most cases, an index entry should not include any formatting of LaTeX
commands. If such formatting is necessary, for example, for a function name
in the general index, the index entry should be written as

\index{sortkey@formatted entry}

for example,

\index{sizeof and storagesize@\protect\cfunc{sizeof} and

\protect\cfunc{storagesize}}

In this example, \protect is used to prevent expansion of the LaTeX macro
until it appears in the index; this is not necessary but is good practice. Note
that because the MPI standard has multiple indices, the exact form of the
indexing command depends on which index the term or name should appear.
See the definition of the various indexing commands in mpi-user-macs.tex

or contact the MPI document editor for details.

Note the the buildindices script checks for unexpected characters in
the index entry. If a warning is generated about invalid characters, the fix is
often to use this form of the index, with a separate sort key and formatted
entry.

18

3.12.1 Automatically Indexed MPI names

For the indices for constants, declarations, callbacks, and functions, most (if
not all) of the entries are created by using the correct macros around the
names. These macros are described in Section 3.7.

A few special cases are noted here.

\mpiublb The special terms ub marker and lb marker should only be used
as arguments to \mpiublb, which ensures that these terms are properly
indexed.

Functions Environments that define functions (funcdef, funcdef2,
funcdefna). \mpiemptybindidx is for C binding definitions for func-
tions that do not return an int and need to be in the index.

3.12.2 Indexing the Examples

For the examples index, entries must be added explicitly with \Exindex

and/or \exindex. This should normally start in the first column and have a
TeX comment character immediately after it to prevent blanks from entering
the document (which can mess up the formatting). For example,

\exindex{MPI_SEND}%

3.12.3 Primary Index Entries

The “primary” or main index entry is where a term is first described or
defined, or where there is a significant discussion. Many items should
also have a primary index entry, particularly when the item has many in-
dex entries. For MPI objects and constants, the “main” version of the
macros in Section 3.7 will provide the appropriate entry. For example,
\mpidtypemain{MPI_DOUBLE} adds the primary index entry for the MPI
datatype MPI_DOUBLE.

There are no primary entries for the Examples index.

3.12.4 Reviewing the Indices

There are two ways to check the index entries. The best way to check the
index entries for each chapter is to build the chapter separately (execute
make in the chapter’s directory) and check the index that is created for that
chapter to ensure that all relevant entries are included.

Setting \markindextrue in mpi-report.tex will cause text to appear in
the output at the location of each index command. However, this naturally

19

changes the formatting of the text, so this is not the default and should be
used only when reviewing the index entries.

Inspection of the LaTeX file can also help, in particular where verbatim
environments are used. A final check of the full index, looking for duplicates,
misspelled routines, and missing entries, can help identify other problems.
Specifically, check for the following:

� Each function defined in the chapter appears in the index and has the
main entry marked by underlining the page number.

� Each constant (including MPI handles) defined in the chapter appears
in the index has a main entry.

� Each example that illustrates one or more MPI functions indexes those
functions in the examples index. Note that some common functions,
such as MPI COMM SIZE, may be used in an example; such common
uses do not need to be indexed.

3.13 Code Examples

Code examples should follow the same style that is in use in the standard.
For example, use the same indentation and spacing style that the other
examples use. The goal here is to avoid unnecessary differences in the ap-
pearance of the examples. This style is based on the dominant use in the
standard and the major features are summarized here.

1. C code should follow C99 and Fortran code should follow Fortran 2008,
unless the standard is illustrating the use of MPI with other versions
of the standard.

2. Fortran code should use the mpi f08 module unless it is illustrating
use of the mpif.h include file or the mpi module.

3. In routine calls, spaces are not used before the first or after the last
parameter, or before the opening parenthesis. A single space is used
between parameters, as in

MPI_Get_address(u, &i);

In for statements in C, spaces must be used before the first parenthesis
and between clauses, but not within statements, as in

for (i=0; i<10; i++)

20

4. Indentations should normally be 4 spaces. Reduced indentation should
be used only to keep statements on a single line for improved read-
ability. Comments should follow the indentation style (for example,
Fortran comments should not be in column 1 unless that matches the
rest of the surrounding code). Do not use tab (8 space) indentation or
the tab character in code examples.

5. Fortran programs should use free-format rather than fixed format,
and use the exclamation character (!) to begin comments. Fortran
programs that use the mpif.h include file or the mpi module should
have Fortran keywords and MPI routine names should be in uppercase.
Fortran programs that use the mpi f08 module should have Fortran
keywords in lowercase and MPI routine names in mixed case, matching
the definitions for the corresponding Fortran bindings.

6. C blocks may use one of two forms. Preferred is this form (illustrated
with an if statement) because of its conciseness

if (...) {

statements within the block

}

but if readability is improved this form may be used

if (...)

{

statements within the block

}

The former style is particularly appropriate to keep examples on a
single page.

7. Declarations should normally appear at the top of a block, and the first
variable in each declaration indented to begin in the same column, as
in the example below:

int a;

double b;

Some people find this easier to read, and it helps the declarations to
stand out in the example.

21

8. In C, declarations with pointers should be of the form type *name, as
in int *count. The exception to this is void pointers—because only
pointers to void make sense, use void* ptr. This is a recommendation
but is being discussed as a required style.

9. Try to avoid language-independent examples; pick a language and use
it. See Section 3.14 for a discussion of language-independent examples.

10. Variable names should use underscores to separate syllables, as in

int comm_cart, num_neigh;

This matches the MPI naming convention for MPI routines and con-
stants.

11. Use ... to indicate values that are not included to improve readability.
For example, in an example, use

MPI_Init(...);

instead of the incorrect

MPI_Init();

Note that the use of ... requires special handling as described below
to ensure that the code can be checked for correctness.

12. The continuation style for routine call parameters is to start subse-
quent lines directly under the first argument, as in

MPI_Comm_connect(port_name, MPI_INFO_NULL, 0,

MPI_COMM_SELF, &intercomm);

13. Consecutive assignments may be lined up on the = as in:

foo = 1;

foobar = 2;

Some readers find this easier to read as it visually ties together a group
of variable assignments. This is recommended rather than required.

22

To reduce the number of errors in code examples, we use a tool that
extracts code from the document and attempts to compile the code. Below
is a code example (slightly modified) from the Point-to-point chapter.

\begin{example}

\label{pt2pt-exA}

\Exindex{Fortran}{Sender and receiver specify matching

types}{MPI_SEND,MPI_RECV}%

\exindex{Datatypes!matching}%

Sender and receiver specify matching types.

%%HEADER

%%LANG: FORTRAN

%%FRAGMENT

%%DECL: integer comm, rank, ierr, tag, a(2), b(2)

%%DECL: integer status(MPI_STATUS_SIZE)

%%ENDHEADER

\begin{verbatim}

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank .EQ. 0) THEN

CALL MPI_SEND(a, 10, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank .EQ. 1) THEN

CALL MPI_RECV(b, 15, MPI_REAL, 0, tag, comm, status, ierr)

END IF

\end{verbatim}

The commands \Exindex and \exindex adds to the index of examples.
MPI routine names should use the language-independent (all uppercase)
name format. \Exindex is preferred as it provides more context in the index
about the example. TeX comments between %%HEADER and %%ENDHEADER

are used to provide extra information needed to compile the code, such as
specifying the language (e.g., %%LANG: C or %%LANG: FORTRAN), declarations
for variables (e.g., %%DECL: int a;), and whether the code is a complete
routine or a fragment (with %%FRAGMENT). Look at other examples in the
text or the file README in directory mpicompilechk. In particular, the SUBST
command is used to handle the use of ... in examples.

To check the code examples in the MPI document, run make check.
Note that if there are changes or additions to the MPI standard, someone
will need to build an mpi.h file that can be used to compile examples.
The script mpicompilechk/getmpi can be used to extract the MPI C API
declarations.

23

3.14 Language-Independent Examples

In some cases, you need to show language-independent code for MPI. That
is, the code is neither C nor Fortran. An example is in the description of
some of the collective routines, where language-independent code is used
to define the behavior (in terms of data moved) of the a collective routine
in terms of point-to-point routines, such as the description for MPI Gather.
These examples should be formatted as follows:

1. Use the mpicodeblock environment. Note that this environment uses
the same font as is used for references to MPI functions within the
text. This is not the code font used in the verbatim environment.

2. Use the mixed-case names for MPI functions, e.g., MPI Send.

3. Terminate statements with end-of-line, not a semicolon. This helps
emphasize that the code is not C.

4. Expressions should be written as mathematical expressions. For ex-
ample, use · (\cdot in LaTeX) as the multiplication operator.

3.15 Mathematics

TeX was originally designed to typeset mathematics and no system is as
effective at correctly handling all of the requirements of mathematical type-
setting. You may use any of the usual LaTeX or TeX mathematics format-
ting commands when typesetting mathematics (most of the mathematical
formulas are in the Datatype sections). If you have specific questions, either
consult any of the LaTeX documentation or the document master.

Ranges of integers should be written out rather than using the mathe-
matical notation for an interval. For example, use

values may be between 0 and $\mpiarg{count}-1$

rather than

values may be in $[0,count)$

3.16 Preparing the list of participants

There are two special commands to make it easier to prepare the list of
participants, which is in the front mater and is typically presented in a table
with three columns. An example best illustrates this:

24

\begin{tabular}{lll}

first name \EE

second name \EE

...

name 1007 \EE

last name in list \FlushEntries

\end{tabular}

“\EE” is “EndEntry”. This makes it easy to insert and move names in
the list. If the number of columns is different from three, the macros
(defined in mpi-user-macs.tex) will need to be changed. The command
\FlushEntries resets the counters so that a subsequent use will be properly
formatted.

4 Interfacing with PDF

The MPI document is created as a PDF file. The use of the standard LaTeX
macros automatically generates links within the document that permit quick
navigation. However, the use of LaTeX macros within these macros can
create problems. For example, using a macro within the section name will
cause problems for the PDF link. The solution is to use the special macro,
\texorpdfstring. This macro takes two arguments. The first is used in
producing the document output; the second must have no LaTeX commands
and is used in the PDF link. For example, instead of this:

\section{Embedding in \MPI/}

use this

\section{Embedding in \texorpdfstring{\MPI/}{MPI}}

In some cases, because of limitations in the way LaTeX constructs the tables
of contents and list of figures, it may be necessary to ensure that spaces are
not eliminated. An easy way to protect a space is to put \hbox{} before or
after the space, depending on what is needed. This approach has been used
in a few updates to section titles.

5 Building the Standard

To build the standard, simply use make. There are additional targets that
may be used to build special versions of the standard. The most important
of these is checklatex; before commitiung any changes, run

25

make checklatex

The output of this should look like this:

./getlatex --allowpageref --noquotechk chap-*/*.tex

Any other output is a problem that you must correct before committing an
update. If you have a question about the output, contact the doncument
editor for a resolution.

The major make targets are:

clean Clean the directory tree of auxiliary files created by running make.

veryclean Like clean, but cleans more created files, including converted
graphics files.

distclean Like veryclean, but also removes the document PDF files.

check Runs the utility to check the code examples. This utility must
have been configured using the configure command in the directory
mpicompilechk.

checklatex Runs the scrxipt getlatex over the LaTeX files to look for
incorrect LaTeX usage. This target may be run in the top-level direc-
tory, in which case it processes all of the chapter files, or in a chapter
directory, in which case only the files for that chapter are checked.

eachchap Builds each chapter separately. This is good for editing indi-
vidual chapters, particularly for index entries and bibliographic refer-
ences.

errorsummary Searches the latest log file (mpi-report.log) for some er-
rors that should be corrected, including undefined or multiply defined
labels and overfull boxes (overfull boxes indicate that something has
spilled into one of the page margins).

cleandoc Produce a clean version of the document with no markup about
the changes in the standard (no change in font color, no changebars,
not old/new text).

cleanbwdoc Like cleandoc, but in black and white only.

bookprintingdoc Almost the official version, but define the TeX
\bookprintingtrue.

26

allversions Use this to build all of the versions of the document that are
made available

HTMLVERSION Create an HTML version of the standard. This uses
the tool tohtml, which must be installed from http://wgropp.cs.

illinois.edu/projects/software/sowing. The better-known
latex2html is (at last test) unable to handle a document of the size
of the MPI standard.

When this target is used, check the file latex.err to see what prob-
lems were encountered in creating the HTML version.

BWHTMLVERSION Like HTMLVERSION, but in black and white only.

5.1 Building Individual Chapters

To build a single chapter, first build the full standard. This will provide the
information necessary to include the proper values for references to sections
in other chapters, and the correct chapter number. Then cd to the directory
of the chapter and use make.

5.2 Build Configuration

There are a number of options for the build of the document that are con-
trolled by a configuration file. Most users need never deal with the con-
figuration, as the Makefile for the document handles all configuration file
settings for building each type of document.

The builds copy predefined configuration files, stored in the maint direc-
tory, to the file mpi-report.cfg. Builds of individual chapters and explicit
builds of the report use whatever mpi-report.cfg file is present in the di-
rectory; builds of specific versions of the document (e.g., make cleandoc)
replace the current mpi-report.cfg file with the appropriate choice from
the maint directory.

6 Editing Process

The MPI Document is developed by chapter subcommittees. Each chapter
has a chair and a committee of at least 4 (including the chair). The com-
mittee is responsible for editing their chapter. For MPI-3.1, the MPI Forum
has simplified the process of editing the official document, relying now on
automated tools to compare different versions of the document rather than

27

http://wgropp.cs.illinois.edu/projects/software/sowing
http://wgropp.cs.illinois.edu/projects/software/sowing

requiring all changes to be marked up with special macros defined for the
purpose. However, these macros are still available for use by chapter com-
mittees and may be used by replacing the command \allowchangefalse

with \allowchangetrue from the mpi-report.cfg file before building a
file that makes use of these change macros (see Section 5.2 for more on the
configuration files).

Changes may be introduced in two ways. The first is with the ticket
system; this system is akin to a bug report system against the document.
These can range from minor errors such as misspellings to the introduction
of new routines. A ticket provides very specific details about the change,
including the specific locations where changes are to be made.

The second way to introduce a change is for the chapter subcommittee
to edit the chapter directly. This is appropriate for more extensive changes,
which may range from thorough spelling and grammar corrections to intro-
duction of significant new capability through new functions. The chapter
committee may choose to have the MPI Forum vote on parts of this process
separately, for example, a new function may be brought before the Forum
for a vote. However, a final decision is based on a vote for the chapter as a
whole (as well as a vote on the standard as a whole).

Note that all changes must be approved with the MPI Forum’s pro-
cess. At this writing, this requires a reading of the chapter, followed by two
successful (majority) votes, each reading and vote held during a different
meeting (this is intended to give adequate time for reflection and review).

This process differs from the MPI-2.1 and MPI-2.2 process because those
versions were intended as minor edits to the standard. The process described
above follows the process used for MPI-1 and MPI-2, where chapters were
written by subcommittee, with frequent feedback from the MPI Forum in
terms of straw votes or Forum votes on particular features, but without
Forum votes for each individual change.

6.1 Update Macros

The macros in this section may be used to mark changes in the document
during development of material. They must not be used in the final docu-
ment; our experience has been that their extensive use is error prone and
focuses attention on small changes rather than the broader context, leading
to errors in the final document. However, they can be useful during the
development of new material and are provided for that use. In addition,
tools such as latexdiff may be used to create a version that highlights the
differences between versions of the MPI standard document.

28

The most general form is this macro:

\MPIupdateBegin{3.1}{ticket-number}

... changed text

\MPIupdateEnd{3.1}

A short form,

\MPIupdate{3.1}{ticket-number}{update}

may be used for very short changes, and

\MPIreplace{3.1}{ticket-number}{old text}{new text}

for replacements of text.
Deletions should be marked (where possible) with

\MPIdeleteBegin{3.1}{ticket-number}

% ... deleted text, commented out in LaTeX

% % ... comment out comments as well

\MPIdeleteEnd{3.1}

Note that the text to be deleted is commented out using the TeX comment
symbol. This is a pragmatic choice—it is possible to force TeX to ignore
blocks of text, but if those blocks of text contain certain TeX or LaTeX
commands, the deletion may not work properly. This approach, while less
elegant, is more certain.

A short form,

\MPIdelete{3.1}{ticket-number}{text to delete}

may be used for short deletions.
If the \MPIdelete... form cannot be used, then removed or replaced

text should be commented out if at all possible
While a chapter is being developed by a chapter committee, that com-

mittee may choose to mark updates, changes, or alternatives in other ways.
This is acceptable as long as when the chapter is presented to the MPI
Forum, the update macros described above are used.

Updates to examples are awkward to mark, and tend to make it harder,
not easier, to read and verify the code. If the chapter committees are func-
tioning properly, and the automated code checker is used, a better tradeoff
is (as is often the case) for readability and to correct the code, adding a La-
TeX comment if necessary to mark the change. More details about changes
are always available through the git logs.

29

7 Things Not To Do and Other Common Errors

This section provides some examples of what not to do in the MPI document,
with examples of the correct approach.

7.1 Spaces

Spaces are significant in TeX. Do not try to make the LaTeX source look like
good C code. Here is an example of incorrect use drawn from the document:

\caption{

Here is my caption

}

The newlines at the end of the first two lines add additional space into the
caption. Instead use

\caption{Here is my caption}

An alternate correct approach is to tell LaTeX to ignore the newlines by
using the LaTeX comment character:

\caption{%

Here is my caption%

}

Leaving off the second comment character (at the end of the caption) is
incorrect.

7.2 Font Changes

Avoid font changes as much as possible. Use the correct commands when
you do need to make them. For example, to emphasize a word in a sentence
by changing font style, use \emph{word} rather than {\em word\/} or the
incorrect {\em word} (the latter case is incorrect because it fails to include
the italic correction—a TeX command needed to ensure that the spacing
between the end of the italic text and the next non-italic character is not
too large).

Incorrect Correct

{\tt text} \texttt{text}

{\bf text} \textbf{text}

{\em text} \emph{text}

{\sf text} \textsf{text}

30

Note that in many cases, the use of \texttt or \textsf is still incorrect,
because the commands that are defined for various MPI terms or parameters
should be used instead.

The macro \textTitleFont can be used to show text in the correct font
for a chapter title. This is used only to format the chapter titles for the now
long out-of-date MPI Journal of Development.

Avoid changing the size of a font as well. Changes to the size of the
font should normally be handled within other comamands. Foe example,
the MPI object macros (Section 3.7) set the size to \small for many of
the object names and constants. Explicit size changes should never be
used for these terms. The \mpiconst command (and variations, such as
\mpiconstmain) accept an optional numeric argument to reduce the size
by that many steps. For example, \mpiconst[2]{MPI_TAG} is two sizes
smaller than \mpiconst{MPI_TAG}.

There are a few places where a font size change is appropriate. The
most common of these is for long code examples. In this case, the small

environment should be used, as in

\begin{small}

... example, probably using a verbatim environment

\end{small}

7.3 Spacing

Do not add vertical spacing to the document with the low-level spacing
commands such as \vskip or \vspace. It is almost always wrong to add
explicit spacing with these commands (this is akin to using inlined assembly
instructions when programming in a higher level language). In the rare
case where additional vertical space is necessary, use one of the predefined
skip commands: \smallskip, \medskip, or \bigskip. However, do not
use an vertical spacing, or explicit page breaks (e.g., \newpage) to address
poor page breaks. For example, if the first line of a paragraph starts at the
bottom of the page (called an orphan) or if the last line of paragraph starts
at the top of a page (called a widow), you may be tempted to add some
vertical spacing to remove these. Do not do this! The reason is that any
subsequent change to the chapter (even on the page after the bad page break)
can change the location of the page break. When that happens, the spacing
added to address the widow or orphan now becomes at best unnecessary but
most likely a mistake, making the page less, not more, attractive. In some
cases, changes to the document macros can systematically address poor page
breaks. Please contact the document editor to address such issues.

31

7.4 Dashes

There are three major dashes:

name appearance

hyphen -

en dash –

em dash —

An en dash is used between two numbers, as in 27–32. An em dash is used
as punctuation in a sentence—as used here. It is incorrect to use an en
dash as punctuation, and it is incorrect to use a hyphen in a number range.
In TeX, an en dash is written as -- and an em dash is written as ---. In
addition, the convention in the MPI Standard is that an em dash does not
have spaces on either side; the correct use is “foo—bar”, not “foo — bar”.

7.5 Using Quotes

TeX uses the characters ‘ and ’ for open and close quotes respectively. For
double quotes, use two of the appropriate quote; do not use the double quote
character ".

Because this document uses the standards of American English, punc-
tuation after a quoted phrase is placed within the quotation. For exam-
ple, “terma,” “termb,” and “termc.” An exception to this rule is string
constants. Because the string constant is a value, it is incorrect to place
punctuation within the quote. For example, use

... \mpistring{external32}, ...

instead of

... \mpistring{external32,} ...

7.6 Commas in Lists

In a list of items, the convention in the MPI standard is to use a comma
before the coordinating conjunction (which is usually and or or). This is
called the serial comma, series comma, or Oxford comma. For example,
“a, b, and c”. This is done for clarity; without the comma before the
conjunction, the meaning of the phrase can be ambiguous. While there
are examples of the Oxford comma introducing ambiguity, those cases are
rarer. An example of the consequence for a legal document of not using the
Oxford comma may be found in https://www.nytimes.com/2018/02/09/

32

https://www.nytimes.com/2018/02/09/us/oxford-comma-maine.html
https://www.nytimes.com/2018/02/09/us/oxford-comma-maine.html

us/oxford-comma-maine.html, where the lack of that comma in a law in
the state of Maine cost a company $5 million.

7.7 Describing Terms

The MPI documents, at least through MPI-3.2, had no consistency in how
descriptions of various MPI constants and terms were presented. These
should use the “description” environment. Do not use itemize, \paragraph,
explicit font choices, or en- or em-dashes. For lists with short descriptions,
the constlist environment can be used.

7.8 Hyphenating “non” and other compound words

The MPI standard includes many words starting with “non” such as non-
blocking, noncontiguous, nonstandardized, and nondefault. Recommended
usage in American English is to not use hyphens in tbese cases and in words
such as “multithreaded”. See, for example, the Chicago Manual of Style.

The term “point-to-point” is hyphenated as shown; use this instead of
“point to point”.

7.9 Punctuations for Captions

Captions for figures and tables are typically sentance fragments, and as such,
should not end in a period. However, if the caption includes a sentance,
then any sentance fragment should also end in a period. See https://en.

wikipedia.org/wiki/Wikipedia:Manual_of_Style/Captions for more de-
tails. Captions should normally start with a capital letter. The caption
should use “sentance case” rather than “title case;” that is, only proper
names and the first word should be capitalized.

7.10 Referring to data representations

MPI defines three data representations, as well as providing a way for users to
define more. These are external32, internal, and native. The MPI standard
refers to these both by name and by their representation as strings. In
MPI-4.0, \mpistring is used in both cases. An alternative would be to use
a different format, such as that from \mpicode, for use of the name, and
\mpistring for use of the actual value. This choice was made because the
string representation was the most common use within the document.

33

https://www.nytimes.com/2018/02/09/us/oxford-comma-maine.html
https://www.nytimes.com/2018/02/09/us/oxford-comma-maine.html
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Captions
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Captions

7.11 And so on

The above are not the only things to avoid—the recommendation is to stick
to the commands outlined in this document and to contact the document
master or editor if something else is needed.

8 Chosing Words

A standard must be very careful about the use of words. For example, ISO
recommends the following choices for requirements and recommendations:

Requirements Use shall or shall not

Recommendations Use should or should not

Use “may” for something that is permitted but not required. Use “can” for
something that is possible.

To describe something that is incorrect, use either “incorrect” or “in-
valid.” Do not use “illegal” unless there is a law against the action. About
the only use of “illegal” that may appear (notice that I did not write
“should”) is in reference to illegal copies of documents protected by copy-
right. An MPI program can never be illegal.

See http://www.iso.org/iso/how-to-write-standards.pdf for rec-
ommendations from ISO on writing standards.

9 Other Considerations

Occassionally, issues may come up that suggest an error in the standard. In
some cases, the issue is not an error but something that is a subtle issue.
For example, some Fortran definitions of functions that take an MPI Status
argument do not provide an INTENT. It might seem that these should be
INTENT(INOUT) (because the MPI STATUS IGNORE value may be provided
as an input), but in fact no intent is preferable here, since an undefined value
may be provided instead if the user wishes to ignore the status output, and
with INOUT, the compiler could raise an error.

10 Reviewing the Document for LaTeX and Lan-
guage Usage

This section is primarily notes for the editor, but also explains the items
that authors should check for, because these are common issues that the

34

http://www.iso.org/iso/how-to-write-standards.pdf

editor must address.

The following tests and careful reviews should be performed before re-
leasing a candidate or final standard. Note that some of these tests are
difficult to automate, so that the output of some commands needs to be
reviewed.

1. make checklatex must be clean

2. make checkusage needs to be reviewed; instructions are output with
each test that this runs

3. buildindices must be clean. If problems are found, consider setting
cleanupFiles = 0 in buildindices. Also consider setting
ignoreNoPrimary = 0 to flag the constants, functions, and typedefs
that do not have a primary index entry.

4. Review the indices, checking in particular for formatting commands
used in index entries (results in alphabetizing by the formatting com-
mand rather than the item), and to check for function names in the
wrong case—all functions in the function index must be in upper
case (the language-independent definition). buildindices attempts
to check for incorrect case in the function index. Also check the capital-
ization of terms, as well as small changes in spelling or plural versus
singular that generate separate index lines where there should be a
single, combined line.

5. Review the output from LaTeX for:

(a) undefined or multiply-defined labels. These must be corrected.

(b) overful boxes. These should be corrected; if the box is overful
by only a few pts, the editor may decide that it is acceptable.
Not, however, that because these must be reviewed each time, it
is best to correct them.

6. Review the BibTeX output for errors, which may be found in
mpi-report.blg.

7. Review the makeindex output for errors. Because of the multiple in-
dices, review the files with extension ilg, there should be six of these.
Multiple “encaps” for an entry are undesirable but and should be ex-
amined; note that the buildindices script attempts to remove these.
Watch in particular for errors about misplaced exclamation points;

35

these are almost certainly a malformed index entry, which will not
appear in the index.

11 Final Comments

This is a relatively short guide to the use of LaTeX in editing the MPI
Standard Document. Please contact the editor if you have any questions,
comments, or suggestions about either this document or on the editing pro-
cess for the MPI Standard Document. Keep in mind that the goal is clarity
and precision in the document, which is aided by a clear and consistent style.

36

	Introduction
	Accessing the Document
	Formatting the Document
	Basic Formatting
	Page references in the Change-Log
	Describing a Change-Log entry
	Descriptions of Terms and MPI Objects
	Presenting Examples
	MPI Environments
	MPI Objects
	MPI Object Examples
	NULL used in text
	true and false used in text

	MPI Terms
	Standard Names
	Defining MPI Functions
	Bindings
	Indexing
	Automatically Indexed MPI names
	Indexing the Examples
	Primary Index Entries
	Reviewing the Indices

	Code Examples
	Language-Independent Examples
	Mathematics
	Preparing the list of participants

	Interfacing with PDF
	Building the Standard
	Building Individual Chapters
	Build Configuration

	Editing Process
	Update Macros

	Things Not To Do and Other Common Errors
	Spaces
	Font Changes
	Spacing
	Dashes
	Using Quotes
	Commas in Lists
	Describing Terms
	Hyphenating ``non'' and other compound words
	Punctuations for Captions
	Referring to data representations
	And so on

	Chosing Words
	Other Considerations
	Reviewing the Document for LaTeX and Language Usage
	Final Comments

