MPI: A Message-Passing Interface Standard
Version 4.1

Message Passing Interface Forum

November 2, 2023
This document describes the Message-Passing Interface (MPI) standard, version 4.1. The MPI standard includes point-to-point message-passing, collective communications, group and communicator concepts, process topologies, environmental management, process creation and management, one-sided communications, extended collective operations, external interfaces, I/O, some miscellaneous topics, and multiple tool interfaces. Language bindings for C and Fortran are defined.

Historically, the evolution of the standard is:

- **MPI-1.0** (May 5, 1994): Initial release.
- **MPI-1.1** (June 12, 1995): Minor updates and bug fixes.
- **MPI-1.2** (July 18, 1997): Several clarifications and additions.
- **MPI-2.0** (July 18, 1997): New functionality and all the clarifications and additions from MPI-1.2.
- **MPI-1.3** (May 30, 2008): For historical reasons, combining the MPI-1.1, MPI-1.2, and several errata documents into one combined document.
- **MPI-2.1** (June 23, 2008): Combining the previous documents.
- **MPI-2.2** (September 4, 2009): Additional clarifications and seven new routines.
- **MPI-3.0** (September 21, 2012): Extension of MPI-2.2.
- **MPI-3.1** (June 4, 2015): Clarifications and minor extensions to MPI-3.0.
- **MPI-4.0** (June 9, 2021): Significant new features beyond MPI-3.1.
- **MPI-4.1** (November 2, 2023): Clarifications and minor extensions to MPI-4.0.

Comments. Please send comments on MPI to the MPI Forum as follows:

2. Send your comment to: mpi-comments@lists.mpi-forum.org, together with the version of the MPI standard and the page and line numbers on which you are commenting. Only use the official versions.

Your comment will be forwarded to MPI Forum committee members for consideration. Messages sent from an unsubscribed e-mail address will not be considered.

©1993, 1994, 1995, 1996, 1997, 2008, 2009, 2012, 2015, 2021, 2023 University of Tennessee, Knoxville, Tennessee. Permission to copy without fee all or part of this material is granted, provided the University of Tennessee copyright notice and the title of this document appear, and notice is given that copying is by permission of the University of Tennessee.
Version 4.1: November 2, 2023. This version of the MPI-4.1 standard contains mostly corrections and clarifications to the MPI-4.0 document. Several routines, the attribute key MPI_HOST, and the mpif.h Fortran include file are deprecated.

Version 4.0: June 9, 2021. This version of the MPI-4 standard is a major update and includes significant new functionality. The largest changes are the addition of large-count versions of many routines to address the limitations of using an int or INTEGER for the count parameter, persistent collectives, partitioned communications, an alternative way to initialize MPI, application info assertions, and improvements to the definitions of error handling. In addition, there are a number of smaller improvements and corrections.

Version 3.1: June 4, 2015. This document contains mostly corrections and clarifications to the MPI-3.0 document. The largest change is a correction to the Fortran bindings introduced in MPI-3.0. Additionally, new functions added include routines to manipulate MPI_Aint values in a portable manner, nonblocking collective I/O routines, and routines to get the index value by name for MPI_T performance and control variables.

Version 3.0: September 21, 2012. Coincident with the development of MPI-2.2, the MPI Forum began discussions of a major extension to MPI. This document contains the MPI-3 standard. This version of the MPI-3 standard contains significant extensions to MPI functionality, including nonblocking collectives, new one-sided communication operations, and Fortran 2008 bindings. Unlike MPI-2.2, this standard is considered a major update to the MPI standard. As with previous versions, new features have been adopted only when there were compelling needs for the users. Some features, however, may have more than a minor impact on existing MPI implementations.

Version 2.2: September 4, 2009. This document contains mostly corrections and clarifications to the MPI-2.1 document. A few extensions have been added; however all correct MPI-2.1 programs are correct MPI-2.2 programs. New features were adopted only when there were compelling needs for users, open source implementations, and minor impact on existing MPI implementations.

Version 2.1: June 23, 2008. This document combines the previous documents MPI-1.3 (May 30, 2008) and MPI-2.0 (July 18, 1997). Certain parts of MPI-2.0, such as some sections of Chapter 4, Miscellany, and Chapter 7, Extended Collective Operations, have been merged into the chapters of MPI-1.3. Additional errata and clarifications collected by the MPI Forum are also included in this document.

Version 1.3: May 30, 2008. This document combines the previous documents MPI-1.1 (June 12, 1995) and the MPI-1.2 chapter in MPI-2 (July 18, 1997). Additional errata collected by the MPI Forum referring to MPI-1.1 and MPI-1.2 are also included in this document.

Version 2.0: July 18, 1997. Beginning after the release of MPI-1.1, the MPI Forum began meeting to consider corrections and extensions. MPI-2 has been focused on process creation and management, one-sided communications, extended collective communications, external
interfaces and parallel I/O. A miscellany chapter discusses items that do not fit elsewhere, in particular language interoperability.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI-1.2 as Chapter 3 in the standard “MPI-2: Extensions to the Message-Passing Interface”, July 18, 1997. This section contains clarifications and minor corrections to Version 1.1 of the MPI standard. The only new function in MPI-1.2 is one for identifying to which version of the MPI standard the implementation conforms. There are small differences between MPI-1 and MPI-1.1. There are very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2 and MPI-2.

Version 1.1: June, 1995. Beginning in March, 1995, the Message-Passing Interface Forum reconvened to correct errors and make clarifications in the MPI document of May 5, 1994, referred to below as Version 1.0. These discussions resulted in Version 1.1. The changes from Version 1.0 are minor. A version of this document with all changes marked is available.

Version 1.0: May, 1994. The Message-Passing Interface Forum, with participation from over 40 organizations, has been meeting since January 1993 to discuss and define a set of library interface standards for message passing. The Message-Passing Interface Forum is not sanctioned or supported by any official standards organization.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used standard for writing message-passing programs. As such the interface should establish a practical, portable, efficient, and flexible standard for message-passing.

This is the final report, Version 1.0, of the Message-Passing Interface Forum. This document contains all the technical features proposed for the interface. This copy of the draft was processed by LATEX on May 5, 1994.
Contents

List of Figures xix
List of Tables xxi
Acknowledgments xxii

1 Introduction to MPI 1
 1.1 Overview and Goals 1
 1.2 Background of MPI-1.0 2
 1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0 2
 1.4 Background of MPI-1.3 and MPI-2.1 3
 1.5 Background of MPI-2.2 4
 1.6 Background of MPI-3.0 4
 1.7 Background of MPI-3.1 4
 1.8 Background of MPI-4.0 4
 1.9 Background of MPI-4.1 5
 1.10 Who Should Use This Standard? 5
 1.11 What Platforms Are Targets for Implementation? 5
 1.12 What Is Included in the Standard? 6
 1.13 Side-documents 6
 1.14 Organization of This Document 7

2 MPI Terms and Conventions 9
 2.1 Document Notation 9
 2.2 Naming Conventions 9
 2.3 Procedure Specification 10
 2.4 Semantic Terms 11
 2.4.1 MPI Operations 11
 2.4.2 MPI Procedures 14
 2.4.3 MPI Datatypes 16
 2.5 Datatypes 17
 2.5.1 Opaque Objects 17
 2.5.2 Array Arguments 19
 2.5.3 State 19
 2.5.4 Named Constants 19
 2.5.5 Choice 20
 2.5.6 Absolute Addresses and Relative Address Displacements 21
 2.5.7 File Offsets 21
 2.5.8 Counts 21
 2.6 Language Binding 22
 2.6.1 Deprecated and Removed Interfaces 22
 2.6.2 Fortran Binding Issues 23
Table of Contents

2.6.3 C Binding Issues ... 24
2.6.4 Functions and Macros 25

2.7 Processes .. 25

2.8 Error Handling .. 26

2.9 Progress ... 27

2.10 Implementation Issues 29

2.11 Examples .. 30

3 Point-to-Point Communication 31

3.1 Introduction ... 31

3.2 Blocking Send and Receive Operations 32

3.2.1 Blocking Send ... 32

3.2.2 Message Data .. 33

3.2.3 Message Envelope 35

3.2.4 Blocking Receive 36

3.2.5 Return Status .. 39

3.2.6 Passing MPI_STATUS_IGNORE for Status 42

3.2.7 Blocking Send-Receive 43

3.3 Datatype Matching and Data Conversion 46

3.3.1 Type Matching Rules 46

3.3.2 Data Conversion ... 48

3.4 Communication Modes 50

3.5 Semantics of Point-to-Point Communication 55

3.6 Buffer Allocation and Usage 58

3.6.1 Model Implementation of Buffered Mode 68

3.7 Nonblocking Communication 69

3.7.1 Communication Request Objects 70

3.7.2 Communication Initiation 71

3.7.3 Communication Completion 78

3.7.4 Semantics of Nonblocking Communication Operations ... 82

3.7.5 Multiple Completions 83

3.7.6 Non-Destructive Test of status 90

3.8 Probe and Cancel ... 94

3.8.1 Probe .. 94

3.8.2 Matching Probe .. 97

3.8.3 Matched Receives .. 100

3.8.4 Cancel .. 102

3.9 Persistent Communication Requests 104

3.10 Null MPI Processes 111

4 Partitioned Point-to-Point Communication 113

4.1 Introduction ... 113

4.2 Semantics of Partitioned Point-to-Point Communication ... 114

4.2.1 Communication Initialization and Starting with Partitioning 116

4.2.2 Communication Completion under Partitioning 120
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3</td>
<td>Semantics of Communications in Partitioned Mode</td>
<td>121</td>
</tr>
<tr>
<td>4.3</td>
<td>Partitioned Communication Examples</td>
<td>121</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Partition Communication with Threads/Tasks Using OpenMP 4.0 or later</td>
<td>122</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Send-only Partitioning Example with Tasks and OpenMP version 4.0 or later</td>
<td>123</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Send and Receive Partitioning Example with OpenMP version 4.0 or later</td>
<td>124</td>
</tr>
<tr>
<td>5</td>
<td>Datatypes</td>
<td>127</td>
</tr>
<tr>
<td>5.1</td>
<td>Derived Datatypes</td>
<td>127</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Type Constructors with Explicit Addresses</td>
<td>129</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Datatype Constructors</td>
<td>129</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Subarray Datatype Constructor</td>
<td>141</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Distributed Array Datatype Constructor</td>
<td>143</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Address and Size Procedures</td>
<td>148</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Lower-Bound and Upper-Bound Markers</td>
<td>151</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Extent and Bounds of Datatypes</td>
<td>153</td>
</tr>
<tr>
<td>5.1.8</td>
<td>True Extent of Datatypes</td>
<td>155</td>
</tr>
<tr>
<td>5.1.9</td>
<td>Commit and Free</td>
<td>156</td>
</tr>
<tr>
<td>5.1.10</td>
<td>Duplicating a Datatype</td>
<td>158</td>
</tr>
<tr>
<td>5.1.11</td>
<td>Use of General Datatypes in Communication</td>
<td>158</td>
</tr>
<tr>
<td>5.1.12</td>
<td>Correct Use of Addresses</td>
<td>161</td>
</tr>
<tr>
<td>5.1.13</td>
<td>Decoding a Datatype</td>
<td>162</td>
</tr>
<tr>
<td>5.1.14</td>
<td>Examples</td>
<td>170</td>
</tr>
<tr>
<td>5.2</td>
<td>Pack and Unpack</td>
<td>178</td>
</tr>
<tr>
<td>5.3</td>
<td>Canonical MPI_PACK and MPI_UNPACK</td>
<td>185</td>
</tr>
<tr>
<td>6</td>
<td>Collective Communication</td>
<td>189</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction and Overview</td>
<td>189</td>
</tr>
<tr>
<td>6.2</td>
<td>Communicator Argument</td>
<td>192</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Specifics for Intra-Communicator Collective Operations</td>
<td>192</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Applying Collective Operations to Inter-Communicators</td>
<td>193</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Specifics for Inter-Communicator Collective Operations</td>
<td>194</td>
</tr>
<tr>
<td>6.3</td>
<td>Barrier Synchronization</td>
<td>196</td>
</tr>
<tr>
<td>6.4</td>
<td>Broadcast</td>
<td>196</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Example using MPI_BCAST</td>
<td>197</td>
</tr>
<tr>
<td>6.5</td>
<td>Gather</td>
<td>198</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Examples using MPI_GATHER, MPI_GATHERV</td>
<td>202</td>
</tr>
<tr>
<td>6.6</td>
<td>Scatter</td>
<td>208</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Examples using MPI_SCATTER, MPI_SCATTERV</td>
<td>212</td>
</tr>
<tr>
<td>6.7</td>
<td>Gather-to-all</td>
<td>214</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Example using MPI_ALLGATHER</td>
<td>217</td>
</tr>
<tr>
<td>6.8</td>
<td>All-to-All Scatter/Gather</td>
<td>218</td>
</tr>
<tr>
<td>6.9</td>
<td>Global Reduction Operations</td>
<td>224</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Reduce</td>
<td>224</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Predefined Reduction Operations</td>
<td>227</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Signed Characters and Reductions</td>
<td>229</td>
</tr>
</tbody>
</table>
6.9.4 MINLOC and MAXLOC 229
6.9.5 User-Defined Reduction Operations 235
 Example of User-Defined Reduce 239
6.9.6 All-Reduce ... 240
6.9.7 MPI Process-Local Reduction 242

6.10 Reduce-Scatter ... 243
 6.10.1 MPI_REDUCE_SCATTER_BLOCK 243
 6.10.2 MPI_REDUCE_SCATTER 245

6.11 Scan ... 247
 6.11.1 Inclusive Scan 247
 6.11.2 Exclusive Scan 248
 6.11.3 Example using MPI_SCAN 249

6.12 Nonblocking Collective Operations 250
 6.12.1 Nonblocking Barrier Synchronization 253
 6.12.2 Nonblocking Broadcast 253
 Example using MPI_IBCAST 254
 6.12.3 Nonblocking Gather 255
 6.12.4 Nonblocking Scatter 257
 6.12.5 Nonblocking Gather-to-all 260
 6.12.6 Nonblocking All-to-All Scatter/Gather 262
 6.12.7 Nonblocking Reduce 267
 6.12.8 Nonblocking All-Reduce 268
 6.12.9 Nonblocking Reduce-Scatter with Equal Blocks 269
 6.12.10 Nonblocking Reduce-Scatter 270
 6.12.11 Nonblocking Inclusive Scan 271
 6.12.12 Nonblocking Exclusive Scan 272

6.13 Persistent Collective Operations 273
 6.13.1 Persistent Barrier Synchronization 275
 6.13.2 Persistent Broadcast 276
 6.13.3 Persistent Gather 277
 6.13.4 Persistent Scatter 279
 6.13.5 Persistent Gather-to-all 282
 6.13.6 Persistent All-to-All Scatter/Gather 285
 6.13.7 Persistent Reduce 289
 6.13.8 Persistent All-Reduce 291
 6.13.9 Persistent Reduce-Scatter with Equal Blocks 292
 6.13.10 Persistent Reduce-Scatter 293
 6.13.11 Persistent Inclusive Scan 294
 6.13.12 Persistent Exclusive Scan 296

6.14 Correctness .. 297

7 Groups, Contexts, Communicators, and Caching 305
 7.1 Introduction ... 305
 7.1.1 Features Needed to Support Libraries 305
 7.1.2 MPI's Support for Libraries 305
 7.2 Basic Concepts ... 307
 7.2.1 Groups ... 308
 7.2.2 Contexts ... 308
Virtual Topologies for MPI Processes

8.1 Introduction ... 383
8.2 Virtual Topologies 384
8.3 Embedding in MPI .. 384
8.4 Overview of the Functions 385
8.5 Topology Constructors 386
8.5.1 Cartesian Constructor 386
8.5.2 Cartesian Convenience Function: MPI_DIMS_CREATE . 387
8.5.3 Graph Constructor 388
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.4 Distributed Graph Constructor</td>
<td>390</td>
</tr>
<tr>
<td>8.5.5 Topology Inquiry Functions</td>
<td>397</td>
</tr>
<tr>
<td>8.5.6 Cartesian Shift Coordinates</td>
<td>405</td>
</tr>
<tr>
<td>8.5.7 Partitioning of Cartesian Structures</td>
<td>407</td>
</tr>
<tr>
<td>8.5.8 Low-Level Topology Functions</td>
<td>408</td>
</tr>
<tr>
<td>8.6 Neighborhood Collective Communication</td>
<td>410</td>
</tr>
<tr>
<td>8.6.1 Neighborhood Gather</td>
<td>411</td>
</tr>
<tr>
<td>8.6.2 Neighborhood Alltoall</td>
<td>415</td>
</tr>
<tr>
<td>8.7 Nonblocking Neighborhood Communication</td>
<td>422</td>
</tr>
<tr>
<td>8.7.1 Nonblocking Neighborhood Gather</td>
<td>422</td>
</tr>
<tr>
<td>8.7.2 Nonblocking Neighborhood Alltoall</td>
<td>425</td>
</tr>
<tr>
<td>8.8 Persistent Neighborhood Communication</td>
<td>429</td>
</tr>
<tr>
<td>8.8.1 Persistent Neighborhood Gather</td>
<td>429</td>
</tr>
<tr>
<td>8.8.2 Persistent Neighborhood Alltoall</td>
<td>432</td>
</tr>
<tr>
<td>8.9 An Application Example</td>
<td>436</td>
</tr>
<tr>
<td>9 MPI Environmental Management</td>
<td>441</td>
</tr>
<tr>
<td>9.1 Implementation Information</td>
<td>441</td>
</tr>
<tr>
<td>9.1.1 Version Inquiries</td>
<td>441</td>
</tr>
<tr>
<td>9.1.2 Environmental Inquiries</td>
<td>442</td>
</tr>
<tr>
<td>9.1.2.1 Tag Values</td>
<td>443</td>
</tr>
<tr>
<td>9.1.2.2 IO Rank</td>
<td>443</td>
</tr>
<tr>
<td>9.1.2.3 Clock Synchronization</td>
<td>444</td>
</tr>
<tr>
<td>9.1.2.4 Inquire Processor Name</td>
<td>444</td>
</tr>
<tr>
<td>9.1.2.5 Inquire Hardware Resource Information</td>
<td>445</td>
</tr>
<tr>
<td>9.2 Memory Allocation</td>
<td>446</td>
</tr>
<tr>
<td>9.3 Error Handling</td>
<td>449</td>
</tr>
<tr>
<td>9.3.1 Error Handlers for Communicators</td>
<td>452</td>
</tr>
<tr>
<td>9.3.2 Error Handlers for Windows</td>
<td>454</td>
</tr>
<tr>
<td>9.3.3 Error Handlers for Files</td>
<td>456</td>
</tr>
<tr>
<td>9.3.4 Error Handlers for Sessions</td>
<td>457</td>
</tr>
<tr>
<td>9.3.5 Freeing Errorhandlers and Retrieving Error Strings</td>
<td>459</td>
</tr>
<tr>
<td>9.4 Error Codes and Classes</td>
<td>460</td>
</tr>
<tr>
<td>9.5 Error Classes, Error Codes, and Error Handlers</td>
<td>464</td>
</tr>
<tr>
<td>9.5.1 User-Defined Error Classes and Codes</td>
<td>464</td>
</tr>
<tr>
<td>9.5.2 Calling Error Handlers</td>
<td>468</td>
</tr>
<tr>
<td>9.6 Timers and Synchronization</td>
<td>470</td>
</tr>
<tr>
<td>10 The Info Object</td>
<td>473</td>
</tr>
<tr>
<td>11 Process Initialization, Creation, and Management</td>
<td>481</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>481</td>
</tr>
<tr>
<td>11.2 The World Model</td>
<td>482</td>
</tr>
<tr>
<td>11.2.1 Starting MPI Processes</td>
<td>482</td>
</tr>
<tr>
<td>11.2.2 Finalizing MPI</td>
<td>488</td>
</tr>
<tr>
<td>11.2.3 Determining Whether MPI Has Been Initialized When Using the</td>
<td>491</td>
</tr>
<tr>
<td>World Model</td>
<td>491</td>
</tr>
<tr>
<td>11.2.4 Allowing User Functions at MPI Finalization</td>
<td>492</td>
</tr>
</tbody>
</table>

x
11.3 The Sessions Model ... 493
 11.3.1 Session Creation and Destruction Methods 494
 11.3.2 Processes Sets ... 497
 11.3.3 Runtime Query Functions 498
 11.3.4 Sessions Model Examples 501
11.4 Common Elements of Both Process Models 506
 11.4.1 MPI Functionality that is Always Available 506
 11.4.2 Aborting MPI Processes 506
 11.4.3 Memory Allocation Info 508
11.5 Portable MPI Process Startup 512
11.6 MPI and Threads .. 514
 11.6.1 General ... 515
 11.6.2 Clarifications .. 516
11.7 The Dynamic Process Model 518
 11.7.1 Starting Processes 518
 11.7.2 The Runtime Environment 518
11.8 Process Manager Interface 519
 11.8.1 Processes in MPI 519
 11.8.2 Starting Processes and Establishing Communication 519
 11.8.3 Starting Multiple Executables and Establishing Communication 524
 11.8.4 Reserved Keys .. 527
 11.8.5 Spawn Example ... 528
11.9 Establishing Communication 530
 11.9.1 Names, Addresses, Ports, and All That 530
 11.9.2 Server Routines .. 531
 11.9.3 Client Routines .. 534
 11.9.4 Name Publishing 535
 11.9.5 Reserved Key Values 538
 11.9.6 Client/Server Examples 538
11.10 Other Functionality .. 540
 11.10.1 Universe Size .. 540
 11.10.2 Singleton MPI Initialization 541
 11.10.3 MPI_APPNUM ... 542
 11.10.4 Releasing Connections 542
 11.10.5 Another Way to Establish MPI Communication 544
12 One-Sided Communications .. 547
 12.1 Introduction ... 547
 12.2 Initialization .. 548
 12.2.1 Window Creation 548
 12.2.2 Window That Allocates Memory 552
 12.2.3 Window That Allocates Shared Memory 554
 12.2.4 Window of Dynamically Attached Memory 559
 12.2.5 Window Destruction 562
 12.2.6 Window Attributes 563
 12.2.7 Window Info .. 564
 12.3 Communication Calls 566
 12.3.1 Put ... 567
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4</td>
<td>Data Access</td>
<td></td>
</tr>
<tr>
<td>14.4.1</td>
<td>Data Access Routines</td>
<td></td>
</tr>
<tr>
<td>14.4.2</td>
<td>Data Access with Explicit Offsets</td>
<td></td>
</tr>
<tr>
<td>14.4.3</td>
<td>Data Access with Individual File Pointers</td>
<td></td>
</tr>
<tr>
<td>14.4.4</td>
<td>Data Access with Shared File Pointers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noncollective Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collective Operations</td>
<td></td>
</tr>
<tr>
<td>14.4.5</td>
<td>Split Collective Data Access Routines</td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>File Interoperability</td>
<td></td>
</tr>
<tr>
<td>14.5.1</td>
<td>Datatypes for File Interoperability</td>
<td></td>
</tr>
<tr>
<td>14.5.2</td>
<td>External Data Representation: "external32"</td>
<td></td>
</tr>
<tr>
<td>14.5.3</td>
<td>User-Defined Data Representations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extent Callback</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Datarep Conversion Functions</td>
<td></td>
</tr>
<tr>
<td>14.5.4</td>
<td>Matching Data Representations</td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td>Consistency and Semantics</td>
<td></td>
</tr>
<tr>
<td>14.6.1</td>
<td>File Consistency</td>
<td></td>
</tr>
<tr>
<td>14.6.2</td>
<td>Random Access vs. Sequential Files</td>
<td></td>
</tr>
<tr>
<td>14.6.3</td>
<td>Progress</td>
<td></td>
</tr>
<tr>
<td>14.6.4</td>
<td>Collective File Operations</td>
<td></td>
</tr>
<tr>
<td>14.6.5</td>
<td>Nonblocking Collective File Operations</td>
<td></td>
</tr>
<tr>
<td>14.6.6</td>
<td>Type Matching</td>
<td></td>
</tr>
<tr>
<td>14.6.7</td>
<td>Miscellaneous Clarifications</td>
<td></td>
</tr>
<tr>
<td>14.6.8</td>
<td>MPI_Offset Type</td>
<td></td>
</tr>
<tr>
<td>14.6.9</td>
<td>Logical vs. Physical File Layout</td>
<td></td>
</tr>
<tr>
<td>14.6.10</td>
<td>File Size</td>
<td></td>
</tr>
<tr>
<td>14.6.11</td>
<td>Examples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asynchronous I/O</td>
<td></td>
</tr>
<tr>
<td>14.7</td>
<td>I/O Error Handling</td>
<td></td>
</tr>
<tr>
<td>14.8</td>
<td>I/O Error Classes</td>
<td></td>
</tr>
<tr>
<td>14.9</td>
<td>Examples</td>
<td></td>
</tr>
<tr>
<td>14.9.1</td>
<td>Double Buffering with Split Collective I/O</td>
<td></td>
</tr>
<tr>
<td>14.9.2</td>
<td>Subarray Filetype Constructor</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Tool Support</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>Profiling Interface</td>
<td></td>
</tr>
<tr>
<td>15.2.1</td>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>15.2.2</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>15.2.3</td>
<td>Logic of the Design</td>
<td></td>
</tr>
<tr>
<td>15.2.4</td>
<td>Miscellaneous Control of Profiling</td>
<td></td>
</tr>
<tr>
<td>15.2.5</td>
<td>MPI Library Implementation</td>
<td></td>
</tr>
</tbody>
</table>
15.2.6 Complications ... 721
 Multiple Counting ... 721
 Linker Oddities ... 721
 Fortran Support Methods 722
15.2.7 Multiple Levels of Interception 722
15.3 The MPI Tool Information Interface 722
 15.3.1 Verbosity Levels .. 724
 15.3.2 Binding MPI Tool Information Interface Variables to MPI Objects 724
 15.3.3 Convention for Returning Strings 725
 15.3.4 Initialization and Finalization 726
 15.3.5 Datatype System 727
 15.3.6 Control Variables 729
 Control Variable Query Functions 729
 Handle Allocation and Deallocation 733
 Control Variable Access Functions 734
 15.3.7 Performance Variables 736
 Performance Variable Classes 736
 Performance Variable Query Functions 738
 Performance Experiment Sessions 741
 Handle Allocation andDeallocation 742
 Starting and Stopping of Performance Variables 743
 Performance Variable Access Functions 744
 15.3.8 Events .. 748
 Event Sources ... 749
 Callback Safety Requirements 751
 Event Type Query Functions 752
 Handle Allocation and Deallocation 755
 Handling Dropped Events 759
 Reading Event Data ... 761
 Reading Event Meta Data 762
 15.3.9 Variable Categorization 763
 Category Query Functions 764
 Category Member Query Functions 766
 15.3.10 Return Codes for the MPI Tool Information Interface 768
 15.3.11 Profiling Interface 768

16 Deprecated Interfaces .. 771
 16.1 Deprecated since MPI-2.0 771
 16.2 Deprecated since MPI-2.2 774
 16.3 Deprecated since MPI-4.0 774
 16.4 Deprecated since MPI-4.1 777

17 Removed Interfaces ... 783
 17.1 Removed MPI-1 Bindings 783
 17.1.1 Overview .. 783
 17.1.2 Removed MPI-1 Functions 783
 17.1.3 Removed MPI-1 Datatypes 783
 17.1.4 Removed MPI-1 Constants 783
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1.19 Permanent Data Movement</td>
<td>831</td>
</tr>
<tr>
<td>19.1.20 Comparison with C</td>
<td>832</td>
</tr>
<tr>
<td>19.2 Support for Large Count and Large Byte Displacement</td>
<td>833</td>
</tr>
<tr>
<td>19.3 Language Interoperability</td>
<td>834</td>
</tr>
<tr>
<td>19.3.1 Introduction</td>
<td>834</td>
</tr>
<tr>
<td>19.3.2 Assumptions</td>
<td>834</td>
</tr>
<tr>
<td>19.3.3 Initialization</td>
<td>835</td>
</tr>
<tr>
<td>Concerns specific to the World Model</td>
<td>835</td>
</tr>
<tr>
<td>Concerns specific to the Sessions Model</td>
<td>835</td>
</tr>
<tr>
<td>Concerns common to both the World Model and the Sessions Model</td>
<td>836</td>
</tr>
<tr>
<td>19.3.4 Transfer of Handles</td>
<td>836</td>
</tr>
<tr>
<td>19.3.5 Status</td>
<td>838</td>
</tr>
<tr>
<td>19.3.6 MPI Opaque Objects</td>
<td>840</td>
</tr>
<tr>
<td>Datatypes</td>
<td>840</td>
</tr>
<tr>
<td>Callback Functions</td>
<td>842</td>
</tr>
<tr>
<td>Error Handlers</td>
<td>842</td>
</tr>
<tr>
<td>Reduce Operations</td>
<td>842</td>
</tr>
<tr>
<td>19.3.7 Attributes</td>
<td>843</td>
</tr>
<tr>
<td>19.3.8 Extra-State</td>
<td>846</td>
</tr>
<tr>
<td>19.3.9 Constants</td>
<td>847</td>
</tr>
<tr>
<td>19.3.10 Interlanguage Communication</td>
<td>847</td>
</tr>
<tr>
<td>A Language Bindings Summary</td>
<td>849</td>
</tr>
<tr>
<td>A.1 Defined Values and Handles</td>
<td>849</td>
</tr>
<tr>
<td>A.1.1 Defined Constants</td>
<td>849</td>
</tr>
<tr>
<td>A.1.2 Types</td>
<td>865</td>
</tr>
<tr>
<td>A.1.3 Prototype Definitions</td>
<td>866</td>
</tr>
<tr>
<td>C Bindings</td>
<td>866</td>
</tr>
<tr>
<td>Fortran 2008 Bindings with the mpi_f08 Module</td>
<td>867</td>
</tr>
<tr>
<td>Fortran Bindings with mpif.h or the mpi Module</td>
<td>870</td>
</tr>
<tr>
<td>A.1.4 Deprecated Prototype Definitions</td>
<td>872</td>
</tr>
<tr>
<td>A.1.5 String Values</td>
<td>873</td>
</tr>
<tr>
<td>Default Communicator Names</td>
<td>873</td>
</tr>
<tr>
<td>Default Datatype Names</td>
<td>873</td>
</tr>
<tr>
<td>Default Window Names</td>
<td>873</td>
</tr>
<tr>
<td>Reserved Data Representations</td>
<td>873</td>
</tr>
<tr>
<td>Process Set Names</td>
<td>873</td>
</tr>
<tr>
<td>Info Keys</td>
<td>873</td>
</tr>
<tr>
<td>Info Values</td>
<td>874</td>
</tr>
<tr>
<td>A.2 Summary of the Semantics of all Op.-Related Routines</td>
<td>875</td>
</tr>
<tr>
<td>A.3 C Bindings</td>
<td>884</td>
</tr>
<tr>
<td>A.3.1 Point-to-Point Communication C Bindings</td>
<td>884</td>
</tr>
<tr>
<td>A.3.2 Partitioned Communication C Bindings</td>
<td>888</td>
</tr>
<tr>
<td>A.3.3 Datatypes C Bindings</td>
<td>888</td>
</tr>
<tr>
<td>A.3.4 Collective Communication C Bindings</td>
<td>891</td>
</tr>
<tr>
<td>A.3.5 Groups, Contexts, Communicators, and Caching C Bindings</td>
<td>899</td>
</tr>
<tr>
<td>A.3.6 Virtual Topologies for MPI Processes C Bindings</td>
<td>902</td>
</tr>
<tr>
<td>A.3.7 MPI Environmental Management C Bindings</td>
<td>906</td>
</tr>
</tbody>
</table>
A.3.8 The Info Object C Bindings .. 907
A.3.9 Process Creation and Management C Bindings 907
A.3.10 One-Sided Communications C Bindings 908
A.3.11 External Interfaces C Bindings 911
A.3.12 I/O C Bindings ... 912
A.3.13 Language Bindings C Bindings 916
A.3.14 Tools / Profiling Interface C Bindings 917
A.3.15 Tools / MPI Tool Information Interface C Bindings 917
A.3.16 Deprecated C Bindings .. 919
A.4 Fortran 2008 Bindings with the mpi_f08 Module 921
A.4.1 Point-to-Point Communication Fortran 2008 Bindings 921
A.4.2 Partitioned Communication Fortran 2008 Bindings 933
A.4.3 Datatypes Fortran 2008 Bindings 934
A.4.4 Collective Communication Fortran 2008 Bindings 941
A.4.5 Groups, Contexts, Communicators, and Caching Fortran 2008 Bindings ... 963
A.4.6 Virtual Topologies for MPI Processes Fortran 2008 Bindings ... 970
A.4.7 MPI Environmental Management Fortran 2008 Bindings 979
A.4.8 The Info Object Fortran 2008 Bindings 982
A.4.9 Process Creation and Management Fortran 2008 Bindings 983
A.4.10 One-Sided Communications Fortran 2008 Bindings 986
A.4.11 External Interfaces Fortran 2008 Bindings 993
A.4.12 I/O Fortran 2008 Bindings 994
A.4.13 Language Bindings Fortran 2008 Bindings 1007
A.4.14 Tools / Profiling Interface Fortran 2008 Bindings 1007
A.4.15 Deprecated Fortran 2008 Bindings 1008
A.5 Fortran Bindings with mpif.h or the mpi Module 1009
A.5.1 Point-to-Point Communication Fortran Bindings 1009
A.5.2 Partitioned Communication Fortran Bindings 1013
A.5.3 Datatypes Fortran Bindings 1013
A.5.4 Collective Communication Fortran Bindings 1016
A.5.5 Groups, Contexts, Communicators, and Caching Fortran Bindings ... 1021
A.5.6 Virtual Topologies for MPI Processes Fortran Bindings 1025
A.5.7 MPI Environmental Management Fortran Bindings 1029
A.5.8 The Info Object Fortran Bindings 1031
A.5.9 Process Creation and Management Fortran Bindings 1031
A.5.10 One-Sided Communications Fortran Bindings 1033
A.5.11 External Interfaces Fortran Bindings 1037
A.5.12 I/O Fortran Bindings ... 1038
A.5.13 Language Bindings Fortran Bindings 1042
A.5.14 Tools / Profiling Interface Fortran Bindings 1043
A.5.15 Deprecated Fortran Bindings 1043

B Change-Log ... 1045
B.1 Changes from Version 4.0 to Version 4.1 1045
B.1.1 Fixes to Errata in Previous Versions of MPI 1045
B.1.2 Changes in MPI-4.1 .. 1047
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>State transition diagram for blocking operations</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>State transition diagram for nonblocking operations</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>State transition diagram for persistent operations</td>
<td>12</td>
</tr>
<tr>
<td>6.1</td>
<td>Collective communications, an overview</td>
<td>191</td>
</tr>
<tr>
<td>6.2</td>
<td>Inter-communicator allgather</td>
<td>195</td>
</tr>
<tr>
<td>6.3</td>
<td>Inter-communicator reduce-scatter</td>
<td>195</td>
</tr>
<tr>
<td>6.4</td>
<td>Gather example</td>
<td>202</td>
</tr>
<tr>
<td>6.5</td>
<td>Gatherv example with strides</td>
<td>203</td>
</tr>
<tr>
<td>6.6</td>
<td>Gatherv example, 2-dimensional</td>
<td>204</td>
</tr>
<tr>
<td>6.7</td>
<td>Gatherv example, 2-dimensional, subarrays with different sizes</td>
<td>205</td>
</tr>
<tr>
<td>6.8</td>
<td>Gatherv example, 2-dimensional, subarrays with different sizes and strides</td>
<td>207</td>
</tr>
<tr>
<td>6.9</td>
<td>Scatter example</td>
<td>212</td>
</tr>
<tr>
<td>6.10</td>
<td>Scatterv example with strides</td>
<td>213</td>
</tr>
<tr>
<td>6.11</td>
<td>Scatterv example with different strides and counts</td>
<td>214</td>
</tr>
<tr>
<td>6.12</td>
<td>Race conditions with point-to-point and collective communications</td>
<td>299</td>
</tr>
<tr>
<td>6.13</td>
<td>Overlapping communicators example</td>
<td>303</td>
</tr>
<tr>
<td>7.1</td>
<td>Inter-communicator creation using <code>MPI_COMM_CREATE</code></td>
<td>326</td>
</tr>
<tr>
<td>7.2</td>
<td>Inter-communicator construction with <code>MPI_COMM_SPLIT</code></td>
<td>331</td>
</tr>
<tr>
<td>7.3</td>
<td>Recursive communicator creation with <code>MPI_COMM_SPLIT_TYPE</code></td>
<td>337</td>
</tr>
<tr>
<td>7.4</td>
<td>Three-group pipeline</td>
<td>357</td>
</tr>
<tr>
<td>7.5</td>
<td>Three-group ring</td>
<td>358</td>
</tr>
<tr>
<td>8.1</td>
<td>Neighborhood gather communication example</td>
<td>413</td>
</tr>
<tr>
<td>8.2</td>
<td>Cartesian neighborhood allgather example for 3 and 1 processes in a dimension</td>
<td>413</td>
</tr>
<tr>
<td>8.3</td>
<td>Cartesian neighborhood alltoall example for 3 and 1 MPI processes in a dimension</td>
<td>418</td>
</tr>
<tr>
<td>8.4</td>
<td>Set-up of MPI process structure for two-dimensional parallel Poisson solver</td>
<td>437</td>
</tr>
<tr>
<td>8.5</td>
<td>Communication routine with local data copying and sparse neighborhood alltoall</td>
<td>438</td>
</tr>
<tr>
<td>8.6</td>
<td>Communication routine with sparse neighborhood alltoallw and without local data copying</td>
<td>439</td>
</tr>
<tr>
<td>8.7</td>
<td>Two-dimensional parallel Poisson solver with persistent sparse neighborhood alltoallw and without local data copying</td>
<td>440</td>
</tr>
<tr>
<td>9.1</td>
<td>Diagram for deciding which error handler is invoked</td>
<td>450</td>
</tr>
<tr>
<td>11.1</td>
<td>Session handle to communicator</td>
<td>494</td>
</tr>
<tr>
<td>11.2</td>
<td>Process set examples</td>
<td>498</td>
</tr>
</tbody>
</table>
12.1 Schematic description of the public/private window operations in the MPI_WIN_SEPARATE memory model for two overlapping windows 587
12.2 Active target communication 590
12.3 Active target communication, with weak synchronization 591
12.4 Passive target communication 592
12.5 Active target communication with several MPI processes 595
12.6 Symmetric communication 615
12.7 Deadlock situation 616
12.8 No deadlock 616

14.1 Etypes and filetypes 638
14.2 Partitioning a file among parallel processes 638
14.3 Displacements 651
14.4 Example array file layout 714
14.5 Example local array filetype for process 1 714

19.1 Status conversion routines 839
List of Tables

2.1 Deprecated and removed constructs ... 24
3.1 Predefined MPI datatypes corresponding to Fortran datatypes 33
3.2 Predefined MPI datatypes corresponding to C datatypes 34
3.3 Predefined MPI datatypes corresponding to both C and Fortran datatypes 35
3.4 Predefined MPI datatypes corresponding to C++ datatypes 35
7.1 MPI_COMM_* function behavior (in inter-communication mode) 352
9.1 Error classes (Part 1) .. 462
9.2 Error classes (Part 2) .. 463
11.1 List of MPI Functions that can be called at any time within an MPI program, including prior to MPI initialization and following MPI finalization 507
12.1 C types of attribute value argument to MPI_WIN_GETATTR and
MPI_WIN_SETATTR ... 563
12.2 Error classes in one-sided communication routines 605
14.1 Data access routines .. 653
14.2 "external32" sizes of predefined datatypes 695
14.3 "external32" sizes of optional datatypes 696
14.4 "external32" sizes of C++ datatypes .. 696
14.5 I/O error classes ... 712
15.1 MPI tool information interface verbosity levels 724
15.2 Constants to identify associations of variables 725
15.3 MPI datatypes that can be used by the MPI tool information interface 727
15.4 Scopes for control variables .. 732
15.5 Hierarchy of safety requirement levels for event callback routines 751
15.6 List of MPI functions that when called from within a callback function may
not return MPI_T_ERR_NOT_ACCESSIBLE 752
15.7 Return codes used in procedures of the MPI tool information interface. 769
17.1 Removed MPI-1 functions and their replacements 783
17.2 Removed MPI-1 datatypes. The indicated routine may be used for changing
the lower and upper bound respectively. .. 784
17.3 Removed MPI-1 constants ... 784
17.4 Removed MPI-1 callback prototypes and their replacements 784
19.1 Specific Fortran procedure names and related calling conventions 795
19.2 Occurrence of Fortran optimization problems 821
Acknowledgments

This document is the product of a number of distinct efforts in four distinct phases: one for each of MPI-1, MPI-2, MPI-3, and MPI-4. This section describes these in historical order, starting with MPI-1. Some efforts, particularly parts of MPI-2, had distinct groups of individuals associated with them, and these efforts are detailed separately.

This document represents the work of many people who have served on the MPI Forum. The meetings have been attended by dozens of people from many parts of the world. It is the hard and dedicated work of this group that has led to the MPI standard.

The technical development was carried out by subgroups, whose work was reviewed by the full committee. During the period of development of the Message-Passing Interface (MPI), many people helped with this effort.

Those who served as primary coordinators in MPI-1.0 and MPI-1.1 are:

- Jack Dongarra, David Walker, Conveners and Meeting Chairs
- Ewing Lusk, Bob Knighten, Minutes
- Marc Snir, William Gropp, Ewing Lusk, Point-to-Point Communication
- Al Geist, Marc Snir, Steve Otto, Collective Communication
- Steve Otto, Editor
- Rolf Hempel, Process Topologies
- Ewing Lusk, Language Binding
- William Gropp, Environmental Management
- James Cownie, Profiling
- Tony Skjellum, Lyndon Clarke, Marc Snir, Richard Littlefield, Mark Sears, Groups, Contexts, and Communicators
- Steven Huss-Lederman, Initial Implementation Subset

The following list includes some of the active participants in the MPI-1.0 and MPI-1.1 process not mentioned above.
The University of Tennessee and Oak Ridge National Laboratory made the draft available by anonymous FTP mail servers and were instrumental in distributing the document.

The work on the MPI-1 standard was supported in part by ARPA and NSF under grant ASC-9310330, the National Science Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615, and by the Commission of the European Community through Esprit project P6643 (PPPE).

MPI-1.2 and MPI-2.0:

Those who served as primary coordinators in MPI-1.2 and MPI-2.0 are:

- Ewing Lusk, Convener and Meeting Chair
- Steve Huss-Lederman, Editor
- Ewing Lusk, Miscellany
- Bill Saphir, Process Creation and Management
- Marc Snir, One-Sided Communications
- William Gropp and Anthony Skjellum, Extended Collective Operations
- Steve Huss-Lederman, External Interfaces
- Bill Nitzberg, I/O
- Andrew Lumsdaine, Bill Saphir, and Jeffrey M. Squyres, Language Bindings
- Anthony Skjellum and Arkady Kanevsky, Real-Time

The following list includes some of the active participants who attended MPI-2 Forum meetings and are not mentioned above.
The MPI Forum also acknowledges and appreciates the valuable input from people via e-mail and in person.

The following institutions supported the MPI-2 effort through time and travel support for the people listed above.

Argonne National Laboratory
Bolt, Beranek, and Newman
California Institute of Technology
Center for Computing Sciences
Convex Computer Corporation
Cray Research
Digital Equipment Corporation
Dolphin Interconnect Solutions, Inc.
Edinburgh Parallel Computing Centre
General Electric Company
German National Research Center for Information Technology
Hewlett-Packard
Hitachi
Hughes Aircraft Company
MPI-2 operated on a very tight budget (in reality, it had no budget when the first meeting was announced). Many institutions helped the MPI-2 effort by supporting the efforts and travel of the members of the MPI Forum. Direct support was given by NSF and DARPA under NSF contract CDA-9115428 for travel by U.S. academic participants and Esprit under project HPC Standards (21111) for European participants.
MPI-1.3 and MPI-2.1:

The editors and organizers of the combined documents have been:

- Richard Graham, Convener and Meeting Chair
- Jack Dongarra, Steering Committee
- Al Geist, Steering Committee
- William Gropp, Steering Committee
- Rainer Keller, Merge of MPI-1.3
- Andrew Lumsdaine, Steering Committee
- Ewing Lusk, Steering Committee, MPI-1.1-Errata (Oct. 12, 1998) MPI-2.1-Errata
 Ballots 1, 2 (May 15, 2002)
- Rolf Rabenseifner, Steering Committee, Merge of MPI-2.1 and MPI-2.1-Errata Ballots
 3, 4 (2008)

All chapters have been revisited to achieve a consistent MPI-2.1 text. Those who served
as authors for the necessary modifications are:

- William Gropp, Front Matter, Introduction, and Bibliography
- Richard Graham, Point-to-Point Communication
- Adam Moody, Collective Communication
- Richard Treumann, Groups, Contexts, and Communicators
- Jesper Larsson Träff, Process Topologies, Info-Object, and One-Sided Communications
- George Bosilca, Environmental Management
- David Solt, Process Creation and Management
- Bronis R. de Supinski, External Interfaces, and Profiling
- Rajeev Thakur, I/O
- Jeffrey M. Squyres, Language Bindings and MPI-2.1 Secretary
- Rolf Rabenseifner, Deprecated Functions and Annex Change-Log
- Alexander Supalov and Denis Nagorny, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum
meetings and in the e-mail discussions of the errata items and are not mentioned above.
The MPI Forum also acknowledges and appreciates the valuable input from people via e-mail and in person.

The following institutions supported the MPI-2 effort through time and travel support for the people listed above.

Argonne National Laboratory
Bull
Cisco Systems, Inc.
Cray Inc.
The HDF Group
Hewlett-Packard
IBM T.J. Watson Research
Indiana University
Institut National de Recherche en Informatique et Automatique (Inria)
Intel Corporation
Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory
Mathworks
Mellanox Technologies
Microsoft
Myricom
NEC Laboratories Europe, NEC Europe Ltd.
Oak Ridge National Laboratory
The Ohio State University
Pacific Northwest National Laboratory
QLogic Corporation
Sandia National Laboratories
SiCortex
Silicon Graphics Incorporated
Sun Microsystems, Inc.
University of Alabama at Birmingham
University of Houston
University of Illinois at Urbana-Champaign
University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Wisconsin

Funding for the MPI Forum meetings was partially supported by award #CCF-0816909 from the National Science Foundation. In addition, the HDF Group provided travel support for one U.S. academic.

MPI-2.2:

All chapters have been revisited to achieve a consistent MPI-2.2 text. Those who served as authors for the necessary modifications are:

- William Gropp, Front Matter, Introduction, and Bibliography; MPI-2.2 Chair.
- Richard Graham, Point-to-Point Communication and Datatypes
- Adam Moody, Collective Communication
- Torsten Hoefler, Collective Communication and Process Topologies
- Richard Treumann, Groups, Contexts, and Communicators
- Jesper Larsson Träff, Process Topologies, Info-Object and One-Sided Communications
- George Bosilca, Datatypes and Environmental Management
- David Solt, Process Creation and Management
- Bronis R. de Supinski, External Interfaces, and Profiling
- Rajeev Thakur, I/O
- Jeffrey M. Squyres, Language Bindings and MPI-2.2 Secretary
- Rolf Rabenseifner, Deprecated Functions, Annex Change-Log, and Annex Language Bindings
- Alexander Supalov, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum meetings and in the e-mail discussions of the errata items and are not mentioned above.
The MPI Forum also acknowledges and appreciates the valuable input from people via e-mail and in person.

The following institutions supported the MPI-2.2 effort through time and travel support for the people listed above.

Argonne National Laboratory
Auburn University
Bull
Cisco Systems, Inc.
Cray Inc.
Forschungszentrum Jülich
Fujitsu
The HDF Group
Hewlett-Packard
International Business Machines
Indiana University
Institut National de Recherche en Informatique et Automatique (Inria)
Institute for Advanced Science & Engineering Corporation
Intel Corporation
Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory
Mathworks
Mellanox Technologies
Microsoft
Myricom
NEC Corporation
Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909 and #CCF-1144042 from the National Science Foundation. In addition, the HDF Group provided travel support for one U.S. academic.

MPI-3.0:

MPI-3.0 is a significant effort to extend and modernize the MPI standard. The editors and organizers of the MPI-3.0 have been:

- William Gropp, Steering Committee, Front Matter, Introduction, Groups, Contexts, and Communicators, One-Sided Communications, and Bibliography
- Richard Graham, Steering Committee, Point-to-Point Communication, Meeting Convener, and MPI-3.0 Chair
- Torsten Hoefler, Collective Communication, One-Sided Communications, and Process Topologies
- George Bosilca, Datatypes and Environmental Management
- David Solt, Process Creation and Management
- Bronis R. de Supinski, External Interfaces and Tool Support
- Rajeev Thakur, I/O and One-Sided Communications
- Darius Buntinas, Info Object
- Jeffrey M. Squyres, Language Bindings and MPI-3.0 Secretary
- Rolf Rabenseifner, Steering Committee, Terms and Definitions, and Fortran Bindings, Deprecated Functions, Annex Change-Log, and Annex Language Bindings
- Craig Rasmussen, Fortran Bindings
The following list includes some of the active participants who attended MPI-3 Forum meetings or participated in the e-mail discussions and who are not mentioned above.

Tatsuya Abe Tomoya Adachi Sadaf Alam
Reinhold Bader Pavan Balaji Purushotham V. Bangalore
Brian Barrett Richard Barrett Robert Blackmore
Aurélien Bouteiller Ron Brightwell Greg Bronevetsky
Jed Brown Darius Buntinas Devendar Bureddy
Arno Candel George Carr Mohamad Chaarawi
Raghunath Raja Chandrasekar James Dinan Terry Donjte
Edgar Gabriel Balazs Geroﬁ Brice Goglin
David Goodell Manjunath Goretla Erez Haba
Jeff Hammond Thomas Herault Marc-André Hermanns
Jennifer Herrett-Skjellum Nathan Hjelm Atsushi Hori
Joshua Hursey Marty Itzkowitz Yutaka Ishikawa
Nysal Jan Bin Jia Hideyuki Jitsumoto
Yann Kalemkarian Krishna Kandalla Takahiro Kawashima
Chulho Kim Dries Kimpe Christof Klauscker
Alice Koniges Quincy Koziol Dieter Kranzlmueller
Manojkumar Krishnan Sameer Kumar Eric Lantz
Jay Lofstead Bill Long Andrew Lumsdaine
Miao Luo Ewing Lusk Adam Moody
Nick M. Maclaren Amith Mamidala Guillaume Mercier
Scott McMillan Douglas Miller Kathryn Mohror
Tim Murray Tomotake Nakamura Takeshi Nanri
Steve Oyanagi Mark Pagel Swann Perarnau
Seeram Potluri Howard Pritchard Rolf Riesen
Hubert Ritzdorf Kuninobu Sasaki Timo Schneider
Martin Schulz Gilad Shainer Christian Siebert
Anthony Skjellum Brian Smith Marc Snir
Raffaele Giuseppe Solca Shinji Sumimoto Alexander Supalov
Sayantan Sur Masamichi Takagi Fabian Tillier
Vinod Tipparaju Jesper Larsson Träff Richard Treumann
Keith Underwood Rolf Vandevaart Anh Vo
Abhinav Vishnu Min Xie Enqiang Zhou

The MPI Forum also acknowledges and appreciates the valuable input from people via e-mail and in person.

The MPI Forum also thanks those that provided feedback during the public comment period. In particular, the Forum would like to thank Jeremiah Wilcock for providing detailed comments on the entire draft standard.

The following institutions supported the MPI-3 effort through time and travel support for the people listed above.

Argonne National Laboratory
Bull
Cisco Systems, Inc.
Cray Inc.
CSCS
Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909 and #CCF-1144042 from the National Science Foundation. In addition, the HDF Group and Sandia National Laboratories provided travel support for one U.S. academic each.

MPI-3.1:

MPI-3.1 is a minor update to the MPI standard.

The editors and organizers of the MPI-3.1 have been:

- Martin Schulz, MPI-3.1 Chair
- William Gropp, Steering Committee, Front Matter, Introduction, One-Sided Communications, and Bibliography; Overall Editor
The following list includes some of the active participants who attended MPI Forum meetings or participated in the e-mail discussions.

Charles Archer Pavan Balaji Purushotham V. Bangalore
Brian Barrett Wesley Bland Michael Blocksme
George Bosilca Aurélien Bouteiller Devendar Bureddy
Yohann Burette Mohamad Chaarawi Alexey Cheptsov
James Dinan Dmitry Durnov Thomas Francois
Edgar Gabriel Todd Gamblin Balazs Gerofi
Paddy Gillies David Goodell Manjunath Gorentla Venkata
Richard L. Graham Ryan E. Grant William Gropp
Khaled Hamidouche Jeff Hammond Amin Hassani
Marc-André Hermanns Nathan Hjelm Torsten Hoeffler
Daniel Holmes Atsushi Hori Yutaka Ishikawa
Hideyuki Jitsumoto Jithin Jose Krishna Kandalla
Christos Kavouklis Takahiro Kawashima Chulho Kim
Michael Knobloch Alice Koniges Quincey Koziol
Sameer Kumar Joshua Ladd Ignacio Laguna
Huiwei Lu Guillaume Mercier Kathryn Mohror
Adam Moody Tomotake Nakamura Takeshi Nanri
Steve Oyanagi Antonio J. Pêna Sreeram Potluri
Howard Pritchard Rolf Rabenseifner Nicholas Radcliffe
Ken Raffenetti Raghunath Raja Craig Rasmussen
Davide Rossetti Kento Sato Martin Schulz
Sangmin Seo Christian Siebert Anthony Skjellum
Brian Smith David Solt Jeffrey M. Squyres
The MPI Forum also acknowledges and appreciates the valuable input from people via e-mail and in person.

The following institutions supported the MPI-3.1 effort through time and travel support for the people listed above.

- Argonne National Laboratory
- Auburn University
- Cisco Systems, Inc.
- Cray
- EPCC, The University of Edinburgh
- ETH Zurich
- Forschungszentrum Jülich
- Fujitsu
- German Research School for Simulation Sciences
- The HDF Group
- International Business Machines
- Institut National de Recherche en Informatique et Automatique (Inria)
- Intel Corporation
- Kyushu University
- Lawrence Berkeley National Laboratory
- Lawrence Livermore National Laboratory
- Lenovo
- Los Alamos National Laboratory
- Mellanox Technologies, Inc.
- Microsoft Corporation
- NEC Corporation
- NVIDIA Corporation
- Oak Ridge National Laboratory
- The Ohio State University
- RIKEN AICS
- Sandia National Laboratories
- Texas Advanced Computing Center
- Tokyo Institute of Technology
- University of Alabama at Birmingham
- University of Houston
- University of Illinois at Urbana-Champaign
- University of Oregon
- University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
- University of Tennessee, Knoxville
- University of Tokyo
MPI-4.0:

MPI-4.0 is a major update to the MPI standard. The editors and organizers of the MPI-4.0 have been:

- Martin Schulz, MPI-4.0 Chair, Info Object, External Interfaces
- Richard Graham, MPI-4.0 Treasurer
- Wesley Bland, MPI-4.0 Secretary, Backward Incompatibilities
- William Gropp, MPI-4.0 Editor, Steering Committee, Front Matter, Introduction, One-Sided Communications, and Bibliography
- Rolf Rabenseifner, Steering Committee, Process Topologies, Deprecated Functions, Removed Interfaces, Annex Language Bindings Summary, and Annex Change-Log
- Purushotham V. Bangalore, Language Bindings
- Claudia Blaas-Schenner, Terms and Conventions
- George Bosilca, Datatypes and Environmental Management
- Ryan E. Grant, Partitioned Communication
- Marc-André Hermanns, Tool Support
- Daniel Holmes, Point-to-Point Communication, Sessions
- Guillaume Mercier, Groups, Contexts, Communicators, Caching
- Howard Pritchard, Process Creation and Management
- Anthony Skjellum, Collective Communication, I/O

As part of the development of MPI-4.0, a number of working groups were established. In some cases, the work for these groups overlapped with multiple chapters. The following describes the major working groups and the leaders of those groups:

Collective Communication, Topology, Communicators: Torsten Hoefler, Andrew Lumsdaine, and Anthony Skjellum

Fault Tolerance: Wesley Bland, Aurélien Bouteiller, and Richard Graham

Hardware-Topologies: Guillaume Mercier

Hybrid & Accelerator: Pavan Balaji and James Dinan

Large Counts: Jeff Hammond

Persistence: Anthony Skjellum

Point to Point Communication: Daniel Holmes and Richard Graham

Remote Memory Access: William Gropp and Rajeev Thakur

Semantic Terms: Purushotham V. Bangalore and Rolf Rabenseifner
Sessions: Daniel Holmes and Howard Pritchard

Tools: Kathryn Mohror and Marc-André Hermanns

The following list includes some of the active participants who attended MPI Forum meetings or participated in the e-mail discussions.

Julien Adam, Abdelhalim Amer, Charles Archer
Ammar Ahmad Awan, Pavan Balaji, Purushotham V. Bangalore
Mohammedreza Bayatpour, Jean-Baptiste Besnard, Claudia Blaas-Schenner
Wesley Bland, Gil Bloch, George Bosilca
Aurélien Bouteiller, Ben Bratu, Alexander Calvert
Nicholas Chaimov, Sourav Chakraborty, Steffen Christgau
Ching-Hsiang Chu, Mikhail Chuvelev, James Clark
Carsten Claus, Isaias Alberto Comprés Ureña
Giuseppe Congiu, Brandon Cook, James Custer
Anna Daly, Hoang-Vu Dang, James Dinan
Matthew Dosanjh, Murali Emani, Christian Engelmann
Noah Evans, Ana Gainaru, Esthela Gallardo
Marc Gamell Balmana, Balazs Gerofi, Salvatore Di Girolamo
Brice Goglin, Manjunath Goretla Venkata, Richard Graham
Ryan E. Grant, Stanley Graves, William Gropp
Siegmund Gross, Taylor Groves, Yanfei Guo
Khaled Hamidouche, Jeff Hammond, Marc-André Hermanns
Nathan Hjelm, Torsten Hoefler, Daniel Holmes
Atsushi Hori, Josh Hursey, Ilya Ivanov
Julien Jaeger, Emmanuel Jeannot, Sylvain Jeaugey
Jithin Jose, Krishna Kandalla, Takahiro Kawashima
Chulho Kim, Michael Knobloch, Alice Koniges
Sameer Kumar, Kim Kyungilun, Ignacio Laguna Peralta
Stefan Lankes, Tonglin Li, Xioyi Lu
Kavitha Madhu, Alexey Malhanov, Ryan Marshall
William Marts, Guillaume Mercier, Ali Mohammed
Kathryn Mohror, Takeshi Nanri, Thomas Naughton
Christoph Niethammer, Takafumi Nose, Lena Oden
Steve Oyanagi, Guillaume Papauré, Ivy Peng
Antonio Peña, Simon Pickartz, Artem Polyakov
Sreeram Potluri, Howard Pritchard, Martina Prugger
Marc Pérache, Rolf Rabenseifner, Nicholas Radcliffe
Ken Raffenetti, Craig Rasmussen, Soren Rasmussen
Hubert Ritzdorf, Sergio Rivas-Gomez, Davide Rossetti
Martin Ruefendacht, Amit Ruhela, Whitt Schonbein
Joseph Schuchart, Martin Schulz, Sangmin Seo
Sameh Sharkawi, Sameer Shende, Min Si
Anthony Skjellum, Brian Smith, David Solt
Jeffrey M. Squyres, Srinivas Sridharan, Hari Subramoni
Nawrin Sultana, Shinji Sumimoto, Sayantan Sur
The MPI Forum also acknowledges and appreciates the valuable input from people via e-mail and in person.

The following institutions supported the MPI-4.0 effort through time and travel support for the people listed above.

ATOS
Argonne National Laboratory
Arm
Auburn University
Barcelona Supercomputing Center
CEA
Cisco Systems Inc.
Cray Inc.
EPCC, The University of Edinburgh
ETH Zürich
Fujitsu
Fulda University of Applied Sciences
German Research School for Simulation Sciences
Hewlett Packard Enterprise
International Business Machines
Institut National de Recherche en Informatique et Automatique (Inria)
Intel Corporation
Jülich Supercomputing Center, Forschungszentrum Jülich
KTH Royal Institute of Technology
Kyushu University
Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Lenovo
Los Alamos National Laboratory
Mellanox Technologies, Inc.
Microsoft Corporation
NEC Corporation
NVIDIA Corporation
Oak Ridge National Laboratory
PAR-TEC
Paratools, Inc.
RIKEN AICS (R-CCS as of 2017)
RWTH Aachen University
Rutgers University
Sandia National Laboratories
Silicon Graphics, Inc.
Technical University of Munich
MPI-4.1:

MPI-4.1 is a minor update to the MPI standard.
The editors and organizers of the MPI-4.1 have been:

- Martin Schulz, MPI-4.1 Chair, Info Object, External Interfaces
- Brian Smith, MPI-4.1 Treasurer
- Wes Bland, MPI-4.1 Secretary, Semantic Changes and Warnings
- William Gropp, MPI-4.1 Editor, Steering Committee, Front Matter, Introduction, One-Sided Communications, and Bibliography
- Rolf Rabenseifner, Steering Committee, Process Topologies, Deprecated Functions, Removed Interfaces, Annex Language Bindings Summary, and Annex Change-Log
- Purushotham V. Bangalore, Language Bindings
- Claudia Blaas-Schenner, Terms and Conventions
- George Bosilca, Datatypes and Environmental Management
- Ryan E. Grant, Partitioned Communication
- Marc-André Hermanns, Tool Support
- Dan Holmes, Point-to-Point Communication, Sessions
- Guillaume Mercier, Groups, Contexts, Communicators, Caching
- Howard Pritchard, Process Creation and Management
- Anthony Skjellum, Collective Communication, I/O
As part of the development of MPI-4.1, a number of working groups were established or continued from MPI-4.0. In some cases, the work for these groups overlapped with multiple chapters. The following describes the major working groups and the leaders of those groups:

Application Binary Interface (ABI): Jeff Hammond and Quincey Koziol

Collective Communication, Topology, Communicators: Torsten Hoefler, Andrew Lumsdaine, and Anthony Skjellum

Fault Tolerance: Aurélien Bouteiller and Ignacio Laguna

Hardware & Virtual Topologies: Guillaume Mercier

Hybrid & Accelerator: James Dinan

Languages: Martin Ruefenacht and Tony Skjellum

Remote Memory Access: William Gropp, Joseph Schuchart, and Rajeev Thakur

Semantic Terms: Purushotham V. Bangalore and Rolf Rabenseifner

Sessions: Dan Holmes and Howard Pritchard

Tools: Marc-André Hermanns

The following list includes some of the active participants who attended MPI Forum meetings or participated in the e-mail discussions.

Julien Adam
Purushotham V. Bangalore
Claudia Blaas-Schenner
Aurélien Bouteiller
Alex Brooks
Simon Byrne
Ondřej Čertík
Alfredo Correa
Ali Can Demiralp
Matthew G. F. Dosanjh
Dmitry Durnov
Kyle Gerard Felker
Florent Germain
Ryan Grant
Samuel K. Gutierrez
Marc-André Hermanns
Dan Holmes
Joshua Hursey
Julien Jaeger
Vivek Kale
Quincey Koziol
Pierre Lemarinier
Guillaume Mercier

Charles Archer
Wolfgang Bangerth
Wes Bland
Emmanuel Brellé
Jed Brown
Paul Canat
Steffen Christgau
Pedro Costa
Bronis de Supinski
Joe Downs
Victor Eijkhout
Edgar Gabriel
Sayan Ghosh
William Gropp
Tobias Haas
Thomas Hines
Atsushi Hori
Dan Ibanez
Nysal Jan K A
Michael Klemm
Donald Kruse
Ben Lynam
Christian Nicole Avans
Jean-Baptiste Besnard
George Bosilca
Patrick Bridges
Oliver Thomson Brown
Ludovic Capelli
Brandon Cook
Lisandro Dalcin
James Dinan
Julien Duprat
Ahmed Elelieny
Maria J. Garzaran
Thomas Gillis
Yanfei Guo
Jeff Hammond
Mark Hoemann
Dominik Huber
Nusrat Islam
Joachim Jenke
Michael Knobloch
Ignacio Laguna
W. Pepper Marts

xxxix
The MPI Forum also acknowledges and appreciates the valuable input from people via email and in person.

The following institutions supported the MPI-4.1 effort through time and travel support for the people listed above.

Advanced Micro Devices, Inc.
Amazon.com, Inc
Argonne National Laboratory
Atos
CEA
Cisco Systems Inc.
Collis-Holmes Innovations Limited
Cornelis Networks
EPCC, The University of Edinburgh
Forschungszentrum Jülich
Fujitsu
HLRS, University of Stuttgart
Hewlett Packard Enterprise
Institut National de Recherche en Informatique et Automatique (Inria)
Intel Corporation
International Business Machines
Kichakato Kizito
Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Leibniz Supercomputing Centre
Los Alamos National Laboratory
Meta Platforms Inc.
NVIDIA Corporation
Oak Ridge National Laboratory
ParaTools SAS
Queen’s University
RWTH Aachen University
Sandia National Laboratory
Technical University of Munich
Tennessee Technological University
Texas Advanced Computing Center
The Ohio State University
University of Alabama
University of Alabama at Birmingham
University of Basel
University of Illinois Urbana-Champaign
University of New Mexico
University of Tennessee, Chattanooga
University of Tennessee, Knoxville
University of Tokyo
Université Grenoble Alpes
VSC Research Center, TU Wien
ZIH, TU Dresden
Chapter 1

Introduction to MPI

1.1 Overview and Goals

MPI (Message-Passing Interface) is a message-passing library interface specification. All parts of this definition are significant. MPI addresses primarily the message-passing parallel programming model, in which data is moved from the address space of one process to that of another process through cooperative operations on each process. Extensions to the “classical” message-passing model are provided in collective operations, remote-memory access operations, dynamic process creation, and parallel I/O. MPI is a specification, not an implementation; there are multiple implementations of MPI. This specification is for a library interface; MPI is not a language, and all MPI operations are expressed as functions, subroutines, or methods, according to the appropriate language bindings that, for C and Fortran, are part of the MPI standard. The standard has been defined through an open process by a community of parallel computing vendors, computer scientists, and application developers. The next few sections provide an overview of the history of MPI’s development.

The main advantages of establishing a message-passing standard are portability and ease of use. In a distributed memory communication environment in which the higher level routines and/or abstractions are built upon lower level message-passing routines, the benefits of standardization are particularly apparent. Furthermore, the definition of a message-passing standard, such as that proposed here, provides vendors with a clearly defined base set of routines that they can implement efficiently, or in some cases for which they can provide hardware support, thereby enhancing scalability.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used standard for writing message-passing programs. As such the interface should establish a practical, portable, efficient, and flexible standard for message passing.

A complete list of goals follows.

- Design an application programming interface (not necessarily for compilers or a system implementation library).

- Allow efficient communication: Avoid memory-to-memory copying, allow overlap of computation and communication, and offload to communication co-processors, where available.

- Allow for implementations that can be used in a heterogeneous environment.

- Allow convenient C and Fortran bindings for the interface.

- Assume a reliable communication interface: the user need not cope with communication failures. Such failures are dealt with by the underlying communication subsystem.
Chapter 1 Introduction to MPI

• Define an interface that can be implemented on many vendor’s platforms, with no significant changes in the underlying communication and system software.

• Semantics of the interface should be language independent.

• The interface should be designed to allow for thread safety.

1.2 Background of MPI-1.0

MPI sought to make use of the most attractive features of a number of existing message-passing systems, rather than selecting one of them and adopting it as the standard. Thus, MPI was strongly influenced by work at the IBM T. J. Watson Research Center [3, 4], Intel’s NX/2 [58], Express [15], nCUBE’s Vertex [54], p4 [10, 11], and PARMACS [7, 12]. Other important contributions have come from Zipcode [61, 62], Chimp [21, 22], PVM [6, 19], Chameleon [32], and PICL [27].

The MPI standardization effort involved about 60 people from 40 organizations mainly from the United States and Europe. Most of the major vendors of concurrent computers were involved in MPI, along with researchers from universities, government laboratories, and industry. The standardization process began with the Workshop on Standards for Message-Passing in a Distributed Memory Environment, sponsored by the Center for Research on Parallel Computing, held April 29–30, 1992, in Williamsburg, Virginia [70]. At this workshop the basic features essential to a standard message-passing interface were discussed, and a working group established to continue the standardization process.

A preliminary draft proposal, known as MPI-1, was put forward by Dongarra, Hempel, Hey, and Walker in November 1992, and a revised version was completed in February 1993 [20]. MPI-1 embodied the main features that were identified at the Williamsburg workshop as being necessary in a message passing standard. Since MPI-1 was primarily intended to promote discussion and “get the ball rolling,” it focused mainly on point-to-point communications. MPI-1 brought to the forefront a number of important standardization issues, but did not include any collective communication routines and was not thread-safe.

In November 1992, a meeting of the MPI working group was held in Minneapolis, at which it was decided to place the standardization process on a more formal footing, and to generally adopt the procedures and organization of the High Performance Fortran Forum. Subcommittees were formed for the major component areas of the standard, and an email discussion service established for each. In addition, the goal of producing a draft MPI standard by the Fall of 1993 was set. To achieve this goal the MPI working group met every 6 weeks for two days throughout the first 9 months of 1993, and presented the draft MPI standard at the Supercomputing 93 conference in November 1993. These meetings and the email discussion together constituted the MPI Forum, membership of which has been open to all members of the high performance computing community.

1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0

Beginning in March 1995, the MPI Forum began meeting to consider corrections and extensions to the original MPI standard document [24]. The first product of these deliberations was Version 1.1 of the MPI specification, released in June of 1995 [25] (see http://www.mpi-forum.org for official MPI document releases). At that time, effort focused in five areas.
1. Further corrections and clarifications for the MPI-1.1 document.

2. Additions to MPI-1.1 that do not significantly change its types of functionality (new datatype constructors, language interoperability, etc.).

3. Completely new types of functionality (dynamic processes, one-sided communication, parallel I/O, etc.) that are what everyone thinks of as "MPI-2 functionality."

4. Bindings for Fortran 90 and C++. MPI-2 specifies C++ bindings for both MPI-1 and MPI-2 functions, and extensions to the Fortran 77 binding of MPI-1 and MPI-2 to handle Fortran 90 issues.

5. Discussions of areas in which the MPI process and framework seem likely to be useful, but where more discussion and experience are needed before standardization (e.g., zero-copy semantics on shared-memory machines, real-time specifications).

Corrections and clarifications (items of type 1 in the above list) were collected in Chapter 3 of the MPI-2 document: "Version 1.2 of MPI." That chapter also contains the function for identifying the version number. Additions to MPI-1.1 (items of types 2, 3, and 4 in the above list) are in the remaining chapters of the MPI-2 document, and constitute the specification for MPI-2. Items of type 5 in the above list have been moved to a separate document, the "MPI Journal of Development" (JOD), and are not part of the MPI-2 standard.

This structure makes it easy for users and implementors to understand what level of MPI compliance a given implementation has:

- MPI-1 compliance will mean compliance with MPI-1.3. This is a useful level of compliance. It means that the implementation conforms to the clarifications of MPI-1.1 function behavior given in Chapter 3 of the MPI-2 document. Some implementations may require changes to be MPI-1 compliant.

- MPI-2 compliance will mean compliance with all of MPI-2.1.

- The MPI Journal of Development is not part of the MPI standard.

It is to be emphasized that forward compatibility is preserved. That is, a valid MPI-1.1 program is both a valid MPI-1.3 program and a valid MPI-2.1 program, and a valid MPI-1.3 program is a valid MPI-2.1 program.

1.4 Background of MPI-1.3 and MPI-2.1

After the release of MPI-2.0, the MPI Forum kept working on errata and clarifications for both standard documents (MPI-1.1 and MPI-2.0). The short document “Errata for MPI-1.1” was released October 12, 1998. On July 5, 2001, a first ballot of errata and clarifications for MPI-2.0 was released, and a second ballot was voted on May 22, 2002. Both votes were done electronically. Both ballots were combined into one document: “Errata for MPI-2,” May 15, 2002. This errata process was then interrupted, but the Forum and its e-mail reflectors kept working on new requests for clarification.

Restarting regular work of the MPI Forum was initiated in three meetings, at EuroPVM/MPI'06 in Bonn, at EuroPVM/MPI'07 in Paris, and at SC'07 in Reno. In December 2007, a steering committee started the organization of new MPI Forum meetings at regular 8-weeks intervals. At the January 14–16, 2008 meeting in Chicago, the MPI Forum
decided to combine the existing and future MPI documents to one document for each version of the MPI standard. For technical and historical reasons, this series was started with MPI-1.3. Additional Ballots 3 and 4 solved old questions from the errata list started in 1995 up to new questions from the last years. After all documents (MPI-1.1, MPI-2, Errata for MPI-1.1 (Oct. 12, 1998), and MPI-2.1 Ballots 1–4) were combined into one draft document, for each chapter, a chapter author and review team were defined. They cleaned up the document to achieve a consistent MPI-2.1 document. The final MPI-2.1 standard document was finished in June 2008, and finally released with a second vote in September 2008 in the meeting at Dublin, just before EuroPVM/MPI’08.

1.5 Background of MPI-2.2

MPI-2.2 is a minor update to the MPI-2.1 standard. This version addresses additional errors and ambiguities that were not corrected in the MPI-2.1 standard as well as a small number of extensions to MPI-2.1 that met the following criteria:

- Any correct MPI-2.1 program is a correct MPI-2.2 program.
- Any extension must have significant benefit for users.
- Any extension must not require significant implementation effort. To that end, all such changes are accompanied by an open source implementation.

The discussions of MPI-2.2 proceeded concurrently with the MPI-3 discussions; in some cases, extensions were proposed for MPI-2.2 but were later moved to MPI-3.

1.6 Background of MPI-3.0

MPI-3.0 is a major update to the MPI standard. The updates include the extension of collective operations to include nonblocking versions, extensions to the one-sided operations, and a new Fortran 2008 binding. In addition, the deprecated C++ bindings have been removed, as well as many of the deprecated routines and MPI objects (such as the MPI UB datatype). Any valid MPI-2.2 program not using any of these removed MPI procedures or objects is a valid MPI-3.0 program.

1.7 Background of MPI-3.1

MPI-3.1 is a minor update to the MPI standard. Most of the updates are corrections and clarifications to the standard, especially for the Fortran bindings. New functions added include routines to manipulate MPI_Aint values in a portable manner, nonblocking collective I/O routines, and routines to get the index value by name for MPI_T performance and control variables. A general index was also added. Any valid MPI-3.0 program is a valid MPI-3.1 program.

1.8 Background of MPI-4.0

MPI-4.0 is a major update to the MPI standard. The largest changes are the addition of large-count versions of many routines to address the limitations of using an int or INTEGER
for the count parameter, persistent collectives, partitioned communications, an alternative way to initialize MPI, application info assertions, and improvements to the definitions of error handling. In addition, there are a number of smaller improvements and corrections. Any valid MPI-3.1 program is a valid MPI-4.0 program with the exception of semantic changes listed in Chapter 18.

1.9 Background of MPI-4.1

MPI-4.1 is a minor update to the MPI standard. It contains mostly corrections and clarifications to the MPI-4.0 document. Several routines, the attribute key MPI_HOST, and the mpif.h Fortran include file are deprecated. A new routine provides a way to inquire about the hardware on which the MPI program is running. Any valid MPI-4.0 program is a valid MPI-4.1 program with the exception of semantic changes listed in Chapter 18.

1.10 Who Should Use This Standard?

This standard is intended for use by all those who want to write portable message-passing programs in Fortran and C (and access the C bindings from C++). This includes individual application programmers, developers of software designed to run on parallel machines, and creators of environments and tools. In order to be attractive to this wide audience, the standard must provide a simple, easy-to-use interface for the basic user while not semantically precluding the high-performance message-passing operations available on advanced machines.

1.11 What Platforms Are Targets for Implementation?

The attractiveness of the message-passing paradigm at least partially stems from its wide portability. Programs expressed this way may run on distributed-memory multiprocessors, networks of workstations, and combinations of all of these. In addition, shared-memory implementations, including those for multi-core processors and hybrid architectures, are possible. The paradigm will not be made obsolete by architectures combining the shared- and distributed-memory views, or by increases in network speeds. It thus should be both possible and useful to implement this standard on a great variety of machines, including those “machines” consisting of collections of other machines, parallel or not, connected by a communication network.

The interface is suitable for use by fully general MIMD (Multiple Instruction, Multiple Data) programs, as well as those written in the more restricted style of SPMD (Single Program, Multiple Data). MPI provides many features intended to improve performance on scalable parallel computers with specialized interprocessor communication hardware. Thus, we expect that native, high-performance implementations of MPI will be provided on such machines. At the same time, implementations of MPI on top of standard Unix interprocessor communication protocols will provide portability to workstation clusters and heterogenous networks of workstations.
1.12 What Is Included in the Standard?

The standard includes:

- Point-to-point communication,
- Partitioned communication,
- Datatypes,
- Collective operations,
- Process groups,
- Communication contexts,
- Virtual Topologies for MPI Processes,
- Environmental management and inquiry,
- The Info object,
- Process initialization, creation, and management,
- One-sided communication,
- External interfaces,
- Parallel file I/O,
- Tool support,
- Language bindings for Fortran and C, and
- Additional topics in side-documents.

1.13 Side-documents

Side-documents extend and/or modify features, semantics, language bindings, and other aspects covered in this document. Side-documents shall not modify any aspects defined in the MPI Standard without providing a mechanism that explicitly enables these deviations. Execution of a program that does not explicitly enable deviations from the MPI Standard will comply with the MPI Standard, even when using an MPI implementation that implements a side-document that modifies any aspects.

Each side-document is versioned with a scheme that is independent from the MPI Standard version and from other side-documents. All side-documents specify compatibility and interoperability with versions of the MPI Standard and may define interoperability with features and semantics from other side-documents. Side-documents are not required to provide full coverage of all MPI concepts, but shall document which MPI concepts are affected. A compliant implementation is not required to comply with any side-documents. However, if compliance with a particular version of a side-document is claimed, the implementation must comply with the entire side-document. Side-documents will be found at the same location as the MPI Standard[1].
1.14 Organization of This Document

The following is a list of the remaining chapters in this document, along with a brief description of each.

- Chapter 2, **MPI Terms and Conventions**, explains notational terms and conventions used throughout the MPI document.

- Chapter 3, **Point-to-Point Communication**, defines the basic, pairwise communication subset of MPI. Send and receive are found here, along with many associated functions designed to make basic communication powerful and efficient.

- Chapter 4, **Partitioned Point-to-Point Communication**, defines a method of performing partitioned communication in MPI. Partitioned communication allows multiple contributions of data to be made, potentially, from multiple actors (e.g., threads or tasks) in an MPI process to a single message.

- Chapter 5, **Datatypes**, defines a method to describe any data layout, e.g., an array of structures.

- Chapter 6, **Collective Communication**, defines process-group collective communication operations. Well known examples of this are barrier and broadcast over a group of processes (not necessarily all the processes).

- Chapter 7, **Groups, Contexts, Communicators, and Caching**, shows how groups of processes are formed and manipulated, how unique communication contexts are obtained, and how the two are bound together into a communicator.

- Chapter 8, **Virtual Topologies for MPI Processes**, explains a set of utility functions meant to assist in the mapping of MPI process groups (a linearly ordered set) to richer topological structures such as multi-dimensional grids.

- Chapter 9, **MPI Environmental Management**, explains how the programmer can manage and make inquiries of the current MPI environment. These functions are needed for the writing of correct, robust programs, and are especially important for the construction of highly-portable message-passing programs.

- Chapter 10, **The Info Object**, defines an opaque object that is used as input in several MPI routines.

- Chapter 11, **Process Initialization, Creation, and Management**, defines several approaches to MPI initialization, process creation, and process management while placing minimal restrictions on the execution environment.

- Chapter 12, **One-Sided Communications**, defines communication routines that can be completed by a single process. These include shared-memory operations (put/get) and remote accumulate operations.

- Chapter 13, **External Interfaces**, defines routines designed to allow developers to layer on top of MPI.

- Chapter 14, **I/O**, defines MPI support for parallel I/O.
• Chapter 15, Tool Support, covers interfaces that allow debuggers, performance analyzers, and other tools to obtain data about the operation of MPI processes.

• Chapter 16, Deprecated Interfaces, describes routines that are kept for reference. However usage of these functions is discouraged, as they may be deleted in future versions of the standard.

• Chapter 17, Removed Interfaces, describes routines and constructs that have been removed from MPI.

• Chapter 18, Semantic Changes and Warnings, describes semantic changes from previous versions of MPI.

• Chapter 19, Language Bindings, discusses Fortran issues, and describes language interoperability aspects between C and Fortran.

The Appendices are:

• Annex A, Language Bindings Summary, gives specific syntax in C and Fortran, for all MPI functions, constants, and types.

• Annex B, Change-Log, summarizes some changes since the previous version of the standard.

• Several Index pages show the locations of general terms and definitions, examples, constants and predefined handles, declarations of C and Fortran types, callback routine prototypes, and all MPI functions.

MPI provides various interfaces to facilitate interoperability of distinct MPI implementations. Among these are the canonical data representation for MPI I/O and for MPI_PACK_EXTERNAL and MPI_UNPACK_EXTERNAL. The definition of an actual binding of these interfaces that will enable interoperability is outside the scope of this document.

A separate document consists of ideas that were discussed in the MPI Forum during the MPI-2 development and deemed to have value, but were not included in the MPI standard. They are part of the “Journal of Development” (JOD), which was created to capture these ideas and discussions. The JOD is available at https://www.mpi-forum.org/docs.
Chapter 2

MPI Terms and Conventions

This chapter explains notational terms and conventions used throughout the MPI document, some of the choices that have been made, and the rationale behind those choices.

2.1 Document Notation

Rationale. Throughout this document, the rationale for the design choices made in the interface specification is set off in this format. Some readers may wish to skip these sections, while readers interested in interface design may want to read them carefully. (*End of rationale.*)

Advice to users. Throughout this document, material aimed at users and that illustrates usage is set off in this format. Some readers may wish to skip these sections, while readers interested in programming in MPI may want to read them carefully. (*End of advice to users.*)

Advice to implementors. Throughout this document, material that is primarily commentary to implementors is set off in this format. Some readers may wish to skip these sections, while readers interested in MPI implementations may want to read them carefully. (*End of advice to implementors.*)

2.2 Naming Conventions

In many cases MPI names for C functions are of the form *MPI_Class_action_subset*. This convention originated with MPI-1. Since MPI-2 an attempt has been made to standardize the names of MPI functions according to the following rules:

1. In C and the Fortran mpi_f08 module, all routines associated with a particular type of MPI object should be of the form *MPI_Class_action_subset* or, if no subset exists, of the form *MPI_Class_action*. In the Fortran mpi module and (deprecated) mpif.h file, all routines associated with a particular type of MPI object should be of the form *MPI_CLASS_ACTION_SUBSET* or, if no subset exists, of the form *MPI_CLASS_ACTION*.

2. If the routine is not associated with a class, the name should be of the form *MPI_Action_subset* or *MPI_ACTION_SUBSET* in C and Fortran.

3. The names of certain actions have been standardized. In particular, *create* creates a new object, *get* retrieves information about an object, *set* sets this information, *delete* deletes information, *is* asks whether or not an object has a certain property.
C and Fortran names for some MPI functions (that were defined during the MPI-1 process) violate these rules in several cases. The most common exceptions are the omission of the Class name from the routine and the omission of the Action where one can be inferred.

2.3 Procedure Specification

MPI procedures are specified using a language-independent notation. The arguments of procedure calls are marked as IN, OUT, or INOUT. The meanings of these are:

IN: the call may use the input value but does not update the argument from the perspective of the caller at any time during the call’s execution,

OUT: the call may update the argument but does not use its input value,

INOUT: the call may both use and update the argument.

There is one special case—if an argument is a handle to an opaque object (these terms are defined in Section 2.5.1), and the object is updated by the procedure call, then the argument is marked INOUT or OUT. It is marked this way even though the handle itself is not modified—we use the INOUT or OUT attribute to denote that what the handle references is updated.

Rationale. The definition of MPI tries to avoid, to the largest possible extent, the use of INOUT arguments, because such use is error-prone, especially for scalar arguments.

(End of rationale.)

MPI’s use of IN, OUT, and INOUT is intended to indicate to the user how an argument is to be used, but does not provide a rigorous classification that can be translated directly into all language bindings (e.g., INTENT in Fortran 90 bindings or const in C bindings). For instance, the “constant” MPI_BOTTOM can usually be passed to OUT buffer arguments. Similarly, MPI_STATUS_IGNORE can be passed as the OUT status argument.

A common occurrence for MPI functions is an argument that is used as IN by some processes and OUT by other processes. Such an argument is, syntactically, an INOUT argument and is marked as such, although, semantically, it is not used in one call both for input and for output on a single process.

Another frequent situation arises when an argument value is needed only by a subset of the processes. When an argument is not significant at a process then an arbitrary value can be passed as an argument.

Unless specified otherwise, an argument of type OUT or type INOUT cannot be aliased with any other argument passed to an MPI procedure. An example of argument aliasing in C appears below. If we define a C procedure like this,

```c
void copyIntBuffer(int *pin, int *pout, int len)
{
    int i;
    for (i=0; i<len; ++i) *pout++ = *pin++;
}
```

then a call to it in the following code fragment has aliased arguments.

```c
int a[10];
copyIntBuffer(a, a+3, 7);
```
Although the C language allows this, such usage of MPI procedures is forbidden unless otherwise specified. Note that Fortran prohibits aliasing of arguments.

All MPI functions are first specified in the language-independent notation. Immediately below this, language dependent bindings follow:

- The ISO C version(s) of the function.
- The Fortran version(s) used with USE mpi_f08.
- The Fortran version of the same function used with USE mpi or (deprecated) INCLUDE 'mpif.h'..

Some MPI procedures have two interfaces for a given language support; see Sections 2.5.6 and 2.5.8.

An exception is Section 15.3 “The MPI Tool Information Interface”, which only provides ISO C interfaces.

“Fortran” in this document refers to Fortran 90 or later; see Section 2.6.

The words function, routine, procedure, procedure call, and call are often used as synonyms within this standard.

2.4 Semantic Terms

When discussing MPI procedures the following semantic terms are used. The term **message data buffer** refers to the send/receive buffer used in a communication procedure. The term **file data buffer** refers to the data buffers used by MPI I/O procedures. In this section we use the term **data buffer** and depending on the MPI procedure it will refer to message data buffer or file data buffer. Annex A.2 shows how the terms defined in this section apply to all operation-related MPI procedures.

2.4.1 MPI Operations

MPI operation: An MPI operation is a sequence of steps performed by the MPI library to establish and enable data transfer and/or synchronization. It consists of four stages: initialization, starting, completion, and freeing, and it is implemented as a set of one or more MPI procedures, see Section 2.4.2.

Initialization hands over the argument list to the operation but not the content of the data buffers, if any. The specification of an operation may state that array arguments must not be changed until the operation is freed.

Starting hands over control of the data buffers, if any, to the associated operation.

Note that **initiation** refers to the combination of the initialization and starting stages.

Completion returns control of the content of the data buffers and indicates that output buffers and arguments, if any, have been updated.

Note that an MPI operation is **complete** when the MPI procedure implementing the completion stage returns.

Freeing returns control of the rest of the argument list (e.g., the data buffer address and array arguments).
MPI operations are available in one or more of these forms: blocking, nonblocking, and persistent.

Blocking operation: For a **blocking operation**, all four stages are combined in a single procedure call (as shown in Figure 2.1 and defined in Section 2.4.2).

Nonblocking operation: For a **nonblocking operation**, the initialization and starting stages are combined into a single nonblocking procedure call and the completion and freeing stages are combined into a separate, single procedure call, which can be blocking or nonblocking (as shown in Figure 2.2 and defined in Section 2.4.2).

Persistent operation: For a **persistent operation**, there is a separate procedure for each of the four stages (as shown in Figure 2.3 and defined in Section 2.4.2). Each of these procedures may be blocking or nonblocking.

For a partitioned send operation, an additional call to activate each partition of the send buffer (see Section 4.2.1) is required to finish the starting stage. For a partitioned receive operation, before the operation is complete the user is allowed to access a partition of the output buffer after verifying that it has arrived (see Section 4.2.2).

These four stages lead to the **operation states** initialized, started, complete, and freed. A **started operation** is also named **active**, and the states initialized and complete are also named **inactive**.

Active communication and I/O operations are also named **pending** operations. Note that a pending operation can be a nonblocking or persistent operation that is started and not yet complete (even if the request handle has been freed), or a blocking operation that is not yet complete, such as a receive operation that is waiting for a message to be received.
Additionally, an MPI operation can be collective or noncollective.

Collective operation: A set of related operations, one per MPI process in a group or groups of MPI processes. For collective operations the completion stage may or may not finish before all processes in the group have started the operation.

Collective MPI operations are also available as blocking, nonblocking, or persistent operations.

Noncollective operation: Noncollective operations are defined as operations that are not collective.

Many MPI operations coordinate activities at multiple MPI processes: the semantics of such an operation require one or more other specific semantically-related operations to be started before it is guaranteed that the operation can transition to the complete operation state. For example, a receive operation requires a related send operation to be started before the receive can complete; or a collective operation might not complete before such operations are also started in all MPI processes of the respective group.

Enabled: An MPI operation is enabled at a particular MPI process when all specific semantically-related operations required to guarantee completion at that MPI process have been started.

Rationale. MPI implementations may include optimizations (for example, automatic buffering) that allow an MPI operation to complete before it is enabled. (*End of rationale.*)

Some MPI operations are a priori enabled, i.e., they do not require any other specific semantically-related operation for completion. For example, a buffered send operation completes independently of the related receive operation.

Once an MPI operation is enabled, the operation must eventually complete. An operation may already be enabled before it is started. For example, a receive operation is already enabled if it is started after the matching send operation was started.

Rationale. The definition of an operation \(A \) being enabled is asymmetric: enabled includes that all specific semantically-related operations \(A'_i \) required to guarantee completion have been started, but does not include that the operation \(A \) itself is already started.

Examples:

- A receive is enabled exactly when the related send is started.
- A standard mode send operation is enabled exactly when the related receive is started. If an MPI implementation chooses to use internal buffering, the send operation may be already completed before it is enabled, i.e., the receive is started.
- A synchronous mode send operation is enabled exactly when the related receive is started and must not complete before it is enabled.
- A buffered mode send operation is a priori enabled.
• A ready mode send can be started only when it is already enabled, i.e., the related receive is started.

• For a collective broadcast, the operation at a particular MPI process is enabled exactly when all other MPI processes in the group have started their related broadcast operation.

Specifically, for the set of related operations on a group of MPI processes that constitute a collective operation that may synchronize, the operation on a particular MPI process \(p \) is enabled when all other MPI processes \(p_i \neq p \) in the group have started their related operation, while the operation on \(p \) need not have started yet. (*End of rationale.*)

2.4.2 MPI Procedures

All MPI procedures can either be local or nonlocal—defined as follows:

Nonlocal procedure: An MPI procedure is nonlocal if returning may require, during its execution, some specific semantically-related MPI procedure to be called on another MPI process.

Local procedure: An MPI procedure is local if it is not nonlocal.

An MPI operation is implemented as a set of one or more MPI procedures. An MPI operation-related procedure implements at least a part of a stage of an MPI operation as described in Section 2.4.1. An MPI operation-related procedure may also implement one or more stages of one or several MPI operations. In certain cases, more than one MPI operation-related procedure may be needed to implement a single stage.

There are also other MPI procedures that do not implement any stage of any MPI operation.

The semantics of MPI operation-related procedures are described using two orthogonal (independent) concepts: completeness (depends on which stages are included) and locality. Such procedures can be either incomplete, or completing, or freeing, or completing and freeing based on the status of the associated operation at the time the procedure returns. Also, all such procedures can be described as either blocking or nonblocking, but these latter two terms refer to combinations of the completeness and locality concepts. Additionally, all MPI operation-related procedures can be collective or noncollective.

The following are properties of MPI operation-related procedures:

Initialization procedure: An MPI procedure is an initialization procedure if return from the procedure indicates that the associated operation has completed its initialization stage, which implies that the user has handed over control of the argument list (but not contents of the data buffers) to MPI. The user is still allowed to read or modify the contents of the data buffers. If an initializing procedure is not also the freeing procedure of the associated operation (see below) then the user is not permitted to deallocate the data buffers or to modify the array arguments.

Starting procedure: An MPI procedure is a starting procedure if return from the procedure indicates that the associated operation has completed its starting stage, which implies that the user has handed over control of the data buffers to MPI. If a starting procedure is not also a completing procedure of the associated operation (see
Initiation procedure: An MPI procedure is an **initiation procedure** if return from the procedure indicates that both the initialization and the starting stage have completed, which implies control of the entire argument list is handed over to MPI.

Completing procedure: An MPI procedure is called **completing** if return from the procedure indicates that at least one associated operation has finished its completion stage, which implies that the user can rely on the content of the output data buffers and modify the content of input and output data buffers of such operation(s). If a completing procedure is not also a freeing procedure (see below) then the user is not permitted to deallocate the data buffers or to modify the array arguments.

Incomplete procedure: An MPI procedure is called **incomplete** if it is not a completing procedure.

Freeing procedure: An MPI procedure is **freeing** if return from the procedure indicates that at least one associated operation has finished its freeing stage, which implies that the user can reuse all parameters specified when initializing such associated operation(s).

Nonblocking procedure: An MPI procedure is **nonblocking** if it is incomplete and local.

Blocking procedure: An MPI procedure is **blocking** if it is not nonblocking.

Advice to users. Note that for operation-related MPI procedures, in most cases incomplete procedures are local and completing procedures are nonlocal. Exceptions are noted where such procedures are defined. In many cases an additional prefix letter I as an abbreviation of the words **incomplete** and **immediate** marks nonblocking procedures in the procedure name.

Some categorization examples are listed below.

Nonblocking procedures:
- incomplete and local: MPI_ISEND, MPI_IRecv, MPI_IBCAST, MPI_IMPROBE, MPI_SEND_INIT, MPI_RECV_INIT, ...

Blocking procedures:
- completing and nonlocal: MPI_SEND, MPI_RECV, MPI_BCAST, ...
- incomplete and nonlocal: MPI_MPROBE, MPI_BCAST_INIT, ..., MPI_FILE_{READ|WRITE}_{AT_ALL|ALL|ORDERED}_BEGIN.
- completing and local: MPI_BSEND, MPI_RSEND, MPI_MRECV.

MPI procedures that are not MPI operation-related:
- MPI_COMM_RANK, MPI_WTIME, MPI_PROBE, MPI_IProbe, ...

(End of advice to users.)

Collective procedure: An MPI procedure is **collective** if all processes in a group or groups of MPI processes need to invoke the procedure.
Initialization procedures of collective operations over the same process group must be executed in the same order by all members of the process group.

An MPI collective procedure is **synchronizing** if it will only return once all processes in the associated group or groups of MPI processes have called the appropriate matching MPI procedure.

The initiation procedures for nonblocking collective operations and the starting procedures for persistent collective operations are local and shall not be synchronizing.

All other procedures for collective operations, such as for blocking collective operations and the initialization procedures for persistent collective operations, may or may not be synchronizing.

Advice to users. Calling any synchronizing function is erroneous when there is no possibility of corresponding calls at all other processes in the associated process group.

Waiting for completion of any collective operation is erroneous when there is no possibility that all other processes in the associated group will be able to start the corresponding operation. (*End of advice to users.*)

Noncollective procedure: Noncollective procedures are defined as procedures that are not collective.

The definition of **local** and **nonlocal** MPI procedures can also be applied to a specific procedure invocation or to procedure calls **under certain constraints**. For example, a call to a completing receive procedure that happens after the related send operation was already started may be described as local, even though the completing receive procedure without the constraint is nonlocal. More generally, a call to any completing procedure that happens after the operation was already **enabled** is local, even if the completing procedure without the constraint is nonlocal. Another example, a call to a blocking collective procedure using a process group of size one is local, even if the blocking collective procedure without the constraint is nonlocal.

2.4.3 MPI Datatypes

For datatypes, the following terms are defined:

predefined: A predefined datatype is a datatype with a predefined (constant) name (such as MPI_INT, MPI_FLOAT, or MPI_PACKED) or a datatype constructed with MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL, or MPI_TYPE_CREATE_F90_COMPLEX. The former are **named** whereas the latter are **unnamed**.

derived: A derived datatype is any datatype that is not predefined.

portable: A datatype is portable if it is a predefined datatype, or it is derived from a portable datatype using only the type constructors MPI_TYPE_CONTIGUOUS, MPI_TYPE_VECTOR, MPI_TYPE_INDEXED, MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_TYPE_CREATE_SUBARRAY, MPI_TYPE_DUP, and MPI_TYPE_CREATE_DARRAY. Such a datatype is portable because all displacements in the datatype are in terms of extents of one predefined
2.5 Datatypes

2.5.1 Opaque Objects

MPI manages system memory that is used for buffering messages and for storing internal representations of various MPI objects such as groups, communicators, datatypes, etc. This memory is not directly accessible to the user, and objects stored there are opaque: their size and shape is not visible to the user. Opaque objects are accessed via handles, which exist in user space. MPI procedures that operate on opaque objects are passed handle arguments to access these objects. In addition to their use by MPI calls for object access, handles can participate in assignments and comparisons.

In Fortran with USE mpi or (deprecated) INCLUDE 'mpif.h', all handles have type INTEGER. In Fortran with USE mpi_f08, and in C, a different handle type is defined for each category of objects. With Fortran USE mpi_f08, the handles are defined as Fortran BIND(C) derived types that consist of only one element INTEGER :: MPI_VAL. The internal handle value is identical to the Fortran INTEGER value used in the mpi module and (deprecated) mpif.h. The operators .EQ., .NE., .EQ. and /= are overloaded to allow the comparison of these handles. The type names are identical to the names in C, except that they are not case sensitive. For example:

```fortran
TYPE, BIND(C) :: MPI_Comm
  INTEGER :: MPI_VAL
END TYPE MPI_Comm
```

The C types must support the use of the assignment and equality operators.

Advice to implementors. In Fortran, the handle can be an index into a table of opaque objects in a system table; in C it can be such an index or a pointer to the object. (End of advice to implementors.)

Rationale. Since the Fortran integer values are equivalent, applications can easily convert MPI handles between all three supported Fortran methods. For example, an integer communicator handle COMM can be converted directly into an exactly equivalent mpi_f08 communicator handle named comm_f08 by comm_f08%MPI_VAL=COMM, and vice versa. The use of the INTEGER defined handles and the BIND(C) derived type handles
is different: Fortran 2003 (and later) define that \texttt{BIND(C)} derived types can be used within user defined common blocks, but it is up to the rules of the companion C compiler how many numerical storage units are used for these \texttt{BIND(C)} derived type handles. Most compilers use one unit for both, the \texttt{INTEGER} handles and the handles defined as \texttt{BIND(C)} derived types. (End of rationale.)

\textit{Advice to users.} If a user wants to substitute the \texttt{mpi} module or the (deprecated) \texttt{mpif.h} by the \texttt{mpi_f08} module and the application program stores a handle in a Fortran common block then it is necessary to change the Fortran support method in all application routines that use this common block, because the number of numerical storage units of such a handle can be different in the two modules. (End of advice to users.)

Opaque objects are allocated and deallocated by calls that are specific to each object type. These are listed in the sections where the objects are described. The calls accept a handle argument of matching type. In an allocate call this is an \texttt{OUT} argument that returns a valid reference to the object. In a call to deallocate this is an \texttt{INOUT} argument that returns with an “invalid handle” value. MPI provides an “invalid handle” constant for each object type. Comparisons to this constant are used to test for validity of the handle.

A call to a deallocate routine invalidates the handle and marks the object for deallocation. The object is not accessible to the user after the call. However, MPI need not deallocate the object immediately. Any operation \texttt{pending} (at the time of the deallocate) and decoupled MPI activity (see Section 2.9) that involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are significant only at the process where the object was created and cannot be transferred to another process.

MPI provides certain predefined opaque objects and predefined, static handles to these objects. The user must not free such objects.

\textit{Rationale.} This design hides the internal representation used for MPI data structures, thus allowing similar calls in C and Fortran. It also avoids conflicts with the typing rules in these languages, and easily allows future extensions of functionality. The mechanism for opaque objects used here loosely follows the POSIX Fortran binding standard.

The explicit separation of handles in user space and objects in system space allows space-reclaiming and deallocation calls to be made at appropriate points in the user program. If the opaque objects were in user space, one would have to be very careful not to go out of scope before any pending operation requiring that object completed. The specified design allows an object to be marked for deallocation, the user program can then go out of scope, and the object itself still persists until any pending operations are complete.

The requirement that handles support assignment/comparison is made since such operations are common. This restricts the domain of possible implementations. The alternative in C would have been to allow handles to have been an arbitrary, opaque type. This would force the introduction of routines to do assignment and comparison, adding complexity, and was therefore ruled out. In Fortran, the handles are defined such that assignment and comparison are available through the operators of the language or overloaded versions of these operators. (End of rationale.)
Advice to users. A user may accidentally create a dangling reference by assigning to a handle the value of another handle, and then deallocating the object associated with these handles. Conversely, if a handle variable is deallocated before the associated object is freed, then the object becomes inaccessible (this may occur, for example, if the handle is a local variable within a subroutine, and the subroutine is exited before the associated object is deallocated). It is the user’s responsibility to avoid adding or deleting references to opaque objects, except as a result of MPI calls that allocate or deallocate such objects. (End of advice to users.)

Advice to implementors. The intended semantics of opaque objects is that opaque objects are separate from one another; each call to allocate such an object copies all the information required for the object. Implementations may avoid excessive copying by substituting referencing for copying. For example, a derived datatype may contain references to its components, rather than copies of its components; a call to MPI_COMM_GROUP may return a reference to the group associated with the communicator, rather than a copy of this group. In such cases, the implementation must maintain reference counts, and allocate and deallocate objects in such a way that the visible effect is as if the objects were copied. (End of advice to implementors.)

2.5.2 Array Arguments

An MPI call may need an argument that is an array of opaque objects, or an array of handles. The array-of-handles is a regular array with entries that are handles to objects of the same type in consecutive locations in the array. Whenever such an array is used, an additional len argument is required to indicate the number of valid entries (unless this number can be derived otherwise). The valid entries are at the beginning of the array; len indicates how many of them there are, and need not be the size of the entire array. The same approach is followed for other array arguments. In some cases NULL handles are considered valid entries. When a NULL argument is desired for an array of statuses, one uses MPI_STATUSES_IGNORE.

2.5.3 State

MPI procedures use at various places arguments with state types. The values of such a datatype are all identified by names, and no operation is defined on them. For example, the MPI_TYPE_CREATE_SUBARRAY routine has a state argument order with values MPI_ORDER_C and MPI_ORDER_FORTRAN.

2.5.4 Named Constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argument; e.g., tag is an integer-valued argument of point-to-point communication operations, with a special wild-card value, MPI_ANY_TAG. Such arguments will have a range of regular values, which is a proper subrange of the range of values of the corresponding basic type; special values (such as MPI_ANY_TAG) will be outside the regular range. The range of regular values, such as tag, can be queried using environmental inquiry functions, see Chapter 9. The range of other values, such as source, depends on values given by other MPI routines (in the case of source it is the communicator size).

MPI also provides predefined named constant handles, such as MPI_COMM_WORLD.
All named MPI constants, with the exceptions noted below for Fortran, can be used in initialization expressions or assignments. Opaque objects accessed by constant handles are defined and do not change value between MPI initialization (e.g., with MPI_INIT) and MPI finalization (e.g., with MPI_FINALIZE). The handles themselves are constants and can be also used in initialization expressions or assignments.

In C, all named MPI constants that are described as “integer constant expression” in Section A.1.1 must be implemented as C integer constant expressions of the specified integer type. All other MPI constants in C are not required to be C integer constant expressions but must be usable in initialization expressions and assignments. Thus, they are not guaranteed to be usable in array declarations or as case-labels in switch statements.

In Fortran, all named MPI constants (with the exceptions below) must be declared with the PARAMETER attribute. The constants that cannot be used in initialization expressions or assignments in Fortran are as follows:

- MPI_BOTTOM
- MPI_BUFFER_AUTOMATIC
- MPI_STATUS_IGNORE
- MPI_STATUSES_IGNORE
- MPI_ERRCODES_IGNORE
- MPI_IN_PLACE
- MPI_ARGV_NULL
- MPI_ARGVS_NULL
- MPI_UNWEIGHTED
- MPI_WEIGHTS_EMPTY

Advice to implementors. In Fortran the implementation of these special constants may require the use of language constructs that are outside the Fortran standard. Using special values for the constants (e.g., by defining them through PARAMETER statements) is not possible because an implementation cannot distinguish these values from valid data. Typically, these constants are implemented as predefined static variables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that the target compiler passes data by address. Inside the subroutine, this address can be extracted by some mechanism outside the Fortran standard (e.g., by Fortran extensions or by implementing the function in C). (End of advice to implementors.)

2.5.5 Choice

MPI functions sometimes use arguments with a choice (or union) data type. Distinct calls to the same routine may pass by reference actual arguments of different types. The mechanism for providing such arguments will differ from language to language. For Fortran with the (deprecated) include file mpif.h or the mpi module, the document uses <type> to represent a choice variable; with the Fortran mpi_f08 module, such arguments are declared with the Fortran 2018 syntax TYPE(*), DIMENSION(..); for C, we use void*.

Advice to implementors. Implementors can freely choose how to implement choice arguments in the mpi module, e.g., with a nonstandard compiler-dependent method that has the quality of the call mechanism in the implicit Fortran interfaces, or with the method defined for the mpi_f08 module. See details in Section 19.1.1. (End of advice to implementors.)
2.5.6 Absolute Addresses and Relative Address Displacements

Some MPI procedures use address arguments that represent an absolute address in the calling program, or relative displacement arguments that represent differences of two absolute addresses. The datatype of such arguments is MPI_Aint in C and INTEGER(KIND=MPIADDRESS_KIND) in Fortran. These types must have the same width and encode address values in the same manner such that address values in one language may be passed directly to another language without conversion. There is the MPI constant MPI_BOTTOM to indicate the start of the address range. For retrieving absolute addresses or any calculation with absolute addresses, one should use the routines and functions provided in Section 5.1.5. Section 5.1.12 provides additional rules for the correct use of absolute addresses. For expressions with relative displacements or other usage without absolute addresses, intrinsic operators (e.g., +, −, ×) can be used.

Rationale. Byte displacement values need to be large enough to encode any value used for expressing absolute or relative memory addresses. Prior to MPI-4.0, some MPI routines used int in C and INTEGER in Fortran as the type for byte displacement arguments. To avoid breaking backward compatibility, this version of the standard continues to support int in C as well as INTEGER in Fortran in such routines. In addition, this version of the standard supports using MPI_Aint in C (via separate “_c” suffixed procedures) as well as INTEGER(KIND=MPIADDRESS_KIND) in Fortran (via polymorphic interfaces in newer MPI Fortran bindings (USE mpi_f08)) in such routines. See Section 19.2 for a full explanation. (End of rationale.)

2.5.7 File Offsets

For I/O there is a need to give the size, displacement, and offset into a file. These quantities can easily be larger than 32 bits, which can be the default size of a Fortran integer. To overcome this, these quantities are declared to be INTEGER(KIND=MPI_OFFSET_KIND) in Fortran. In C one uses MPI_Offset. These types must have the same width and encode address values in the same manner such that offset values in one language may be passed directly to another language without conversion.

2.5.8 Counts

As described above, MPI defines types (e.g., MPI_Aint) to address locations within memory and other types (e.g., MPI_Offset) to address locations within files. In addition, some MPI procedures use count arguments that represent a number of MPI datatypes on which to operate. Furthermore, timestamps in the context of the MPI Tool Information Interface are a count of clock ticks elapsed since some time in the past. At times, one needs a single type that can be used to address locations within either memory or files as well as express count values, and that type is MPI_Count in C and INTEGER(KIND=MPI_COUNT_KIND) in Fortran. These types must have the same width and encode values in the same manner such that count values in one language may be passed directly to another language without conversion. The size of the MPI_Count type is determined by the MPI implementation with the restriction that it must be minimally capable of encoding any value that may be stored in a variable of type int, MPI_Aint, or MPI_Offset in C and of type INTEGER, INTEGER(KIND=MPIADDRESS_KIND), or INTEGER(KIND=MPIOFFSET_KIND) in Fortran. Even
though the MPI_Count type is large enough to encode address locations, the MPI_Count type shall not be used to represent an absolute address.

Rationale. Count values need to be large enough to encode any value used for expressing element counts, strides, offsets, indexes, displacements, typemaps in memory, typemaps in file views, etc. Prior to MPI-4.0, many MPI routines used int in C and INTEGER in Fortran as the type for count arguments. To avoid breaking backward compatibility, this version of the standard continues to support int in C as well as INTEGER in Fortran in such routines. In addition, this version of the standard supports using MPI_Count in C (via separate "_c" suffixed procedures) as well as INTEGER(KIND=MPI_COUNT_KIND) in Fortran (via polymorphic interfaces in newer MPI Fortran bindings (USE mpi_f08)) in such routines. See Section 19.2 for a full explanation. (End of rationale.)

The phrase large count refers to the use of MPI_Count and INTEGER(KIND=MPI_COUNT_KIND) parameter types.

There are cases where MPI_UNDEFINED can be returned in a large count OUT parameter. Per Table A.1.1 (page 851), the MPI_UNDEFINED constant is defined to be a C int (or unnamed enum) and a Fortran INTEGER. Implementations shall therefore choose the underlying types for MPI_Count and INTEGER(KIND=MPI_COUNT_KIND) such that they can be compared to MPI_UNDEFINED.

Advice to implementors. The comparison of MPI_UNDEFINED to an MPI_Count or INTEGER(KIND=MPI_COUNT_KIND) may need to be via a casting operation. (End of advice to implementors.)

2.6 Language Binding

This section defines the rules for MPI language binding in general and for Fortran, and ISO C, in particular. (Note that ANSI C has been replaced by ISO C.) Defined here are various object representations, as well as the naming conventions used for expressing this standard. The actual calling sequences are defined elsewhere.

MPI bindings are for Fortran 90 or later, though they were originally designed to be usable in Fortran 77 environments. With the mpi_f08 module, two new Fortran features, assumed type (i.e., TYPE(*)) and assumed rank (i.e., DIMENSION(..)), are also required, see Section 2.5.5.

Since the word PARAMETER is a keyword in the Fortran language, we use the word “argument” to denote the arguments to a subroutine. These are normally referred to as parameters in C, however, we expect that C programmers will understand the word “argument” (which has no specific meaning in C), thus allowing us to avoid unnecessary confusion for Fortran programmers.

Since Fortran is case insensitive, linkers may use either lower case or upper case when resolving Fortran names. Users of case sensitive languages should avoid any prefix of the form “MPI_” and “PMPI_”, where any of the letters are either upper or lower case.

2.6.1 Deprecated and Removed Interfaces

A number of chapters refer to deprecated or replaced MPI constructs. These are constructs that continue to be part of the MPI standard, as documented in Chapter 16, but that users
are recommended not to continue using, since better solutions were provided with newer versions of MPI. For example, the Fortran binding for MPI-1 functions that have address arguments uses INTEGER. This is not consistent with the C binding, and causes problems on machines with 32 bit INTEGERs and 64 bit addresses. In MPI-2, these functions were given new names with new bindings for the address arguments. The use of the old functions was declared as deprecated. For consistency, here and in a few other cases, new C functions are also provided, even though the new functions are equivalent to the old functions. The old names are deprecated.

Some of the previously deprecated constructs are now removed, as documented in Chapter 17. They may still be provided by an implementation for backwards compatibility, but are not required.

Table 2.1 shows a list of all of the deprecated and removed constructs. Note that some C typedefs and Fortran subroutine names are included in this list; they are the types of callback functions.

2.6.2 Fortran Binding Issues

Originally, MPI-1.1 provided bindings for Fortran 77. These bindings are retained, but they are now interpreted in the context of the Fortran 90 standard. MPI can still be used with most Fortran 77 compilers, as noted below. When the term “Fortran” is used it means Fortran 90 or later; it means Fortran 2008 with TS 29113, which is now an integral part of Fortran 2018 and later if the mpi_f08 module is used.

All Fortran MPI names have an MPI_ prefix. Although Fortran is not case sensitive, if the mpi_f08 module is used, the first character after the MPI_ prefix is capital and all others are lower case. If the mpi_f08 module is not used, all characters are capitals. Programs must not declare names, e.g., for variables, subroutines, functions, parameters, derived types, abstract interfaces, or modules, beginning with the prefix MPI_. To avoid conflicting with the profiling interface, programs must also avoid subroutines and functions with the prefix PMPI_. This is mandated to avoid possible name collisions.

All MPI Fortran subroutines have an error code in the last argument. With USE mpi_f08, this last argument is declared as OPTIONAL, except for user-defined callback functions (e.g., COMM_COPY_ATTR_FUNCTION) and their predefined callbacks (e.g., MPI_COMM_NULL_COPY_FN). A few MPI operations that are functions do not have the error code argument. The error code value for successful completion is MPI_SUCCESS. Other error codes are implementation dependent; see the error codes in Chapter 9 and Annex A.

Constants representing the maximum length of a string are one smaller in Fortran than in C as discussed in Section 19.3.9.

Handles are represented in Fortran as INTEGERs, or as a BIND(C) derived type with the mpi_f08 module; see Section 2.5.1. Binary-valued variables are of type LOGICAL.

Array arguments are indexed from one.

The older MPI Fortran bindings—USE mpi and (deprecated) mpif.h—are inconsistent with the Fortran standard in several respects. These inconsistencies, such as register optimization problems, have implications for user codes that are discussed in detail in Section 19.1.16.

The support for large count and displacement in Fortran is only available when using newer MPI Fortran bindings (USE mpi_f08). For better readability, all Fortran large count procedure declarations are marked with a comment “!(_c)”.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Table 2.1: Deprecated and removed constructs

<table>
<thead>
<tr>
<th>Deprecated or removed construct</th>
<th>Deprecated since</th>
<th>Removed since</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_ADDRESS</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_GET_ADDRESS</td>
</tr>
<tr>
<td>MPI_TYPE_HINDEXED</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_TYPE_CREATE_HINDEXED</td>
</tr>
<tr>
<td>MPI_TYPE_HVECTOR</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_TYPE_CREATE_HVECTOR</td>
</tr>
<tr>
<td>MPI_TYPE_STRUCT</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_TYPE_CREATE_STRUCT</td>
</tr>
<tr>
<td>MPI_TYPE_EXTENT</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_TYPE_GET_EXTENT</td>
</tr>
<tr>
<td>MPI_TYPE_UB</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_TYPE_GET_EXTENT</td>
</tr>
<tr>
<td>MPI_TYPE_LB</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_TYPE_GET_EXTENT</td>
</tr>
<tr>
<td>MPI_LB1</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_TYPE_CREATE_RESIZED</td>
</tr>
<tr>
<td>MPI_TYPE_CREATE_RESIZED</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_TYPE_CREATE_RESIZED</td>
</tr>
<tr>
<td>MPI_ERRHANDLER_CREATE</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_CREATE_ERRHANDLER</td>
</tr>
<tr>
<td>MPI_ERRHANDLER_GET</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_GET_ERRHANDLER</td>
</tr>
<tr>
<td>MPI_ERRHANDLER_SET</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_SET_ERRHANDLER</td>
</tr>
<tr>
<td>MPIT_1</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_Comm_errhandler_function</td>
</tr>
<tr>
<td>MPI_KEYVAL_FREE</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_FREE_KEYVAL</td>
</tr>
<tr>
<td>MPI_DUP_FN3</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_DUP_FN3</td>
</tr>
<tr>
<td>MPI_NULL_COPY_FN3</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_NULL_COPY_FN3</td>
</tr>
<tr>
<td>MPI_NULL_DELETE_FN3</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_NULL_DELETE_FN3</td>
</tr>
<tr>
<td>MPI_Copy_function</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>mpi_comm_copy_attr_function</td>
</tr>
<tr>
<td>COPY_FUNCTION2</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>COMM_COPY_ATTR_FUNCTION2</td>
</tr>
<tr>
<td>MPI_Delete_function</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>mpi_comm_delete_attr_function</td>
</tr>
<tr>
<td>DELETE_FUNCTION2</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>COMM_DELETE_ATTR_FUNCTION2</td>
</tr>
<tr>
<td>MPI_AFT_FUTURE</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_DELETE_ATTR</td>
</tr>
<tr>
<td>MPI_ATTR_GUE</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_GET_ATTR</td>
</tr>
<tr>
<td>MPI_ATTR_PUT</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_SET_ATTR</td>
</tr>
<tr>
<td>MPI_COMBINER_HVECTOR_INTEGER</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_HVECTOR</td>
</tr>
<tr>
<td>MPI_COMBINER_HINDEXED_INTEGER</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_HINDEXED</td>
</tr>
<tr>
<td>MPI_COMBINER_STRUCTURE_INTEGER</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>MPI_COMM_STRUCTURE</td>
</tr>
<tr>
<td>MPI_CANCEL</td>
<td>MPI-2.0</td>
<td>MPI-3.0</td>
<td>C language binding</td>
</tr>
<tr>
<td>MPI_CANCELE</td>
<td>MPI-4.0</td>
<td>no direct replacement</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_GET</td>
<td>MPI-4.0</td>
<td>MPI_INFO_GET_STRING</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_GETVALUELEN</td>
<td>MPI-4.0</td>
<td>MPI_INFO_GET_STRING</td>
<td></td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_ITEM</td>
<td>MPI-4.0</td>
<td>MPI_T_ERR_INVALID_INDEX</td>
<td></td>
</tr>
<tr>
<td>MPI_SIZEOF</td>
<td>MPI-4.0</td>
<td>storage_size() or c.sizeof()</td>
<td></td>
</tr>
<tr>
<td>mpif.h</td>
<td>MPI-4.1</td>
<td>mpi_module and mpi_f08 module</td>
<td></td>
</tr>
<tr>
<td>MPI_TYPE_SIZE_X</td>
<td>MPI-4.1</td>
<td>MPI_Type_size_c / sizeof(c) / -6</td>
<td></td>
</tr>
<tr>
<td>MPI_TYPE_GET_EXTENT_X</td>
<td>MPI-4.1</td>
<td>MPI_Type_get_extent_c / sizeof(c) / -6</td>
<td></td>
</tr>
<tr>
<td>MPI_TYPE_GET_TRUE_EXTENT_X</td>
<td>MPI-4.1</td>
<td>MPI_Type_get_true_extent_c / sizeof(c) / -6</td>
<td></td>
</tr>
<tr>
<td>MPI_GET_ELEMENTS_X</td>
<td>MPI-4.1</td>
<td>MPIGetTypeElements_c / sizeof(c) / -6</td>
<td></td>
</tr>
<tr>
<td>MPI_STATUS_SET_ELEMENTS_X</td>
<td>MPI-4.1</td>
<td>MPI_Status_set_elements_c / sizeof(c) / -6</td>
<td></td>
</tr>
<tr>
<td>MPI_HOST</td>
<td>MPI-4.1</td>
<td>no direct replacement</td>
<td></td>
</tr>
</tbody>
</table>

* Predefined datatype.
* 2 Callback prototype definition.
* 3 Predefined callback routine.
* 4 Constant.
* 5 Fortran intrinsic `storage_size()` returns the size in bits instead of bytes; see Section 16.3.
* 6 in C / Fortran with the `mpi_f08` module. No substitute for the `mpi` module and `mpif.h`.

Other entries are regular MPI routines.

2.6.3 C Binding Issues

We use the ISO C declaration format. All MPI names have an `MPI_` prefix, defined constants are in all capital letters, and defined types and functions have one capital letter after the prefix. Programs must not declare names (identifiers), e.g., for variables, functions, constants, types, or macros, beginning with any prefix of the form `MPI_`, where any of the letters are either upper or lower case. To support the profiling interface, programs must not declare functions with names beginning with any prefix of the form `PMPI_`, where any
25

2.7 Processes

of the letters are either upper or lower case.

The definition of named constants, function prototypes, and type definitions must be supplied in an include file mpi.h.

Almost all C functions return an error code. The successful return value will be MPI_SUCCESS, but error codes raised after a failure are implementation dependent.

Type declarations are provided for handles to each category of opaque objects.

Array arguments are indexed from zero.

Logical flags are integers with value 0 meaning “false” and a nonzero value meaning “true.”

Choice arguments are pointers of type void*.

2.6.4 Functions and Macros

An implementation is allowed to implement MPI_AINT_ADD, PMPI_AINT_ADD, MPI_AINT_DIFF, and PMPI_AINT_DIFF, and no others, as macros in C.

Advice to implementors. Implementors should document which routines are implemented as macros. (End of advice to implementors.)

Advice to users. If these routines are implemented as macros, they will not work with the MPI profiling interface. (End of advice to users.)

2.7 Processes

An MPI program consists of autonomous processes, executing their own code, in an MIMD style. The codes executed by each process need not be identical. The processes communicate via calls to MPI communication primitives. Typically, each process executes in its own address space, although shared-memory implementations of MPI are possible.

This document specifies the behavior of a parallel program assuming that only MPI calls are used. The interaction of an MPI program with other possible means of communication, I/O, and process management is not specified. Unless otherwise stated in the specification of the standard, MPI places no requirements on the result of its interaction with external mechanisms that provide similar or equivalent functionality. This includes, but is not limited to, interactions with external mechanisms for process control, shared and remote memory access, file system access and control, interprocess communication, process signaling, and terminal I/O. High quality implementations should strive to make the results of such interactions intuitive to users, and attempt to document restrictions where deemed necessary.

Advice to implementors. Implementations that support such additional mechanisms for functionality supported within MPI are expected to document how these interact with MPI. (End of advice to implementors.)

The interaction of MPI and threads is defined in Section 11.6.

MPI processes reside in the same shared memory domain if it is possible to share a segment of memory between them, i.e., to make a segment of memory (shared memory segment) concurrently accessible from all of those MPI processes through load/store accesses. For a group of processes belonging to more than one shared memory domain the creation of a subgroup of processes belonging to the same shared memory domain is defined in Section 7.4.2.
2.8 Error Handling

MPI provides the user with reliable message transmission. A message sent is always received correctly, and the user does not need to check for transmission errors, time-outs, or other error conditions. In other words, MPI does not provide mechanisms for dealing with transmission failures in the communication system. If the MPI implementation is built on an unreliable underlying mechanism, then it is the job of the implementor of the MPI subsystem to insulate the user from this unreliability, and to reflect only unrecoverable transmission failures. Whenever possible, such failures will be reflected as errors in the relevant communication call.

Similarly, MPI itself provides no mechanisms for handling MPI process failures, that is, when an MPI process unexpectedly and permanently stops communicating (e.g., a software or hardware crash results in an MPI process terminating unexpectedly).

Of course, MPI programs may still be erroneous. A program error can occur when an MPI call is made with an incorrect argument (nonexisting destination in a send operation, buffer too small in a receive operation, etc.). This type of error would occur in any implementation. In addition, a resource error may occur when a program exceeds the amount of available system resources (number of pending messages, system buffers, etc.). The occurrence of this type of error depends on the amount of available resources in the system and the resource allocation mechanism used; this may differ from system to system. A high-quality implementation will provide generous limits on the important resources so as to alleviate the portability problem this represents.

In C and Fortran, almost all MPI calls return a code that indicates successful completion of the operation. Whenever possible, MPI calls return an error code if an error occurred during the call. By default, an error detected during the execution of the MPI library causes the parallel computation to abort, except for file operations. However, MPI provides mechanisms for users to change this default and to handle recoverable errors. The user may specify that no error is fatal, and handle error codes returned by MPI calls by themselves. Also, the user may provide user-defined error-handling routines, which will be invoked whenever an MPI call returns abnormally. The MPI error handling facilities are described in Section 9.3.

Several factors limit the ability of MPI calls to return with meaningful error codes when an error occurs. MPI may not be able to detect some errors; other errors may be too expensive to detect in normal execution mode; some faults (e.g., memory faults) may corrupt the state of the MPI library and its outputs; finally some errors may be “catastrophic” and may prevent MPI from returning control to the caller.

In addition, some errors may be detected in operations that do not refer to an MPI object from which the associated error handler can be obtained. Error handler associations are further described in Section 9.3. In such cases, these errors will be raised on the communicator MPI_COMM_SELF when using the World Model (see Section 11.2). When MPI_COMM_SELF is not initialized (i.e., before MPI_INIT / MPI_INIT_THREAD, after MPI_FINALIZE, or when using the Sessions Model exclusively) the error raises the initial error handler (set during the launch operation, see 11.8.4). The Sessions Model is described in Section 11.3.

Lastly, some errors may be detected after the associated operation has completed locally. An example of such a case arises because of the nature of asynchronous communications: MPI calls may initiate operations that continue asynchronously after the call returned. Thus, the operation may return with a code indicating successful completion,
yet later cause an error to be raised. If there is a subsequent call that relates to the same operation (e.g., a call that verifies that an asynchronous operation has completed) then the error argument associated with this call will be used to indicate the nature of the error. In a few cases, the error may occur after all calls that relate to the operation have returned, so that no error value can be used to indicate the nature of the error (e.g., an erroneous program on the receiver in a send with the ready mode).

This document does not specify the state of a computation after an erroneous MPI call has occurred. The desired behavior is that a relevant error code be returned, and the effect of the error be localized to the greatest possible extent. E.g., it is highly desirable that an erroneous receive call will not cause any part of the receiver’s memory to be overwritten, beyond the area specified for receiving the message.

Implementations may go beyond this document in supporting in a meaningful manner MPI calls that are defined here to be erroneous. For example, MPI specifies strict type matching rules between matching send and receive operations: it is erroneous to send a floating point variable and receive an integer. Implementations may go beyond these type matching rules, and provide automatic type conversion in such situations. It will be helpful to generate warnings for such nonconforming behavior.

MPI defines a way for users to create new error codes as defined in Section 9.5.

2.9 Progress

MPI communication operations or parallel I/O patterns typically comprise several related operations executed in one or multiple MPI processes. Examples are the point-to-point communications with one MPI process executing a send operation and another (or the same) MPI process executing a receive operation, or all MPI processes of a group executing a collective operation.

Within each MPI process parts of the communication or parallel I/O pattern are executed within the MPI procedure calls that belong to the operation in that MPI process, whereas other parts are decoupled MPI activities, i.e., they may be executed within an additional progress thread, offloaded to the network interface controller (NIC), or executed within other MPI procedure calls that are not semantically related to the given communication or parallel I/O pattern.

An MPI procedure invocation is blocked if it delays its return until some specific activity or state-change has occurred in another MPI process. An MPI procedure call that is blocked can be

- a nonlocal MPI procedure call that delays its return until a specific semantically-related MPI call on another MPI process, or

- a local MPI procedure call that delays its return until some unspecific MPI call in another MPI process causes a specific state-change in that other MPI process, or

- an MPI finalization procedure (MPI_FINALIZE or MPI_SESSION_FINALIZE) that delays its return or exit because this MPI finalization must guarantee that all decoupled MPI activities that are related to that MPI finalization call in the calling MPI process will be executed before this MPI finalization is finished. Note that an MPI finalization procedure may execute attribute deletion callback functions prior to the finalization (see Section 11.2.4); these callback functions may generate additional decoupled MPI activities.
Some examples of a nonlocal blocked MPI procedure call:

- **MPI_SSEND** delays its return until the matching receive operation is `started` at the destination MPI process (for example, by a call to `MPI_RECV` or to `MPI_Irecv`).
- **MPI_RECV** delays its return until the matching send operation is `started` at the source MPI process (for example, by a call to `MPI_SEND` or to `MPI_Isend`).

Some examples of a local blocked MPI procedure call:

- **MPI_RSEND**, if the message data cannot be entirely buffered, delays its return until the destination MPI process has received the portion of message data that cannot be buffered, which may require one or more unspecified MPI procedure call(s) at the destination MPI process.
- **MPI_Rrecv**, in case the message was buffered at the sending MPI process (e.g. with `MPI_BSEND`), delays its return until the message is received, which may require one or more unspecified MPI procedure calls at the sending MPI process to send the buffered data.

All MPI processes are required to guarantee progress, i.e., all decoupled MPI activities will eventually be executed. This guarantee is required to be provided during

- blocked MPI procedures, and
- repeatedly called MPI test procedures (see below) that return `flag=false`.

The progress must be provided independently of whether a decoupled MPI activity belongs to a specific session or to the World Model (see Sections 11.2 and 11.3). Other ways of fulfilling this guarantee are possible and permitted (for example, a dedicated progress thread or off-loading to a network interface controller (NIC)).

MPI test procedures are `MPI_TEST`, `MPI_TEstany`, `MPI_TEstAll`, `MPI_TEstSome`, `MPI_IPROBE`, `MPI_Improbe`, `MPI_Request_get_status`, `MPI_win_test`, and `MPI_PArrived`.

Strong progress is provided by an MPI implementation if all local procedures return independently of MPI procedure calls in other MPI processes (operation-related or not). An MPI implementation provides **weak progress** if it does not provide strong progress.

Advice to users. The type of progress may influence the performance of MPI operations. A correct MPI application must be written under the assumption that only weak progress is provided. Every MPI application that is correct under weak progress will be correctly executed if strong progress is provided. In addition, the MPI standard is designed such that correctness under the assumption of strong progress should imply also correctness if only weak progress is provided by the implementation. (*End of advice to users.*)

Rationale. MPI does not guarantee progress when using synchronization methods that are not based on MPI procedures. Without guaranteed strong progress in MPI this may lead to a deadlock, see for example Section 2.7 and Example 12.13 in Section 12.7.3. (*End of rationale.*)

For further rules, see in Section 2.4.2 the definition of local MPI procedures, and all references to progress in the general index.
2.10 Implementation Issues

There are a number of areas where an MPI implementation may interact with the operating environment and system. While MPI does not mandate that any services (such as signal handling) be provided, it does strongly suggest the behavior to be provided if those services are available. This is an important point in achieving portability across platforms that provide the same set of services.

2.10.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment (such as write in Fortran and printf and malloc in ISO C) and are executed after MPI_INIT and before MPI_FINALIZE operate independently and that their completion is independent of the action of other processes in an MPI program.

Note that this in no way prevents the creation of library routines that provide parallel services whose operation is collective. However, the following program is expected to complete in an ISO C environment regardless of the size of MPI_COMM_WORLD (assuming that printf is available at the executing MPI processes).

```c
int commworld_rank;
MPI_Init((void*)0, (void*)0);
MPI_Comm_rank(MPI_COMM_WORLD, &commworld_rank);
if (commworld_rank == 0) printf("Starting program\n");
MPI_Finalize();
```

The corresponding Fortran programs are also expected to complete.

An example of what is not required is any particular ordering of the action of these routines when called by several MPI processes. For example, MPI makes neither requirements nor recommendations for the output from the following program (again assuming that I/O is available at the executing MPI processes).

```c
MPI_Comm_rank(MPI_COMM_WORLD, &commworld_rank);
printf("Output from MPI process where commworld_rank=%d\n", commworld_rank);
```

In addition, calls that fail because of resource exhaustion or other error are not considered a violation of the requirements here (however, they are required to complete, just not to complete successfully).

2.10.2 Interaction with Signals

MPI does not specify the interaction of processes with signals and does not require that MPI be signal safe. The implementation may reserve some signals for its own use. It is required that the implementation document which signals it uses, and it is strongly recommended that it not use SIGALRM, SIGFPE, or SIGIO. Implementations may also prohibit the use of MPI calls from within signal handlers.

In multithreaded environments, users can avoid conflicts between signals and the MPI library by catching signals only on threads that do not execute MPI calls. High quality single-threaded implementations will be signal safe: an MPI call suspended by a signal will resume and complete normally after the signal is handled.
2.11 Examples

The examples in this document are for illustration purposes only. They are not intended to specify the standard. Many of the examples have been compiled by tools that extract the examples from the source files for the MPI standard. However, the examples have not been carefully checked or verified.
Chapter 3
Point-to-Point Communication

3.1 Introduction

Sending and receiving of messages by MPI processes is the basic MPI communication mechanism. The basic point-to-point communication operations are send and receive. Their use is illustrated in Example 3.1.

Example 3.1. A simple ‘hello world’ example usage of point-to-point communication.

```c
#include "mpi.h"
int main(int argc, char *argv[])
{
    char message[20];
    int myrank;
    MPI_Status status;
    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
    if (myrank == 0) /* code for process zero */
    {
        strcpy(message,"Hello, there");
        MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);
    }
    else if (myrank == 1) /* code for process one */
    {
        MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
        printf("received :%s:\n", message);
    }
    MPI_Finalize();
    return 0;
}
```

In Example 3.1, process zero (myrank = 0, strictly ‘the MPI process with rank 0 in communicator MPI_COMM_WORLD’) sends a message to process one using the send operation MPI_SEND. The operation specifies a send buffer in the sender memory from which the message data is taken. In the example above, the send buffer consists of the storage containing the variable message in the memory of process zero. The location, size and type of the send buffer are specified by the first three parameters of the send operation. The message sent will contain the 13 characters of this variable. In addition, the send operation associates an envelope with the message. This envelope specifies the message destination and contains distinguishing information that can be used by the receive operation to select a particular message. The last three parameters of the send operation, along with the rank
of the sender, specify the *envelope* for the message sent.

Process one (\(\texttt{myrank} = 1\), strictly ‘the MPI process with rank 1 in communicator \(\texttt{MPI	extunderscore COMM	extunderscore WORLD}\)’) receives this message with the receive operation \(\texttt{MPI	extunderscore RECV}\). The message to be received is selected according to the value of its *envelope*, and the *message data* is stored into the *receive buffer*. In the example above, the receive buffer consists of the storage containing the string *message* in the memory of process one. The first three parameters of the receive operation specify the location, size and type of the receive buffer. The next three parameters are used for selecting the incoming message. The last parameter is used to return information on the message just received.

Advice to users. Colloquial usage commonly permits references to “rank 0” or “process 0”, which are strictly ambiguous and ideally should be qualified by including the relevant context, for example, the MPI communicator in the case above. *(End of advice to users.)*

The next sections describe the blocking send and receive operations. We discuss send, receive, blocking communication semantics, type matching requirements, type conversion in heterogeneous environments, and more general communication modes. Nonblocking communication is addressed next, followed by probing and cancelling a message, channel-like constructs and send-receive operations, ending with a description of the “dummy” MPI process, \(\texttt{MPI	extunderscore PROC	extunderscore NULL}\).

3.2 Blocking Send and Receive Operations

3.2.1 Blocking Send

The syntax of the **blocking send** procedure is given below.

\[
\text{MPI	extunderscore SEND}(\texttt{buf}, \texttt{count}, \texttt{datatype}, \texttt{dest}, \texttt{tag}, \texttt{comm})
\]

C binding

\[
\text{int MPI	extunderscore Send(const void *buf, int count, MPI	extunderscore Datatype datatype, int dest, int tag, MPI	extunderscore Comm comm)}
\]

Fortran 2008 binding

\[
\text{MPI	extunderscore Send(buf, count, datatype, dest, tag, comm, ierror)}
\]
3.2 Blocking Send and Receive Operations

Table 3.1: Predefined MPI datatypes corresponding to Fortran datatypes

<table>
<thead>
<tr>
<th>MPI datatype</th>
<th>Fortran datatype</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_INTEGER</td>
<td>INTEGER</td>
</tr>
<tr>
<td>MPI_REAL</td>
<td>REAL</td>
</tr>
<tr>
<td>MPI_DOUBLE_PRECISION</td>
<td>DOUBLE PRECISION</td>
</tr>
<tr>
<td>MPI_COMPLEX</td>
<td>COMPLEX</td>
</tr>
<tr>
<td>MPI_LOGICAL</td>
<td>LOGICAL</td>
</tr>
<tr>
<td>MPI_CHARACTER</td>
<td>CHARACTER(1)</td>
</tr>
<tr>
<td>MPI_BYTE</td>
<td></td>
</tr>
<tr>
<td>MPI_PACKED</td>
<td></td>
</tr>
</tbody>
</table>

```fortran
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Send(buf, count, datatype, dest, tag, comm, ierror) !(_c)
```

Fortran binding

```fortran
MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
```

The blocking semantics of this call are described in Section 3.4.

3.2.2 Message Data

The send buffer specified by the MPI_SEND procedure consists of count successive entries of the type indicated by datatype, starting with the entry at address buf. Note that we specify the message length in terms of number of elements, not number of bytes. The former is machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type indicated by datatype. count may be zero, in which case the data part of the message is empty. The basic datatypes that can be specified for message data values correspond to the basic datatypes of the host language. Possible values of this argument for Fortran and the corresponding Fortran types are listed in Table 3.1. Possible values for this argument for C and the corresponding C types are listed in Table 3.2.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is uninterpreted and is different from a character. Different machines may have different representations for characters, or may use more than one byte to represent characters. On the other
Table 3.2: Predefined MPI datatypes corresponding to C datatypes

<table>
<thead>
<tr>
<th>MPI datatype</th>
<th>C datatype</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_CHAR</td>
<td>char (treated as printable character)</td>
</tr>
<tr>
<td>MPI_SHORT</td>
<td>signed short int</td>
</tr>
<tr>
<td>MPI_INT</td>
<td>signed int</td>
</tr>
<tr>
<td>MPI_LONG</td>
<td>signed long int</td>
</tr>
<tr>
<td>MPI_LONG_LONG_INT</td>
<td>signed long long int</td>
</tr>
<tr>
<td>MPI_LONG_LONG (as a synonym)</td>
<td>signed long long int</td>
</tr>
<tr>
<td>MPI_SIGNED_CHAR</td>
<td>signed char (treated as integral value)</td>
</tr>
<tr>
<td>MPI_UNSIGNED_CHAR</td>
<td>unsigned char (treated as integral value)</td>
</tr>
<tr>
<td>MPI_UNSIGNED_SHORT</td>
<td>unsigned short int</td>
</tr>
<tr>
<td>MPI_UNSIGNED</td>
<td>unsigned int</td>
</tr>
<tr>
<td>MPI_UNSIGNED_LONG</td>
<td>unsigned long int</td>
</tr>
<tr>
<td>MPI_UNSIGNED_LONG_LONG</td>
<td>unsigned long long int</td>
</tr>
<tr>
<td>MPI_FLOAT</td>
<td>float</td>
</tr>
<tr>
<td>MPI_DOUBLE</td>
<td>double</td>
</tr>
<tr>
<td>MPI_LONG_DOUBLE</td>
<td>long double</td>
</tr>
<tr>
<td>MPI_WCHAR</td>
<td>wchar_t (defined in <stddef.h>) (treated as printable character)</td>
</tr>
<tr>
<td>MPI_C_BOOL</td>
<td>_Bool</td>
</tr>
<tr>
<td>MPI_INT8_T</td>
<td>int8_t</td>
</tr>
<tr>
<td>MPI_INT16_T</td>
<td>int16_t</td>
</tr>
<tr>
<td>MPI_INT32_T</td>
<td>int32_t</td>
</tr>
<tr>
<td>MPI_INT64_T</td>
<td>int64_t</td>
</tr>
<tr>
<td>MPI_UINT8_T</td>
<td>uint8_t</td>
</tr>
<tr>
<td>MPI_UINT16_T</td>
<td>uint16_t</td>
</tr>
<tr>
<td>MPI_UINT32_T</td>
<td>uint32_t</td>
</tr>
<tr>
<td>MPI_UINT64_T</td>
<td>uint64_t</td>
</tr>
<tr>
<td>MPI_C_COMPLEX</td>
<td>float _Complex</td>
</tr>
<tr>
<td>MPI_C_FLOAT_COMPLEX (as a synonym)</td>
<td>float _Complex</td>
</tr>
<tr>
<td>MPI_C_DOUBLE_COMPLEX</td>
<td>double _Complex</td>
</tr>
<tr>
<td>MPI_C_LONG_DOUBLE_COMPLEX</td>
<td>long double _Complex</td>
</tr>
<tr>
<td>MPI_BYTE</td>
<td></td>
</tr>
<tr>
<td>MPI_PACKED</td>
<td></td>
</tr>
</tbody>
</table>

hand, a byte has the same binary value on all machines. The use of the type MPI_PACKED is explained in Section 5.2.

MPI requires support of these datatypes, which match the basic datatypes of Fortran and ISO C. Additional MPI datatypes should be provided if the host language has additional datatypes¹: MPI_DOUBLE_COMPLEX for double precision complex in Fortran de-

¹These types, such as DOUBLE_COMPLEX and INTEGER*4, are not specified by any Fortran standard but are
3.2 Blocking Send and Receive Operations

Table 3.3: Predefined MPI datatypes corresponding to both C and Fortran datatypes

<table>
<thead>
<tr>
<th>MPI datatype</th>
<th>C datatype</th>
<th>Fortran datatype</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_AINT</td>
<td>MPI_Aint</td>
<td>INTEGER(KIND=MPI_ADDRESS_KIND)</td>
</tr>
<tr>
<td>MPI_OFFSET</td>
<td>MPI_Offset</td>
<td>INTEGER(KIND=MPI_OFFSET_KIND)</td>
</tr>
<tr>
<td>MPI_COUNT</td>
<td>MPI_Count</td>
<td>INTEGER(KIND=MPI_COUNT_KIND)</td>
</tr>
</tbody>
</table>

Table 3.4: Predefined MPI datatypes corresponding to C++ datatypes

<table>
<thead>
<tr>
<th>MPI datatype</th>
<th>C++ datatype</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_CXX_BOOL</td>
<td>bool</td>
</tr>
<tr>
<td>MPI_CXX_FLOAT_COMPLEX</td>
<td>std::complex<float></td>
</tr>
<tr>
<td>MPI_CXX_DOUBLE_COMPLEX</td>
<td>std::complex<double></td>
</tr>
<tr>
<td>MPI_CXX_LONG_DOUBLE_COMPLEX</td>
<td>std::complex<long double></td>
</tr>
</tbody>
</table>

dclared to be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4, MPI_REAL8, and MPI_REAL16 for Fortran reals, declared to be of type REAL*2, REAL*4, REAL*8, and REAL*16, respectively; MPI_INTEGER1, MPI_INTEGER2, MPI_INTEGER4, and MPI_INTEGER8 for Fortran integers, declared to be of type INTEGER*1, INTEGER*2, INTEGER*4, and INTEGER*8, respectively; MPI_COMPLEX4, MPI_COMPLEX8, MPI_COMPLEX16, and MPI_COMPLEX32 for complex numbers in Fortran declared to be of type COMPLEX*4, COMPLEX*8, COMPLEX*16, and COMPLEX*32, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a library, with no need for additional preprocessing or compilation. Thus, one cannot assume that a communication call has information on the datatype of variables in the communication buffer; this information must be supplied by an explicit argument. The need for such datatype information will become clear in Section 3.3.2. (End of rationale.)

The datatypes MPI_AINT, MPI_OFFSET, and MPI_COUNT correspond to the MPI-defined C types MPI_Aint, MPI_Offset, and MPI_Count and their Fortran equivalents INTEGER(KIND=MPI_ADDRESS_KIND), INTEGER(KIND=MPI_OFFSET_KIND), and INTEGER(KIND=MPI_COUNT_KIND). This is described in Table 3.3. All predefined datatype handles are available in all language bindings. See Sections 19.3.6 and 19.3.10 on page 840 and 847 for information on interlanguage communication with these types.

If there is an accompanying C++ compiler then the datatypes in Table 3.4 are also supported in C and Fortran.

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish messages and selectively receive them. This information consists of a fixed number of fields, which we collectively call the message envelope. These fields are

source

extensions commonly accepted by Fortran compilers.
Chapter 3 Point-to-Point Communication

3.2.4 Blocking Receive

The syntax of the **blocking receive** procedure is given below.

```plaintext
destination
  tag
communicator
```

The *message source* is implicitly determined by the identity of the message sender. The other fields are specified by arguments in the *send* procedure.

The *message destination* is specified by the *dest* argument.

The integer-valued *message tag* is specified by the *tag* argument. This integer can be used by the program to distinguish different types of messages. The range of valid tag values is \(0, \ldots, \text{UB} \), where the value of \(\text{UB} \) is implementation dependent. It can be found by querying the value of the attribute MPI_TAG_UB, as described in Chapter 9. MPI requires that \(\text{UB} \) be no less than 32767.

The *comm* argument specifies the *communicator* that is used for the *send* operation. Communicators are explained in Chapter 7; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation. Each communication context provides a separate “communication universe”: messages are always received within the context they were sent, and messages sent in different contexts do not interfere.

The communicator also specifies the group of MPI processes that share this communication context. This MPI *process group* is ordered and MPI processes are identified by their rank within this group. Thus, the range of valid values for *dest* is \(0, \ldots, n - 1 \cup \{\text{MPI_PROC_NULL}\} \), where \(n\) is the number of MPI processes in the group. (If the communicator is an inter-communicator, then destinations are identified by their rank in the remote group. See Chapter 7.)

An MPI process may have a different rank in each group in which it is a member.

When using the World Model (see Section 11.2), a predefined communicator MPI_COMM_WORLD is provided by MPI. It allows communication with all MPI processes that are accessible after MPI initialization and MPI processes are identified by their rank in the group of MPI_COMM_WORLD.

Advice to users. Users that are comfortable with the notion of a flat name space for MPI processes, and a single communication context, as offered by most existing communication libraries, need only use the World Model for MPI initialization, and the predefined variable MPI_COMM_WORLD as the *comm* argument. This will allow communication with all the MPI processes available at initialization time.

Users may define new communicators, as explained in Chapter 7. Communicators provide an important encapsulation mechanism for libraries and modules. They allow modules to have their own disjoint communication universe and their own MPI process numbering scheme. (End of advice to users.)

Advice to implementors. The *message envelope* would normally be encoded by a fixed-length message header. However, the actual encoding is implementation dependent. Some of the information (e.g., source or destination) may be implicit, and need not be explicitly carried by messages. Also, MPI processes may be identified by relative ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking Receive

The syntax of the **blocking receive** procedure is given below.
3.2 Blocking Send and Receive Operations

MPI_RECV(buf, count, datatype, source, tag, comm, status)

OUT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative integer)
IN datatype datatype of each receive buffer element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT status status object (status)

C binding

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
 MPI_Comm comm, MPI_Status *status)

int MPI_Recv_c(void *buf, MPI_Count count, MPI_Datatype datatype, int source,
 int tag, MPI_Comm comm, MPI_Status *status)

Fortran 2008 binding

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)

 TYPE(*), DIMENSION(..) :: buf
 INTEGER, INTENT(IN) :: count, source, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror) !(_c)

 TYPE(*), DIMENSION(..) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: source, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

 <type> BUF(*)
 INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

The blocking semantics of this call are described in Section 3.4.

The receive buffer consists of the storage containing count consecutive elements of the type specified by datatype, starting at address buf. The length of the received message must be less than or equal to the length of the receive buffer. An overflow error occurs if all incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations corresponding to the (shorter) message are modified.
Advice to users. The MPI_PROBE function described in Section 3.8 can be used to receive messages of unknown length. (End of advice to users.)

Advice to implementors. Even though no specific behavior is mandated by MPI for erroneous programs, the recommended handling of overflow situations is to return in status information about the source and tag of the incoming message. The receive procedure will return an error code. High-quality implementations will also ensure that no memory that is outside the receive buffer will ever be overwritten.

In the case of a message shorter than the receive buffer, MPI is quite strict in that it allows no modification of the other locations. A more lenient statement would allow for some optimizations but this is not allowed. The implementation must be ready to end a copy into the receiver memory exactly at the end of the receive buffer, even if it is an odd address. (End of advice to implementors.)

The selection of a message by a receive operation is governed by the value of the message envelope. A message can be received by a receive operation if its envelope matches the source, tag and comm values specified by the receive operation. The receiver may specify a wildcard MPI_ANY_SOURCE value for source, and/or a wildcard MPI_ANY_TAG value for tag, indicating that any source and/or tag are acceptable. It cannot specify a wildcard value for comm. Thus, a message can be received by a receive operation only if it is addressed to the receiving MPI process, has a matching communicator, has matching source unless source = MPI_ANY_SOURCE in the pattern, and has a matching tag unless tag = MPI_ANY_TAG in the pattern.

The message tag is specified by the tag argument of the receive operation. The argument source, if different from MPI_ANY_SOURCE, is specified as a rank within the MPI process group associated with that same communicator (remote MPI process group, for inter-communicators). Thus, the range of valid values for the source argument is \{0, \ldots, n − 1\} ∪ \{MPI_ANY_SOURCE\} ∪ \{MPI_PROC_NULL\}, where n is the number of MPI processes in this group.

Note the asymmetry between send and receive operations: A receive operation may accept messages from an arbitrary sender, on the other hand, a send operation must specify a unique receiver. This matches a “push” communication mechanism, where data transfer is effected by the sender (rather than a “pull” mechanism, where data transfer is effected by the receiver).

Source = destination is allowed, that is, an MPI process can send a message to itself. However, it is unsafe to do so with the blocking send and receive operations described above, since this may lead to deadlock. See Section 3.5.

Advice to implementors. Message context and other communicator information can be implemented as an additional tag field. It differs from the regular message tag in that wild card matching is not allowed on this field, and that value setting for this field is controlled by communicator manipulation functions. (End of advice to implementors.)

The use of dest = MPI_PROC_NULL or source = MPI_PROC_NULL to define a “dummy” destination or source in any send or receive call is described in Section 3.10.
3.2.5 Return Status

The source or tag of a received message may not be known if wildcard values were used in the receive operation. Also, if multiple requests are completed by a single MPI function (see Section 3.7.5), a distinct error code may need to be returned for each request. The information is returned by the status argument of MPI_RECV. The type of status is MPI-defined. Status variables need to be explicitly allocated by the user, that is, they are not system objects.

In C, status is a structure that contains three fields named MPI_SOURCE, MPI_TAG, and MPI_ERROR; the structure may contain additional fields. Thus, status.MPI_SOURCE, status.MPI_TAG, and status.MPI_ERROR contain the source, tag, and error code, respectively, of the received message.

In Fortran with USE mpi or (deprecated) INCLUDE 'mpif.h', status is an array of INTEGERs of size MPI_STATUS_SIZE. The constants MPI_SOURCE, MPI_TAG, and MPI_ERROR are the indices of the entries that store the source, tag, and error fields. Thus, status(MPI_SOURCE), status(MPI_TAG), and status(MPI_ERROR) contain, respectively, the source, tag, and error code of the received message.

With Fortran USE mpi_f08, status is defined as the Fortran BIND(C) derived type TYPE(MPI_Status) containing three public INTEGER fields named MPI_SOURCE, MPI_TAG, and MPI_ERROR. TYPE(MPI_Status) may contain additional, implementation-specific fields. Thus, status%MPI_SOURCE, status%MPI_TAG, and status%MPI_ERROR contain the source, tag, and error code of a received message respectively. Additionally, within both the mpi and the mpi_f08 modules, the constants MPI_STATUS_SIZE, MPI_SOURCE, MPI_TAG, MPI_ERROR, and TYPE(MPI_Status) are defined to allow conversion between both status representations. Conversion routines are provided in Section 19.3.5.

Rationale. The Fortran TYPE(MPI_Status) is defined as a BIND(C) derived type so that it can be used at any location where the status integer array representation can be used, e.g., in user defined common blocks. (End of rationale.)

Rationale. It is allowed to have the same name (e.g., MPI_SOURCE) defined as a constant (e.g., Fortran parameter) and as a field of a derived type. (End of rationale.)

In general, message-passing calls do not modify the value of the error code field of status variables. This field may be updated only by the functions in Section 3.7.5 that return multiple statuses. The field is updated if and only if such function returns with an error code of MPI_ERR_IN_STATUS.

Rationale. The error field in status is not needed for calls that return only one status, such as MPI_WAIT, since that would only duplicate the information returned by the function itself. The current design avoids the additional overhead of setting it, in such cases. The field is needed for calls that return multiple statuses, since each request may have had a different failure. (End of rationale.)

The status argument also returns information on the length of the message received. However, this information is not directly available as a field of the status variable and a call to MPI_GET_COUNT is required to “decode” this information.
Chapter 3 Point-to-Point Communication

\texttt{MPI_GET_COUNT(status, datatype, count)}

\begin{itemize}
 \item \texttt{IN status} \quad \text{return status of receive operation (status)}
 \item \texttt{IN datatype} \quad \text{datatype of each receive buffer entry (handle)}
 \item \texttt{OUT count} \quad \text{number of received entries (integer)}
\end{itemize}

\textbf{C binding}

\begin{verbatim}
int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype, int *count)

int MPI_Get_count_c(const MPI_Status *status, MPI_Datatype datatype,
 MPI_Count *count)
\end{verbatim}

\textbf{Fortran 2008 binding}

\begin{verbatim}
MPI_Get_count(status, datatype, count, ierror)
\end{verbatim}

\begin{verbatim}
 TYPE(MPI_Status), INTENT(IN) :: status
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(OUT) :: count
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\begin{verbatim}
MPI_Get_count(status, datatype, count, ierror) !(_c)
\end{verbatim}

\begin{verbatim}
 TYPE(MPI_Status), INTENT(IN) :: status
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: count
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}

\begin{verbatim}
MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)
\end{verbatim}

\begin{verbatim}
 INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR
\end{verbatim}

\textit{Rationale.} Some message-passing libraries use \texttt{INOUT count}, \texttt{tag} and \texttt{source} arguments, thus using them both to specify the selection criteria for incoming messages and return the actual \textit{envelope} values of the received message. The use of a separate \texttt{status} argument prevents errors that are often attached with \texttt{INOUT} argument (e.g., using the \texttt{MPI_ANY_TAG} constant as the tag in a receive). Some libraries use calls that refer implicitly to the “last message received.” This is not thread safe.

The \texttt{datatype} argument is passed to \texttt{MPI_GET_COUNT} so as to improve performance. A message might be received without counting the number of elements it contains, and the count value is often not needed. Also, this allows the same function to be used after a call to \texttt{MPI_PROBE} or \texttt{MPI_IPROBE}. With a status from \texttt{MPI_PROBE} or \texttt{MPI_IPROBE}, the same datatypes are allowed as in a call to \texttt{MPI_RECV} to receive this message. \textit{(End of rationale.)}

The value returned as the \texttt{count} argument of \texttt{MPI_GET_COUNT} for a datatype of length zero where zero bytes have been transferred is zero. If the number of bytes transferred is greater than zero, \texttt{MPI_UNDEFINED} is returned.
3.2 Blocking Send and Receive Operations

Rationale. Zero-length datatypes may be created in a number of cases. An important case is `MPI_TYPE_CREATE_DARRAY`, where the definition of the particular darray results in an empty block on some MPI process. Programs written in an SPMD style will not check for this special case and may want to use `MPI_GET_COUNT` to check the status. *(End of rationale.)*

Advice to users. The buffer size required for the receive can be affected by data conversions and by the stride of the receive datatype. In most cases, the safest approach is to use the same datatype with `MPI_GET_COUNT` and the receive. *(End of advice to users.)*

All send and receive operations use the `buf, count, datatype, source, dest, tag, comm, and status` arguments in the same way as the blocking `MPI_SEND` and `MPI_RECV` procedures described in this section.

While the `MPI_SOURCE`, `MPI_TAG`, and `MPI_ERROR` status values are directly accessible by the user, for convenience in some contexts, users can also access them via procedure calls, as described below.

C binding
```c
int MPI_Status_get_source(MPI_Status *status, int *source)
```

Fortran 2008 binding
```fortran
MPI_Status_get_source(status, source, ierr)
```
```fortran
  TYPE(MPI_Status), INTENT(IN) :: status
  INTEGER, INTENT(OUT) :: source
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

Fortran binding
```fortran
MPI_STATUS_GET_SOURCE(STATUS, SOURCE, IERROR)
```
```fortran
  INTEGER STATUS(MPI_STATUS_SIZE), SOURCE, IERROR
```

Returns in `source` the value of the `MPI_SOURCE` field in the `status` object.

C binding
```c
int MPI_Status_get_tag(MPI_Status *status, int *tag)
```

Fortran 2008 binding
```fortran
MPI_Status_get_tag(status, tag, ierr)
```
```fortran
  TYPE(MPI_Status), INTENT(IN) :: status
```
INTEGER, INTENT(OUT) :: tag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_STATUS_GET_TAG(STATUS, TAG, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), TAG, IERROR

Returns in tag the value in the MPI_TAG field of the status object.

MPI_STATUS_GET_ERROR(status, err)
IN status status from which to retrieve error (status)
OUT err error set in the MPI_ERROR field (integer)

C binding
int MPI_Status_get_error(MPI_Status *status, int *err)

Fortran 2008 binding
MPI_Status_get_error(status, err, ierror)
 TYPE(MPI_Status), INTENT(IN) :: status
 INTEGER, INTENT(OUT) :: err
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_STATUS_GET_ERROR(STATUS, ERR, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), ERR, IERROR

Returns in err the value in the MPI_ERROR field of the status object.

Procedures for setting these fields in a status object are defined in Section 13.3.

3.2.6 Passing MPI_STATUS_IGNORE for Status

Every call to MPI_RECV includes a status argument, wherein the system can return details about the message received. There are also a number of other MPI calls where status is returned. An object of type MPI_Status is not an MPI opaque object; its structure is declared in mpi.h and (deprecated) mpif.h, and it exists in the user’s program. In many cases, application programs are constructed so that it is unnecessary for them to examine the status fields. In these cases, it is a waste for the user to allocate a status object, and it is particularly wasteful for the MPI implementation to fill in fields in this object.

To cope with this problem, there are two predefined constants, MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE, which when passed to a receive, probe, wait, or test function, inform the implementation that the status fields are not to be filled in. Note that MPI_STATUS_IGNORE is not a special type of MPI_Status object; rather, it is a special value for the argument. In C one would expect it to be NULL, not the address of a special MPI_Status.

MPI_STATUS_IGNORE, and the array version MPI_STATUSES_IGNORE, can be used everywhere a status argument is passed to a receive, wait, or test function. MPI_STATUS_IGNORE cannot be used when status is an IN argument. Note that in Fortran MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE are objects like MPI_BOTTOM (not usable for initialization or assignment), see Section 2.5.4.

In general, this optimization can apply to all functions for which status or an array of statuses is an OUT argument. Note that this converts status into an INOUT argument. The
3.2 Blocking Send and Receive Operations

functions that can be passed \texttt{MPI_STATUS_IGNORE} are all the various forms of \texttt{MPI_RECV}, \texttt{MPI_PROBE}, \texttt{MPI_TEST}, and \texttt{MPI_WAIT}, as well as \texttt{MPI_REQUEST_GET_STATUS}. When an array is passed, as in the \texttt{MPI_\{TEST|WAIT\}\{ALL|SOME\}} functions, a separate constant, \texttt{MPI_STATUSES_IGNORE}, is passed for the array argument. It is possible for an MPI function to return \texttt{MPI_ERR_IN_STATUS} even when \texttt{MPI_STATUS_IGNORE} or \texttt{MPI_STATUSES_IGNORE} has been passed to that function.

\texttt{MPI_STATUS_IGNORE} and \texttt{MPI_STATUSES_IGNORE} are not required to have the same values in C and Fortran.

It is not allowed to have some of the statuses in an array of statuses for \texttt{MPI_\{TEST|WAIT\}\{ALL|SOME\}} functions set to \texttt{MPI_STATUS_IGNORE}; one either specifies ignoring all of the statuses in such a call with \texttt{MPI_STATUSES_IGNORE}, or none of them by passing normal statuses in all positions in the array of statuses.

3.2.7 Blocking Send-Receive

The \texttt{send-receive} operations combine in one operation the sending of a message to one destination and the receiving of another message, from another MPI process. The two (source and destination) are possibly the same. A send-receive operation is very useful for executing a shift operation across a chain of MPI processes. If blocking sends and receives are used for such a shift, then one needs to order the sends and receives correctly (for example, MPI processes with even rank in the communicator send, then receive, MPI processes with odd rank in the communicator receive first, then send) so as to prevent cyclic dependencies that may lead to deadlock. When a send-receive operation is used, the communication subsystem takes care of these issues. The send-receive operation can be used in conjunction with the procedures described in Chapter 8 in order to perform shifts on various logical topologies. Also, a send-receive operation is useful for implementing remote procedure calls.

A message sent by a send-receive operation can be received by a regular receive operation or probed by a probe operation; a send-receive operation can receive a message sent by a regular send operation.

\texttt{MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype, source, recvtag, comm, status)}

\begin{itemize}
 \item \textbf{IN} \texttt{sendbuf} \hspace{1cm} initial address of send buffer (choice)
 \item \textbf{IN} \texttt{sendcount} \hspace{1cm} number of elements in send buffer (non-negative integer)
 \item \textbf{IN} \texttt{sendtype} \hspace{1cm} type of elements in send buffer (handle)
 \item \textbf{IN} \texttt{dest} \hspace{1cm} rank of destination (integer)
 \item \textbf{IN} \texttt{sendtag} \hspace{1cm} send tag (integer)
 \item \textbf{OUT} \texttt{recvbuf} \hspace{1cm} initial address of receive buffer (choice)
 \item \textbf{IN} \texttt{recvcount} \hspace{1cm} number of elements in receive buffer (non-negative integer)
 \item \textbf{IN} \texttt{recvtype} \hspace{1cm} type of elements receive buffer element (handle)
 \item \textbf{IN} \texttt{source} \hspace{1cm} rank of source or \texttt{MPI_ANY_SOURCE} (integer)
\end{itemize}
IN recvtag receive tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT status status object (status)

C binding
int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 int dest, int sendtag, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
 MPI_Status *status)

int MPI_Sendrecv_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
 MPI_Count recvcount, MPI_Datatype recvtype, int source,
 int recvtag, MPI_Comm comm, MPI_Status *status)

Fortran 2008 binding
MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount,
 recvtype, source, recvtag, comm, status, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source, recvtag
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount,
 recvtype, source, recvtag, comm, status, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag
 TYPE(*), DIMENSION(...) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF, RECVCOUNT,
 RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE, SOURCE,
 RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send-receive operation. Both send and receive use the same communicator, but possibly different tags. The send buffer and receive buffers must be disjoint, and may have different lengths and datatypes.

The semantics of a send-receive operation is what would be obtained if the caller forked two concurrent threads, one to execute the send, and one to execute the receive, followed by a join of these two threads.
3.2 Blocking Send and Receive Operations

MPI_SENDRECV_REPLACE

```c
INOUT buf initial address of send and receive buffer (choice)
IN count number of elements in send and receive buffer (non-negative integer)
IN datatype type of elements in send and receive buffer (handle)
IN dest rank of destination (integer)
IN sendtag send message tag (integer)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN recvtag receive message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT status status object (status)
```

C binding

```c
int MPI_Sendrecv_replace(void *buf, int count, MPI_Datatype datatype, int dest,
                         int sendtag, int source, int recvtag, MPI_Comm comm,
                         MPI_Status *status)
int MPI_Sendrecv_replace_c(void *buf, MPI_Count count, MPI_Datatype datatype,
                          int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
                          MPI_Status *status)
```

Fortran 2008 binding

```fortran
MPI_Sendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
                     comm, status, ierror)
         TYPE(*), DIMENSION(..) :: buf
         INTEGER, INTENT(IN) :: count, dest, sendtag, source, recvtag
         TYPE(MPI_Datatype), INTENT(IN) :: datatype
         TYPE(MPI_Comm), INTENT(IN) :: comm
         TYPE(MPI_Status) :: status
         INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Sendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
                     comm, status, ierror) !_c
         TYPE(*), DIMENSION(..) :: buf
         INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
         TYPE(MPI_Datatype), INTENT(IN) :: datatype
         INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag
         TYPE(MPI_Comm), INTENT(IN) :: comm
         TYPE(MPI_Status) :: status
         INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
                     COMM, STATUS, IERROR)
<type> BUF(*)
```
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
STATUS(MPI_STATUSESIZE), IERROR

Execute a blocking send and receive. The same buffer is used both for the send and
for the receive, so that the message sent is replaced by the message received.

Advice to implementors. Additional intermediate buffering is needed for the “replace”
variant. (End of advice to implementors.)

3.3 Datatype Matching and Data Conversion

3.3.1 Type Matching Rules

One can think of message transfer as consisting of the following three phases.

1. Data is pulled out of the send buffer and a message is assembled.

2. A message is transferred from sender to receiver.

3. Data is pulled from the incoming message and disassembled into the receive buffer.

Type matching has to be observed at each of these three phases: The type of each
variable in the sender buffer has to match the type specified for that entry by the send
operation; the type specified by the send operation has to match the type specified by the
receive operation; and the type of each variable in the receive buffer has to match the type
specified for that entry by the receive operation. A program that fails to observe these three
rules is erroneous.

To define type matching more precisely, we need to deal with two issues: matching of
types of the host language with types specified in communication operations; and matching
of types at sender and receiver.

The types of a send and receive match (phase two) if both operations use identical
names. That is, MPI_INTEGER matches MPI_INTEGER, MPI_REAL matches MPI_REAL, and
so on. There is one exception to this rule, discussed in Section 5.2: the type MPI_PACKED
can match any other type.

The type of a variable in a host program matches the type specified in the commu-
ication operation if the datatype name used by that operation corresponds to the basic
type of the host program variable. For example, an entry with type name MPI_INTEGER
matches a Fortran variable of type INTEGER. A table giving this correspondence for Fortran
and C appears in Section 3.2.2. There are two exceptions to this last rule: an entry with
type name MPI_BYTE or MPI_PACKED can be used to match any byte of storage (on a byte-
addressable machine), irrespective of the datatype of the variable that contains this byte.
The type MPI_PACKED is used to send data that has been explicitly packed, or receive data
that will be explicitly unpacked, see Section 5.2. The type MPI_BYTE allows one to transfer
the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall into the three categories below.

- Communication of typed values (e.g., with datatype different from MPI_BYTE), where
 the datatypes of the corresponding entries in the sender program, in the send call, in
 the receive call and in the receiver program must all match.
• Communication of untyped values (e.g., of datatype MPI_BYTE), where both sender and receiver use the datatype MPI_BYTE. In this case, there are no requirements on the types of the corresponding entries in the sender and the receiver programs, nor is it required that they be the same.

• Communication involving packed data, where MPI_PACKED is used.

The following examples illustrate the first two cases.

Example 3.2. Sender and receiver specify matching types.

```fortran
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
  CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
  CALL MPI_RECV(b(1), 15, MPI_REAL, 0, tag, comm, status, ierr)
END IF
```

This code is correct if both `a` and `b` are real arrays of size ≥ 10. (In Fortran, it might be correct to use this code even if `a` or `b` have size < 10: e.g., when `a(1)` can be equivalenced to an array with ten reals.)

Example 3.3. Sender and receiver do not specify matching types.

```fortran
! ---------------- THIS EXAMPLE IS ERRONEOUS ----------------
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
  CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
  CALL MPI_RECV(b(1), 40, MPI_BYTE, 0, tag, comm, status, ierr)
END IF
```

This code is *erroneous*, since sender and receiver do not provide matching datatype arguments.

Example 3.4. Sender and receiver specify communication of untyped values.

```fortran
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
  CALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
  CALL MPI_RECV(b(1), 60, MPI_BYTE, 0, tag, comm, status, ierr)
END IF
```

This code is correct, irrespective of the type and size of `a` and `b` (unless this results in an out of bounds memory access).

Advice to users. If a buffer of type MPI_BYTE is passed as an argument to MPI_SEND, then MPI will send the data stored at contiguous locations, starting from the address indicated by the `buf` argument. This may have unexpected results when the data layout is not as a casual user would expect it to be. For example, some Fortran compilers implement variables of type CHARACTER as a structure that contains the character length and a pointer to the actual string. In such an environment, sending and receiving a Fortran CHARACTER variable using the MPI_BYTE type will not have
the anticipated result of transferring the character string. For this reason, the user is advised to use typed communication operations whenever possible. (*End of advice to users.*)

Type MPI_CHARACTER

The type MPI_CHARACTER matches one character of a Fortran variable of type CHARACTER, rather than the entire character string stored in the variable. Fortran variables of type CHARACTER or substrings are transferred as if they were arrays of characters. This is illustrated in the example below.

Example 3.5. Transfer of Fortran CHARACTERs.

```fortran
CHARACTER*10 a
CHARACTER*10 b
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
   CALL MPI_SEND(a, 5, MPI\_CHARACTER, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
   CALL MPI_RECV(b(6:10), 5, MPI\_CHARACTER, 0, tag, comm, status, ierr)
END IF
```

The last five characters of string b at the MPI process with rank = 1 are replaced by the first five characters of string a at the MPI process with rank = 0.

Rationale. The alternative choice would be for MPI_CHARACTER to match a character of arbitrary length. This runs into problems.

A Fortran character variable is a constant length string, with no special termination symbol. There is no fixed convention on how to represent characters, and how to store their length. Some compilers pass a character argument to a routine as a pair of arguments, one holding the address of the string and the other holding the length of string. Consider the case of an MPI communication call that is passed a communication buffer with type defined by a derived datatype (Section 5.1). If this communicator buffer contains variables of type CHARACTER then the information on their length will not be passed to the MPI routine.

This problem forces us to provide explicit information on character length with the MPI call. One could add a length parameter to the type MPI_CHARACTER, but this does not add much convenience and the same functionality can be achieved by defining a suitable derived datatype. (*End of rationale.*)

Advice to implementors. Some compilers pass Fortran CHARACTER arguments as a structure with a length and a pointer to the actual string. In such an environment, the MPI call needs to dereference the pointer in order to reach the string. (*End of advice to implementors.*)

3.3.2 Data Conversion

One of the goals of MPI is to support parallel computations across heterogeneous environments. Communication in a heterogeneous environment may require data conversions. We use the following terminology.
3.3 Datatype Matching and Data Conversion

Type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.

Representation conversion changes the binary representation of a value, e.g., from Hex floating point to IEEE floating point.

The type matching rules imply that MPI communication never entails type conversion. On the other hand, MPI requires that a representation conversion be performed when a typed value is transferred across environments that use different representations for the datatype of this value. MPI does not specify rules for representation conversion. Such conversion is expected to preserve integer, logical and character values, and to convert a floating point value to the nearest value that can be represented on the target system.

Overflow and underflow exceptions may occur during floating point conversions. Conversion of integers or characters may also lead to exceptions when a value that can be represented in one system cannot be represented in the other system. An exception occurring during representation conversion results in a failure of the communication. An error occurs either in the send operation, or the receive operation, or both.

If a value sent in a message is untyped (i.e., of type MPI_BYTE), then the binary representation of the byte stored at the receiver is identical to the binary representation of the byte loaded at the sender. This holds true, whether sender and receiver run in the same or in distinct environments. No representation conversion is required. (Note that representation conversion may occur when values of type MPI_CHARACTER or MPI_CHAR are transferred, for example, from an EBCDIC encoding to an ASCII encoding.)

No conversion need occur when an MPI program executes in a homogeneous system, where all MPI processes run in the same environment.

Consider the three examples, 3.2–3.4. The first program is correct, assuming that a and b are REAL arrays of size ≥ 10. If the sender and receiver execute in different environments, then the ten real values that are fetched from the send buffer will be converted to the representation for reals on the receiver site before they are stored in the receive buffer. While the number of real elements fetched from the send buffer equal the number of real elements stored in the receive buffer, the number of bytes stored need not equal the number of bytes loaded. For example, the sender may use a four byte representation and the receiver an eight byte representation for reals.

The second program is erroneous, and its behavior is undefined.

The third program is correct. The exact same sequence of forty bytes that were loaded from the send buffer will be stored in the receive buffer, even if sender and receiver run in a different environment. The message sent has exactly the same length (in bytes) and the same binary representation as the message received. If a and b are of different types, or if they are of the same type but different data representations are used, then the bits stored in the receive buffer may encode values that are different from the values they encoded in the send buffer.

Data representation conversion also applies to the envelope of a message: source, destination and tag are all integers that may need to be converted.

Advice to implementors. The current definition does not require messages to carry data type information. Both sender and receiver provide complete data type information. In a heterogeneous environment, one can either use a machine independent encoding such as XDR, or have the receiver convert from the sender representation to its own, or even have the sender do the conversion.
Additional type information might be added to messages in order to allow the system to detect mismatches between datatype at sender and receiver. This might be particularly useful in a slower but safer debug mode. *(End of advice to implementors.)*

MPI requires support for inter-language communication, e.g., if messages are sent using an MPI procedure from the MPI C language interface and received using an MPI procedure from one of the MPI Fortran language interfaces. The behavior is defined in Section 19.3.

3.4 Communication Modes

The send call described in Section 3.2.1 is *blocking*: it does not return until the message data and envelope have been safely stored away so that the sender is free to modify the send buffer. The message might be copied directly into the matching receive buffer, or it might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can complete as soon as the message was buffered, even if no matching receive has been executed by the receiver. On the other hand, message buffering can be expensive, as it entails additional memory-to-memory copying, and it requires the allocation of memory for buffering. MPI offers the choice of several communication modes that allow one to control the choice of the communication protocol.

The send call described in Section 3.2.1 uses the standard communication mode. In this mode, it is up to MPI to decide whether outgoing messages will be buffered. MPI may buffer outgoing messages. In such a case, the send call may complete before a matching receive is invoked. On the other hand, buffer space may be unavailable, or MPI may choose not to buffer outgoing messages, for performance reasons. In this case, the send call will not complete until a matching receive has been started, and the data has been moved to the receiver.

Thus, a standard mode send can be started whether or not a matching receive has been started. It may complete before a matching receive is started. The standard mode send is nonlocal: successful completion of the send operation may depend on the occurrence of a matching receive.

Rationale. The reluctance of MPI to mandate whether standard sends are buffering or not stems from the desire to achieve portable programs. Since any system will run out of buffer resources as message sizes are increased, and some implementations may want to provide little buffering, MPI takes the position that correct (and therefore, portable) programs do not rely on system buffering in standard mode. Buffering may improve the performance of a correct program, but it doesn’t affect the result of the program. If the user wishes to guarantee a certain amount of buffering, the user-provided buffer system of Section 3.6 should be used, along with the buffered-mode send. *(End of rationale.)*

There are three additional communication modes.

A buffered mode send operation can be started whether or not a matching receive has been started. It may complete before a matching receive is started. However, unlike the standard send, this operation is local, and its completion does not depend on the occurrence of a matching receive. Thus, if a send is executed and no matching receive is started, then MPI must buffer the outgoing message, so as to allow the send call to complete. An error will
occur if there is insufficient buffer space. The amount of available buffer space is controlled by the user—see Section 3.6. Buffer allocation by the user may be required for the buffered mode to be effective.

A send that uses the **synchronous** mode can be started whether or not a matching receive was *started*. However, the send will complete successfully only if a matching receive is *started*, and the receive operation has started to receive the message sent by the synchronous send. Thus, the completion of a synchronous send not only indicates that the send buffer can be reused, but it also indicates that the receiver has reached a certain point in its execution, namely that it has started executing the matching receive. If both sends and receives are blocking operations then the use of the synchronous mode provides synchronous communication semantics: a communication does not complete at either end before both MPI processes rendezvous at the communication. A send executed in this mode is **nonlocal**.

A send that uses the **ready** communication mode may be started *only* if the matching receive is already *started*. Otherwise, the operation is **erroneous** and its outcome is undefined. On some systems, this allows the removal of a hand-shake protocol that is otherwise required and results in improved performance. The completion of the send operation does not depend on the status of a matching receive, and merely indicates that the send buffer can be reused. A send operation that uses the ready mode has the same semantics as a standard send operation, or a synchronous send operation; it is merely that the sender provides additional information to the system (namely that a matching receive is already *started*), that can save some overhead. In a correct program, therefore, a ready send could be replaced by a standard send with no effect on the behavior of the program other than performance.

Three additional send functions are provided for the three additional communication modes. The communication mode is indicated by a one letter prefix: B for buffered, S for synchronous, and R for ready.

MPI_BSEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative integer)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

C binding

```c
int MPI_Bsend(const void *buf, int count, MPI_Datatype datatype, int dest,
              int tag, MPI_Comm comm)
int MPI_Bsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
                int dest, int tag, MPI_Comm comm)
```

Fortran 2008 binding

```fortran
MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror)
    TYPE(*), DIMENSION(..), INTENT(IN) :: buf
```
Chapter 3 Point-to-Point Communication

INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<intype> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in buffered mode.

According to the definitions in Section 2.4.2, MPI_BSEND is a completing procedure
and the user can re-use all resources given as arguments, including the message data buffer.
It is also a local procedure because it returns immediately without depending on the exe-
cution of any MPI procedure in any other MPI process.

Advice to users. This is one of the exceptions in which a completing and therefore
blocking operation-related procedure is local. (End of advice to users.)

MPI_SSEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)

C binding
int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)
int MPI_Ssend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Fortran 2008 binding
MPI_SSend(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
3.4 Communication Modes

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror) !(_c)
  TYPE(*), DIMENSION(..), INTENT(IN) :: buf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER, INTENT(IN) :: dest, tag
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
  <type> BUF(*)
  INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
  Send in synchronous mode.

MPI_RSEND(buf, count, datatype, dest, tag, comm)
  IN buf initial address of send buffer (choice)
  IN count number of elements in send buffer (non-negative integer)
  IN datatype datatype of each send buffer element (handle)
  IN dest rank of destination (integer)
  IN tag message tag (integer)
  IN comm communicator (handle)

C binding
int MPI_Rsend(const void *buf, int count, MPI_Datatype datatype, int dest,
               int tag, MPI_Comm comm)

int MPI_Rsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
                 int dest, int tag, MPI_Comm comm)

Fortran 2008 binding
MPI_Rsend(buf, count, datatype, dest, tag, comm, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN) :: buf
  INTEGER, INTENT(IN) :: count, dest, tag
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rsend(buf, count, datatype, dest, tag, comm, ierror) !(_c)
  TYPE(*), DIMENSION(..), INTENT(IN) :: buf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER, INTENT(IN) :: dest, tag
```

Send in synchronous mode.
Chapter 3 Point-to-Point Communication

TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

.Send in ready mode.

There is only one receive operation, but it matches any of the send modes. The receive
procedure described in the last section is \textit{blocking}: it returns only after the receive buffer
contains the newly received message. A receive can complete before the matching send has
completed (of course, it can complete only after the matching send has started).

In a multithreaded implementation of MPI, the system may de-schedule a thread that
is blocked on a send or receive operation, and schedule another thread for execution in
the same address space. In such a case it is the user’s responsibility not to modify a
communication buffer until the communication completes. Otherwise, the outcome of the
computation is undefined.

\textit{Advice to implementors.} Since a synchronous send cannot complete before a matching
receive is \textit{started}, one will not normally buffer messages sent by such an operation.

It is recommended to choose buffering over blocking the sender, whenever possible,
for standard sends. The programmer can signal a preference for blocking the sender
until a matching receive occurs by using the synchronous send mode.

A possible communication protocol for the various communication modes is outlined
below.

\textbf{ready send:} The message is sent as soon as possible.

\textbf{synchronous send:} The sender sends a request-to-send message. The receiver stores
this request. When a matching receive is \textit{started}, the receiver sends back a
permission-to-send message, and the sender now sends the message.

\textbf{standard send:} First protocol may be used for short messages, and second protocol
for long messages.

\textbf{buffered send:} The sender copies the message into a buffer and then sends it with
a nonblocking send (using the same protocol as for standard send).

Additional control messages might be needed for flow control and error recovery. Of
course, there are many other possible protocols.

Ready send can be implemented as a standard send. In this case there will be no
performance advantage (or disadvantage) for the use of ready send.

A standard send can be implemented as a synchronous send. In such a case, no data
buffering is needed. However, users may expect some buffering.

In a multithreaded environment, the execution of a blocking communication should
block only the executing thread, allowing the thread scheduler to de-schedule this
thread and schedule another thread for execution. (\textit{End of advice to implementors.})
3.5 Semantics of Point-to-Point Communication

A valid MPI implementation guarantees certain general properties of point-to-point communication, which are described in this section.

Order. Messages are **nonovertaking**: If a sender sends two messages in succession to the same destination, and both match the same receive, then this operation cannot receive the second message if the first one is still pending. If a receiver posts two receives in succession, and both match the same message, then the second receive operation cannot be satisfied by this message, if the first one is still pending. This requirement facilitates matching of sends to receives. It guarantees that message-passing code is deterministic, if MPI processes are single-threaded and the wildcard MPI_ANY_SOURCE is not used in receives. (Some of the calls described later, such as MPI_CANCEL or MPI_WAITANY, are additional sources of nondeterminism.)

If an MPI process has a single thread of execution, then any two communication operations executed by this MPI process are ordered.

Advice to users. The MPI Forum believes the following paragraph is ambiguous and may clarify the meaning in a future version of the MPI Standard. *(End of advice to users.)*

On the other hand, if the MPI process is multithreaded, then the semantics of thread execution may not define a relative order between two send operations executed by two distinct threads. The operations are **logically concurrent**, even if one physically precedes the other. In such a case, the two messages sent can be received in any order. Similarly, if two receive operations that are **logically concurrent** receive two successively sent messages, then the two messages can match the two receives in either order.

Advice to implementors. The MPI Forum believes the previous paragraph is ambiguous and may clarify the meaning in a future version of the MPI Standard. *(End of advice to implementors.)*

Example 3.6. An example of nonovertaking messages.

```fortran
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
    CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr)
    CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
    CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG, comm, status, &
                  ierr)
    CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag, comm, status, ierr)
END IF
```

The message sent by the first send must be received by the first receive, and the message sent by the second send must be received by the second receive.

Progress. If a pair of matching send and receive operations have been initiated, then at least one of these two operations will complete, independently of other actions in the system: the send operation will complete, unless the receive is satisfied by another message,
and completes; the receive operation will complete, unless the message sent is consumed by another matching receive that was started at the same destination MPI process.

Example 3.7. An example of two, intertwined matching pairs.

```fortran
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
    CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
    CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
    CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
    CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)
END IF
```

Both MPI processes invoke their first communication call. Since the first send at the MPI process with rank = 0 uses the buffered mode, it must complete, irrespective of the state of the other MPI process(es). Since no matching receive is started, the message will be copied into buffer space. (If insufficient buffer space is available, then the program will fail.) The second send is then invoked. At that point, a matching pair of send and receive operation is enabled, and both operations must complete. Next, the second receive call is invoked, which will be satisfied by the buffered message. Note that the MPI process with rank = 1 received the messages in the reverse order they were sent.

Fairness. MPI makes no guarantee of fairness in the handling of communication. Suppose that a send is started. Then it is possible that the destination MPI process repeatedly posts a receive that matches this send, yet the message is never received, because it is each time overtaken by another message, sent from another source. Similarly, suppose that a receive was started by a multithreaded MPI process. Then it is possible that messages that match this receive are repeatedly received, yet the receive is never satisfied, because it is overtaken by other receives started at this MPI process (by other executing threads). It is the programmer’s responsibility to prevent starvation in such situations.

Resource limitations. Any pending communication operation and decoupled MPI activity consumes system resources that are limited. Errors may occur when lack of resources prevent the execution of an MPI call. High-quality implementations will use a (small) fixed amount of resources for each pending send in the ready or synchronous mode and for each pending receive. However, buffer space may be consumed to store messages sent in standard mode, and must be consumed to store messages sent in buffered mode, when no matching receive is available. The amount of space available for buffering will be much smaller than program data memory on many systems. Then, it will be easy to write programs that overrun available buffer space.

MPI allows the user to provide buffer memory for messages sent in the buffered mode. Furthermore, MPI specifies a detailed operational model for the use of this buffer. An MPI implementation is required to do no worse than implied by this model. This allows users to avoid buffer overflows when they use buffered sends. Buffer allocation and use is described in Section 3.6.

A buffered send operation that cannot complete because of a lack of buffer space is erroneous. When such a situation is detected, an error is signaled that may cause the program to terminate abnormally. On the other hand, a standard send operation that
cannot complete because of lack of buffer space will merely block, waiting for buffer space to become available or for a matching receive to be started. This behavior is preferable in many situations. Consider a situation where a producer repeatedly produces new values and sends them to a consumer. Assume that the producer produces new values faster than the consumer can consume them. If buffered sends are used, then a buffer overflow will result. Additional synchronization has to be added to the program so as to prevent this from occurring. If standard sends are used, then the producer will be automatically throttled, as its send operations will block when buffer space is unavailable.

In some situations, a lack of buffer space leads to deadlock situations. This is illustrated by the examples below.

Example 3.8. An exchange of messages.

```fortran
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
   CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
   CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
ELSE IF (rank .EQ. 1) THEN
   CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)
   CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)
END IF
```

This program will succeed even if no buffer space for data is available. The standard send operation can be replaced, in this example, with a synchronous send.

Example 3.9. An errant attempt to exchange messages.

```fortran
! ---------------- THIS EXAMPLE IS ERRONEOUS ----------------
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
   CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
   CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
   CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)
   CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)
END IF
```

The receive operation of the MPI process with rank = 0 must complete before its send, and can complete only if the matching send of the MPI process with rank = 1 is executed. The receive operation of the MPI process with rank = 1 must complete before its send and can complete only if the matching send of the MPI process with rank = 0 is executed. This program will always deadlock. The same holds for any other send mode.

Example 3.10. An unsafe exchange that relies on MPI to provide sufficient buffering.

```fortran
! ---------------- THIS EXAMPLE IS ERRONEOUS ----------------
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
   CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
   CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
ELSE IF (rank .EQ. 1) THEN
   CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)
```

The message sent by each MPI process has to be copied out before the send operation completes and the receive operation starts. For the program to complete, it is necessary that at least one of the two messages sent be buffered. Thus, this program can succeed only if the communication system can buffer at least \(\text{count} \) words of data.

Advice to users. If standard mode send operations are used as in Example 3.10, then a deadlock situation may occur where both MPI processes are blocked because sufficient buffer space is not available. The same will certainly happen, if the synchronous mode is used. If the buffered mode is used, and not enough buffer space is available, then the program will not complete either. However, rather than a deadlock situation, we shall have a buffer overflow error.

A portable program using standard mode send operations should not rely on message buffering for the program to complete without deadlock. All sends in such a portable program can be replaced with synchronous mode sends and the program will still run correctly. The buffered send mode can be used for programs that require buffering.

Nonblocking message-passing operations, as described in Section 3.7, can be used to avoid the need for buffering outgoing messages. This can prevent unintentional serialization or deadlock due to lack of buffer space, and improves performance, by allowing overlap of communication with other communication or with computation, and avoiding the overheads of allocating buffers and copying messages into buffers. (*End of advice to users.*)

3.6 Buffer Allocation and Usage

A user may specify up to one buffer per communicator, up to one buffer per session, and up to one buffer per MPI process to be used for buffering messages sent in buffered mode. Buffering is done by the sender.

```plaintext
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)
END IF
```

```plaintext
MP_{I\text{-}COMM\_ATTACH\_BUFFER}(comm, buffer, size)
```

- **C binding**
  ```c
  int MPI_Comm_attach_buffer(MPI_Comm comm, void *buffer, int size)
  int MPI_Comm_attach_buffer_c(MPI_Comm comm, void *buffer, MPI_Count size)
  ```

- **Fortran 2008 binding**
  ```fortran
  MPI_Comm_attach_buffer(comm, buffer, size, ierror)
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
  INTEGER, INTENT(IN) :: size
  ```
3.6 Buffer Allocation and Usage

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_attach_buffer(comm, buffer, size, ierror)!(_c)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_COMM_ATTACH_BUFFER(COMM, BUFFER, SIZE, IERROR)
 INTEGER COMM, SIZE, IERROR
 <type> BUFFER(*)

Provides to MPI a communicator-specific buffer in memory. This is to be used for buffering outgoing messages sent when a buffered mode send is started that uses the communicator comm.

If MPI_BUFFER_AUTOMATIC is passed as the argument buffer, no explicit buffer is attached; rather, automatic buffering is enabled for all buffered mode communication associated with the communicator comm (see Section 3.6). Further, if MPI_BUFFER_AUTOMATIC is passed as the argument buffer, the value of size is irrelevant. Note that in Fortran MPI_BUFFER_AUTOMATIC is an object like MPI_BOTTOM (not usable for initialization or assignment), see Section 2.5.4.

MPI_SESSION_ATTACH_BUFFER(session, buffer, size)
 IN session session (handle)
 IN buffer initial buffer address (choice)
 IN size buffer size, in bytes (non-negative integer)

C binding

int MPI_Session_attach_buffer(MPI_Session session, void *buffer, int size)

int MPI_Session_attach_buffer_c(MPI_Session session, void *buffer,
 MPI_Count size)

Fortran 2008 binding

MPI_Session_attach_buffer(session, buffer, size, ierror)
 TYPE(MPI_Session), INTENT(IN) :: session
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
 INTEGER, INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_attach_buffer(session, buffer, size, ierror)!(_c)
 TYPE(MPI_Session), INTENT(IN) :: session
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_SESSION_ATTACH_BUFFER(SESSION, BUFFER, SIZE, IERROR)
 INTEGER SESSION, SIZE, IERROR
<type> BUFFER(*)

Provides to MPI a session-specific buffer in memory. This buffer is to be used for
buffering outgoing messages sent when using a communicator that is created from a group
that is derived from the session session. However, if there is a communicator-specific buffer
attached to the particular communicator at the time of the buffered mode send is started,
that buffer is used.

If MPI_BUFFER_AUTOMATIC is passed as the argument buffer, no explicit buffer is at-
tached; rather, automatic buffering is enabled for all buffered mode communication associ-
ated with the session session that is not explicitly covered by a buffer provided at communi-
cator level (see Section 3.6). Further, if MPI_BUFFER_AUTOMATIC is passed as the argument
buffer, the value of size is irrelevant. Note that in Fortran MPI_BUFFER_AUTOMATIC is an
object like MPI_BOTTOM (not usable for initialization or assignment), see Section 2.5.4.

MPI_BUFFER_ATTACH(buffer, size)

IN buffer initial buffer address (choice)
IN size buffer size, in bytes (non-negative integer)

C binding
int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_attach_c(void *buffer, MPI_Count size)

Fortran 2008 binding
MPI_Buffer_attach(buffer, size, ierror)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
 INTEGER, INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Buffer_attach(buffer, size, ierror) !(_c)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)
 <type> BUFFER(*)
 INTEGER SIZE, IERROR

Provides to MPI an MPI process-specific buffer in memory. This buffer is to be used for
buffering outgoing messages sent when using a communicator to which no communicator-
specific buffer is attached or which is derived from a session to which no session-specific
buffer is attached at the time the buffered mode send is started.

If MPI_BUFFER_AUTOMATIC is passed as the argument buffer, no explicit buffer is at-
tached; rather, automatic buffering is enabled for all buffered mode communication not
explicitly covered by a buffer provided at session or communicator level (see Section 3.6).
Further, if MPI_BUFFER_AUTOMATIC is passed as the argument buffer, the value of size is
irrelevant. Note that in Fortran MPI_BUFFER_AUTOMATIC is an object like MPI_BOTTOM
(not usable for initialization or assignment), see Section 2.5.4.
Advice to users. The use of a global shared buffer can be problematic when used for communication in different libraries, as the buffer represents a shared resource used for all buffered mode communication. Further, with the introduction of the Sessions Model, the use of a single shared buffer violates the concept of resource isolation that is intended with MPI Sessions. It is therefore recommended, especially for libraries and programs using the Sessions Model, to use only communicator-specific or session-specific buffers. (End of advice to users.)

Any of these buffers are used only for messages sent in buffered mode. Only one MPI process-specific buffer can be attached to an MPI process at a time, only one session-specific buffer can be attached to a session at a time and only one communicator-specific buffer can be attached to a communicator at a time.

If automatic buffering is enabled at any level, no other buffer can be attached at that level.

A particular memory region can only be used in one buffer; reusing buffer space for multiple sessions, communicators and/or the global buffer is erroneous. Further, only one buffer is used for any one communication following the rules above; buffer space is not combined, even if two buffers are directly or indirectly provided to a communicator to be used for buffered sends.

In C, buffer is the starting address of a memory region. In Fortran, one can pass the first element of a memory region or a whole array, which must be ‘simply contiguous’ (for ‘simply contiguous,’ see also Section 19.1.12).

MPI.COMM_DETACH_BUFFER(comm, buffer_addr, size)

<table>
<thead>
<tr>
<th>IN</th>
<th>comm</th>
<th>communicator (handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>buffer_addr</td>
<td>initial buffer address (choice)</td>
</tr>
<tr>
<td>OUT</td>
<td>size</td>
<td>buffer size, in bytes (integer)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Comm_detach_buffer(MPI_Comm comm, void *buffer_addr, int *size)
int MPI_Comm_detach_buffer_c(MPI_Comm comm, void *buffer_addr, MPI_Count *size)
```

Fortran 2008 binding

```fortran
MPI_Comm_detach_buffer(comm, buffer_addr, size, ierror)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(C_PTR), INTENT(OUT) :: buffer_addr
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran 2008 binding

```fortran
MPI_Comm_detach_buffer(comm, buffer_addr, size, ierror) !(_c)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(C_PTR), INTENT(OUT) :: buffer_addr
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
Fortran binding

```fortran
MPI_COMM_DETACH_BUFFER(COMM, BUFFER_ADDR, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR
<type> BUFFER_ADDR(*)
```

Detach the communicator-specific buffer currently attached to the communicator.

MPI_SESSION_DETACH_BUFFER(session, buffer_addr, size)

```fortran
IN   session              session (handle)
OUT  buffer_addr          initial buffer address (choice)
OUT  size                 buffer size, in bytes (integer)
```

C binding

```c
int MPI_Session_detach_buffer(MPI_Session session, void *buffer_addr,
   int *size)
```

```c
int MPI_Session_detach_buffer_c(MPI_Session session, void *buffer_addr,
   MPI_Count *size)
```

Fortran 2008 binding

```fortran
MPI_Session_detach_buffer(session, buffer_addr, size, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(MPI_Session), INTENT(IN) :: session
TYPE(C_PTR), INTENT(OUT) :: buffer_addr
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_Session_detach_buffer(session, buffer_addr, size, ierror) !(_c)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(MPI_Session), INTENT(IN) :: session
TYPE(C_PTR), INTENT(OUT) :: buffer_addr
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_SESSION_DETACH_BUFFER(SESSION, BUFFER_ADDR, SIZE, IERROR)

INTEGER SESSION, SIZE, IERROR
<type> BUFFER_ADDR(*)
```

Detach the session-specific buffer currently attached to the session.

MPI_BUFFER_DETACH(buffer_addr, size)

```fortran
OUT  buffer_addr          initial buffer address (choice)
OUT  size                 buffer size, in bytes (integer)
```

C binding

```c
int MPI_Buffer_detach(void *buffer_addr, int *size)
```
3.6 Buffer Allocation and Usage

int MPI_Buffer_detach_c(void *buffer_addr, MPI_Count *size)

Fortran 2008 binding
MPI_Buffer_detach(buffer_addr, size, ierror)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 TYPE(C_PTR), INTENT(OUT) :: buffer_addr
 INTEGER, INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Buffer_detach(buffer_addr, size, ierror) !(_c)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 TYPE(C_PTR), INTENT(OUT) :: buffer_addr
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)
 <type> BUFFER_ADDR(*)
 INTEGER SIZE, IERROR

 Detach the MPI process-specific buffer buffer currently attached to MPI.
 The procedure calls return the address and the size of the detached buffer. If
 MPI_BUFFER_AUTOMATIC was used in the corresponding attach procedure, then
 MPI_BUFFER_AUTOMATIC is also returned in the detach procedure and the value returned
 in argument size is undefined. In this case, automatic buffering is disabled upon return
 from the detach procedure. When using Fortran mpi_f08, the returned value is identical
 to c_loc(MPI_BUFFER_AUTOMATIC). Note that c_loc() is an intrinsic in the Fortran
 ISO_C_BINDING module.

 Advice to implementors. In Fortran, the implementation of MPI_BUFFER_AUTOMATIC
 must allow the intrinsic c_loc to be applied to it. (End of advice to implementors.)

 These procedures will delay their return until all messages currently in the (explicit or
 automatic) buffer have been transmitted. Upon return of these procedures, the user may
 reuse or deallocate the space taken by the buffer.
 If the size of the detached buffer cannot be represented in size, it is set to
 MPI_UNDEFINED.

 The following MPI Xxx_FLUSH_BUFFER procedures will not return until all messages
 currently in the buffer have been transmitted without detaching the buffer.

 Rationale. These flush procedures provide the same functionality as an atomic
 combination of first detaching the buffer and then attaching it again (but without
 having to actually execute the detaching and the re-attaching of the buffer), but they
 may be implemented with less internal overhead. (End of rationale.)

MPI_COMM_FLUSH_BUFFER(comm)
 IN comm communicator (handle)

C binding
int MPI_Comm_flush_buffer(MPI_Comm comm)
For Fortran 2008 binding

```fortran
MPI_Comm_flush_buffer(comm, ierror)
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

For Fortran binding

```fortran
MPI_COMM_FLUSH_BUFFER(COMM, IERROR)
  INTEGER COMM, IERROR
```

MPI_COMM_FLUSH_BUFFER will not return until all messages currently in the communicator-specific buffer of the calling MPI process have been transmitted.

For MPI_SESSION_FLUSH_BUFFER (session)

```fortran
MPI_SESSION_FLUSH_BUFFER(session)
  IN session (handle)
```

For C binding

```c
int MPI_Session_flush_buffer(MPI_Session session)
```

For Fortran 2008 binding

```fortran
MPI_Session_flush_buffer(session, ierror)
  TYPE(MPI_Session), INTENT(IN) :: session
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

For Fortran binding

```fortran
MPI_SESSION_FLUSH_BUFFER(SESSION, IERROR)
  INTEGER SESSION, IERROR
```

MPI_SESSION_FLUSH_BUFFER will not return until all messages currently in the session-specific buffer of the calling MPI process have been transmitted.

For MPI_BUFFER_FLUSH()

```fortran
MPI_BUFFER_FLUSH()
```

For C binding

```c
int MPI_Buffer_flush(void)
```

For Fortran 2008 binding

```fortran
MPI_Buffer_flush(ierr)
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

For Fortran binding

```fortran
MPI_BUFFER_FLUSH(IERROR)
  INTEGER IERROR
```

MPI_BUFFER_FLUSH will not return until all messages currently in the MPI process-specific buffer of the calling MPI process have been transmitted.

For all MPI XXX_FLUSH_BUFFER procedures, there also exist the following nonblocking variants, which start the respective flush operation. These operations will not complete until all messages currently in the respective buffer of the calling MPI process have been transmitted.
3.6 Buffer Allocation and Usage

MPI_COMM_IFLUSH_BUFFER

```
MPI_COMM_IFLUSH_BUFFER(comm, request)
```

C binding

```c
int MPI_Comm_iflush_buffer(MPI_Comm comm, MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Comm_iflush_buffer(comm, request, ierror)
```

Fortran binding

```fortran
MPI_COMM_IFLUSH_BUFFER(COMM, REQUEST, IERROR)
```

MPI_SESSION_IFLUSH_BUFFER

```
MPI_SESSION_IFLUSH_BUFFER(session, request)
```

C binding

```c
int MPI_Session_iflush_buffer(MPI_Session session, MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Session_iflush_buffer(session, request, ierror)
```

Fortran binding

```fortran
MPI_SESSION_IFLUSH_BUFFER(SESSION, REQUEST, IERROR)
```

MPI_BUFFER_IFLUSH

```
MPI_BUFFER_IFLUSH(request)
```

C binding

```c
int MPI_Buffer_iflush(MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Buffer_iflush(request, ierror)
```

Fortran binding

```fortran
MPI_BUFFER_IFLUSH(REQUEST, IERROR)
```
INTEGER REQUEST, IERROR

Example 3.11. Calls to attach and detach buffers.

```c
#define BUFFSIZE 10000+MPI_BSEND_OVERHEAD
int size;
char *buff;
MPI_Buffer_attach(malloc(BUFFSIZE), BUFFSIZE);
/* a buffer of 10000 bytes can now be used by MPI_Bsend */
/* on all communicators, assuming only one message at a time is sent */
MPI_Buffer_detach(&buff, &size);
/* Buffer size reduced to zero */
MPI_Buffer_attach(buff, size);
/* Buffer of 10000 bytes available again */
```


```c
#define BUFFSIZE1 10000+MPI_BSEND_OVERHEAD
#define BUFFSIZE2 20000+MPI_BSEND_OVERHEAD
int size;
char *buff1, *buff2;
MPI_Comm world_dup;
MPI_Comm_dup(MPI_COMM_WORLD, &world_dup);
MPI_Comm_attach_buffer(MPI_COMM_WORLD, malloc(BUFFSIZE2), BUFFSIZE2);
MPI_Buffer_attach(malloc(BUFFSIZE1), BUFFSIZE1);
/* a buffer of 20000 bytes can now be used by MPI_Bsend for */
/* communication using MPI_COMM_WORLD, assuming only one message */
/* at a time is sent a buffer of 10000 bytes can now be used by */
/* MPI_Bsend for communication using any other communicator, */
/* including world_dup assuming only one message at a time is sent */
MPI_Comm_detach_buffer(MPI_COMM_WORLD, &buff1, &size);
MPI_Buffer_detach(&buff2, &size);
/* Both buffers are detached and no specific or MPI process-specific */
/* buffer can be used for further MPI_Bsend */
```

Advice to users. Even though the C procedures MPI_Buffer_attach,
MPI_Session_attach_buffer, MPI_Comm_attach_buffer, MPI_Buffer_detach,
MPI_Session_detach_buffer and MPI_Comm_detach_buffer have an argument of type
void*, these arguments are used differently: a pointer to the buffer is passed to
MPI_Buffer_attach, MPI_Session_attach_buffer and MPI_Comm_attach_buffer; the
address of the pointer is passed to MPI_Buffer_detach, MPI_Session_detach_buffer and
MPI_Comm_detach_buffer, so that this call can return the pointer value. In Fortran
with the mpi module or (deprecated) mpif.h, the type of the buffer_addr argument is
wrongly defined and the argument is therefore unused. In Fortran with the mpi_f08
module, the address of the buffer is returned as TYPE(C_PTR), see also Example 9.1
about the use of C_PTR pointers. (End of advice to users.)

Rationale. In all cases, arguments are defined to be of type void* (rather than
void* and void**, respectively), so as to avoid complex type casts. E.g., in the
last two examples, &buff, which is of type char**, can be passed as argument to
MPI_Buffer_detach, MPI_Session_detach_buffer and MPI_Comm_detach_buffer without
type casting. If the formal parameter had type `void**` then we would need a type cast before and after each call. *(End of rationale.)*

General semantics of buffered mode sends. The statements made in this section describe the behavior of MPI for buffered-mode sends.

When no MPI process-specific buffer is currently (explicitly) attached and if no automatic buffering is enabled, MPI behaves as if a zero-sized MPI process-specific buffer is (implicitly) attached.

It is erroneous to detach a communicator-specific, session-specific, or MPI process-specific buffer, if no such buffer had been attached using a corresponding attach procedure. This includes attach procedure calls using `MPI_BUFFER_AUTOMATIC` as the buffer argument. It is erroneous to attach a communicator-specific, session-specific or MPI process-specific buffer, if there is no buffer attached (including automatic buffering).

`MPI_COMM_ATTACH_BUFFER`, `MPI_SESSION_ATTACH_BUFFER`, and `MPI_BUFFER_ATTACH` are local. `MPI_COMM_DETACH_BUFFER`, `MPI_SESSION_DETACH_BUFFER`, `MPI_BUFFER_DETACH`, `MPI_COMM_FLUSH_BUFFER`, `MPI_SESSION_FLUSH_BUFFER`, and `MPI_BUFFER_FLUSH` are nonlocal; they must not return before all buffered messages in their related buffers are transmitted, and they must eventually return when all corresponding receive operations are started (provided that none are cancelled).

Automatic buffering with buffered mode sends. If the buffer used at the time of buffered mode send is set to the buffer address `MPI_BUFFER_AUTOMATIC`, then a buffer of sufficient size is automatically used by the MPI library.

Advice to users. When using automatic buffering, the user relinquishes control over buffer management, including allocation and deallocation decisions and timing, to the MPI library. If explicit control is needed over when and how much buffer space is allocated, automatic buffering must not be used. *(End of advice to users.)*

Advice to implementors. High-quality implementations of an MPI library should strive to support automatic buffering in a balanced fashion, i.e., providing the right balance between memory allocated for send operations and memory available for the end user. *(End of advice to implementors.)*

The flush operations for the communicator-specific, session-specific, and MPI process-specific buffers can also be used for automatic buffering. The flush procedure will not return until all automatically allocated buffers for the communicator-specific, session-specific, or MPI process-specific buffers, respectively, no longer hold message data and could be deallocated by the MPI library, if it chooses to do so.

Advice to users. With standard mode send, the limitation of needed buffer space is implemented within the MPI library through switching from internal buffering to internal synchronous mode. If the user wants to limit the automatically allocated...
buffer space for buffered mode send using automatic buffering, the user may call explicitly the appropriate flush procedure to wait until automatically allocated buffers are deallocated. (End of advice to users.)

Further rules. In the case of an attached buffer (i.e., not using automatic buffering), the user must provide as much buffering for outgoing messages as would be required if outgoing message data were buffered by the sending MPI process, in the specified buffer space, using a circular, contiguous-space allocation policy. We outline below a model implementation that defines this policy. MPI may provide more buffering, and may use a better buffer allocation algorithm than described below. On the other hand, MPI may signal an error whenever the simple buffering allocator described below would run out of space. MPI must not require more buffer space as described in the model implementation below.

MPI does not provide mechanisms for querying or controlling buffering done by standard mode sends. It is expected that vendors will provide such information for their implementations.

Rationale. There is a wide spectrum of possible implementations of buffered communication operations: buffering can be done at sender, at receiver, or both; buffers can be dedicated to one sender-receiver pair, or be shared by all communication operations; buffering can be done in real or in virtual memory; it can use dedicated memory, or memory shared by other MPI processes; buffer space may be allocated statically or be changed dynamically; etc. It does not seem feasible to provide a portable mechanism for querying or controlling buffering that would be compatible with all these choices, yet provide meaningful information. (End of rationale.)

3.6.1 Model Implementation of Buffered Mode

The model implementation uses the packing and unpacking procedures described in Section 5.2 and the nonblocking communication procedures described in Section 3.7.

We assume that a circular queue of pending message entries (PME) is maintained. Each entry contains a communication request handle that identifies a pending nonblocking send, a pointer to the next entry and the packed message data. The entries are stored in successive locations in the buffer. Free space is available between the queue tail and the queue head.

A buffered send call results in the execution of the following algorithm:

- Traverse sequentially the PME queue from head towards the tail, deleting all entries for communication operations that have completed, up to the first entry with an uncompleted request; update queue head to point to that entry.

- Compute the number of bytes, n, needed to store an entry for the new message. An upper bound on n can be computed as follows: A call to the function `MPI_PACK_SIZE(count, datatype, comm, size)`, with the `count`, `datatype` and `comm` arguments used in the `MPI_BSEND` call, returns an upper bound on the amount of space needed to buffer the message data (see Section 5.2). The MPI constant `MPI_BSEND_OVERHEAD` provides an upper bound on the additional space consumed by the entry (e.g., for pointers or *envelope* information).
3.7 Nonblocking Communication

Nonblocking communication is important both for reasons of correctness and performance. For complex communication patterns, the use of only blocking communication (without buffering) is difficult because the programmer must ensure that each send is matched with a receive in an order that avoids deadlock. For communication patterns that are determined only at run time, this is even more difficult. Nonblocking communication can be used to avoid this problem, allowing programmers to express complex and possibly dynamic communication patterns without needing to ensure that all sends and receives are issued in an order that prevents deadlock (see Section 3.5 and the discussion of “safe” programs). Nonblocking communication also allows for the overlap of communication with different communication operations, e.g., to prevent the unintentional serialization of such operations, and for the overlap of communication with computation. Whether an implementation is able to accomplish an effective (from a performance standpoint) overlap of operations depends on the implementation itself and the system on which the implementation is running. Using nonblocking operations permits an implementation to overlap communication with computation, but does not require it to do so.

A nonblocking send start call *initiates* the send operation, but does not complete it. The send start call can return before the message was copied out of the send buffer. A separate send complete call is needed to complete the communication, i.e., to verify that the data has been copied out of the send buffer. With suitable hardware, the transfer of data out of the sender memory may proceed concurrently with computations done at the sender after the send was initiated and before it completed. Similarly, a nonblocking receive start call *initiates* the receive operation, but does not complete it. The call can return before a message is stored into the receive buffer. A separate receive complete call is needed to complete the receive operation and verify that the data has been received into the receive buffer. With suitable hardware, the transfer of data into the receiver memory may proceed concurrently with computations done after the receive was initiated and before it completed. The use of nonblocking receives may also avoid system buffering and memory-to-memory copying, as information is provided early on the location of the receive buffer.

Nonblocking send start calls can use the same four modes as blocking sends: standard, buffered, synchronous, and ready. These carry the same meaning. Sends of all modes, ready excepted, can be started whether a matching receive has been started or not; a nonblocking ready send can be started only if the matching receive is already started. In all cases, the send start call is local: it returns immediately, irrespective of the status of other MPI processes. If the call causes some system resource to be exhausted, then it will fail and return an error code. High-quality implementations of MPI should ensure that this happens only
in “pathological” cases. That is, an MPI implementation should be able to support a large number of pending nonblocking operations.

The send-complete call returns no earlier than when all message data has been copied out of the send buffer. It may carry additional meaning, depending on the send mode.

If the send mode is synchronous, then the send-complete call is nonlocal; the send can complete only if a matching receive has been started and has been matched with the send. Note that a synchronous mode send may complete, if matched by a nonblocking receive, before the receive complete call occurs. (It can complete as soon as the sender “knows” the transfer will complete, but before the receiver “knows” the transfer will complete.)

If the send mode is buffered, then the send-complete call is local; the send must complete irrespective of the status of a matching receive. If there is no pending receive operation, then the message must be buffered.

If the send mode is standard, then the send-complete call can be either local or nonlocal. If the message is buffered, it is permitted for the send to complete before a matching receive is started. On the other hand, it is permitted for the send not to complete until a matching receive has been started and the message has been copied into the receive buffer.

Nonblocking sends can be matched with blocking receives, and vice-versa.

Advice to users. The completion of a send operation may be delayed for standard mode, and must be delayed for synchronous mode, until a matching receive has been started. The use of nonblocking sends in these two cases allows the sender to proceed ahead of the receiver, so that the computation is more tolerant of fluctuations in the speeds of the two MPI processes.

Nonblocking sends in the buffered and ready modes have a more limited impact, e.g., the blocking version of buffered send is capable of completing regardless of when a matching receive call is made. However, separating the start from the completion of these sends still gives some opportunity for optimization within the MPI library. For example, starting a buffered send gives an implementation more flexibility in determining if and how the message is buffered. There are also advantages for both nonblocking buffered and ready modes when data copying can be done concurrently with computation.

The message-passing model implies that communication is initiated by the sender. The communication will generally have lower overhead if a receive is already started when the sender initiates the communication (data can be moved directly to the receive buffer, and there is no need to queue a pending send request). However, a receive operation can complete only after the matching send has started. The use of nonblocking receives allows one to achieve lower communication overheads without blocking the receiver while it waits for the send. (End of advice to users.)

3.7.1 Communication Request Objects

Nonblocking communication operations use opaque request objects to identify communication operations and match the operation that initiates the communication with the operation that terminates it. These are system objects that are accessed via a handle. A request object identifies various properties of a communication operation, such as the send mode, the communication buffer that is associated with it, its context, the tag and destination arguments to be used for a send, or the tag and source arguments to be used
for a receive. In addition, this object stores information about the status of the pending communication operation.

3.7.2 Communication Initiation

For the functions defined in this section, we use the same naming conventions as for blocking communication: a prefix of B, S, or R is used for buffered, synchronous, or ready mode. In addition, for these functions a prefix of I (for immediate and incomplete) indicates that the call is nonblocking.

```
MPI_ISEND(buf, count, datatype, dest, tag, comm, request)
```

- **IN** buf: initial address of send buffer (choice)
- **IN** count: number of elements in send buffer (non-negative integer)
- **IN** datatype: datatype of each send buffer element (handle)
- **IN** dest: rank of destination (integer)
- **IN** tag: message tag (integer)
- **IN** comm: communicator (handle)
- **OUT** request: communication request (handle)

C binding

```
int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int dest,
              int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Isend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
                int dest, int tag, MPI_Comm comm, MPI_Request *request)
```

Fortran 2008 binding

```
MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)
   TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
   INTEGER, INTENT(IN) :: count, dest, tag
   TYPE(MPI_Datatype), INTENT(IN) :: datatype
   TYPE(MPI_Comm), INTENT(IN) :: comm
   TYPE(MPI_Request), INTENT(OUT) :: request
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)
   TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
   INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
   TYPE(MPI_Datatype), INTENT(IN) :: datatype
   INTEGER, INTENT(IN) :: dest, tag
   TYPE(MPI_Comm), INTENT(IN) :: comm
   TYPE(MPI_Request), INTENT(OUT) :: request
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```
MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
```
Start a standard mode nonblocking send.

MPI_IBSEND(buf, count, datatype, dest, tag, comm, request)

IN
- **buf** (initial address of send buffer)
- **count** (number of elements in send buffer)
- **datatype** (datatype of each send buffer element)
- **dest** (rank of destination)
- **tag** (message tag)
- **comm** (communicator)

OUT
- **request** (communication request)

C binding

```c
int MPI_Ibsend(const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Ibsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_IBSEND(buf, count, datatype, dest, tag, comm, request, ierror)
```

Fortran binding

```fortran
MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
```
3.7 Nonblocking Communication

MPI_ISSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
OUT request communication request (handle)

C binding
int MPI_Issend(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Issend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Issend(buf, count, datatype, dest, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a synchronous mode nonblocking send.
MPI_IRSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
OUT request communication request (handle)

C binding
int MPI_Irsend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Irsend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Irsend(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a ready mode nonblocking send.
3.7 Nonblocking Communication

MPI_Irecv(buf, count, datatype, source, tag, comm, request)

OUT buf	initial address of receive buffer (choice)
IN count	number of elements in receive buffer (non-negative integer)
IN datatype	datatype of each receive buffer element (handle)
IN source	rank of source or MPI_ANY_SOURCE (integer)
IN tag	message tag or MPI_ANY_TAG (integer)
OUT comm	communicator (handle)
OUT request	communication request (handle)

C binding

```c
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
               MPI_Comm comm, MPI_Request *request)

int MPI_Irecv_c(void *buf, MPI_Count count, MPI_Datatype datatype, int source,
                 int tag, MPI_Comm comm, MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)
   & TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
   & INTEGER, INTENT(IN) :: count, source, tag
   & TYPE(MPI_Datatype), INTENT(IN) :: datatype
   & TYPE(MPI_Comm), INTENT(IN) :: comm
   & TYPE(MPI_Request), INTENT(OUT) :: request
   & INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror) !(_c)
   & TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
   & INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
   & TYPE(MPI_Datatype), INTENT(IN) :: datatype
   & INTEGER, INTENT(IN) :: source, tag
   & TYPE(MPI_Comm), INTENT(IN) :: comm
   & TYPE(MPI_Request), INTENT(OUT) :: request
   & INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)
   & <type> BUF(*)
   & INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR
```

Start a nonblocking receive.
MPI_ISENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype,
 source, recvtag, comm, request)

IN sendbuf initial address of send buffer (choice)
IN sendcount number of elements in send buffer (non-negative integer)
IN sendtype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN sendtag send tag (integer)
OUT recvbuf initial address of receive buffer (choice)
IN recvcount number of elements in receive buffer (non-negative integer)
IN recvtype datatype of each receive buffer element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN recvtag receive tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT request communication request (handle)

C binding
int MPI_Isendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 int dest, int sendtag, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
 MPI_Request *request)

int MPI_Isendrecv_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
 MPI_Count recvcount, MPI_Datatype recvtype, int source,
 int recvtag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Isendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount,
 recvtype, source, recvtag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source, recvtag
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount,
 recvtype, source, recvtag, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag
3.7 Nonblocking Communication

```fortran
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_ISENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF, RECVCOUNT, 
RECVTYPE, SOURCE, RECVTAG, COMM, REQUEST, IERROR)

Fortran 2008 binding
MPI_Isendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag, comm, request)
```

In C:

```c
MPI_ISENDRECV REPLACE( void *buf, int count, MPI_Datatype datatype,
                        int dest, int sendtag, int source, int recvtag,
                        MPI_Comm comm, MPI_Request *request )

int MPI_Isendrecv_replace( void *buf, int count, MPI_Datatype datatype,
                           int dest, int sendtag, int source, int recvtag,
                           MPI_Comm comm, MPI_Request *request )
```

Fortran 2008 binding:

```fortran
MPI_Isendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
                      comm, request, ierror)
```

Initiate a nonblocking communication request for a send and receive operation.
MPI_Isendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
 comm, request, ierror) !(_c)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_ISENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
 COMM, REQUEST, IERROR)

<type> BUF(*)
 INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM, REQUEST,
 IERROR

Initiate a nonblocking communication request for a send and receive operation. The
same buffer is used both for the send and for the receive, so that the message sent is replaced
by the message received.

These calls allocate a communication request object and associate it with the request
handle (the argument request). The request can be used later to query the status of the
communication or wait for its completion.

A nonblocking send call indicates that the system may start copying data out of the
send buffer. The sender should not modify any part of the send buffer after a nonblocking
send operation is called, until the send completes.

A nonblocking receive call indicates that the system may start writing data into the re-
ceive buffer. The receiver should not access any part of the receive buffer after a nonblocking
receive operation is called, until the receive completes.

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 19.1.10–
19.1.20. (End of advice to users.)

3.7.3 Communication Completion

The functions MPI_WAIT and MPI_TEST are used to complete a nonblocking communica-
tion. The completion of a send operation indicates that the sender is now free to update
the send buffer (the send operation itself leaves the content of the send buffer unchanged).
It does not indicate that the message has been received, rather, it may have been buffered
by the communication subsystem. However, if a synchronous mode send was used, the
completion of the send operation indicates that a matching receive was initiated, and that
the message will eventually be received by this matching receive.

The completion of a receive operation indicates that the receive buffer contains the
received message, the receiver is now free to access it, and that the status object is set. It
does not indicate that the matching send operation has completed (but indicates, of course,
that the send was initiated).

We shall use the following terminology: A null handle is a handle with value
MPI_REQUEST_NULL. A persistent communication request and the handle to it are inactive
3.7 Nonblocking Communication

if the request is not associated with any ongoing communication (see Section 3.9). A handle is active if it is neither null nor inactive. An empty status is a status that is set to return tag = MPI_ANY_TAG, source = MPI_ANY_SOURCE, error = MPI_SUCCESS, and is also internally configured so that calls to MPI_GET_COUNT and MPI_GET_ELEMENTS return count = 0 and MPI_TEST_CANCELLED returns false. We set a status variable to empty when the value returned by it is not significant. Status is set in this way so as to prevent errors due to accesses of stale information.

The fields in a status object returned by a call to MPI_WAIT, MPI_TEST, or any of the other derived functions (MPI\{TEST\|WAIT\}\{ALL\|SOME\|ANY\}), where the request corresponds to a send call, are undefined, with two exceptions: The error status field will contain valid information if the wait or test call returned with MPI_ERR_IN_STATUS; and the returned status can be queried by the call MPI_TEST_CANCELLED.

Error codes belonging to the error class MPI_ERR_IN_STATUS should be returned only by the MPI completion functions that take arrays of MPI_Status. For the functions that take a single MPI_Status argument, the error code is returned by the function, and the value of the MPI_ERROR field in the MPI_Status argument is undefined (see 3.2.5).

\[\text{MPI_WAIT(request, status)}\]

\[
\text{INOUT request} \quad \text{request (handle)}
\]

\[
\text{OUT status} \quad \text{status object (status)}
\]

C binding

\[
\text{int MPI_Wait(MPI_Request *request, MPI_Status *status)}
\]

Fortran 2008 binding

\[
\text{MPI_Wait(request, status, ierror)}
\]

\[
\quad \text{TYPE(MPI_Request), INTENT(INOUT) :: request}
\]

\[
\quad \text{TYPE(MPI_Status) :: status}
\]

\[
\quad \text{INTEGER, OPTIONAL, INTENT(OUT) :: ierror}
\]

Fortran binding

\[
\text{MPI_WAIT(REQUEST, STATUS, IERROR)}
\]

\[
\quad \text{INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR}
\]

A call to MPI_WAIT returns when the operation identified by request is complete. If the request is an active persistent communication request, it is marked inactive. Any other type of request is deallocated and the request handle is set to MPI_REQUEST_NULL. MPI_WAIT is in general a nonlocal procedure. When the operation represented by the request is enabled then a call to MPI_WAIT is a local procedure call.

The call returns, in status, information on the completed operation. The content of the status object for a receive operation can be accessed as described in Section 3.2.5. The status object for a send operation may be queried by a call to MPI_TEST_CANCELLED (see Section 3.8).

One is allowed to call MPI_WAIT with a null or inactive request argument. In this case the procedure returns immediately with empty status.

Advice to users. Successful return of MPI_WAIT after a MPI_IBSEND implies that the user send buffer can be reused—i.e., data has been sent out or copied into a buffer
attached with MPI_BUFFER_ATTACHMENT, MPI_COMM_ATTACHMENT_BUFFER or
MPI_SESSION_ATTACHMENT_BUFFER. Further, at this point, we can no longer cancel the
send (see Section 3.8). If a matching receive is never started, then the buffer cannot be
freed. This runs somewhat counter to the stated goal of MPI_CANCEL (always being
able to free program space that was committed to the communication subsystem).
(End of advice to users.)

Advice to implementors. In a multithreaded environment, a call to MPI_WAIT should
block only the calling thread, allowing the thread scheduler to schedule another thread
for execution. (End of advice to implementors.)

MPI_TEST(request, flag, status)

C binding
int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

Fortran 2008 binding
MPI_Test(request, flag, status, ierror)
 TYPE(MPI_Request), INTENT(INOUT) :: request
 LOGICAL, INTENT(OUT) :: flag
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
 INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
 LOGICAL FLAG

A call to MPI_TEST returns flag = true if the operation identified by request is complete.
In such a case, the status object is set to contain information on the completed operation.
If the request is an active persistent communication request, it is marked as inactive. Any
other type of request is deallocated and the request handle is set to MPI_REQUEST_NULL.
The call returns flag = false if the operation identified by request is not complete. In this
case, the value of the status object is undefined. MPI_TEST is a local procedure.
The return status object for a receive operation carries information that can be accessed
as described in Section 3.2.5. The status object for a send operation carries information
that can be accessed by a call to MPI_TEST_CANCELLED (see Section 3.8).
One is allowed to call MPI_TEST with a null or inactive request argument. In such a
case the procedure returns with flag = true and empty status.
The procedures MPI_WAIT and MPI_TEST can be used to complete any request-based
nonblocking or persistent operation.

Advice to users. The use of the nonblocking MPI_TEST call allows the user to
schedule alternative activities within a single thread of execution. An event-driven
thread scheduler can be emulated with periodic calls to MPI_TEST. (End of advice to users.)

Example 3.13. Simple usage of nonblocking operations and MPI_WAIT.

```fortran
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
   CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)
   ! **** do some computation to mask latency ****
   CALL MPI_WAIT(request, status, ierr)
ELSE IF (rank .EQ. 1) THEN
   CALL MPI_IRECV(a(1), 15, MPI_REAL, 0, tag, comm, request, ierr)
   ! **** do some computation to mask latency ****
   CALL MPI_WAIT(request, status, ierr)
END IF
```

A request object can be freed using the following MPI procedure.

```fortran
MPI_REQUEST_FREE(request)
   INOUT request communication request (handle)
```

C binding

```c
int MPI_Request_free(MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Request_free(request, ierror)
   TYPE(MPI_Request), INTENT(INOUT) :: request
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_REQUEST_FREE(request, IERROR)
   INTEGER REQUEST, IERROR
```

MPI_REQUEST_FREE is a local procedure. Upon successful return, MPI_REQUEST_FREE sets request to MPI_REQUEST_NULL. For an inactive request representing any type of MPI operation, MPI_REQUEST_FREE shall do the freeing stage of the associated operation during its execution.

For a request representing a nonblocking point-to-point or a persistent point-to-point operation, it is permitted (although strongly discouraged) to call MPI_REQUEST_FREE when the request is active. In this special case, MPI_REQUEST_FREE will only mark the request for freeing and MPI will actually do the freeing stage of the operation associated with the request later.

The use of this procedure for generalized requests is described in Section 13.2.

Calling MPI_REQUEST_FREE with an active request representing any other type of MPI operation (e.g., any partitioned operation (see Chapter 4), any collective operation (see Chapter 6), any I/O operation (see Chapter 14), or any request-based RMA operation (see Chapter 12)) is erroneous.

Rationale. For point-to-point operations, the MPI_REQUEST_FREE mechanism is provided for reasons of performance and convenience on the sending side. (End of
Advice to users. Once a request is freed by a call to MPI_REQUEST_FREE, it is not possible to check for the successful completion of the associated communication with calls to MPI_WAIT or MPI_TEST. Also, if an error occurs subsequently during the communication, an error code cannot be returned to the user—such an error must be treated as fatal. An active receive request should never be freed as the receiver will have no way to verify that the receive has completed and the receive buffer can be reused. (End of advice to users.)

Example 3.14. An example using MPI_REQUEST_FREE.

```fortran
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
IF (rank .EQ. 0) THEN
   DO i=1,n
      CALL MPI_ISEND(outval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
      CALL MPI_REQUEST_FREE(req, ierr)
      CALL MPI_IRECV(inval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
      CALL MPI_WAIT(req, status, ierr)
   END DO
ELSE IF (rank .EQ. 1) THEN
   CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
   CALL MPI_WAIT(req, status, ierr)
   DO I=1,n-1
      CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
      CALL MPI_REQUEST_FREE(req, ierr)
      CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
      CALL MPI_WAIT(req, status, ierr)
   END DO
   CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
   CALL MPI_WAIT(req, status, ierr)
END IF
```

3.7.4 Semantics of Nonblocking Communication Operations

The semantics of nonblocking communication operations are defined by suitably extending the definitions in Section 3.5.

Order. Nonblocking communication operations are ordered according to the execution order of the calls that initiate the communication. The nonovertaking requirement of Section 3.5 is extended to nonblocking communication, with this definition of order being used.

Example 3.15. Message ordering for nonblocking operations.

```fortran
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
   CALL MPI_ISEND(a, 1, MPI_REAL, 1, 0, comm, r1, ierr)
   CALL MPI_ISEND(b, 1, MPI_REAL, 1, 0, comm, r2, ierr)
ELSE IF (rank .EQ. 1) THEN
   CALL MPI_IRECV(a, 1, MPI_REAL, 0, MPI_ANY_TAG, comm, r1, ierr)
   CALL MPI_IRECV(b, 1, MPI_REAL, 0, 0, comm, r2, ierr)
END IF
```
The first send will match the first receive, even if both messages are sent before either receive is executed.

Progress. A call to `MPI_WAIT` that completes a receive will eventually terminate and return if a matching send has been started, unless the send is satisfied by another receive. In particular, if the matching send is nonblocking, then the receive should complete even if no call is executed by the sender to complete the send. Similarly, a call to `MPI_WAIT` that completes a send will eventually return if a matching receive has been started, unless the receive is satisfied by another send, and even if no call is executed to complete the receive.

Example 3.16. An illustration of progress semantics.

```fortran
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
   CALL MPI_SSEND(a, 1, MPI_REAL, 1, 0, comm, ierr)
   CALL MPI_SEND(b, 1, MPI_REAL, 1, 1, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
   CALL MPI_IRECV(a, 1, MPI_REAL, 0, 0, comm, r, ierr)
   CALL MPI_RECV(b, 1, MPI_REAL, 0, 1, comm, status, ierr)
   CALL MPI_WAIT(r, status, ierr)
END IF
```

This code should not deadlock in a correct MPI implementation. The first synchronous send must complete once the matching (nonblocking) receive is started, even though the completing wait call has not yet been reached. Thus, the sending MPI process will continue and execute the second send procedure, allowing the receiving MPI process to complete execution.

If an `MPI_TEST` that completes a receive is repeatedly called with the same arguments, and a matching send has been started, then the call will eventually return `flag = true`, unless the send is satisfied by another receive. If an `MPI_TEST` that completes a send is repeatedly called with the same arguments, and a matching receive has been started, then the call will eventually return `flag = true`, unless the receive is satisfied by another send. See also Section 2.9 on progress.

3.7.5 Multiple Completions

It is convenient to be able to wait for the completion of any, some, or all the operations in a list, rather than having to wait for a specific message. A call to `MPI_WAITANY` or `MPI_TESTANY` can be used to wait for the completion of one out of several operations. A call to `MPI_WAITALL` or `MPI_TESTALL` can be used to wait for all pending operations in a list. A call to `MPI_Waitsome` or `MPI_testsome` can be used to complete all enabled operations in a list.

`MPI_WAITANY(count, array_of_requests, index, status)`

- `count`: list length (non-negative integer)
- `array_of_requests`: array of requests (array of handles)
OUT index index of handle for operation that completed (integer)

OUT status status object (status)

C binding
int MPI_Waitany(int count, MPI_Request array_of_requests[], int *index,
 MPI_Status *status)

Fortran 2008 binding
MPI_Waitany(count, array_of_requests, index, status, ierror)
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
 INTEGER, INTENT(OUT) :: index
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)
 INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE), IERROR

Blocks until one of the operations associated with the active requests in the array has completed. If more than one operation is enabled and can terminate, one is arbitrarily chosen. Returns in index the index of that request in the array and returns in status the status of the completing operation. (The array is indexed from zero in C, and from one in Fortran.) If the request is an active persistent communication request, it is marked inactive. Any other type of request is deallocated and the request handle is set to MPI_REQUEST_NULL.

The array_of_requests list may contain null or inactive handles. If the list contains no active handles (list has length zero or all entries are null or inactive), then the call returns immediately with index = MPI_UNDEFINED, and an empty status.

The execution of MPI_WAITANY with an array containing multiple entries has the same effect as the execution of MPI_WAIT with the array entry indicated by the output value of index (unless the output value of index is MPI_UNDEFINED). MPI_WAITANY with an array containing one active entry is equivalent to MPI_WAIT.

MPI_TESTANY(count, array_of_requests, index, flag, status)

IN count list length (non-negative integer)
INOUT array_of_requests array of requests (array of handles)
OUT index index of operation that completed or MPI_UNDEFINED if none completed (integer)
OUT flag true if one of the operations is complete (logical)
OUT status status object (status)

C binding
int MPI_Testany(int count, MPI_Request array_of_requests[], int *index,
 int *flag, MPI_Status *status)
3.7 Nonblocking Communication

Fortran 2008 binding

MPI_Testany(count, array_of_requests, index, flag, status, ierror)

- INTEGER, INTENT(IN) :: count
- TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
- INTEGER, INTENT(OUT) :: index
- LOGICAL, INTENT(OUT) :: flag
- TYPE(MPI_Status) :: status
- INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)

- INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE), IERROR
- LOGICAL FLAG

Tests for completion of either one or none of the operations associated with active handles. In the former case, it returns flag = true, returns in index the index of this request in the array, and returns in status the status of that operation. If the request is an active persistent communication request, it is marked as inactive. Any other type of request is deallocated and the handle is set to MPI_REQUEST_NULL. (The array is indexed from zero in C, and from one in Fortran.) In the latter case (no operation completed), it returns flag = false, returns a value of MPI_UNDEFINED in index and status is undefined.

The array may contain null or inactive handles. If the array contains no active handles then the call returns immediately with flag = true, index = MPI_UNDEFINED, and an empty status.

If the array of requests contains active handles then the execution of MPI_TESTANY has the same effect as the execution of MPI_TEST with each of the active handles in the array in some arbitrary order, until one call returns flag = true, or all return flag = false. In the former case, index is set to indicate which array element returned flag = true and in the latter case, it is set to MPI_UNDEFINED. MPI_TESTANY with an array containing one active entry is equivalent to MPI_TEST.

C binding

int MPI_Waitall(int count, MPI_Request array_of_requests[],
 MPI_Status array_of_statuses[])

Fortran 2008 binding

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)

- INTEGER, INTENT(IN) :: count
- TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
- TYPE(MPI_Status) :: array_of_statuses(*)
- INTEGER, OPTIONAL, INTENT(OUT) :: ierror
Fortran binding

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
 INTEGER COUNT, ARRAY_OF_REQUESTS(*), ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *),
 IERROR

Blocks until all communication operations associated with active handles in the list complete, and returns the status of all these operations (this includes the case where no handle in the list is active). Both arrays have the same number of valid entries. The i-th entry in array_of_statuses is set to the return status of the i-th operation. Active persistent requests are marked inactive. Requests of any other type are deallocated and the corresponding handles in the array are set to MPI_REQUEST_NULL. The list may contain null or inactive handles. The call sets to empty the status of each such entry.

The error-free execution of MPI_WAITALL has the same effect as the execution of MPI_WAIT for each of the array elements in some arbitrary order. MPI_WAITALL with an array of length one is equivalent to MPI_WAIT.

When one or more of the communication operations completed by a call to MPI_WAITALL fail, it is desirable to return specific information on each communication. The function MPI_WAITALL will return in such case the error code MPI_ERR_IN_STATUS and will set the error field of each status to a specific error code. This code will be MPI_SUCCESS, if the specific communication completed; it will be another specific error code, if it failed; or it can be MPI_ERR_PENDING if it has neither failed nor completed. The function MPI_WAITALL will return MPI_SUCCESS if no request had an error, or will return another error code if it failed for other reasons (such as invalid arguments). In such cases, it will not update the error fields of the statuses.

Rationale. This design streamlines error handling in the application. The application code need only test the (single) function result to determine if an error has occurred. It needs to check each individual status only when an error occurred. (End of rationale.)

MPI_TESTALL(count, array_of_requests, flag, array_of_statuses)

IN count list length (non-negative integer)
INOUT array_of_requests array of requests (array of handles)
OUT flag true if all of the operations are complete (logical)
OUT array_of_statuses array of status objects (array of status)

C binding

int MPI_Testall(int count, MPI_Request array_of_requests[], int *flag,
 MPI_Status array_of_statuses[])

Fortran 2008 binding

MPI_Testall(count, array_of_requests, flag, array_of_statuses, ierror)

 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
 LOGICAL, INTENT(OUT) :: flag
 TYPE(MPI_Status) :: array_of_statuses(*)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
3.7 Nonblocking Communication

Fortran binding

```fortran
MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)
  INTEGER COUNT, ARRAY_OF_REQUESTS(*), ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *),
  IERROR
  LOGICAL FLAG

Returns flag = true if all communication operations associated with active handles in
the array have completed (this includes the case where no handle in the list is active).
In this case, each status entry that corresponds to an active request is set to the status
of the corresponding operation. Active persistent requests are marked inactive. Requests
of any other type are deallocated and the corresponding handles in the array are set to
MPI_REQUEST_NULL. Each status entry that corresponds to a null or inactive handle is set
to empty.

Otherwise, flag = false is returned, no request is modified and the values of the status
entries are undefined. This is a local procedure.

Errors that occurred during the execution of MPI_TESTALL are handled in the same
manner as errors in MPI_WAITALL.
```

MPI_WAITSOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

IN incount length of array_of_requests (non-negative integer)
INOUT array_of_requests array of requests (array of handles)
OUT outcount number of completed requests (integer)
OUT array_of_indices array of indices of operations that completed (array
 of integers)
OUT array_of_statuses array of status objects for operations that completed
 (array of status)

C binding

```c
int MPI_Waitsome(int incount, MPI_Request array_of_requests[], int *outcount,
                 int array_of_indices[], MPI_Status array_of_statuses[])
```

Fortran 2008 binding

```fortran
MPI_Waitsome(incount, array_of_requests, outcount, array_of_indices, array_of_statuses, ierr)
  INTEGER, INTENT(IN) :: incount
  TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)
  INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)
  TYPE(MPI_Status) :: array_of_statuses(*)
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

Fortran binding

```fortran
MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
             ARRAY_OF_STATUSES, IERROR)
  INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
  ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *), IERROR
```
Waits until at least one of the operations associated with active handles in the list have completed. Returns in outcount the number of requests from the list array_of_requests that have completed. Returns in the first outcount locations of the array array_of_indices the indices of these operations (index within the array array_of_requests; the array is indexed from zero in C and from one in Fortran). Returns in the first outcount locations of the array array_of_statuses the status for these completed operations. Completed active persistent requests are marked as inactive. Any other type or request that completed is deallocated, and the associated handle is set to MPI_REQUEST_NULL.

If the list contains no active handles, then the call returns immediately with outcount = MPI_UNDEFINED.

When one or more of the communication operations completed by MPI_Waitsome fails, then it is desirable to return specific information on each communication. The arguments outcount, array_of_indices and array_of_statuses will be adjusted to indicate completion of all communication operations that have succeeded or failed. The call will return the error code MPI_ERR_IN_STATUS and the error field of each status returned will be set to indicate success or to indicate the specific error that occurred. The call will return MPI_SUCCESS if no request resulted in an error, and will return another error code if it failed for other reasons (such as invalid arguments). In such cases, it will not update the error fields of the statuses.

MPI_TESTSOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

IN incount length of array_of_requests (non-negative integer)
INOUT array_of_requests array of requests (array of handles)
OUT outcount number of completed requests (integer)
OUT array_of_indices array of indices of operations that completed (array of integers)
OUT array_of_statuses array of status objects for operations that completed (array of status)

C binding
int MPI_Testsome(int incount, MPI_Request array_of_requests[], int *outcount,
 int array_of_indices[], MPI_Status array_of_statuses[])

Fortran 2008 binding
MPI_Testsome(incount, array_of_requests, outcount, array_of_indices,
 array_of_statuses, ierror)
 INTEGER, INTENT(IN) :: incount
 TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)
 INTEGER, INTENT(INOUT) :: array_of_requests(incount)
 TYPE(MPI_Status) :: array_of_statuses(*)
 INTEGER, OPTIONAL, INTENT(INOUT) :: ierror

Fortran binding
MPI_TESTSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
 ARRAY_OF_STATUSES, IERROR)
This procedure behaves like MPI_WAIT, except that it returns immediately. If no operation has completed it returns *outcount = 0*. If there is no active handle in the list it returns *outcount = MPI_UNDEFINED*.

MPI_TESTSOME is a local procedure, which returns immediately, whereas MPI_WAIT will block until a communication completes, if it was passed a list that contains at least one active handle. Both calls fulfill a fairness requirement: If a request for a receive repeatedly appears in a list of requests passed to MPI_WAIT or MPI_TESTSOME, and a matching send has been started, then the receive will eventually succeed, unless the send is satisfied by another receive; and similarly for send requests.

Errors that occur during the execution of MPI_TESTSOME are handled as for MPI_WAIT.

Advice to users. The use of MPI_TESTSOME is likely to be more efficient than the use of MPI_TESTANY. The former returns information on all completed communication operations, with the latter, a new call is required for each communication that completes.

A server with multiple clients can use MPI_WAIT so as not to starve any client. Clients send messages to the server with service requests. The server calls MPI_WAIT with one receive request for each client, and then handles all receives that completed. If a call to MPI_WAITANY is used instead, then one client could starve while requests from another client always sneak in first. (End of advice to users.)

Advice to implementors. MPI_TESTSOME should complete as many pending communication operations of the array_of_requests as possible. (End of advice to implementors.)

Example 3.17. Client-server code (starvation can occur).

```fortran
CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .GT. 0) THEN   ! client code
  DO WHILE(.TRUE.)
    CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)
    CALL MPI_WAIT(request, status, ierr)
  END DO
ELSE                    ! rank=0 -- server code
  i=1, size-1
  DO WHILE(.TRUE.)
    CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag, &
                  comm, request_list(i), ierr)
  END DO
  DO WHILE(.TRUE.)
    CALL MPI_WAITANY(size-1, request_list, index, status, ierr)
    CALL DO_SERVICE(a(1,index)) ! handle one message
    CALL MPI_IRECV(a(1, index), n, MPI_REAL, index, tag, &
                     comm, request_list(index), ierr)
  END DO
END IF
```
Example 3.18. Same code, using MPI_WAIT_SOME.

```fortran
CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .GT. 0) THEN ! client code
   DO WHILE(.TRUE.)
      CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)
      CALL MPI_WAIT(request, status, ierr)
   END DO
ELSE ! rank =0 -- server code
   DO i=1,size-1
      CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag, &
                      comm, request_list(i), ierr)
   END DO
   DO WHILE(.TRUE.)
      CALL MPI_WAIT_SOME(size, request_list, numdone, &
                          indices, statuses, ierr)
      DO i=1,numdone
         CALL DO_SERVICE(a(1, indices(i)))
         CALL MPI_IRECV(a(1, indices(i)), n, MPI_REAL, 0, tag, &
                        comm, request_list(indices(i)), ierr)
      END DO
   END DO
END IF
```

3.7.6 Non-Destructive Test of status

These procedures are useful for accessing the information associated with a request, without freeing the request (in case the user is expected to access it later). It allows one to layer libraries more conveniently, since multiple layers of software may access the same completed request and extract from it the status information.

| Function:(MPI_REQUEST_GET_STATUS(request, flag, status)) |
IN	request	request (handle)
OUT	flag	boolean flag, same as from MPI_TEST (logical)
OUT	status	status object if flag is true (status)

C binding

```c
int MPI_Request_get_status(MPI_Request request, int *flag, MPI_Status *status)
```

Fortran 2008 binding

```fortran
MPI_Request_get_status(request, flag, status, ierror)
   TYPE(MPI_Request), INTENT(IN) :: request
   LOGICAL, INTENT(OUT) :: flag
   TYPE(MPI_Status) :: status
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_REQUEST_GET_STATUS REQUEST, FLAG, STATUS, IERROR)
```
Sets flag = true if the operation is complete, and, if so, returns in status the request status. However, unlike test or wait, it does not deallocate or inactivate the request; a subsequent call to test, wait or free should be executed with that request. It sets flag = false if the operation is not complete.

One is allowed to call MPI_REQUEST_GET_STATUS with a null or inactive request argument. In such a case the procedure returns with flag = true and empty status.

The progress rule for MPI_TEST, as described in Section 3.7.4, also applies to MPI_REQUEST_GET_STATUS.

MPI_REQUEST_GET_STATUS_ANY(count, array_of_requests, index, flag, status)

IN count list length (non-negative integer)
IN array_of_requests array of requests (array of handles)
OUT index index of operation that completed or MPI_UNDEFINED if none completed (integer)
OUT flag true if one of the operations is complete (logical)
OUT status status object if flag is true (status)

C binding
int MPI_Request_get_status_any(int count,
 const MPI_Request array_of_requests[], int *index, int *flag,
 MPI_Status *status)

Fortran 2008 binding
MPI_Request_get_status_any(count, array_of_requests, index, flag, status)
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Request), INTENT(IN) :: array_of_requests(count)
 INTEGER, INTENT(OUT) :: index
 LOGICAL, INTENT(OUT) :: flag
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_REQUEST_GET_STATUS_ANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
 INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE), IERROR
 LOGICAL FLAG

Tests for completion of either one or none of the operations associated with active handles. In the former case, it returns flag = true, returns in index the index of this request in the array, and returns in status the status of that operation. (The array is indexed from zero in C, and from one in Fortran.) In the latter case (no operation completed), it returns flag = false, returns a value of MPI_UNDEFINED in index and status is undefined.
The array may contain null or inactive handles. If the array contains no active handles then the call returns immediately with flag = true, index = MPI_UNDEFINED, and an empty status.

If the array of requests contains active handles then the execution of MPI_REQUEST_GET_STATUS_ANY has the same effect as the execution of MPI_REQUEST_GET_STATUS with each of the active array elements in some arbitrary order, until one call returns flag = true, or all return flag = false. In the former case, index is set to indicate which array element returned flag = true and in the latter case, it is set to MPI_UNDEFINED. MPI_REQUEST_GET_STATUS_ANY with an array containing one request is equivalent to MPI_REQUEST_GET_STATUS.

MPI_REQUEST_GET_STATUS_ALL(count, array_of_requests, flag, array_of_statuses)

IN count list length (non-negative integer)
IN array_of_requests array of requests (array of handles)
OUT flag true if all of the operations are complete (logical)
OUT array_of_statuses array of status objects (array of status)

C binding
int MPI_Request_get_status_all(int count,
const MPI_Request array_of_requests[], int *flag,
MPI_Status array_of_statuses[])

Fortran 2008 binding
MPI_Request_get_status_all(count, array_of_requests, flag, array_of_statuses,
ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(IN) :: array_of_requests(count)
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_REQUEST_GET_STATUS_ALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES,
IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *),
IERROR
LOGICAL FLAG

MPI REQUEST GET STATUS ALL returns flag = true if all communication operations associated with active handles in the array have completed (this includes the case where all handles in the list are inactive or MPI_REQUEST_NULL). In this case, each status entry that corresponds to an active request is set to the status of the corresponding operation. Unlike test or wait, it does not deallocate or inactivate the requests; a subsequent call to test, wait or free should be executed with each of those requests.

Each status entry that corresponds to a null or inactive handle is set to empty.

Otherwise, flag = false is returned and the values of the status entries are undefined.
The progress rule for MPI_TEST, as described in Section 3.7.4, also applies to MPI_REQUEST_GET_STATUS_ALL.

MPI_REQUEST_GET_STATUS_SOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

IN
incount length of array_of_requests (non-negative integer)

IN
array_of_requests array of requests (array of handles)

OUT
outcount number of completed requests (integer)

OUT
array_of_indices array of indices of operations that completed (array of integers)

OUT
array_of_statuses array of status objects for operations that completed (array of status)

C binding

```c
int MPI_Request_get_status_some(int incount,
    const MPI_Request array_of_requests[], int *outcount,
    int array_of_indices[], MPI_Status array_of_statuses[])
```

Fortran 2008 binding

```fortran
MPI_Request_get_status_some(incount, array_of_requests, outcount, 
array_of_indices, array_of_statuses, ierror)
```

Fortran binding

```fortran
MPI\_REQUEST\_GET\_STATUS\_SOME(INCOUNT, ARRAY\_OF\_REQUESTS, OUTCOUNT, 
ARRAY\_OF\_INDICES, ARRAY\_OF\_STATUSES, IERROR)
```

MPI_REQUEST_GET_STATUS_SOME returns in outcount the number of requests from the list array_of_requests that have completed. Returns in the first outcount locations of the array array_of_indices the indices of these operations within the array array_of_requests; the array is indexed from zero in C and from one in Fortran. Returns in the first outcount locations of the array array_of_statuses the status for these completed operations. However, unlike test or wait, it does not deallocate or inactivate any requests in array_of_requests; a subsequent call to test, wait or free should be executed with each completed request. If no operation in array_of_requests is complete, it returns outcount = 0. If all operations in array_of_requests are either MPI_REQUEST_NULL or inactive, outcount will be set to MPI_UNDEFINED. The progress rule for MPI_TEST, as described in Section 3.7.4, also applies to MPI_REQUEST_GET_STATUS_SOME.

Like MPI_WAITSOME and MPI_TESTSOME, MPI_REQUEST_GET_STATUS_SOME fulfills a fairness requirement: If a request for a receive repeatedly appears in a list of requests passed to MPI_REQUEST_GET_STATUS_SOME, MPI_WAITSOME, or
MPI_TESTSOME and a matching send has been started, then the receive will eventually succeed, unless the send is satisfied by another receive; and similarly for send requests.

Errors that occur during the execution of MPI_REQUEST_GET_STATUS_SOME are handled as for MPI_WAITSOME.

Advice to implementors. MPI_REQUEST_GET_STATUS_SOME should complete as many pending communication operations as possible. (End of advice to implementors.)

Advice to users. MPI_REQUEST_GET_STATUS_ANY, MPI_REQUEST_GET_STATUS_SOME, and MPI_REQUEST_GET_STATUS_ALL offer tradeoffs between precision and speed, as do the corresponding TEST and WAIT functions. The ANY variants are fast, but imprecise and unfair. The ALL variants will provide all-or-nothing information and/or completion, which can limit their applicability. The SOME variants, because of their precision and fairness guarantee, will typically be the slowest on a per-call basis. (End of advice to users.)

3.8 Probe and Cancel

The MPI_PROBE, MPI_IPROBE, MPI_MPROBE, and MPI_IMPROBE procedures allow incoming messages to be checked for, without actually receiving them. The user can then decide how to receive them, based on the information returned by the probe (basically, the information returned by status). In particular, the user may allocate memory for the receive buffer, according to the length of the probed message.

The MPI_CANCEL procedure allows pending communication operations to be cancelled. This is required for cleanup. Posting a send or a receive ties up user resources (send or receive buffers), and a cancel may be needed to free these resources gracefully.

Cancelling a send request by calling MPI_CANCEL is deprecated. Cancelling a sendrecv request by calling MPI_CANCEL is not allowed.

3.8.1 Probe

MPI_IPROBE(source, tag, comm, flag, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT flag true if there is a matching message that can be received (logical)
OUT status status object (status)

C binding
int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
 MPI_Status *status)

Fortran 2008 binding
MPI_Iprobe(source, tag, comm, flag, status, ierror)
3.8 Probe and Cancel

Fortran binding

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)

INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_IPROBE returns flag = true if there is a message that can be received and that matches the pattern specified by the arguments source, tag, and comm. The call matches the same message that would have been received by a call to MPI_RECV with the same argument values for source, tag, comm, and status executed at the same point in the program, and returns in status the same value that would have been returned by MPI_RECV. Otherwise, the call returns flag = false, and leaves status undefined.

If MPI_IPROBE returns flag = true, then the content of the status object can be subsequently accessed as described in Section 3.2.5 to find the source, tag, and length of the probed message.

MPI_IPROBE is a local procedure since its return does not depend on MPI calls in other MPI processes, which is marked with the prefix I (for immediate).

A subsequent receive executed with the same communicator, and the source and tag returned in status by MPI_IPROBE will receive the message that was matched by the probe, if no other intervening receive occurs after the probe, and the send is not successfully cancelled before the receive. If the receiving MPI process is multithreaded, it is the user’s responsibility to ensure that the last condition holds.

The source argument of MPI_IPROBE can be MPI_ANY_SOURCE, and the tag argument can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source and/or with an arbitrary tag. However, a specific communication context must be provided with the comm argument.

It is not necessary to receive a message immediately after it has been probed for, and the same message may be probed for several times before it is received.

A probe with MPI_PROC_NULL as source returns flag = true, and the status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0; see Section 3.10.

MPI_PROBE(source, tag, comm, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT status status object (status)

C binding

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

Fortran 2008 binding

MPI_Probe(source, tag, comm, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR
MPI_PROBE behaves like MPI_IPROBE except that it is a nonlocal call that returns only after a matching message has been found.

The MPI implementation of MPI_PROBE and MPI_IPROBE needs to guarantee progress: if a call to MPI_PROBE has been issued by an MPI process, and a send that matches the probe has been initiated by some MPI process, then the call to MPI_PROBE will return, unless the message is received by another concurrent receive operation (that is executed by another thread at the probing MPI process).

Similarly, if an MPI process repeatedly calls MPI_IPROBE and a matching message has been issued, then MPI_IPROBE will eventually return flag = true unless the message is received by another concurrent receive operation or matched by a concurrent matching probe. See also Section 2.9 on progress.

Example 3.19. Use probe to wait for an incoming message.

```fortran
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
  CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
  CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE IF (rank .EQ. 2) THEN
  DO i=1,2
    CALL MPI_PROBE(MPI_ANY_SOURCE, 0, comm, status, ierr)
    IF (status(MPI_SOURCE) .EQ. 0) THEN
      100 CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, comm, status, ierr)
    ELSE
      200 CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, comm, status, ierr)
    END IF
  END DO
END IF
```

Each message is received with the right type.

Example 3.20. A similar program to the previous example, but now it has a problem.

```fortran
! ---------------- THIS EXAMPLE IS ERRONEOUS ----------------
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
  CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
  CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE IF (rank .EQ. 2) THEN
  DO i=1,2
    CALL MPI_PROBE(MPI_ANY_SOURCE, 0, comm, status, ierr)
    IF (status(MPI_SOURCE) .EQ. 0) THEN
```


In Example 3.20, the two receive calls in statements labeled 100 and 200 in Example 3.19 are slightly modified, using MPI_ANY_SOURCE as the source argument. The program is now incorrect: the receive operation may receive a message that is distinct from the message probed by the preceding call to MPI_PROBE.

Advice to users. In a multithreaded MPI program, MPI_PROBE and MPI_IPROBE might need special care. If a thread probes for a message and then immediately posts a matching receive, the receive may match a message other than that found by the probe since another thread could concurrently receive that original message [34]. MPI_MPROBE and MPI_IMPROBE solve this problem by matching the incoming message so that it may only be received with MPI_MRECV or MPI_IMRECV on the corresponding message handle. (End of advice to users.)

Advice to implementors. A call to MPI_PROBE will match the message that would have been received by a call to MPI_RECV with the same argument values for source, tag, comm, and status executed at the same point. Suppose that this message has source s, tag t and communicator c. If the tag argument in the probe call has value MPI_ANY_TAG then the message probed will be the earliest pending message from source s with communicator c and any tag; in any case, the message probed will be the earliest pending message from source s with tag t and communicator c (this is the message that would have been received, so as to preserve message order). This message continues as the earliest pending message from source s with tag t and communicator c, until it is received. A receive operation subsequent to the probe that uses the same communicator as the probe and uses the tag and source values returned by the probe, must receive this message, unless it has already been received by another receive operation. (End of advice to implementors.)

3.8.2 Matching Probe

The function MPI_PROBE checks for incoming messages without receiving them. Since the list of incoming messages is global among the threads of each MPI process, it can be hard to use this functionality in threaded environments [34, 31].

Like MPI_PROBE and MPI_IPROBE, the matching probe operation (MPI_MPROBE and MPI_IMPROBE procedures) allow incoming messages to be queried without actually receiving them, except that MPI_MPROBE and MPI_IMPROBE provide a mechanism to receive the specific message that was matched regardless of other intervening probe or receive operations. This gives the application an opportunity to decide how to receive the message, based on the information returned by the probe. In particular, the user may allocate memory for the receive buffer, according to the length of the probed message.
MPI

IMPROBE(source, tag, comm, flag, message, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT flag true if there is a matching message that can be received (logical)
OUT message returned message (handle)
OUT status status object (status)

C binding

int MPI_Improve(int source, int tag, MPI_Comm comm, int *flag,
 MPI_Message *message, MPI_Status *status)

Fortran 2008 binding

MPI_Improve(source, tag, comm, flag, message, status, ierror)

 INTEGER, INTENT(IN) :: source, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 LOGICAL, INTENT(OUT) :: flag
 TYPE(MPI_Message), INTENT(OUT) :: message
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_IMPROBE(SOURCE, TAG, COMM, FLAG, MESSAGE, STATUS, IERROR)

 INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR
 LOGICAL FLAG

MPI_IMPROBE returns flag = true if there is a message that can be received and that matches the pattern specified by the arguments source, tag, and comm. The call matches the same message that would have been received by a call to MPI_RECV with the same argument values for source, tag, comm, and status executed at the same point in the program and returns in status the same value that would have been returned by MPI_RECV. In addition, it returns in message a message handle to the matched message. Otherwise, the call returns flag = false, and leaves status and message undefined.

MPI_IMPROBE is a local procedure. According to the definitions in Section 2.4.2 and in contrast to MPI_IPROBE, it is a nonblocking procedure because it is the initialization of a matched receive operation.

A matched receive (MPI_MRECV or MPI_IMRECV) executed with the message handle will receive the message that was matched by the matching probe. Unlike MPI_IPROBE, no other probe or receive operation may match the message returned by MPI_IMPROBE. Each message handle returned by MPI_IMPROBE must be received with either MPI_MRECV or MPI_IMRECV.

The source argument of MPI_IMPROBE can be MPI_ANY_SOURCE, and the tag argument can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source and/or with an arbitrary tag. However, a specific communication context must be provided with the comm argument.
A synchronous mode send operation that is matched with MPI_IMPROBE or MPI_MPROBE will complete successfully only if both a matching receive is started with MPI_MRECV or MPI_IMRECV, and the matching receive operation has started to receive the message sent by the synchronous mode send.

There is a special predefined message handle: MPI_MESSAGE_NO_PROC, which is a message that has MPI_PROC_NULL as its source. The predefined constant MPI_MESSAGE_NULL is the value used for invalid message handles.

A matching probe with source = MPI_PROC_NULL returns flag = true, message = MPI_MESSAGE_NO_PROC, and the status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0; see Section 3.10. It is not necessary to call MPI_MRECV or MPI_IMRECV with MPI_MESSAGE_NO_PROC, but it is not erroneous to do so.

Rationale. MPI_MESSAGE_NO_PROC was chosen instead of MPI_MESSAGE_PROC_NULL to avoid possible confusion as another null handle constant. (End of rationale.)

MPI_MPROBE(source, tag, comm, message, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT message returned message (handle)
OUT status status object (status)

C binding
int MPI_Mprobe(int source, int tag, MPI_Comm comm, MPI_Message *message,
 MPI_Status *status)

Fortran 2008 binding
MPI_Mprobe(source, tag, comm, message, status, ierror)

 INTEGER, INTENT(IN) :: source, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Message), INTENT(OUT) :: message
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_MPROBE(SOURCE, TAG, COMM, MESSAGE, STATUS, IERROR)

 INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_MPROBE behaves like MPI_IMPROBE except that it is a blocking call that returns only after a matching message has been found.

The implementation of MPI_MPROBE and MPI_IMPROBE needs to guarantee progress in the same way as in the case of MPI_PROBE and MPI_IPROBE. See also Section 2.9 on progress.

According to the definitions in Section 2.4.2, MPI_MPROBE is incomplete. It is also a nonlocal procedure.
Advice to users. This is one of the exceptions in which incomplete procedures are nonlocal. (End of advice to users.)

3.8.3 Matched Receives

The matched receive operation (MPI_MRECV and MPI_IMRECV procedures) receive messages that have been previously matched by a matching probe operation (Section 3.8.2).

MPI_MRECV(buf, count, datatype, message, status)

OUT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative integer)
IN datatype datatype of each receive buffer element (handle)
INOUT message message (handle)
OUT status status object (status)

C binding
int MPI_Mrecv(void *buf, int count, MPI_Datatype datatype,
 MPI_Message *message, MPI_Status *status)
int MPI_Mrecv_c(void *buf, MPI_Count count, MPI_Datatype datatype,
 MPI_Message *message, MPI_Status *status)

Fortran 2008 binding
MPI_Mrecv(buf, count, datatype, message, status, ierror)
 TYPE(*), DIMENSION(..) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Message), INTENT(INOUT) :: message
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Mrecv(buf, count, datatype, message, status, ierror) !(_c)
 TYPE(*), DIMENSION(..) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Message), INTENT(INOUT) :: message
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_MRECV(BUF, COUNT, DATATYPE, MESSAGE, STATUS, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

This call receives a message matched by a matching probe operation (Section 3.8.2). The receive buffer consists of the storage containing count consecutive elements of the type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If the message is shorter than the receive buffer, then only those locations corresponding
to the (shorter) message are modified.

On return from this function, the *message handle* is set to `MPI_MESSAGE_NULL`. All
errors that occur during the execution of this operation are handled according to the error
handler set for the communicator used in the matching probe call that produced the message
handle.

If `MPI_MRECV` is called with `MPI_MESSAGE_NO_PROC` as the message argument, the
call returns immediately with the status object set to `source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0`. This is consistent with the status object produced by a call
to `MPI_RECV` or to `MPI_PROBE` with `source = MPI_PROC_NULL` (see Section 3.10). A call
to `MPI_MRECV` with `MPI_MESSAGE_NULL` is *erroneous*.

MPI_IMRECV(buf, count, datatype, message, request)

OUT `buf` initial address of receive buffer (choice)

IN `count` number of elements in receive buffer (non-negative integer)

IN `datatype` datatype of each receive buffer element (handle)

INOUT `message` message (handle)

OUT `request` communication request (handle)

C binding

```c
int MPI_Imrecv(void *buf, int count, MPI_Datatype datatype, MPI_Message *message, MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Imrecv(buf, count, datatype, message, request, ierror)
```

Fortran binding

```fortran
MPI_IMRECV(BUF, COUNT, DATATYPE, MESSAGE, REQUEST, IERROR)
```
MPI_IMRECV is the nonblocking variant of MPI_MRECV and starts a nonblocking receive of a matched message. Completion semantics are similar to MPI_Irecv as described in Section 3.7.2. On return from this function, the message handle is set to MPI_MESSAGE_NULL.

If MPI_IMRECV is called with MPI_MESSAGE_NO_PROC as the message argument, the call returns immediately with a request object that, when completed, will yield a status object set to source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0, as if a receive from MPI_PROC_NULL was issued (see Section 3.10). A call to MPI_IMRECV with MPI_MESSAGE_NULL is erroneous.

Advice to implementors. If reception of a matched message is started with MPI_IMRECV, then it is possible to cancel the returned request with MPICANCEL. If MPICANCEL succeeds, the matched message must be found by a subsequent message probe (MPI_PROBE, MPI_IPROBE, MPI_MPROBE, or MPI_IMPROBE), received by a subsequent receive operation or cancelled by the sender. See Section 3.8.4 for details about MPICANCEL. The cancellation of operations initiated with MPI_IMRECV may fail. (End of advice to implementors.)

3.8.4 Cancel

MPICANCEL(request)

IN request communication request (handle)

C binding
int MPI_Cancel(MPI_Request *request)

Fortran 2008 binding
MPI_Cancel(request, ierror)
 TYPE(MPI_Request), INTENT(IN) :: request
 INTEGER, OPTIONAL, INTENT(IN) :: ierror

Fortran binding
MPI_CANCEL(REQUEST, IERROR)
 INTEGER REQUEST, IERROR

A call to MPICANCEL marks for cancellation a pending, nonblocking communication operation (send or receive). Cancelling a send request by calling MPICANCEL is deprecated. The cancel call is local. It returns immediately, possibly before the communication is actually cancelled. It is still necessary to call MPI_REQUEST_FREE, MPI_WAIT or MPI_TEST (or any of the derived procedures) with the cancelled request as argument after the call to MPICANCEL. If a communication is marked for cancellation, then a MPI_WAIT call for that communication is guaranteed to return, irrespective of the activities of other MPI processes (i.e., MPI_WAIT behaves as a local function); similarly if MPI_TEST is repeatedly called for a cancelled communication, then MPI_TEST will eventually return flag
3.8 Probe and Cancel

\[= \text{true}. \]

MPI_CANCEL can be used to cancel a communication that uses a persistent communication request (see Section 3.9), in the same way as it is described above for nonblocking operations. Cancelling a persistent send request by calling MPI_CANCEL is deprecated. A successful cancellation cancels the active communication, but not the request itself. After the call to MPI_CANCEL and the subsequent call to MPI_WAIT or MPI_TEST, the request becomes inactive and can be activated for a new communication.

The successful cancellation of a buffered mode send frees the buffer space occupied by the pending message. Cancelling a buffered mode send request by calling MPI_CANCEL is deprecated.

Either the cancellation succeeds, or the communication succeeds, but not both. If a send is marked for cancellation, which is deprecated, then it must be the case that either the send completes normally, in which case the message sent was received at the destination, or that the send is successfully cancelled, in which case no part of the message was received at the destination. Then, any matching receive has to be satisfied by another send. If a receive is marked for cancellation, then it must be the case that either the receive completes normally, or that the receive is successfully cancelled, in which case no part of the receive buffer is altered. Then, any matching send has to be satisfied by another receive.

If the operation has been cancelled, then information to that effect will be returned in the status argument of the operation that completes the communication.

Rationale. Although the IN request handle parameter should not need to be passed by reference, the C binding has listed the argument type as MPI_Request* since MPI-1.0. This function signature therefore cannot be changed without breaking existing MPI applications. (End of rationale.)

\[
\text{MPI_TEST_CANCELL_ED(status, flag)}
\]

\[
\quad \IN \quad \text{status} \quad \text{status object (status)}
\]

\[
\quad \OUT \quad \text{flag} \quad \text{true if the operation has been cancelled (logical)}
\]

C binding

\[
\text{int MPI_Test_cancelled(const MPI_Status *status, int *flag)}
\]

Fortran 2008 binding

\[
\text{MPI_Test_cancelled(status, flag, ierror)}
\]

\[
\quad \text{TYPE(MPI_Status), INTENT(IN) :: status}
\]

\[
\quad \text{LOGICAL, INTENT(OUT) :: flag}
\]

\[
\quad \text{INTEGER, OPTIONAL, INTENT(OUT) :: ierror}
\]

Fortran binding

\[
\text{MPI_TEST_CANCEL_LED(STATUS, FLAG, IERROR)}
\]

\[
\quad \text{INTEGER STATUS(MPI_STATUS_SIZE), IERROR}
\]

\[
\quad \text{LOGICAL FLAG}
\]

Returns flag = true if the communication associated with the status object was cancelled successfully. In such a case, all other fields of status (such as count or tag) are undefined. Returns flag = false, otherwise. If a receive operation might be cancelled then one should
call MPI_TEST_CANCELLED first, to check whether the operation was cancelled, before checking on the other fields of the return status.

Advice to users. Cancel can be an expensive operation that should be used only exceptionally. (End of advice to users.)

Advice to implementors. If a send operation uses an “eager” protocol (data is transferred to the receiver before a matching receive is started), then the cancellation of this send may require communication with the intended receiver in order to free allocated buffers. On some systems this may require an interrupt to the intended receiver. Note that, while communication may be needed to implement MPI_CANCEL, this is still a local procedure, since its completion does not depend on the code executed by other MPI processes. If processing is required on another MPI process, this should be transparent to the application (hence the need for an interrupt and an interrupt handler). See also Section 2.9 on progress. (End of advice to implementors.)

3.9 Persistent Communication Requests

Often a communication with the same argument list (with the exception of the buffer contents) is repeatedly executed within the inner loop of a parallel computation. In such a situation, it may be possible to optimize the communication by binding the list of communication arguments to a persistent communication request once and then repeatedly using the request to start and complete operations. In the case of point-to-point communication, the persistent communication request thus created can be thought of as a communication port or a “half-channel.” It does not provide the full functionality of a conventional channel, since there is no binding of the send port to the receive port. This construct allows reduction of the overhead for communication between the MPI process and communication controller, but not of the overhead for communication between one communication controller and another. It is not necessary that messages sent with a persistent point-to-point request be received by a receive operation using a persistent point-to-point request, or vice versa.

There are also persistent collective communication operations defined in Section 6.13 and Section 8.8. The remainder of this section covers the point-to-point persistent initialization operations and the start routines, which are used for persistent point-to-point, partitioned point-to-point, and persistent collective communication operations.

A point-to-point persistent communication request is created using one of the five following calls. These point-to-point persistent initialization calls involve no communication.

MPI_SEND_INIT(buf, count, datatype, dest, tag, comm, request)

- IN buf initial address of send buffer (choice)
- IN count number of elements sent (non-negative integer)
- IN datatype type of each element (handle)
- IN dest rank of destination (integer)
- IN tag message tag (integer)
3.9 Persistent Communication Requests

IN comm communicator (handle)
OUT request communication request (handle)

C binding
int MPI_Send_init(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Send_init_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: dest, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

 Creates a persistent communication request for a standard mode send operation.

MPI_BSEND_INIT(buf, count, datatype, dest, tag, comm, request)
 IN buf initial address of send buffer (choice)
 IN count number of elements sent (non-negative integer)
 IN datatype type of each element (handle)
 IN dest rank of destination (integer)
 IN tag message tag (integer)
 IN comm communicator (handle)
OUT request communication request (handle)

C binding
int MPI_Bsend_init(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Bsend_init_c(const void *buf, MPI_Count count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Bsend_init(buf, count, datatype, dest, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bsend_init(buf, count, datatype, dest, tag, comm, request, ierror) (!_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: dest, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

 Creates a persistent communication request for a buffered mode send operation.

MPI_Ssend_init(const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Ssend_init_c(const void *buf, MPI_Count count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)

C binding
int MPI_Ssend_init(const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Ssend_init(buf, count, datatype, dest, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
3.9 Persistent Communication Requests

TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ssend_init(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)

Fortran binding

MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

C binding

int MPI_Rsend_init(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding

MPI_Rsend_init(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a ready mode send operation.

MPI_RECV_INIT(buf, count, datatype, source, tag, comm, request)
OUT buf initial address of receive buffer (choice)
IN count number of elements received (non-negative integer)
IN datatype type of each element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT request communication request (handle)

C binding
int MPI_Recv_init(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Recv_init_c(void *buf, MPI_Count count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Recv_init(buf, count, datatype, source, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Recv_init(buf, count, datatype, source, tag, comm, request, ierror)!(_c)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
3.9 Persistent Communication Requests

Fortran binding

```fortran
MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR
```

Creates a *persistent communication request* for a receive operation. The argument `BUF` is marked as OUT because the user gives permission to write on the receive buffer by passing the argument to `MPI_RECV_INIT`.

A *persistent communication request* is inactive after it was created—no active communication is attached to the request.

A communication that uses a *persistent communication request* is started by the function `MPI_START`.

```fortran
MPI_START(request)
INOUT request communication request (handle)
```

C binding

```c
int MPI_Start(MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Start(request, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_START(REQUEST, IERROR)
INTEGER REQUEST, IERROR
```

The argument, `request`, is a handle returned by any of the initialization procedures for persistent point-to-point communication (the previous five procedures), or for partitioned point-to-point communication (see Section 4), or for persistent collective communication (see Sections 6.13 and 8.8). The associated request should be inactive. The request becomes active once the call is made.

If the request is for a *ready mode send* operation, then a matching receive operation should be started before the call is made. The communication buffer should not be modified after the call, and until the operation completes.

The call is local, with similar semantics to the nonblocking communication operations described in Section 3.7. That is, a call to `MPI_START` with a request created by `MPI_SEND_INIT` starts a communication in the same manner as a call to `MPI_ISEND`; a call to `MPI_START` with a request created by `MPI_BSEND_INIT` starts a communication in the same manner as a call to `MPI_IBSEND`; and so on.

```fortran
MPI_STARTALL(count, array_of_requests)
IN count list length (non-negative integer)
INOUT array_of_requests array of requests (array of handles)
```

C binding

```c
int MPI_Startall(int count, MPI_Request array_of_requests[])
```
Fortran 2008 binding

MPI_Startall(count, array_of_requests, ierror)

 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

The execution of `MPI_STARTALL` has the same effect as the execution of `MPI_START` for each of the array elements in some arbitrary order. `MPI_STARTALL` with an array of length one is equivalent to `MPI_START`.

A communication started with a call to `MPI_START` or `MPI_STARTALL` is completed by a call to `MPI_WAIT`, `MPI_TEST`, or one of the derived functions described in Section 3.7.5. The request becomes inactive after successful completion of such call. The request is not deallocated and it can be activated anew by an `MPI_START` or `MPI_STARTALL` call.

A persistent communication request is deallocated by a call to `MPI_REQUEST_FREE` (Section 3.7.3). The call to `MPI_REQUEST_FREE` can occur at any point in the program after the persistent request was created. However, the request will be deallocated only after it becomes inactive. Active receive requests should not be freed. Otherwise, it will not be possible to check that the receive has completed. Collective operation requests (defined in Section 6.12 and Section 8.7 for nonblocking collective operations, and Section 6.13 and Section 8.8 for persistent collective operations) must not be freed while active. It is preferable, in general, to free requests when they are inactive. If this rule is followed, then the functions described in this section will be invoked in a sequence of the form,

Create (Start Complete)* Free

where * indicates zero or more repetitions. If the same persistent communication request is used in several concurrent threads, it is the user’s responsibility to coordinate calls so that the correct sequence is obeyed.

Inactive persistent requests are not automatically freed when the associated communicator is disconnected (via `MPI_COMM_DISCONNECT`, see 11.10.4) or the associated World Model or Sessions Model is finalized (via `MPI_FINALIZE`, see 11.2.2, or `MPI_SESSION_FINALIZE`, see 11.3.1). In these situations, any further use of the request handle is erroneous. In particular, freeing associated inactive request handles after such a communicator disconnect or finalization is then impossible.

Advice to users. Persistent request handles may bind internal resources such as MPI buffers in shared memory for providing efficient communication. Therefore, it is highly recommended to explicitly free inactive request handles, using `MPI_REQUEST_FREE`, when they are no longer in use, and in particular before freeing or disconnecting the associated communicator with `MPI_COMM_FREE` or `MPI_COMM_DISCONNECT` or finalizing the associated session with `MPI_SESSION_FINALIZE`. (End of advice to users.)

A send operation started with `MPI_START` can be matched with any receive operation and, likewise, a receive operation started with `MPI_START` can receive messages generated by any send operation.
Advice to users. To prevent problems with the argument copying and register optimization done by Fortran compilers, please note the hints in Sections 19.1.10–19.1.20. (End of advice to users.)

3.10 Null MPI Processes

In many instances, it is convenient to specify a “dummy” source or destination for communication. This simplifies the code that is needed for dealing with boundaries, for example, in the case of a noncircular shift done with calls to send-receive.

The special value MPI_PROC_NULL can be used instead of a rank wherever a source or a destination argument is required in a call. A communication with MPI_PROC_NULL has no effect. A send to MPI_PROC_NULL succeeds and returns as soon as possible. A receive from MPI_PROC_NULL succeeds and returns as soon as possible with no modifications to the receive buffer. When a receive with source = MPI_PROC_NULL is executed then the status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and count = 0. A probe or matching probe with source = MPI_PROC_NULL succeeds and returns as soon as possible, and the status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and count = 0. A matching probe (cf. Section 3.8.2) with source = MPI_PROC_NULL returns flag = true, message = MPI_MESSAGE_NO_PROC, and the status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0.
Chapter 4
Partitioned Point-to-Point Communication

4.1 Introduction

Partitioned communication extends persistent point-to-point communication as defined in Chapter 3. Partitioned communication operations are matched based on the order in which the local initialization calls are performed. Partitioned communication is “partitioned” because it allows for multiple contributions of data to be made, potentially, from multiple actors (e.g., threads or tasks) in an MPI process to a single communication operation.

Advice to users. The techniques of partitioned communication were known as “fine-points” before their adoption into the MPI standard. We refer the interested reader to the original literature describing the design goals, functioning, initial implementation and performance improvements [29, 30]. (End of advice to users.)

Partitioned communication operations use a persistent communication style that involves a sequence of start and test or wait operations. For this sequence, partitioned communications use MPI_START or MPI_STARTALL calls and completion mechanisms (e.g., MPI_TEST or MPI_WAIT). Partitioned communication is different in three fundamental ways from persistent point-to-point operations in MPI. First, partitioned communication allows additional partitioned test function calls that can expose partial completion of the operation. Second, partitioned communication may perform all of the initialization required to enable data transfer as early as its initialization phase. Third, partitioned communication allows for MPI to be independently notified of multiple contributions from the send-side to a single data buffer of a single MPI message.

Rationale. The rationale behind having different initialization behavior allowed for partitioned communication as opposed to persistent point-to-point communication is to enable flexibility and optimization possibilities in implementations. Buffer setup can occur in the partitioned communication initialization functions (see Section 4.2.1). However, such negotiation can be deferred until data is to be moved between two processes. This means that partitioned communication can lazily negotiate as late as testing for completion of the operation on the first iteration of a sequence of partitioned communication start and test or wait operations. Matching still occurs as if matching happened at the partitioned communication initialization functions as noted in the function descriptions. (End of rationale.)
4.2 Semantics of Partitioned Point-to-Point Communication

MPI guarantees certain general properties of partitioned point-to-point communication progress, which are described in this section.

Persistent communications use opaque MPI_REQUEST objects as described in Section 3. Partitioned communication uses these same semantics for MPI_REQUEST objects.

Partitioned communication provides fine-grained transfers on either or both sides of a send-receive operation described by requests. Persistent communication semantics are ideal for partitioned communication: they provide MPI_PSEND_INIT and MPI_PRECV_INIT functions that allow partitioned communication setup to occur prior to message transfers. Partitioned communication initialization functions are local. The partitioned communication initialization includes inputs on the number of user-visible partitions on the send-side and receive-side, which may differ. Valid partitioned communication operations must have one or more partitions specified.

Once an MPI_PSEND_INIT call has been made, the user may start the operation with a call to a starting procedure and complete the operation with a number of MPI_PREADY calls equal to the requested number of send partitions followed by a call to a completing procedure. A call to MPI_PREADY notifies the MPI library that a specified portion of the data buffer (a specific partition) is ready to be sent. Notification of partial completion can be done via fine-grained MPI_PARRIVED calls at the receiver before a final MPI_TEST/MPI_WAIT on the request itself; the latter represents overall operation completion upon success. A full set of methods for starting and completing partitioned communication is given in the following sections.

Advice to users. Having a large number of receiver-side partitions can increase overheads as the completion mechanism may need to work with finer-grained notifications. Using a small number of receiver-side partitions may provide higher performance.

A large number of sender-side partitions may be aggregated by an MPI implementation, making performance concerns of a large number of sender-side partitions potentially less impactful than receiver-side granularity. (End of advice to users.)

Advice to implementors. It is expected that an MPI implementation will attempt to balance latency and aggregation for data transfers for the requested partition counts on the sender-side and receiver-side to allow optimization for different hardware. A high quality implementation may perform significant optimizations to enhance performance in this way; they may, for example, resize the data transfers of the partitions to combine partitions in fractional partition sizes (e.g., 2.5 partitions in a single data transfer). (End of advice to implementors.)

Example 4.1 shows a simple partitioned transfer in which the sender-side and receiver-side partitioning is identical in partition count.

Example 4.1. Simple partitioned communication example.

```c
#include <stdlib.h>
#include "mpi.h"
#define PARTITIONS 8
#define COUNT 5
int main(int argc, char *argv[])
```
4.2 Semantics of Partitioned Point-to-Point Communication

double message[PARTITIONS*COUNT];
MPI_Count partitions = PARTITIONS;
int source = 0, dest = 1, tag = 1, flag = 0;
int myrank, i;
int provided;
MPI_Request request;
MPI_Init_thread(& argc, &argv, MPI_THREAD_SERIALIZED, & provided);
if (provided < MPI_THREAD_SERIALIZED)
 MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
MPI_Comm_rank(MPI_COMM_WORLD, & myrank);
if (myrank == 0)
{
 MPI_Psend_init(message, partitions, COUNT, MPI_DOUBLE, dest, tag,
 MPI_COMM_WORLD, MPI_INFO_NULL, & request);
 MPI_Start(& request);
 for(i = 0; i < partitions; ++i)
 {
 /* compute and fill partition #i, then mark ready: */
 MPI_Pready(i, request);
 }
 while(!flag)
 {
 /* do useful work #1 */
 MPI_Test(& request, & flag, MPI_STATUS_IGNORE);
 /* do useful work #2 */
 }
 MPI_Request_free(& request);
}
else if (myrank == 1)
{
 MPI_Precv_init(message, partitions, COUNT, MPI_DOUBLE, source, tag,
 MPI_COMM_WORLD, MPI_INFO_NULL, & request);
 MPI_Start(& request);
 while(!flag)
 {
 /* do useful work #1 */
 MPI_Test(& request, & flag, MPI_STATUS_IGNORE);
 /* do useful work #2 */
 }
 MPI_Request_free(& request);
}
MPI_Finalize();
return 0;

Rationale. Partitioned communication is designed to provide opportunities for MPI implementations to optimize data transfers. MPI is free to choose how many transfers to do within a partitioned communication send independent of how many partitions are reported as ready to MPI through MPI_PREADY calls. Aggregation of partitions is permitted but not required. Ordering of partitions is permitted but not required. A naive implementation can simply wait for the entire message buffer to be marked ready before any transfer(s) occur and could wait until the completion function is
called on a request before transferring data. However, this modality of communication
gives MPI implementations far more flexibility in data movement than nonpartitioned
communications. (End of rationale.)

4.2.1 Communication Initialization and Starting with Partitioning

Initialization of partitioned communication operations use the initialization calls described
below. Subsequent to initialization, MPI_START/MPI_STARTALL are used as the first
indication to MPI that a message transfer will occur. For send-side operations, neither
initializing nor starting the operation enables transfer of any part of the user buffer. Freeing
or canceling a partitioned communication request that is active (i.e., initialized and started)
and not completed is erroneous. After the partitioned communication operation is started,
individual partitions of a message are indicated as ready to be sent by MPI via the
MPI_PREADY function, described below.

MPI_PSEND_INIT(buf, partitions, count, datatype, dest, tag, comm, info, request)

IN buf initial address of send buffer (choice)
IN partitions number of partitions (non-negative integer)
IN count number of elements sent per partition (non-negative integer)
IN datatype type of each element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
IN info info argument (handle)
OUT request communication request (handle)

C binding
int MPI_Psend_init(const void *buf, int partitions, MPI_Count count,
 MPI_Datatype datatype, int dest, int tag, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)

Fortran 2008 binding
MPI_Psend_init(buf, partitions, count, datatype, dest, tag, comm, info,
 request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: partitions, dest, tag
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
Fortran binding

MPI_PSEND_INIT(BUF, PARTITIONS, COUNT, DATATYPE, DEST, TAG, COMM, INFO, REQUEST, IERROR)

Fortran binding

MPI_PSEND_INIT(BUF, PARTITIONS, COUNT, DATATYPE, DEST, TAG, COMM, INFO, REQUEST, IERROR)

MPI_PSEND_INIT creates a partitioned communication request and binds to it all the arguments of a partitioned send operation. Matching follows the same MPI matching rules as for point-to-point communication (see Chapter 3) with communicator, tag, and source dictating message matching. In the event that the communicator, tag, and source do not uniquely identify a message, the order in which partitioned communication initialization calls are made is the order in which they will eventually match. This operation can only match with partitioned communication initialization operations, therefore it is required to be matched with a corresponding MPI_PRECV_INIT call. Partitioned communication initialization calls are local. It is erroneous to provide a partitions value \(\leq 0 \). Send-side and receive-side buffers must be identical in size.

Advice to implementors. Unlike MPI_SEND_INIT, MPI_PSEND_INIT can be matched as early as the initialization call. Also, unlike MPI_SEND_INIT, MPI_PSEND_INIT takes an info argument. *(End of advice to implementors.)*

Fortran binding

MPI_PRECV_INIT(buf, partitions, count, datatype, source, tag, comm, info, request)

Fortran binding

MPI_PRECV_INIT(buf, partitions, count, datatype, source, tag, comm, info, request)

C binding

```c
int MPI_Precv_init(void *buf, int partitions, MPI_Count count,
                    MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
                    MPI_Info info, MPI_Request *request)
```

Fortran 2008 binding

MPI_Precv_init(buf, partitions, count, datatype, source, tag, comm, info, request, ierror)

Fortran 2008 binding

MPI_Precv_init(buf, partitions, count, datatype, source, tag, comm, info, request, ierror)
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_PRECV_INIT(BUF, PARTITIONS, COUNT, DATATYPE, SOURCE, TAG, COMM, INFO,
REQUEST, IERROR)

 INTEGER PARTITIONS, DATATYPE, SOURCE, TAG, COMM, INFO, REQUEST, IERROR
INTEGER(KIND=MPI_COUNT_KIND) COUNT

Rationale. The info argument is provided in order to support per-operation implementation-defined info keys. (End of rationale.)

MPI_PRECV_INIT creates a partitioned communication receive request and binds to it all the arguments of a partitioned receive operation. This operation can only match with partitioned communication initialization operations, therefore the MPI library is required to match MPI_PRECV_INIT calls only with a corresponding MPI_PSEND_INIT call. Matching follows the same MPI matching rules as for point-to-point communication (see Chapter 3) with communicator, tag, and source dictating message matching. In the event that the communicator, tag, and source do not uniquely identify a message, the order in which partitioned communication initialization calls are made is the order in which they will eventually match. Partitioned communication initialization calls are local. That is, MPI_PRECV_INIT may return before the operation completes. It is erroneous to provide a partitions value ≤ 0. Wildcards for source and tag are not allowed.

Advice to implementors. Unlike MPI_RECV_INIT, MPI_PRECV_INIT may communicate. Also unlike MPI_RECV_INIT, MPI_PRECV_INIT takes an info argument. (End of advice to implementors.)

MPI_PREADY(partition, request)
 IN partition partition to mark ready for transfer (non-negative integer)
INOUT request partitioned communication request (handle)

C binding
int MPI_Pready(int partition, MPI_Request request)

Fortran 2008 binding
MPI_Pready(partition, request, ierror)
 INTEGER, INTENT(IN) :: partition
 TYPE(MPI_Request), INTENT(IN) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
4.2 Semantics of Partitioned Point-to-Point Communication

Fortran binding

\[
\text{MPI_PREADY}(\text{PARTITION}, \text{REQUEST}, \text{IERROR})
\]

\[
\text{INTEGER \ PARTITION, \ REQUEST, \ IERROR}
\]

\text{MPI_PREADY} is a send-side call that indicates that a given partition is ready to be transferred. It is erroneous to use \text{MPI_PREADY} on any request object that does not correspond to a partitioned send operation. The partitioning is defined by the \text{MPI_PSEND_INIT} call. Partition numbering starts at zero and ranges to one less than the number of partitions declared in the \text{MPI_PSEND_INIT} call. Specifying a partition number that is equal to or larger than the number of partitions is erroneous. After a call to \text{MPI_START/\text{MPI_STARTALL}, all partitions associated with that operation are inactive. A call to \text{MPI_PREADY} marks the indicated partition as active. Calling \text{MPI_PREADY} on an active partition is erroneous.}

\[
\text{MPI_PREADY_RANGE}(\text{partition}_\text{low}, \text{partition}_\text{high}, \text{request})
\]

\[
\begin{align*}
\text{IN} & \quad \text{partition}_\text{low} & \quad \text{lowest partition ready for transfer (non-negative integer)} \\
\text{IN} & \quad \text{partition}_\text{high} & \quad \text{highest partition ready for transfer (non-negative integer)} \\
\text{INOUT} & \quad \text{request} & \quad \text{partitioned communication request (handle)}
\end{align*}
\]

C binding

\[
\text{int MPI_Pready_range(int partition}_\text{low}, \text{int partition}_\text{high},
\]

\[
\text{MPI_Request request)}
\]

Fortran 2008 binding

\[
\text{MPI_Pready_range(\text{partition}_\text{low}, \text{partition}_\text{high}, \text{request}, \text{ierror})}
\]

\[
\begin{align*}
\text{INTEGER, INTENT(IN)} & \quad :: \text{partition}_\text{low}, \text{partition}_\text{high} \\
\text{TYPE(MPI_Request), INTENT(IN)} & \quad :: \text{request} \\
\text{INTEGER, OPTIONAL, INTENT(OUT)} & \quad :: \text{ierror}
\end{align*}
\]

Fortran binding

\[
\text{MPI_PREADY_RANGE(\text{PARTITION}_\text{LOW}, \text{PARTITION}_\text{HIGH}, \text{REQUEST}, \text{IERROR})}
\]

\[
\text{INTEGER \ PARTITION_LOW, \ PARTITION_HIGH, \ REQUEST, \ IERROR}
\]

A call to \text{MPI_PREADY_RANGE} has the same effect as calls to \text{MPI_PREADY}, executed for \(i=\text{partition}_\text{low}, \ldots, \text{partition}_\text{high}\), in some arbitrary order. Calls to \text{MPI_PREADY_RANGE} follow the same rules as those for \text{MPI_PREADY} calls.

\[
\text{MPI_PREADY_LIST(length, array_of_partitions, request)}
\]

\[
\begin{align*}
\text{IN} & \quad \text{length} & \quad \text{list length (integer)} \\
\text{IN} & \quad \text{array_of_partitions} & \quad \text{array of partitions (array of non-negative integers)} \\
\text{INOUT} & \quad \text{request} & \quad \text{partitioned communication request (handle)}
\end{align*}
\]

C binding

\[
\text{int MPI_Pready_list(int length, const int array_of_partitions[],}
\]

\[
\text{MPI_Request request)}
\]
Fortran 2008 binding

MPI_Pready_list(length, array_of_partitions, request, ierror)
 INTEGER, INTENT(IN) :: length, array_of_partitions(length)
 TYPE(MPI_Request), INTENT(IN) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_PREADY_LIST(LENGTH, ARRAY_OF_PARTITIONS, REQUEST, IERROR)
 INTEGER LENGTH, ARRAY_OF_PARTITIONS(*), REQUEST, IERROR

A call to MPI_PREADY_LIST has the same effect as calls to
MPI_PREADY, executed for the partitions specified in the range array_of_partitions[0]
..., array_of_partitions[count – 1] of the array_of_partitions, executed in some arbitrary
order. Calls to MPI_PREADY_LIST follow the same rules as those for MPI_PREADY calls.

4.2.2 Communication Completion under Partitioning

The functions MPI_WAIT and MPI_TEST (and variants) are used to complete a partitioned
communication operation. The completion of a partitioned send operation indicates that
the sender is now free to call MPI_START/MPI_STARTALL to restart the operation and
subsequently MPI_PREADY, MPI_PREADY_RANGE or MPI_PREADY_LIST. Alternatively,
the user can safely free the partitioned communication request after the completion of the
partitioned operation. For the sending process, completion of the partitioned send operation
does not indicate that the partitions of the message have all been received.

The completion of a partitioned receive operation through MPI_WAIT or MPI_TEST
indicates that the receive buffer contains all of the partitions. A function for probing the
partial reception of the receive buffer is provided by MPI_PARRIVED. The MPI_PARRIVED
function can be used to determine if the message data for the indicated partition has been
received into the receive buffer. Upon success, the receiver becomes free to access the
indicated partition (as well as any others that previously completed for that operation).

MPI_PARRIVED(request, partition, flag)
 IN request partitioned communication request (handle)
 IN partition partition to be tested (non-negative integer)
 OUT flag true if operation completed on the specified partition,
 false if not (logical)

C binding

int MPI_Parrived(MPI_Request request, int partition, int *flag)

Fortran 2008 binding

MPI_Parrived(request, partition, flag, ierror)
 TYPE(MPI_Request), INTENT(IN) :: request
 INTEGER, INTENT(IN) :: partition
 LOGICAL, INTENT(OUT) :: flag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_PARRIVED(REQUEST, PARTITION, FLAG, IERROR)
The function MPI_PARRIVED can be used to test partial completion of partitioned receive operations. A call to MPI_PARRIVED on an active partitioned communication request returns flag = true if the operation identified by request for the specified partition is complete. The request is not marked as complete/inactive by this procedure. A subsequent call to an MPI completing procedure (e.g., MPI_TEST/MPI_WAIT) is required to complete the operation, as described in Chapter 3. MPI_PARRIVED may be called multiple times for a partition. MPI_PARRIVED may be called with a null or inactive request argument. In either case, the operation returns with flag = true. Calling MPI_PARRIVED on a request that does not correspond to a partitioned receive operation is erroneous.

Repeated calls to MPI_PARRIVED with the same request and partition arguments will eventually return flag = true if the corresponding partitioned send operation has been started and all send partitions have been marked as ready. For additional information on MPI progress see Sections 2.9 and 3.7.4.

Advice to implementors. A high quality implementation will eventually return flag = true from MPI_PARRIVED after all of the corresponding MPI_PREADY calls have been made for a receive-side partition, even if other send partitions are not yet marked as ready. (End of advice to implementors.)

4.2.3 Semantics of Communications in Partitioned Mode

The semantics of nonblocking partitioned communication are defined by suitably extending the definitions in Section 3.5.

Interpretation of count and datatype for partitioned communication. Partitioned communication uses the count and datatype arguments in the partitioned communication initialization functions to describe a single partition. The argument partitions specifies how many equal partitions of a number (count) of objects of datatype make up the entire buffer to be transferred in the partitioned communication. As partitioned communication describes many partitions, using absolute displacements in datatypes (e.g., MPI_BOTTOM) is not supported. Partitions are contiguous in memory, there is no padding in between them. Once a partitioned send operation is started, each partition must be marked as ready using MPI_PREADY and the operation must be completed using a completion function, such as MPI_TEST or MPI_WAIT.

Order. Matching follows the same MPI matching rules as for point-to-point communication (see Chapter 3) with communicator, tag, and source dictating message matching. In the event that the communicator, tag, and source do not uniquely identify the message, the order in which partitioned communication initialization calls are made is the order in which they will eventually match.

4.3 Partitioned Communication Examples

This section provides concrete examples of the utility of partitioned communication in realistic settings.
4.3.1 Partition Communication with Threads/Tasks Using OpenMP 4.0 or later

The equal partitioning on send-side and receive-side in Example 4.1 is shown using threads. In this case, the receive-side uses the same number of partitions as the send-side as in the previous example, but this example uses multiple threads on the send-side. Note that the MPI_PSEND_INIT and MPI_PRECV_INIT functions match each other like in the previous example.

Example 4.2. Equal partitioning on send-side and receive-side using threads.

```c
#include <stdlib.h>
#include "mpi.h"
#define NUM_THREADS 8
#define PARTITIONS 8
#define PARTLENGTH 16
int main(int argc, char *argv[]) /* same send/recv partitioning */
{
    double message[PARTITIONS*PARTLENGTH];
    int partitions = PARTITIONS;
    int partlength = PARTLENGTH;
    int count = 1, source = 0, dest = 1, tag = 1, flag = 0;
    int myrank;
    int provided;
    MPI_Request request;
    MPI_Info info = MPI_INFO_NULL;
    MPI_Datatype xfer_type;
    MPI_Init_thread(& argc, &argv, MPI_THREAD_MULTIPLE, & provided);
    if (provided < MPI_THREAD_MULTIPLE)
        MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
    MPI_Comm_rank(MPI_COMM_WORLD, & myrank);
    MPI_Type_contiguous(partlength, MPI_DOUBLE, & xfer_type);
    MPI_Type_commit(& xfer_type);
    if (myrank == 0)
    {
        MPI_Psend_init(message, partitions, count, xfer_type, dest, tag,
                        MPI_COMM_WORLD, info, & request);
        MPI_Start(& request);
        #pragma omp parallel for shared(request) num_threads(NUM_THREADS)
        for (int i=0; i<partitions; i++)
        {
            /* compute and fill partition #i, then mark ready: */
            MPI_Pready(i, request);
        }
        while(!flag)
        {
            /* Do useful work */
            MPI_Test(& request, & flag, MPI_STATUS_IGNORE);
            /* Do useful work */
        }
        MPI_Request_free(& request);
    }
    else if (myrank == 1)
    {
```
```
4.3.2 Send-only Partitioning Example with Tasks and OpenMP version 4.0 or later

The previous example is tailored specifically for send-side partitioning using threads. This is an example where parallel task producers produce input to part of an overall buffer; they complete in any order and contribute to the overall buffer.

**Example 4.3.** Parallel task producers for partitioned communication using threads.

```c
#include <stdlib.h>
#include "mpi.h"
#define NUM_THREADS 8
#define NUM_TASKS 64
#define PARTITIONS NUM_TASKS
#define PARTLENGTH 16
#define MESSAGE_LENGTH PARTITIONS*PARTLENGTH

int main(int argc, char *argv[]) /* send-side partitioning */
{
 double message[MESSAGE_LENGTH];
 int send_partitions = PARTITIONS,
 send_partlength = PARTLENGTH,
 recv_partitions = 1,
 recv_partlength = PARTITIONS*PARTLENGTH;
 int count = 1, source = 0, dest = 1, tag = 1, flag = 0;
 int myrank;
 int provided;
 MPI_Request request;
 MPI_Info info = MPI_INFO_NULL;
 MPI_Datatype send_type;
 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
 if (provided < MPI_THREAD_MULTIPLE)
 MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Type_contiguous(send_partlength, MPI_DOUBLE, &send_type);
 MPI_Type_commit(&send_type);

 if (myrank == 0)
 {
 MPI_Psend_init(message, send_partitions, count, send_type, dest, tag,
 MPI_COMM_WORLD, info, &request);
 MPI_Start(&request);
 }
 MPI_Finalize();
 return 0;
}
```
#pragma omp parallel shared(request) num_threads(NUM_THREADS)
{
    #pragma omp single
    {
        /* single thread creates 64 tasks to be executed by 8 threads */
        for (int partition_num=0; partition_num<NUM_TASKS; partition_num++)
        {
            #pragma omp task firstprivate(partition_num)
            {
                /* compute and fill partition #partition_num, then mark
                 ready: */
                /* buffer is filled in arbitrary order from each task */
                MPI_Pready(partition_num, request);
            } /* end task */
        } /* end for */
    } /* end single */
} /* end parallel */

while(!flag)
{
    /* Do useful work */
    MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
    /* Do useful work */
}
MPI_Request_free(&request);
}
else if (myrank == 1)
{
    MPI_Precv_init(message, recv_partitions, recv_partlength, MPI_DOUBLE,
                  source, tag, MPI_COMM_WORLD, info, &request);

    MPI_Start(&request);
    while(!flag)
    {
        /* Do useful work */
        MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
        /* Do useful work */
    }
    MPI_Request_free(&request);
}
MPI_Finalize();
return 0;

4.3.3 Send and Receive Partitioning Example with OpenMP version 4.0 or later

This example demonstrates receive-side partial completion notification using more than one
partition per receive-side thread. It uses a naive flag based method to test for multiple com-
pleted partitions per thread. Note that this means that some threads may be busy polling
for completion of assigned partitions when partitions are available to work on that were not
assigned to the polling threads in this example. More advanced work stealing methods could
be employed for greater efficiency. Like previous examples, it also demonstrates send-side
production of input to part of an overall buffer. This example also uses different send-side
and receive-side partitioning.
Example 4.4. Partitioned communication receive-side partial completion.

```c
#include <stdlib.h>
#include "mpi.h"
#define NUM_THREADS 64
#define PARTITIONS NUM_THREADS
#define PARTLENGTH 16
#define MESSAGE_LENGTH PARTITIONS*PARTLENGTH
int main(int argc, char *argv[])
{
 double message[MESSAGE_LENGTH];
 int send_partitions = PARTITIONS,
 send_partlength = PARTLENGTH,
 recv_partitions = PARTITIONS*2,
 recv_partlength = PARTLENGTH/2;
 int source = 0, dest = 1, tag = 1, flag = 0;
 int myrank;
 int provided;
 MPI_Request request;
 MPI_Info info = MPI_INFO_NULL;
 MPI_Datatype send_type;
 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
 if (provided < MPI_THREAD_MULTIPLE)
 MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Type_contiguous(send_partlength, MPI_DOUBLE, &send_type);
 MPI_Type_commit(&send_type);
 if (myrank == 0)
 {
 MPI_Psend_init(message, send_partitions, 1, send_type, dest, tag,
 MPI_COMM_WORLD, info, &request);
 MPI_Start(&request);
 #pragma omp parallel for shared(request) \
 firstprivate(send_partitions) \
 num_threads(NUM_THREADS)
 for (int i=0; i<send_partitions; i++)
 {
 /* compute and fill partition #i, then mark ready: */
 MPI_Pready(i, request);
 }
 while(!flag)
 {
 /* Do useful work */
 MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
 /* Do useful work */
 }
 MPI_Request_free(&request);
 }
 else if (myrank == 1)
 {
 MPI_Precv_init(message, recv_partitions, recv_partlength,
 MPI_DOUBLE, send_type);
 MPI_Type_contiguous(recv_partlength, MPI_DOUBLE, &recv_type);
 MPI_Type_commit(&recv_type);
 for (int i=0; i<recv_partitions; i++)
 {
 /* compute and fill partition #i, then mark ready: */
 MPI_Pready(i, request);
 }
 while(!flag)
 {
 /* Do useful work */
 MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
 /* Do useful work */
 }
 MPI_Request_free(&request);
 }
```
MPI_DOUBLE, source, tag, MPI_COMM_WORLD, info, &request);

MPI_Start(&request);
#pragma omp parallel for shared(request) \
    firstprivate(recv_partitions) \
    num_threads(NUM_THREADS)
for (int j=0; j<recv_partitions; j+=2)
{
    int part_flag = 0;
    int part1_complete = 0;
    int part2_complete = 0;
    while(part1_complete == 0 || part2_complete == 0)
    {
        /* test partition #j and #j+1 */
        MPI_Parrived(request, j, &part_flag);
        if(part_flag && part1_complete == 0)
        {
            part1_complete ++;
            /* Do work using partition j data */
        }
        MPI_Parrived(request, j+1, &part_flag);
        if(part_flag && part2_complete == 0)
        {
            part2_complete ++;
            /* Do work using partition j+1 */
        }
    }
}
while(!flag)
{
    /* Do useful work */
    MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
    /* Do useful work */
}
MPI_Request_free(&request);
}
MPI_Finalize();
return 0;
Chapter 5
Datatypes

Basic datatypes are introduced in Section 3.2.2 and in Section 3.3. In this chapter, this model is extended to describe any data layout. We consider general datatypes that allow one to transfer efficiently heterogeneous and noncontiguous data. We conclude with the description of calls for explicit packing and unpacking of messages.

5.1 Derived Datatypes

Up to here, all point-to-point communications have involved only buffers containing a sequence of identical basic datatypes. This is too constraining on two accounts. One often wants to pass messages that contain values with different datatypes (e.g., an integer count, followed by a sequence of real numbers); and one often wants to send noncontiguous data (e.g., a sub-block of a matrix). One solution is to pack noncontiguous data into a contiguous buffer at the sender site and unpack it at the receiver site. This has the disadvantage of requiring additional memory-to-memory copy operations at both sites, even when the communication subsystem has scatter-gather capabilities. Instead, MPI provides mechanisms to specify more general, mixed, and noncontiguous communication buffers. It is up to the implementation to decide whether data should be first packed in a contiguous buffer before being transmitted, or whether it can be collected directly from where it resides.

The general mechanisms provided here allow one to transfer directly, without copying, objects of various shapes and sizes. It is not assumed that the MPI library is cognizant of the objects declared in the host language. Thus, if one wants to transfer a structure, or an array section, it will be necessary to provide in MPI a definition of a communication buffer that mimics the definition of the structure or array section in question. These facilities can be used by library designers to define communication functions that can transfer objects defined in the host language—by decoding their definitions as available in a symbol table or a dope vector. Such higher-level communication functions are not part of MPI.

More general communication buffers are specified by replacing the basic datatypes that have been used so far with derived datatypes that are constructed from basic datatypes using the constructors described in this section. These methods of constructing derived datatypes can be applied recursively.

A general datatype is an opaque object that specifies two things:

- A sequence of basic datatypes.
- A sequence of integer (byte) displacements.

The displacements are not required to be positive, distinct, or in increasing order. Therefore, the order of items need not coincide with their order in store, and an item may appear more than once. We call such a pair of sequences (or sequence of pairs) a type
map. The sequence of basic datatypes (displacements ignored) is the **type signature** of the datatype.

Let

\[ Typemap = \{(type_0, disp_0), \ldots, (type_{n-1}, disp_{n-1})\}, \]

be such a type map, where \( type_i \) are basic types, and \( disp_i \) are displacements. Let

\[ Typesig = \{type_0, \ldots, type_{n-1}\} \]

be the associated type signature. This type map, together with a base address \( buf \), specifies a communication buffer: the communication buffer that consists of \( n \) entries, where the \( i \)-th entry is at address \( buf + disp_i \) and has type \( type_i \). A message assembled from such a communication buffer will consist of \( n \) values, of the types defined by \( Typesig \).

Most datatype constructors have replication count or block length arguments. Allowed values are nonnegative integers. If the value is zero, no elements are generated in the type map and there is no effect on datatype bounds or extent.

We can use a handle to a general datatype as an argument in a send or receive operation, instead of a basic datatype argument. The operation \( MPI_{\text{SEND}}(buf, 1, \text{datatype}, \ldots) \) will use the send buffer defined by the base address \( buf \) and the general datatype associated with \( \text{datatype} \); it will generate a message with the type signature determined by the \( \text{datatype} \) argument. \( MPI_{\text{RECV}}(buf, 1, \text{datatype}, \ldots) \) will use the receive buffer defined by the base address \( buf \) and the general datatype associated with \( \text{datatype} \).

General datatypes can be used in all send and receive operations. We discuss, in Section 5.1.11, the case where the second argument \( \text{count} \) has value \( > 1 \).

The basic datatypes presented in Section 3.2.2 are particular cases of a general datatype, and are predefined. Thus, \( MPI_{\text{INT}} \) is a predefined handle to a datatype with type map \( \{\{\text{int}, 0\}\} \), with one entry of type \( \text{int} \) and displacement zero. The other basic datatypes are similar.

The **extent** of a datatype is defined to be the span from the first byte to the last byte occupied by entries in this datatype, rounded up to satisfy alignment requirements. That is, if

\[ Typemap = \{(type_0, disp_0), \ldots, (type_{n-1}, disp_{n-1})\}, \]

then

\[ lb(Typemap) = \min_j disp_j, \]
\[ ub(Typemap) = \max_j (disp_j + \text{sizeof}(type_j)) + \epsilon, \]
\[ \text{extent}(Typemap) = ub(Typemap) - lb(Typemap). \] (5.1)

If \( type_j \) requires alignment to a byte address that is a multiple of \( k_j \), then \( \epsilon \) is the least nonnegative increment needed to round \( \text{extent}(Typemap) \) to the next multiple of \( \max_j k_j \).

In Fortran, it is implementation dependent whether the MPI implementation computes the alignments \( k_j \) according to the alignments used by the compiler in common blocks, \( \text{SEQUENCE} \) derived types, \( \text{BIND(C)} \) derived types, or derived types that are neither \( \text{SEQUENCE} \) nor \( \text{BIND(C)} \). The complete definition of **extent** is given by Equation 5.1 Section 5.1.
Example 5.1. Assume that $T y p e = \{(\text{double}, 0), (\text{char}, 8)\}$ (a double at displacement zero, followed by a char at displacement eight). Assume, furthermore, that doubles have to be strictly aligned at addresses that are multiples of eight. Then, the extent of this datatype is 16 (9 rounded to the next multiple of 8). A datatype that consists of a character immediately followed by a double will also have an extent of 16.

Rationale. The definition of extent is motivated by the assumption that the amount of padding added at the end of each structure in an array of structures is the least needed to fulfill alignment constraints. More explicit control of the extent is provided in Section 5.1.6. Such explicit control is needed in cases where the assumption does not hold, for example, where union types are used. In Fortran, structures can be expressed with several language features, e.g., common blocks, SEQUENCE derived types, or BIND(C) derived types. The compiler may use different alignments, and therefore, it is recommended to use MPI_TYPE_CREATE_RESIZED for arrays of structures if an alignment may cause an alignment-gap at the end of a structure as described in Section 5.1.6 and in Section 19.1.15. (End of rationale.)

5.1.1 Type Constructors with Explicit Addresses

In Fortran, the procedures MPI_TYPE_CREATE_HVECTOR, MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HINDEXED_BLOCK, MPI_TYPE_CREATE_STRUCT, and MPI_GET_ADDRESS accept arguments of type INTEGER(KIND=MPI_ADDRESS_KIND), wherever arguments of type MPI_Aint are used in C. For Fortran compilers that do not support the Fortran 90 KIND notation, and where addresses are 64 bits whereas default INTEGERS are 32 bits, these arguments will be of type INTEGER*8 (assuming the Fortran compiler accepts the common extension of INTEGER*8 for eight-byte integers).

For the large count versions of three datatype constructors with explicit addresses, MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HINDEXED_BLOCK, and MPI_TYPE_CREATE_STRUCT, absolute addresses shall not be used to specify byte displacements since the parameter is of type MPI_COUNT instead of type MPI_AINT.

5.1.2 Datatype Constructors

Contiguous. The simplest datatype constructor is MPI_TYPE_CONTIGUOUS, which allows replication of a datatype into contiguous locations.

MPI_TYPE_CONTIGUOUS(count, oldtype, newtype)

IN count replication count (non-negative integer)
IN oldtype old datatype (handle)
OUT newtype new datatype (handle)

C binding
int MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype)
int MPI_Type_contiguous_c(MPI_Count count, MPI_Datatype oldtype,
   MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_contiguous(count, oldtype, newtype, ierror)
   INTEGER, INTENT(IN) :: count
   TYPE(MPI_Datatype), INTENT(IN) :: oldtype
   TYPE(MPI_Datatype), INTENT(OUT) :: newtype
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_contiguous(count, oldtype, newtype, ierror)!(_c)
   INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
   TYPE(MPI_Datatype), INTENT(IN) :: oldtype
   TYPE(MPI_Datatype), INTENT(OUT) :: newtype
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
   INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

newtype is the datatype obtained by concatenating count copies of oldtype. Concatenation
is defined using extent as the size of the concatenated copies.

Example 5.2. Let oldtype have type map \{\{(\text{double},0), (\text{char},8)\}\}, with extent 16, and let
count = 3. The type map of the datatype returned by newtype is
\{\{(\text{double},0), (\text{char},8), (\text{double},16), (\text{char},24), (\text{double},32), (\text{char},40)\}\};
i.e., alternating double and char elements, with displacements 0, 8, 16, 24, 32, 40.

In general, assume that the type map of oldtype is
\{\{(\text{type}_0, \text{disp}_0), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1})\}\},
with extent ex. Then newtype has a type map with count \cdot n entries defined by:
\{\{(\text{type}_0, \text{disp}_0), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1}), (\text{type}_0, \text{disp}_0 + ex), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1} + ex),
\ldots, (\text{type}_0, \text{disp}_0 + ex \cdot (\text{count} - 1)), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1} + ex \cdot (\text{count} - 1))\}\}.

Vector. The procedure MPI_TYPE_VECTOR is a more general constructor that allows
replication of a datatype into locations that consist of equally spaced blocks. Each block
is obtained by concatenating the same number of copies of the old datatype. The spacing
between blocks is a multiple of the extent of the old datatype.
### 5.1 Derived Datatypes

**MPI_TYPE_VECTOR**

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>count</td>
</tr>
<tr>
<td>IN</td>
<td>blocklength</td>
</tr>
<tr>
<td>IN</td>
<td>stride</td>
</tr>
<tr>
<td>IN</td>
<td>oldtype</td>
</tr>
<tr>
<td>OUT</td>
<td>newtype</td>
</tr>
</tbody>
</table>

**C binding**

```c
int MPI_Type_vector(int count, int blocklength, int stride,
 MPI_Datatype oldtype, MPI_Datatype *newtype)
```

**Fortran 2008 binding**

```fortran
MPI_Type_vector(count, blocklength, stride, oldtype, newtype, ierror)
```

**Fortran binding**

```fortran
MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
```

---

**Example 5.3.** Assume, again, that oldtype has type map \{((double,0),(char,8))\}, with extent 16. A call to **MPI_TYPE_VECTOR**(2, 3, 4, oldtype, newtype) will create the datatype with type map,

\[
\{(double,0),(char,8),(double,16),(char,24),(double,32),(char,40),
(double,64),(char,72),(double,80),(char,88),(double,96),(char,104)\}.
\]

That is, two blocks with three copies each of the old type, with a stride of 4 elements (4 \cdot 16 bytes) between the the start of each block.

**Example 5.4.** A call to **MPI_TYPE_VECTOR**(3, 1, -2, oldtype, newtype) will create the datatype,

\[
\{(double,0),(char,8),(double,-32),(char,-24),(double,-64),(char,-56)\}.
\]
In general, assume that oldtype has type map,

\{(type_0, disp_0), \ldots, (type_{n-1}, disp_{n-1})\},

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with count \cdot bl \cdot n entries:

\{(type_0, disp_0), \ldots, (type_{n-1}, disp_{n-1}),
(type_0, disp_0 + ex), \ldots, (type_{n-1}, disp_{n-1} + ex), \ldots,
(type_0, disp_0 + (bl - 1) \cdot ex), \ldots, (type_{n-1}, disp_{n-1} + (bl - 1) \cdot ex), \ldots,
(type_0, disp_0 + stride \cdot ex), \ldots, (type_{n-1}, disp_{n-1} + stride \cdot ex), \ldots,
(type_0, disp_0 + (stride + bl - 1) \cdot ex), \ldots, (type_{n-1}, disp_{n-1} + (stride + bl - 1) \cdot ex), \ldots,
(type_0, disp_0 + stride \cdot (count - 1) \cdot ex), \ldots,
(type_{n-1}, disp_{n-1} + stride \cdot (count - 1) \cdot ex), \ldots,
(type_0, disp_0 + (stride \cdot (count - 1) + bl - 1) \cdot ex), \ldots,
(type_{n-1}, disp_{n-1} + (stride \cdot (count - 1) + bl - 1) \cdot ex)\}.

A call to MPI_TYPE_CONTIGUOUS(count, oldtype, newtype) is equivalent to a call to MPI_TYPE_VECTOR(count, 1, 1, oldtype, newtype), or to a call to MPI_TYPE_VECTOR(1, count, n, oldtype, newtype), where n is an arbitrary integer value.

**Hvector.** The procedure MPI_TYPE_CREATE_HVECTOR is identical to MPI_TYPE_VECTOR, except that stride is given in bytes, rather than in elements. The use for both types of vector constructors is illustrated in Section 5.1.14. (H stands for “heterogeneous”).

**MPI_TYPE_CREATE_HVECTOR**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>number of blocks (non-negative integer)</td>
</tr>
<tr>
<td>blocklength</td>
<td>number of elements in each block (non-negative integer)</td>
</tr>
<tr>
<td>stride</td>
<td>number of bytes between start of each block (integer)</td>
</tr>
<tr>
<td>oldtype</td>
<td>old datatype (handle)</td>
</tr>
<tr>
<td>newtype</td>
<td>new datatype (handle)</td>
</tr>
</tbody>
</table>

**C binding**

```c
int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype);
int MPI_Type_create_hvector_c(MPI_Count count, MPI_Count blocklength,
MPI_Count stride, MPI_Datatype oldtype, MPI_Datatype *newtype);
```
5.1 Derived Datatypes

Fortran 2008 binding

```fortran
MPI_Type_create_hvector(count, blocklength, stride, oldtype, newtype, ierror)
 INTEGER, INTENT(IN) :: count, blocklength
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: stride
 TYPE(MPI_Datatype), INTENT(IN) :: oldtype
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_hvector(count, blocklength, stride, oldtype, newtype, ierror)
 !(_c)
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count, blocklength, stride
 TYPE(MPI_Datatype), INTENT(IN) :: oldtype
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
 INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE
```

Assume that `oldtype` has type map,

\[
\{(\text{type}_0, \text{disp}_0), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1})\},
\]

with extent `ex`. Let `bl` be the `blocklength`. The newly created datatype has a type map with \(\text{count} \cdot \text{bl} \cdot n\) entries:

\[
\{(\text{type}_0, \text{disp}_0), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1}) , \\
(\text{type}_0, \text{disp}_0 + \text{ex}), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1} + \text{ex}) , , , , \\
(\text{type}_0, \text{disp}_0 + (\text{bl} - 1) \cdot \text{ex}), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1} + (\text{bl} - 1) \cdot \text{ex}) , , , , \\
(\text{type}_0, \text{disp}_0 + \text{stride}), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1} + \text{stride}) , , , , \\
(\text{type}_0, \text{disp}_0 + \text{stride} + (\text{bl} - 1) \cdot \text{ex}), , , , \\
(\text{type}_{n-1}, \text{disp}_{n-1} + \text{stride} + (\text{bl} - 1) \cdot \text{ex}) , , , , \\
(\text{type}_0, \text{disp}_0 + \text{stride} \cdot (\text{count} - 1)), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1} + \text{stride} \cdot (\text{count} - 1)) , , , , \\
(\text{type}_0, \text{disp}_0 + \text{stride} \cdot (\text{count} - 1) + (\text{bl} - 1) \cdot \text{ex}), , , , \\
(\text{type}_{n-1}, \text{disp}_{n-1} + \text{stride} \cdot (\text{count} - 1) + (\text{bl} - 1) \cdot \text{ex})\}.
\]

Indexed. The procedure `MPI_TYPE_INDEXED` allows replication of an old datatype into a sequence of blocks (each block is a concatenation of the old datatype), where each block can contain a different number of copies and have a different displacement. All block displacements are multiples of the old type extent.
**Chapter 5 Datatypes**

MPI_TYPE_INDEXED(count, array_of_blocklengths, array_of_displacements, oldtype, 
newtype)

**IN** count  
number of blocks—also number of entries in 
array_of_displacements and array_of_blocklengths  
(non-negative integer)

**IN** array_of_blocklengths  
number of elements per block (array of non-negative integers)

**IN** array_of_displacements  
displacement for each block, in multiples of oldtype  
(array of integers)

**IN** oldtype  
old datatype (handle)

**OUT** newtype  
new datatype (handle)

**C binding**

```c
int MPI_Type_indexed(int count, const int array_of_blocklengths[],
 const int array_of_displacements[], MPI_Datatype oldtype,
 MPI_Datatype *newtype)
```

```c
int MPI_Type_indexed_c(MPI_Count count,
 const MPI_Count array_of_blocklengths[],
 const MPI_Count array_of_displacements[], MPI_Datatype oldtype,
 MPI_Datatype *newtype)
```

**Fortran 2008 binding**

```fortran
MPI_Type_indexed(count, array_of_blocklengths, array_of_displacements, oldtype,
newtype, ierror)
```

```fortran
INTEGER, INTENT(IN) :: count, array_of_blocklengths(count),
array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_Type_indexed(count, array_of_blocklengths, array_of_displacements, oldtype,
newtype, ierror) !(_c)
```

```fortran
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count,
array_of_blocklengths(count), array_of_displacements(count)
```

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
```

```fortran
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS, OLDTYPE,
NEWTYPE, IERROR)
```

```fortran
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR
```

**Example 5.5.** Let oldtype have type map \{(double, 0), (char, 8)\}, with extent 16. Let \(B = (3, 1)\) and let \(D = (4, 0)\). A call to MPI_TYPE_INDEXED(2, B, D, oldtype, newtype) returns
a datatype with type map,
\[
\{(\text{double}, 64), (\text{char}, 72), (\text{double}, 80), (\text{char}, 88), (\text{double}, 96), (\text{char}, 104),
\text{(double}, 0), (\text{char}, 8)\}.
\]
That is, three copies of the old type starting at displacement 64, and one copy starting at displacement 0.

In general, assume that oldtype has type map,
\[
\{(\text{type}_0, \text{disp}_0), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1})\},
\]
with extent \(ex\). Let \(B\) be the array_of_blocklengths argument and \(D\) be the array_of_displacements argument. The newly created datatype has \(n \cdot \sum_{i=0}^{\text{count}-1} B[i]\) entries:
\[
\{(\text{type}_0, \text{disp}_0 + D[0] \cdot ex), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1} + D[0] \cdot ex), \ldots,
(\text{type}_0, \text{disp}_0 + (D[0] + B[0] - 1) \cdot ex), \ldots,
(\text{type}_{n-1}, \text{disp}_{n-1} + (D[0] + B[0] - 1) \cdot ex), \ldots,
(\text{type}_0, \text{disp}_0 + D[\text{count}-1] \cdot ex), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1} + D[\text{count}-1] \cdot ex), \ldots,
(\text{type}_0, \text{disp}_0 + (D[\text{count}-1] + B[\text{count}-1] - 1) \cdot ex), \ldots,
(\text{type}_{n-1}, \text{disp}_{n-1} + (D[\text{count}-1] + B[\text{count}-1] - 1) \cdot ex)\}.
\]

A call to \texttt{MPI\_TYPE\_VECTOR}(count, blocklength, stride, oldtype, newtype) is equivalent to a call to \texttt{MPI\_TYPE\_INDEXED}(count, B, D, oldtype, newtype) where
\[
D[j] = j \cdot \text{stride}, \ j = 0, \ldots, \text{count} - 1,
\]
and
\[
B[j] = \text{blocklength}, \ j = 0, \ldots, \text{count} - 1.
\]

\textbf{Himedexed.} The procedure \texttt{MPI\_TYPE\_CREATE\_HINDEXED} is identical to \texttt{MPI\_TYPE\_INDEXED}, except that block displacements in array_of_displacements are specified in bytes, rather than in multiples of the oldtype extent.
MPI_TYPE_CREATE_HINDEXED(count, array_of_blocklengths, array_of_displacements,
oldtype, newtype)

IN  count  number of blocks—also number of entries in
array_of_displacements and array_of_blocklengths
(non-negative integer)

IN  array_of_blocklengths  number of elements in each block (array of
non-negative integers)

IN  array_of_displacements  byte displacement of each block (array of integers)

IN  oldtype  old datatype (handle)

OUT newtype  new datatype (handle)

C binding

int MPI_Type_create_hindexed(int count, const int array_of_blocklengths[],
const MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_create_hindexed_c(MPI_Count count,
const MPI_Count array_of_blocklengths[],
const MPI_Count array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

Fortran 2008 binding

MPI_Type_create_hindexed(count, array_of_blocklengths, array_of_displacements,
oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_hindexed(count, array_of_blocklengths, array_of_displacements,
oldtype, newtype, ierror) !(_c)

INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count,
array_of_blocklengths(count), array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

Assume that oldtype has type map,

\{(type_0, disp_0), \ldots , (type_{n-1}, disp_{n-1})\},
with extent $ex$. Let $B$ be the array_of_blocklengths argument and $D$ be the array_of_displacements argument. The newly created datatype has a type map with $n \cdot \sum_{i=0}^{\text{count}-1} B[i]$ entries:

\[
\{(type_0, disp_0 + D[0]), \ldots, (type_{n-1}, disp_{n-1} + D[0]), \ldots, \\
(type_0, disp_0 + D[0] + (B[0] - 1) \cdot ex), \ldots, \\
(type_{n-1}, disp_{n-1} + D[0] + (B[0] - 1) \cdot ex), \ldots, \\
(type_0, disp_0 + D[\text{count}-1]), \ldots, (type_{n-1}, disp_{n-1} + D[\text{count}-1]), \ldots, \\
(type_0, disp_0 + D[\text{count}-1] + (B[\text{count}-1] - 1) \cdot ex), \ldots, \\
(type_{n-1}, disp_{n-1} + D[\text{count}-1] + (B[\text{count}-1] - 1) \cdot ex)\}.
\]

**Indexed_block.** This procedure is the same as MPI_TYPE_INDEXED except that the blocklength is the same for all blocks. There are many codes using indirect addressing arising from unstructured grids where the blocksize is always 1 (gather/scatter). The following convenience procedure allows for constant blocksize and arbitrary displacements.

**MPI_TYPE_CREATE_INDEXED_BLOCK**(count, blocklength, array_of_displacements, oldtype, newtype)

<table>
<thead>
<tr>
<th>IN</th>
<th>count</th>
<th>number of blocks—also number of entries in array_of_displacements (non-negative integer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>blocklength</td>
<td>number of elements in each block (non-negative integer)</td>
</tr>
<tr>
<td>IN</td>
<td>array_of_displacements</td>
<td>array of displacements, in multiples of oldtype (array of integers)</td>
</tr>
<tr>
<td>IN</td>
<td>oldtype</td>
<td>old datatype (handle)</td>
</tr>
<tr>
<td>OUT</td>
<td>newtype</td>
<td>new datatype (handle)</td>
</tr>
</tbody>
</table>

**C binding**

```c
int MPI_Type_create_indexed_block(int count, int blocklength,
 const int array_of_displacements[], MPI_Datatype oldtype,
 MPI_Datatype *newtype)
```

```
int MPI_Type_create_indexed_block_c(MPI_Count count, MPI_Count blocklength,
 const MPI_Count array_of_displacements[], MPI_Datatype oldtype,
 MPI_Datatype *newtype)
```

**Fortran 2008 binding**

```fortran
MPI_Type_create_indexed_block(count, blocklength, array_of_displacements,
 oldtype, newtype, ierr))
INTEGER, INTENT(IN) :: count, blocklength, array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
```
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_indexed_block(count, blocklength, array_of_displacements,
oldtype, newtype, ierror) !(_c)

INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count, blocklength,
array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE, NEWTYPE,
IERROR

Hindexed_block. The procedure MPI_TYPE_CREATE_HINDEXED_BLOCK is identical to
MPI_TYPE_CREATE_INDEXED_BLOCK, except that block displacements in
array_of_displacements are specified in bytes, rather than in multiples of the oldtype extent.

MPI_TYPE_CREATE_HINDEXED_BLOCK(count, blocklength, array_of_displacements,
oldtype, newtype)

IN count number of blocks—also number of entries in
array_of_displacements (non-negative integer)

IN blocklength number of elements in each block (non-negative integer)

IN array_of_displacements byte displacement of each block (array of integers)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

C binding

int MPI_Type_create_hindexed_block(int count, int blocklength,
const MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

int MPI_Type_create_hindexed_block_c(MPI_Count count, MPI_Count blocklength,
const MPI_Count array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

Fortran 2008 binding

MPI_Type_create_hindexed_block(count, blocklength, array_of_displacements,
oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, blocklength

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror
5.1 Derived Datatypes

MPI_Type_create_hindexed_block(count, blocklength, array_of_displacements, oldtype, newtype, ierror) !(_c)
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count, blocklength, array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_CREATE_HINDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

Struct. MPI_TYPE_CREATE_STRUCT is the most general type constructor. It further generalizes MPI_TYPE_CREATE_HINDEXED in that it allows each block to consist of replications of different datatypes.

MPI_TYPE_CREATE_STRUCT(count, array_of_blocklengths, array_of_displacements, array_of_types, newtype)

IN count  number of blocks—also number of entries in arrays
array_of_types, array_of_displacements, and
array_of_blocklengths (non-negative integer)

IN array_of_blocklengths  number of elements in each block (array of non-negative integers)

IN array_of_displacements  byte displacement of each block (array of integers)

IN array_of_types  type of elements in each block (array of handles)

OUT newtype  new datatype (handle)

C binding
int MPI_Type_create_struct(int count, const int array_of_blocklengths[],
const MPI_Aint array_of_displacements[],
const MPI_Datatype array_of_types[], MPI_Datatype *newtype)

int MPI_Type_create_struct_c(MPI_Count count,
const MPI_Count array_of_blocklengths[],
const MPI_Count array_of_displacements[],
const MPI_Datatype array_of_types[],
const MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_create_struct(count, array_of_blocklengths, array_of_displacements,
array_of_types, newtype, ierror)
INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: array_of_types(count)
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(INOUT) :: ierr

MPI_Type_create_struct(count, array_of_blocklengths, array_of_displacements, array_of_types, newtype, ierr) !(_c)

INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count,
array_of_blocklengths(count), array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: array_of_types(count)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierr

Fortran binding
MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*), NEWTYPE, IERROR
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count,
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
TYPE(MPI_Datatype), INTENT(OUT) :: newtype

Example 5.6. Let type1 have type map,

\{(double,0),(char,8)\},

with extent 16. Let \(B = (2, 1, 3)\), \(D = (0, 16, 26)\), and \(T = (\text{MPI\_FLOAT}, \text{type1}, \text{MPI\_CHAR})\). Then a call to MPI_TYPE_CREATE_STRUCT(3, B, D, T, newtype) returns a datatype with type map,

\{(float,0),(float,4),(double,16),(char,24),(char,26),(char,27),(char,28)\}.

That is, two copies of MPI_FLOAT starting at 0, followed by one copy of type1 starting at 16, followed by three copies of MPI_CHAR, starting at 26. In this example, we assume that a float occupies four bytes.

In general, let \(T\) be the array_of_types argument, where \(T[i]\) is a handle to,

typemap\(i\) = \{(type\(i_0\), disp\(i_0\)), ..., (type\(n_i-1\), disp\(n_i-1\))\},

with extent \(ex_i\). Let \(B\) be the array_of_blocklength argument and \(D\) be the array_of_displacements argument. Let \(c\) be the count argument. Then the newly created datatype has a type map with \(\sum_{i=0}^{n-1} B[i] \cdot n_i\) entries:

\{(type\(0_0\), disp\(0_0\) + D[0]), ..., (type\(n_0\), disp\(n_0\) + D[0]), ...,
(type\(0_{c-1}\), disp\(0_{c-1}\) + D[c-1]), ..., (type\(n_{c-1}\), disp\(n_{c-1}\) + D[c-1]), ...,
(type\(0_{n_c-1}\), disp\(0_{n_c-1}\) + D[c-1] + (B[c-1] - 1) \cdot ex_{c-1}), ...,
(type\(n_{n_c-1}\), disp\(n_{n_c-1}\) + D[c-1] + (B[c-1] - 1) \cdot ex_{c-1})\}.

A call to MPI_TYPE_CREATE_HINDEXED(count, B, D, oldtype, newtype) is equivalent to a call to MPI_TYPE_CREATE_STRUCT(count, B, D, T, newtype), where each entry of \(T\) is equal to oldtype.
5.1.3 Subarray Datatype Constructor

\texttt{MPI\_TYPE\_CREATE\_SUBARRAY(ndims, array\_of\_sizes, array\_of\_subsizes, array\_of\_starts, order, oldtype, newtype)}

\begin{verbatim}
IN    ndims         number of array dimensions (positive integer)
IN    array\_of\_sizes number of elements of type \texttt{oldtype} in each dimension of the full array (array of positive integers)
IN    array\_of\_subsizes number of elements of type \texttt{oldtype} in each dimension of the subarray (array of positive integers)
IN    array\_of\_starts starting coordinates of the subarray in each dimension (array of non-negative integers)
IN    order array storage order flag (state)
IN    oldtype old datatype (handle)
OUT   newtype new datatype (handle)
\end{verbatim}

\textbf{C binding}

\begin{verbatim}
int MPI_Type_create_subarray(int ndims, const int array_of_sizes[],
                             const int array_of_subsizes[], const int array_of_starts[],
                             int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_subarray_c(int ndims, const MPI_Count array_of_sizes[],
                               const MPI_Count array_of_subsizes[],
                               const MPI_Count array_of_starts[], int order,
                               MPI_Datatype oldtype, MPI_Datatype *newtype)
\end{verbatim}

\textbf{Fortran 2008 binding}

\begin{verbatim}
MPI_Type_create_subarray(ndims, array_of_sizes, array_of_subsizes,
                         array_of_starts, order, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: ndims, array_of_sizes(ndims),
                     array_of_subsizes(ndims), array_of_starts(ndims), order
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_subarray(ndims, array_of_sizes, array_of_subsizes,
                         array_of_starts, order, oldtype, newtype, ierror)!(_c)
INTEGER, INTENT(IN) :: ndims, order
INTEGER(KIND=MPI\_COUNT\_KIND), INTENT(IN) :: array_of_sizes(ndims),
                         array_of_subsizes(ndims), array_of_starts(ndims)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}

\begin{verbatim}
MPI\_TYPE\_CREATE\_SUBARRAY(NDIMS, ARRAY\_OF\_SIZES, ARRAY\_OF\_SUBSIZES,
                          ARRAY\_OF\_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)
\end{verbatim}
The subarray type constructor creates an MPI datatype describing an \( n \)-dimensional subarray of an \( n \)-dimensional array. The subarray may be situated anywhere within the full array, and may be of any nonzero size up to the size of the larger array as long as it is confined within this array. This type constructor facilitates creating filetypes to access arrays distributed in blocks among processes to a single file that contains the global array, see MPI I/O, especially Section 14.1.1.

This type constructor can handle arrays with an arbitrary number of dimensions and works for both C and Fortran ordered matrices (i.e., row-major or column-major). Note that a C program may use Fortran order and a Fortran program may use C order.

The \( \text{ndims} \) parameter specifies the number of dimensions in the full data array and gives the number of elements in \( \text{array}_{\text{of}} \_\text{sizes} \), \( \text{array}_{\text{of}} \_\text{subsizes} \), and \( \text{array}_{\text{of}} \_\text{starts} \).

The number of elements of type \( \text{oldtype} \) in each dimension of the \( n \)-dimensional array and the requested subarray are specified by \( \text{array}_{\text{of}} \_\text{sizes} \) and \( \text{array}_{\text{of}} \_\text{subsizes} \), respectively. For any dimension \( i \), it is erroneous to specify \( \text{array}_{\text{of}} \_\text{subsizes}[i] < 1 \) or \( \text{array}_{\text{of}} \_\text{subsizes}[i] > \text{array}_{\text{of}} \_\text{sizes}[i] \).

The \( \text{array}_{\text{of}} \_\text{starts} \) contains the starting coordinates of each dimension of the subarray. Arrays are assumed to be indexed starting from zero. For any dimension \( i \), it is erroneous to specify \( \text{array}_{\text{of}} \_\text{starts}[i] < 0 \) or \( \text{array}_{\text{of}} \_\text{starts}[i] > (\text{array}_{\text{of}} \_\text{sizes}[i] - \text{array}_{\text{of}} \_\text{subsizes}[i]) \).

\textbf{Advice to users.} In a Fortran program with arrays indexed starting from 1, if the starting coordinate of a particular dimension of the subarray is \( n \), then the entry in \( \text{array}_{\text{of}} \_\text{starts} \) for that dimension is \( n - 1 \). (End of advice to users.)

The \( \text{order} \) argument specifies the storage order for the subarray as well as the full array. It must be set to one of the following:

\begin{itemize}
  \item \( \text{MPI}_{\text{ORDER}} \_\text{C} \) \hspace{2cm} The ordering used by C arrays, (i.e., row-major order).
  \item \( \text{MPI}_{\text{ORDER}} \_\text{FORTRAN} \) \hspace{2cm} The ordering used by Fortran arrays, (i.e., column-major order).
\end{itemize}

A \( \text{ndims} \)-dimensional subarray (\( \text{newtype} \)) with no extra padding can be defined by the function \( \text{Subarray()} \) as follows:

\[
\text{newtype} = \text{Subarray}(\text{ndims},\{\text{size}_0,\text{size}_1,\ldots,\text{size}_{\text{ndims}-1}\},
\{\text{subsize}_0,\text{subsize}_1,\ldots,\text{subsize}_{\text{ndims}-1}\},
\{\text{start}_0,\text{start}_1,\ldots,\text{start}_{\text{ndims}-1}\},\text{oldtype})
\]

Let the typemap of \( \text{oldtype} \) have the form:

\[
\{(\text{type}_0,\text{disp}_0), (\text{type}_1,\text{disp}_1),\ldots,(\text{type}_{n-1},\text{disp}_{n-1})\}
\]

where \( \text{type}_i \) is a predefined MPI datatype, and let \( \text{ez} \) be the extent of \( \text{oldtype} \). Then we define the \( \text{Subarray()} \) function recursively using the following three equations. Equation 5.2 defines the base step. Equation 5.3 defines the recursion step when \( \text{order} = \text{MPI}_{\text{ORDER}} \_\text{FORTRAN} \), and Equation 5.4 defines the recursion step when \( \text{order} = \text{MPI}_{\text{ORDER}} \_\text{C} \). These equations use the conceptual datatypes \( \text{lb} \_\text{marker} \) and \( \text{ub} \_\text{marker} \); see Section 5.1.6 for details.
5.1.4 Distributed Array Datatype Constructor

The distributed array type constructor supports HPF-like [49] data distributions. However, unlike in HPF, the storage order may be specified for C arrays as well as for Fortran arrays.

*Advice to users.* One can create an HPF-like file view using this type constructor as follows. Complementary filetypes are created by having every process of a group call this constructor with identical arguments (with the exception of rank which should be set appropriately). These filetypes (along with identical disp and etype) are then used to define the view (via `MPI_FILE_SET_VIEW`), see MPI I/O, especially Section 14.1.1 and Section 14.3. Using this view, a collective data access operation (with identical offsets) will yield an HPF-like distribution pattern. (*End of advice to users.*)
MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, array_of_distribs, 
array_of_dargs, array_of_psizes, order, oldtype, newtype)

IN  size  size of process group (positive integer)
IN  rank  rank in process group (non-negative integer)
IN  ndims number of array dimensions as well as process grid 
dimensions (positive integer)
IN  array_of_gsizes number of elements of type oldtype in each dimension 
of global array (array of positive integers)
IN  array_of_distribs distribution of array in each dimension (array of 
states)
IN  array_of_dargs distribution argument in each dimension (array of 
positive integers)
IN  array_of_psizes size of process grid in each dimension (array of 
positive integers)
IN  order array storage order flag (state)
IN  oldtype old datatype (handle)
OUT newtype new datatype (handle)

C binding
int MPI_Type_create_darray(int size, int rank, int ndims, 
const int array_of_gsizes[], const int array_of_distribs[], 
const int array_of_dargs[], const int array_of_psizes[], 
int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_darray_c(int size, int rank, int ndims, 
const MPI_Count array_of_gsizes[], const int array_of_distribs[], 
const int array_of_dargs[], const int array_of_psizes[], 
int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_create_darray(size, rank, ndims, array_of_gsizes, array_of_distribs, 
array_of_dargs, array_of_psizes, order, oldtype, newtype, ierr)
   INTEGER, INTENT(IN) :: size, rank, ndims, array_of_gsizes(ndims), 
   array_of_distribs(ndims), array_of_dargs(ndims), 
   array_of_psizes(ndims), order
   TYPE(MPI_Datatype), INTENT(IN) :: oldtype
   TYPE(MPI_Datatype), INTENT(OUT) :: newtype
   INTEGER, OPTIONAL, INTENT(OUT) :: ierr
   MPI_Type_create_darray(size, rank, ndims, array_of_gsizes, array_of_distribs, 
array_of_dargs, array_of_psizes, order, oldtype, newtype, ierr)
   !(_c)
   INTEGER, INTENT(IN) :: size, rank, ndims, array_of_distribs(ndims), 
   array_of_dargs(ndims), array_of_psizes(ndims), order
   INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: array_of_gsizes(ndims)
   TYPE(MPI_Datatype), INTENT(IN) :: oldtype
MPI is equivalent to MPI called "cyclic()" (see below).

Valid values for order are ORDER, FORTRAN, and C (row-major) order. Therefore, arrays described by this type constructor may be stored in Fortran order.

Each dimension of the array can be distributed in one of three ways:

- **MPI_DISTRIBUTE_BLOCK**  
  Block distribution.
- **MPI_DISTRIBUTE_CYCLIC**  
  Cyclic distribution.
- **MPI_DISTRIBUTE_NONE**  
  Dimension not distributed.

The constant **MPI_DISTRIBUTE_DFLT_DARG** specifies a default distribution argument. The distribution argument for a dimension that is not distributed is ignored. For any dimension i in which the distribution is **MPI_DISTRIBUTE_BLOCK**, it is erroneous to specify \( \text{array_of_dargs[i]} \times \text{array_of_psizes[i]} < \text{array_of_gsizes[i]} \).

For example, the HPF layout \( \text{ARRAY(CYCLIC(15))} \) corresponds to **MPI_DISTRIBUTE_CYCLIC** with a distribution argument of 15, and the HPF layout \( \text{ARRAY(BLOCK)} \) corresponds to **MPI_DISTRIBUTE_BLOCK** with a distribution argument of 15.

The order argument is used as in **MPI_TYPE_CREATE_SUBARRAY** to specify the storage order. Therefore, arrays described by this type constructor may be stored in Fortran (column-major) or C (row-major) order. Valid values for order are **MPI_ORDER_FORTRAN** and **MPI_ORDER_C**.

This routine creates a new MPI datatype with a typemap defined in terms of a function called "cyclic()" (see below).

Without loss of generality, it suffices to define the typemap for the **MPI_DISTRIBUTE_CYCLIC** case where **MPI_DISTRIBUTE_DFLT_DARG** is not used.

**MPI_DISTRIBUTE_BLOCK** and **MPI_DISTRIBUTE_NONE** can be reduced to the **MPI_DISTRIBUTE_CYCLIC** case for dimension i as follows.

**MPI_DISTRIBUTE_BLOCK** with \( \text{array_of_dargs[i]} \) equal to **MPI_DISTRIBUTE_DFLT_DARG** is equivalent to **MPI_DISTRIBUTE_CYCLIC** with \( \text{array_of_dargs[i]} \) set to

\[
(\text{array_of_gsizes[i]} + \text{array_of_psizes[i]} - 1)/\text{array_of_psizes[i]}
\]
If array_of_dargs[i] is not MPI_DISTRIBUTE_DFLT_DARG, then MPI_DISTRIBUTE_BLOCK and
MPI_DISTRIBUTE_CYCLIC are equivalent.

MPI_DISTRIBUTE_NONE is equivalent to MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i]
set to array_of_gsizes[i].

Finally, MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i] equal to
MPI_DISTRIBUTE_DFLT_DARG is equivalent to MPI_DISTRIBUTE_CYCLIC with
array_of_gsizes[i] set to 1.

For MPI_ORDER_FORTRAN, an ndims-dimensional distributed array (newtype) is defined
by the following code fragment:

```c
oldtypes[0] = oldtype;
for (i = 0; i < ndims; i++) {
 oldtypes[i+1] = cyclic(array_of_dargs[i],
 array_of_gsizes[i],
 r[i],
 array_of_psizes[i],
 oldtypes[i]);
}
newtype = oldtypes[ndims];
```

For MPI_ORDER_C, the code is:

```c
oldtypes[0] = oldtype;
for (i = 0; i < ndims; i++) {
 oldtypes[i+1] = cyclic(array_of_dargs[ndims - i - 1],
 array_of_gsizes[ndims - i - 1],
 r[ndims - i - 1],
 array_of_psizes[ndims - i - 1],
 oldtypes[i]);
}
newtype = oldtypes[ndims];
```

where r[i] is the position of the process (with rank rank) in the process grid at dimension
i. The values of r[i] are given by the following code fragment:

```c
t_rank = rank;
t_size = 1;
for (i = 0; i < ndims; i++)
 t_size *= array_of_psizes[i];
for (i = 0; i < ndims; i++) {
 t_size = t_size / array_of_psizes[i];
 r[i] = t_rank / t_size;
 t_rank = t_rank % t_size;
}
```

Let the typemap of oldtype have the form:

```c
{(type₀, disp₀), (type₁, disp₁), . . . , (typeₙ₋₁, dispₙ₋₁)}
```

where typeᵢ is a predefined MPI datatype, and let ex be the extent of oldtype. The following
function uses the conceptual datatypes lb_marker and ub_marker, see Section 5.1.6 for details.

Given the above, the function cyclic() is defined as follows:

```c
cyclic(darg, gsize, r, psize, oldtype)
 = {(lb_marker, 0),
```
(type_0, disp_0 + r × darg × ex), \ldots,
  (type_{n-1}, disp_{n-1} + r × darg × ex),
(type_0, disp_0 + (r × darg + 1) × ex), \ldots,
  (type_{n-1}, disp_{n-1} + (r × darg + 1) × ex),
\ldots
(type_0, disp_0 + ((r + 1) × darg - 1) × ex), \ldots,
  (type_{n-1}, disp_{n-1} + ((r + 1) × darg - 1) × ex),
(type_0, disp_0 + r × darg × ex + psize × darg × ex), \ldots,
  (type_{n-1}, disp_{n-1} + r × darg × ex + psize × darg × ex),
(type_0, disp_0 + (r × darg + 1) × ex + psize × darg × ex), \ldots,
  (type_{n-1}, disp_{n-1} + (r × darg + 1) × ex + psize × darg × ex),
\ldots
(type_0, disp_0 + ((r + 1) × darg - 1) × ex + psize × darg × ex), \ldots,
  (type_{n-1}, disp_{n-1} + ((r + 1) × darg - 1) × ex + psize × darg × ex),
:\n(type_0, disp_0 + r × darg × ex + psize × darg × ex × (count - 1)), \ldots,
  (type_{n-1}, disp_{n-1} + r × darg × ex + psize × darg × ex × (count - 1)),
(type_0, disp_0 + (r × darg + 1) × ex + psize × darg × ex × (count - 1)), \ldots,
  (type_{n-1}, disp_{n-1} + (r × darg + 1) × ex
    + psize × darg × ex × (count - 1)),
\ldots
(type_0, disp_0 + (r × darg + darg_last - 1) × ex
  + psize × darg × ex × (count - 1)), \ldots,
  (type_{n-1}, disp_{n-1} + (r × darg + darg_last - 1) × ex
    + psize × darg × ex × (count - 1)),
(\text{ub\_marker}, gsize × ex)}

where \text{count} is defined by this code fragment:

\begin{verbatim}
nbblocks = (gsize + (darg - 1)) / darg;
count = nbblocks / psize;
left_over = nbblocks - count * psize;
if (r < left_over)
  count = count + 1;
\end{verbatim}

Here, nbblocks is the number of blocks that must be distributed among the processors. Finally, \text{darg\_last} is defined by this code fragment:

\begin{verbatim}
if (((num\_in\_last\_cyclic = gsize % (psize * darg)) == 0)
    darg\_last = darg;
else {
    darg\_last = num\_in\_last\_cyclic - darg * r;
    if (darg\_last > darg)
        darg\_last = darg;
\end{verbatim}

\textit{5.1 Derived Datatypes}
if (darg_last <= 0)
    darg_last = darg;
}

Example 5.7. Consider generating the filetypes corresponding to the HPF distribution:
<oldtype> FILEARRAY(100, 200, 300)
!HPF$ PROCESSORS PROCESSES(2, 3)
!HPF$ DISTRIBUTE FILEARRAY(CYCLIC(10), *, BLOCK) ONTO PROCESSES

This can be achieved by the following Fortran code, assuming there will be six processes
attached to the run:

ndims = 3
array_of_gsizes(1) = 100
array_of_distrib(1) = MPI_DISTRIBUTE_CYCLIC
array_of_dargs(1) = 10
array_of_gsizes(2) = 200
array_of_distrib(2) = MPI_DISTRIBUTE_NONE
array_of_dargs(2) = 0
array_of_gsizes(3) = 300
array_of_distrib(3) = MPI_DISTRIBUTE_BLOCK
array_of_dargs(3) = MPI_DISTRIBUTE_DFLT_DARG
array_of_psizes(1) = 2
array_of_psizes(2) = 1
array_of_psizes(3) = 3

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, &
    array_of_distrib, array_of_dargs, array_of_psizes, &
    MPI_ORDER_FORTRAN, oldtype, newtype, ierr)

5.1.5 Address and Size Procedures

The displacements in a general datatype are relative to some initial buffer address. Absolute addresses can be substituted for these displacements: we treat them as displacements relative to “address zero,” the start of the address space. This initial address zero is indicated by the constant MPI_BOTTOM. Thus, a datatype can specify the absolute address of the entries in the communication buffer, in which case the buf argument is passed the value MPI_BOTTOM. Note that in Fortran MPI_BOTTOM is not usable for initialization or assignment, see Section 2.5.4.

The address of a location in memory can be found by invoking the procedure MPI_GET_ADDRESS. The relative displacement between two absolute addresses can be calculated with the procedure MPI_AINT_DIFF. A new absolute address as sum of an absolute base address and a relative displacement can be calculated with the procedure MPI_AINT_ADD. To ensure portability, arithmetic on absolute addresses should not be performed with the intrinsic operators “-” and “+”. See also Sections 2.5.6 and 5.1.12 on pages 21 and 161.

Rationale. Address sized integer values, i.e., MPI_Aint or INTEGER(KIND=MPI_ADDRESS_KIND) values, are signed integers, while absolute addresses
are unsigned quantities. Direct arithmetic on addresses stored in address sized signed variables can cause overflows, resulting in undefined behavior. (*End of rationale.*)

**MPI_GET_ADDRESS(location, address)**

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>location</td>
</tr>
<tr>
<td>OUT</td>
<td>address</td>
</tr>
</tbody>
</table>

**C binding**

```c
int MPI_Get_address(const void *location, MPI_Aint *address)
```

**Fortran 2008 binding**

```fortran
MPI_Get_address(location, address, ierror)
```

**Fortran binding**

```fortran
MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER</td>
<td>address</td>
</tr>
<tr>
<td>INTEGER</td>
<td>ierror</td>
</tr>
</tbody>
</table>

Returns the (byte) address of location.

**Rationale.** In the mpi_f08 module, the location argument is not defined with \texttt{INTENT(IN)} because existing applications may use \texttt{MPI\_GET\_ADDRESS} as a substitute for \texttt{MPI\_F\_SYNC\_REG}, which was not defined before MPI-3.0. (*End of rationale.*)

### Example 5.8. Using MPI\_GET\_ADDRESS for an array.

```fortran
REAL A(100,100)
INTEGER(KIND=MPI_ADDRESS_KIND) I1, I2, DIFF
CALL MPI_GET_ADDRESS(A(1,1), I1, IERROR)
CALL MPI_GET_ADDRESS(A(10,10), I2, IERROR)
DIFF = MPI_AINT_DIFF(I2, I1)
! The value of DIFF is 909*SIZEOF(REAL); the values of I1 and I2 are
! implementation dependent.
```

**Advice to users.** C users may be tempted to avoid the usage of \texttt{MPI\_GET\_ADDRESS} and rely on the availability of the address operator &. Note, however, that \texttt{& cast-expression} is a pointer, not an address. ISO C does not require that the value of a pointer (or the pointer cast to int) be the absolute address of the object pointed at—although this is commonly the case. Furthermore, referencing may not have a unique definition on machines with a segmented address space. The use of \texttt{MPI\_GET\_ADDRESS} to “reference” C variables guarantees portability to such machines as well. (*End of advice to users.*)
Chapter 5 Datatypes

Advice to users.  To prevent problems with the argument copying and register optimization done by Fortran compilers, please note the hints in Sections 19.1.10–19.1.20. (End of advice to users.)

To ensure portability, arithmetic on MPI addresses must be performed using the MPI_AINT_ADD and MPI_AINT_DIFF procedures.

MPI_AINT_ADD(base, disp)

\begin{verbatim}
| IN base | base address (integer) |
| IN disp | displacement (integer) |
\end{verbatim}

C binding

\begin{verbatim}
MPI_Aint MPI_Aint_add(MPI_Aint base, MPI_Aint disp)
\end{verbatim}

Fortran 2008 binding

\begin{verbatim}
INTEGER(KIND=MPI_ADDRESS_KIND) MPI_Aint_add(base, disp)
    INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: base, disp
\end{verbatim}

Fortran binding

\begin{verbatim}
INTEGER(KIND=MPI_ADDRESS_KIND) MPI_AINT_ADD(BASE, DISP)
    INTEGER(KIND=MPI_ADDRESS_KIND) BASE, DISP
\end{verbatim}

MPI_AINT_ADD produces a new MPI_Aint value that is equivalent to the sum of the base and disp arguments, where base represents a base address returned by a call to MPI_GET_ADDRESS and disp represents a signed integer displacement. The resulting address is valid only at the process that generated base, and it must correspond to a location in the same object referenced by base, as described in Section 5.1.12. The addition is performed in a manner that results in the correct MPI_Aint representation of the output address, as if the process that originally produced base had called:

\begin{verbatim}
MPI_Get_address((char *) base + disp, &result);
\end{verbatim}

MPI_AINT_DIFF(addr1, addr2)

\begin{verbatim}
| IN addr1 | minuend address (integer) |
| IN addr2 | subtrahend address (integer) |
\end{verbatim}

C binding

\begin{verbatim}
MPI_Aint MPI_Aint_diff(MPI_Aint addr1, MPI_Aint addr2)
\end{verbatim}

Fortran 2008 binding

\begin{verbatim}
INTEGER(KIND=MPI_ADDRESS_KIND) MPI_Aint_diff(addr1, addr2)
    INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: addr1, addr2
\end{verbatim}

Fortran binding

\begin{verbatim}
INTEGER(KIND=MPI_ADDRESS_KIND) MPI_AINT_DIFF(ADDR1, ADDR2)
    INTEGER(KIND=MPI_ADDRESS_KIND) ADDR1, ADDR2
\end{verbatim}

MPI_AINT_DIFF produces a new MPI_Aint value that is equivalent to the difference between addr1 and addr2 arguments, where addr1 and addr2 represent addresses returned
by calls to MPI_GET_ADDRESS. The resulting address is valid only at the process that
generated addr1 and addr2, and addr1 and addr2 must correspond to locations in the same
object in the same process, as described in Section 5.1.12. The difference is calculated in
a manner that results in the signed difference from addr1 to addr2, as if the process that
originally produced the addresses had called (char *) addr1 - (char *) addr2 on the
addresses initially passed to MPI_GET_ADDRESS.

The following auxiliary procedures provide useful information on derived datatypes.

MPI_TYPE_SIZE(datatype, size)

IN   datatype       datatype to get information on (handle)

OUT  size          datatype size (integer)

C binding
int MPI_Type_size(MPI_Datatype datatype, int *size)
int MPI_Type_size_c(MPI_Datatype datatype, MPI_Count *size)

Fortran 2008 binding
MPI_Type_size(datatype, size, ierror)
    TYPE(MPI_Datatype), INTENT(IN) :: datatype
    INTEGER, INTENT(OUT) :: size
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Type_size(datatype, size, ierror) !(_c)
    TYPE(MPI_Datatype), INTENT(IN) :: datatype
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)
    INTEGER DATATYPE, SIZE, IERROR
    MPI_TYPE_SIZE set the value of size to the total size, in bytes, of the entries in the
type signature associated with datatype; i.e., the total size of the data in a message that
would be created with this datatype. Entries that occur multiple times in the datatype are
counted with their multiplicity. For both procedures, if the OUT parameter cannot express
the value to be returned (e.g., if the parameter is too small to hold the output value), it is
set to MPI_UNDEFINED.

5.1.6 Lower-Bound and Upper-Bound Markers

It is often convenient to define explicitly the lower bound and upper bound of a type map,
and override the definition given on page 152. This allows one to define a datatype that has
“holes” at its beginning or its end, or a datatype with entries that extend above the upper
bound or below the lower bound. Examples of such usage are provided in Section 5.1.14.
Also, the user may want to override the alignment rules that are used to compute upper
bounds and extents. E.g., a C compiler may allow the user to override default alignment
rules for some of the structures within a program. The user has to specify explicitly the
bounds of the datatypes that match these structures.
To achieve this, we add two additional conceptual datatypes, \texttt{lb\_marker} and \texttt{ub\_marker}, that represent the lower bound and upper bound of a datatype. These conceptual datatypes occupy no space ($\text{extent}(\texttt{lb\_marker}) = \text{extent}(\texttt{ub\_marker}) = 0$). They do not affect the size or count of a datatype, and do not affect the content of a message created with this datatype. However, they do affect the definition of the extent of a datatype and, therefore, affect the outcome of a replication of this datatype by a datatype constructor.

\begin{example}
A call to \texttt{MPI\_TYPE\_CREATE\_RESIZED(MPI\_INT, -3, 9, type1)} creates a new datatype that has an extent of 9 (from -3 to 5, 5 included), and contains an integer at displacement 0. This is the datatype defined by the typemap \{(\texttt{lb\_marker}, -3), (\texttt{int}, 0), (\texttt{ub\_marker}, 6)\}. If this type is replicated twice by a call to \texttt{MPI\_TYPE\_CONTIGUOUS(2, type1, type2)} then the newly created type can be described by the typemap \{(\texttt{lb\_marker}, -3), (\texttt{int}, 0), (\texttt{int}, 9), (\texttt{ub\_marker}, 15)\}. (An entry of type \texttt{ub\_marker} can be deleted if there is another entry of type \texttt{ub\_marker} with a higher displacement; an entry of type \texttt{lb\_marker} can be deleted if there is another entry of type \texttt{lb\_marker} with a lower displacement.)
\end{example}

In general, if

$$
\text{Typemap} = \{(\text{type}_0, \text{disp}_0), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1})\},
$$

then the lower bound of \text{Typemap} is defined to be

$$
\text{lb}(\text{Typemap}) = \begin{cases} 
\min_j \text{disp}_j & \text{if no entry has type } \texttt{lb\_marker} \\
\min_j \{\text{disp}_j \text{ such that type}_j = \texttt{lb\_marker}\} & \text{otherwise}
\end{cases}
$$

Similarly, the upper bound of \text{Typemap} is defined to be

$$
\text{ub}(\text{Typemap}) = \begin{cases} 
\max_j (\text{disp}_j + \text{sizeof(type}_j)) + \epsilon & \text{if no entry has type } \texttt{ub\_marker} \\
\max_j \{\text{disp}_j \text{ such that type}_j = \texttt{ub\_marker}\} & \text{otherwise}
\end{cases}
$$

Then

$$
\text{extent}(\text{Typemap}) = \text{ub}(\text{Typemap}) - \text{lb}(\text{Typemap})
$$

If \text{type}_i requires alignment to a byte address that is a multiple of \textit{k}_i, then \epsilon is the least nonnegative increment needed to round \text{extent}(\text{Typemap}) to the next multiple of \textit{max}_i \times \textit{k}_i.

In Fortran, it is implementation dependent whether the MPI implementation computes the alignments \textit{k}_i according to the alignments used by the compiler in common blocks, \texttt{SEQUENCE} derived types, \texttt{BIND(C)} derived types, or derived types that are neither \texttt{SEQUENCE} nor \texttt{BIND(C)}.

The formal definitions given for the various datatype constructors apply now, with the amended definition of \textit{extent}.

\textbf{Rationale.} Before Fortran 2003, \texttt{MPI\_TYPE\_CREATE\_STRUCT} could be applied to Fortran common blocks and \texttt{SEQUENCE} derived types. With Fortran 2003, this list was extended by \texttt{BIND(C)} derived types and MPI implementors have implemented the alignments \textit{k}_i differently, i.e., some based on the alignments used in \texttt{SEQUENCE} derived types, and others according to \texttt{BIND(C)} derived types. (End of rationale.)

\textbf{Advice to implementors.} In Fortran, it is generally recommended to use \texttt{BIND(C)} derived types instead of common blocks or \texttt{SEQUENCE} derived types. Therefore it is recommended to calculate the alignments \textit{k}_i based on \texttt{BIND(C)} derived types. (End of advice to implementors.)
Advice to users. Structures combining different basic datatypes should be defined so that there will be no gaps based on alignment rules. If such a datatype is used to create an array of structures, users should also avoid an alignment-gap at the end of the structure. In MPI communication, the content of such gaps would not be communicated into the receiver’s buffer. For example, such an alignment-gap may occur between an odd number of floats or REALs before a double or DOUBLE PRECISION data. Such gaps may be added explicitly to both the structure and the MPI derived datatype handle because the communication of a contiguous derived datatype may be significantly faster than the communication of one that is noncontiguous because of such alignment-gaps.

As an example, instead of

```fortran
TYPE, BIND(C) :: my_data
 REAL, DIMENSION(3) :: x
 ! there may be a gap of the size of one REAL
 ! if the alignment of a DOUBLE PRECISION is
 ! two times the size of a REAL
 DOUBLE PRECISION :: p
END TYPE
```

one should define

```fortran
TYPE, BIND(C) :: my_data
 REAL, DIMENSION(3) :: x
 REAL :: gap1
 DOUBLE PRECISION :: p
END TYPE
```

and also include gap1 in the matching MPI derived datatype. It is required that all processes in a communication add the same gaps, i.e., defined with the same basic datatype. Both the original and the modified structures are portable, but may have different performance implications for the communication and memory accesses during computation on systems with different alignment values.

In principle, a compiler may define an additional alignment rule for structures, e.g., to use at least 4 or 8 byte alignment, although the content may have a \( \max_i k_i \) alignment less than this structure alignment. To maintain portability, users should always resize structure derived datatype handles if used in an array of structures, see the Example in Section 19.1.15. (End of advice to users.)

5.1.7 Extent and Bounds of Datatypes

```
MPI_TYPE_GET_EXTENT(datatype, lb, extent)
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>datatype</td>
<td>datatype to get information on (handle)</td>
</tr>
<tr>
<td>OUT</td>
<td>lb</td>
<td>lower bound of datatype (integer)</td>
</tr>
<tr>
<td>OUT</td>
<td>extent</td>
<td>extent of datatype (integer)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb, MPI_Aint *extent)
```
int MPI_Type_get_extent_c(MPI_Datatype datatype, MPI_Count *lb,
    MPI_Count *extent)

Fortran 2008 binding
MPI_Type_get_extent(datatype, lb, extent, ierror)
    TYPE(MPI_Datatype), INTENT(IN) :: datatype
    INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: lb, extent
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Type_get_extent(datatype, lb, extent, ierror) !(_c)
    TYPE(MPI_Datatype), INTENT(IN) :: datatype
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: lb, extent
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)
    INTEGER DATATYPE, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

Returns the lower bound and the extent of datatype (as defined in Equation 5.1).
If either OUT parameter cannot express the value to be returned (e.g., if the parameter
is too small to hold the output value), it is set to MPI_UNDEFINED.

MPI allows one to change the extent of a datatype, using lower bound and upper bound
markers. This provides control over the stride of successive datatypes that are replicated
by datatype constructors, or are replicated by the count argument in a send or receive call.

MPI_TYPE_CREATE_RESIZED(oldtype, lb, extent, newtype)
    IN    oldtype         input datatype (handle)
    IN    lb              new lower bound of datatype (integer)
    IN    extent          new extent of datatype (integer)
    OUT   newtype         output datatype (handle)

C binding
int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb, MPI_Aint extent,
    MPI_Datatype *newtype)
int MPI_Type_create_resized_c(MPI_Datatype oldtype, MPI_Count lb,
    MPI_Count extent, MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_create_resized(oldtype, lb, extent, newtype, ierror)
    TYPE(MPI_Datatype), INTENT(IN) :: oldtype
    INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: lb, extent
    TYPE(MPI_Datatype), INTENT(OUT) :: newtype
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Type_create_resized(oldtype, lb, extent, newtype, ierror) !(_c)
    TYPE(MPI_Datatype), INTENT(IN) :: oldtype
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: lb, extent
    TYPE(MPI_Datatype), INTENT(OUT) :: newtype
5.1 Derived Datatypes

Fortran binding

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)
  INTEGER OLDTYPE, NEWTYPE, IERROR
  INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

Returns in newtype a handle to a new datatype that is identical to oldtype, except that
the lower bound of this new datatype is set to be lb, and its upper bound is set to be lb + extent. Any previous lb and ub markers are erased, and a new pair of lower bound and
upper bound markers are put in the positions indicated by the lb and extent arguments.
This affects the behavior of the datatype when used in communication operations, with
count > 1, and when used in the construction of new derived datatypes.

5.1.8 True Extent of Datatypes

Suppose we implement gather (see also Section 6.5) as a spanning tree implemented on
top of point-to-point routines. Since the receive buffer is only valid on the root process,
one will need to allocate some temporary space for receiving data on intermediate nodes.
However, the datatype extent cannot be used as an estimate of the amount of space that
needs to be allocated, if the user has modified the extent, for example by using
MPI_TYPE_CREATE_RESIZED. The procedure MPI_TYPE_GET_TRUE_EXTENT returns
the true extent of the datatype.

MPI_TYPE_GET_TRUE_EXTENT(datatype, true_lb, true_extent)

IN datatype     datatype to get information on (handle)
OUT true_lb     true lower bound of datatype (integer)
OUT true_extent true extent of datatype (integer)

C binding

int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,
                              MPI_Aint *true_extent)

int MPI_Type_get_true_extent_c(MPI_Datatype datatype, MPI_Count *true_lb,
                                MPI_Count *true_extent)

Fortran 2008 binding

MPI_Type_get_true_extent(datatype, true_lb, true_extent, ierror)
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: true_lb, true_extent
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_true_extent(datatype, true_lb, true_extent, ierror) !(_c)
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: true_lb, true_extent
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TYPE_GET_TRUE_EXTENT(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
  INTEGER DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

true_lbd returns the offset of the lowest unit of storage that is addressed by the datatype, i.e., the lower bound of the corresponding typemap, ignoring explicit lower bound markers. true_extent returns the true size of the datatype, i.e., the extent of the corresponding typemap, ignoring explicit lower bound and upper bound markers, and performing no rounding for alignment. If the typemap associated with datatype is

\[
\text{Typemap} = \{(\text{type}_0, \text{disp}_0), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1})\}
\]

Then

\[
\text{true}_\text{lb}(\text{Typemap}) = \min_j\{\text{disp}_j : \text{type}_j \neq \text{lb\_marker, ub\_marker}\},
\]

\[
\text{true}_\text{ub}(\text{Typemap}) = \max_j\{\text{disp}_j + \text{sizeof}(\text{type}_j) : \text{type}_j \neq \text{lb\_marker, ub\_marker}\},
\]

and

\[
\text{true\_extent}(\text{Typemap}) = \text{true\_ub}(\text{Typemap}) - \text{true\_lb}(\text{Typemap}).
\]

(Readers should compare this with the definitions in Section 5.1.6 and Section 5.1.7, which describe the procedure MPI\_TYPE\_GET\_EXTENT.)

The true_extent is the minimum number of bytes of memory necessary to hold a datatype, uncompressed.

If either OUT parameter cannot express the value to be returned (e.g., if the parameter is too small to hold the output value), it is set to MPI\_UNDEFINED.

5.1.9 Commit and Free

A datatype object has to be committed before it can be used in a communication. As an argument in datatype constructors, uncommitted and also committed datatypes can be used. There is no need to commit basic datatypes. They are “pre-committed.”

\[
\text{MPI\_TYPE\_COMMIT(datatype)}
\]

C binding

int MPI_Type_commit(MPI_Datatype *datatype)

Fortran 2008 binding

MPI_Type_commit(datatype, ierror)

\[
\text{TYPE(MPI\_Datatype), INTENT(INOUT) :: datatype}
\]

\[
\text{INTEGER, OPTIONAL, INTENT(OUT) :: ierror}
\]

Fortran binding

MPI\_TYPE\_COMMIT(DATATYPE, IERROR)

\[
\text{INTEGER DATATYPE, IERROR}
\]

The commit operation commits the datatype, that is, the formal description of a communication buffer, not the content of that buffer. Thus, after a datatype has been committed, it can be repeatedly reused to communicate the changing content of a buffer or, indeed, the content of different buffers, with different starting addresses.
5.1 Derived Datatypes

Advice to implementors. The system may “compile” at commit time an internal representation for the datatype that facilitates communication, e.g., change from a compacted representation to a flat representation of the datatype, and select the most convenient transfer mechanism.

The optimizations chosen during MPI_TYPE_COMMIT may no longer be optimal if a session (or the World Model) is initialized or finalized. (End of advice to implementors.)

MPI_TYPE_COMMIT will accept a committed datatype; in this case, it is equivalent to a no-op.

Example 5.10. The following code fragment gives examples of using MPI_TYPE_COMMIT.

```fortran
INTEGER type1, type2
CALL MPI_TYPE_CONTIGUOUS(5, MPI_REAL, type1, ierr)
 ! new type object created
CALL MPI_TYPE_COMMIT(type1, ierr)
 ! now type1 can be used for communication

type2 = type1
 ! type2 can be used for communication
 ! (it is a handle to same object as type1)

CALL MPI_TYPE_VECTOR(3, 5, 4, MPI_REAL, type1, ierr)
 ! new uncommitted type object created
CALL MPI_TYPE_COMMIT(type1, ierr)
 ! now type1 can be used anew for communication
```

MPI_TYPE_FREE(datatype)

```fortran
INOUT datatype
```

datatype that is freed (handle)

C binding

int MPI_Type_free(MPI_Datatype *datatype)

Fortran 2008 binding

```fortran
MPI_Type_free(datatype, ierror)
 TYPE(MPI_Datatype), INTENT(INOUT) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_TYPE_FREE(DATATYPE, IERROR)
 INTEGER DATATYPE, IERROR
```

Marks the datatype object associated with datatype for deallocation and sets datatype to MPI_DATATYPE_NULL. Any communication that is currently using this datatype will complete normally. Freeing a datatype does not affect any other datatype that was built from the freed datatype. The system behaves as if input datatype arguments to derived datatype constructors are passed by value.

Advice to implementors. The implementation may keep a reference count of active communications that use the datatype, in order to decide when to free it. Also, one
may implement constructors of derived datatypes so that they keep pointers to their
datatype arguments, rather than copying them. In this case, one needs to keep track
of active datatype definition references in order to know when a datatype object can
be freed. (End of advice to implementors.)

5.1.10 Duplicating a Datatype

MPI_TYPE_DUP(oldtype, newtype)
IN  oldtype  datatype (handle)
OUT newtype  copy of oldtype (handle)

C binding
int MPI_Type_dup(MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_dup(oldtype, newtype, ierror)
  TYPE(MPI_Datatype), INTENT(IN) :: oldtype
  TYPE(MPI_Datatype), INTENT(OUT) :: newtype
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_DUP(OLDTYPE, NEWTYPE, IERROR)
  INTEGER OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_DUP is a type constructor that duplicates the existing oldtype with asso-
ciated key values. For each key value, the respective copy callback function determines the
attribute value associated with this key in the new datatype; one particular action that a
copy callback may take is to delete the attribute from the new datatype. Returns in newtype
a new datatype with exactly the same properties as oldtype and any copied cached infor-
mation, see Section 7.7.4. The new datatype has identical upper bound and lower bound
and yields the same net result when fully decoded with the procedures in Section 5.1.13.
The newtype has the same committed state as the old oldtype.

5.1.11 Use of General Datatypes in Communication

Handles to derived datatypes can be passed to a communication call wherever a datatype
argument is required. A call of the form MPI_SEND(buf, count, datatype, ...), where count >
1, is interpreted as if the call was passed a new datatype that is the concatenation of count
copies of datatype. Thus, MPI_SEND(buf, count, datatype, dest, tag, comm) is equivalent to,

MPI_TYPE_CONTIGUOUS(count, datatype, newtype)
MPI_TYPE_COMMIT(newtype)
MPI_SEND(buf, 1, newtype, dest, tag, comm)
MPI_TYPE_FREE(newtype).

Similar statements apply to all other communication procedures that have a count and
datatype argument.
Suppose that a send operation \( \text{MPI\_SEND}(\text{buf}, \text{count}, \text{datatype}, \text{dest}, \text{tag}, \text{comm}) \) is executed, where \( \text{datatype} \) has type map,
\[
\{(\text{type}_0, \text{disp}_0), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1})\},
\]
and extent \( \text{extent} \). (Explicit lower bound and upper bound markers are not listed in the type map, but they affect the value of \( \text{extent} \).) The send operation sends \( n \cdot \text{count} \) entries, where entry \( i \cdot n + j \) is at location \( \text{addr}_{i,j} = \text{buf} + \text{extent} \cdot i + \text{disp}_j \) and has type \( \text{type}_j \), for \( i = 0, \ldots, \text{count} - 1 \) and \( j = 0, \ldots, n - 1 \). These entries need not be contiguous, nor distinct; their order can be arbitrary.

The variable stored at address \( \text{addr}_{i,j} \) in the calling program should be of a type that matches \( \text{type}_j \), where type matching is defined as in Section 3.3.1. The message sent contains \( n \cdot \text{count} \) entries, where entry \( i \cdot n + j \) has type \( \text{type}_j \).

Similarly, suppose that a receive operation \( \text{MPI\_RECV}(\text{buf}, \text{count}, \text{datatype}, \text{source}, \text{tag}, \text{comm}, \text{status}) \) is executed, where \( \text{datatype} \) has type map,
\[
\{(\text{type}_0, \text{disp}_0), \ldots, (\text{type}_{n-1}, \text{disp}_{n-1})\},
\]
with extent \( \text{extent} \). (Again, explicit lower bound and upper bound markers are not listed in the type map, but they affect the value of \( \text{extent} \).) This receive operation receives \( n \cdot \text{count} \) entries, where entry \( i \cdot n + j \) has type \( \text{type}_j \). If the incoming message consists of \( k \) elements, then we must have \( k \leq n \cdot \text{count} \); the \( i \cdot n + j \)-th element of the message should have a type that matches \( \text{type}_j \).

**Type matching** is defined according to the type signature of the corresponding datatypes, that is, the sequence of basic type components. Type matching does not depend on some aspects of the datatype definition, such as the displacements (layout in memory) or the intermediate types used.

**Example 5.11.** This example shows that type matching is defined in terms of the basic types that a derived type consists of.

\[
\begin{align*}
\text{CALL MPI\_TYPE\_CONTIGUOUS}(2, \text{MPI\_REAL}, \text{type}_2, \ldots) \\
\text{CALL MPI\_TYPE\_CONTIGUOUS}(4, \text{MPI\_REAL}, \text{type}_4, \ldots) \\
\text{CALL MPI\_TYPE\_CONTIGUOUS}(2, \text{type}_2, \text{type}_22, \ldots) \\
\text{CALL MPI\_SEND}(a, 4, \text{MPI\_REAL}, \ldots) \\
\text{CALL MPI\_SEND}(a, 2, \text{type}_2, \ldots) \\
\text{CALL MPI\_SEND}(a, 1, \text{type}_22, \ldots) \\
\text{CALL MPI\_SEND}(a, 1, \text{type}_4, \ldots) \\
\text{CALL MPI\_RECV}(a, 4, \text{MPI\_REAL}, \ldots) \\
\text{CALL MPI\_RECV}(a, 2, \text{type}_2, \ldots) \\
\text{CALL MPI\_RECV}(a, 1, \text{type}_22, \ldots) \\
\text{CALL MPI\_RECV}(a, 1, \text{type}_4, \ldots)
\end{align*}
\]

Each of the sends matches any of the receives.

A datatype may specify overlapping entries. The use of such a datatype in any communication in association with a buffer updated by the operation is erroneous. (This is erroneous even if the actual message received is short enough not to write any entry more than once.)
Suppose that MPI_RECV(buf, count, datatype, dest, tag, comm, status) is executed, where datatype has type map,

\{((type_0, disp_0), \ldots, (type_{n-1}, disp_{n-1}))\}.

The received message need not fill all the receive buffer, nor does it need to fill a number of locations that is a multiple of \(n\). Any number, \(k\), of basic elements can be received, where \(0 \leq k \leq \text{count} \cdot n\). The number of basic elements received can be retrieved from status using the query procedure MPI_GET_ELEMENTS.

MPI_GET_ELEMENTS(status, datatype, count)

**C binding**

```c
int MPI_Get_elements(const MPI_Status *status, MPI_Datatype datatype,
 int *count)
int MPI_Get_elements_c(const MPI_Status *status, MPI_Datatype datatype,
 MPI_Count *count)
```

**Fortran 2008 binding**

```fortran
MPI_Get_elements(status, datatype, count, ierror)
```

```fortran
 TYPE(MPI_Status), INTENT(IN) :: status
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(OUT) :: count
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_elements(status, datatype, count, ierror) !(_c)
```

```fortran
 TYPE(MPI_Status), INTENT(IN) :: status
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: count
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```
MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
```

```
 INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR
```

The datatype argument should match the argument provided by the receive call that set the status variable. For both procedures, if the OUT parameter cannot express the value to be returned (e.g., if the parameter is too small to hold the output value), it is set to MPI_UNDEFINED.

The previously defined procedure MPI_GET_COUNT (Section 3.2.5), has a different behavior. It returns the number of “top-level entries” received, i.e., the number of “copies” of type datatype. In the previous example, MPI_GET_COUNT may return any integer value \(k\), where \(0 \leq k \leq \text{count}\). If MPI_GET_COUNT returns \(k\), then the number of basic elements received (and the value returned by MPI_GET_ELEMENTS) is \(n \cdot k\). If the number of basic elements received is not a multiple of \(n\), that is, if the receive operation has not received
an integral number of datatype “copies,” then MPI\_GET\_COUNT sets the value of count to MPI\_UNDEFINED.

**Example 5.12.** Usage of MPI\_GET\_COUNT and MPI\_GET\_ELEMENTS.

```fortran
...
CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, Type2, ierr)
CALL MPI_TYPE_COMMIT(Type2, ierr)
...
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank .EQ. 0) THEN
 CALL MPI_SEND(a, 2, MPI_REAL, 1, 0, comm, ierr)
 CALL MPI_SEND(a, 3, MPI_REAL, 1, 0, comm, ierr)
ELSE IF (rank .EQ. 1) THEN
 CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)
 CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=1
 CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=2
 CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)
 CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=_MPI_UNDEFINED
 CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=3
END IF
```

The procedure MPI\_GET\_ELEMENTS can also be used after a probe to find the number of elements in the probed message. Note that the MPI\_GET\_COUNT and MPI\_GET\_ELEMENTS return the same values when they are used with basic datatypes as long as the limits of their respective count arguments are not exceeded.

**Rationale.** The extension given to the definition of MPI\_GET\_COUNT seems natural: one would expect this procedure to return the value of the count argument, when the receive buffer is filled. Sometimes datatype represents a basic unit of data one wants to transfer, for example, a record in an array of records (structures). One should be able to find out how many components were received without bothering to divide by the number of elements in each component. However, on other occasions, datatype is used to define a complex layout of data in the receiver memory, and does not represent a basic unit of data for transfers. In such cases, one needs to use the procedure MPI\_GET\_ELEMENTS. *(End of rationale.)*

**Advice to implementors.** The definition implies that a receive cannot change the value of storage outside the entries defined to compose the communication buffer. In particular, the definition implies that padding space in a structure should not be modified when such a structure is copied from one process to another. This would prevent the obvious optimization of copying the structure, together with the padding, as one contiguous block. The implementation is free to do this optimization when it does not impact the outcome of the computation. The user can “force” this optimization by explicitly including padding as part of the message. *(End of advice to implementors.)*

5.1.12 Correct Use of Addresses

Successively declared variables in C or Fortran are not necessarily stored at contiguous locations. Thus, care must be exercised that displacements do not cross from one variable to another. Also, in machines with a segmented address space, addresses are not unique and address arithmetic has some peculiar properties. Thus, the use of addresses, that is, displacements relative to the start address MPI\_BOTTOM, has to be restricted.
Variables belong to the same **sequential storage** if they belong to the same array, to the same **COMMON** block in Fortran, or to the same structure in C. Valid addresses are defined recursively as follows:

1. The procedure `MPI_GET_ADDRESS` returns a valid address, when passed as argument a variable of the calling program.

2. The `buf` argument of a communication procedure evaluates to a valid address, when passed as argument a variable of the calling program.

3. If `v` is a valid address, and `i` is an integer, then `v+i` is a valid address, provided `v` and `v+i` are in the same sequential storage.

A correct program uses only valid addresses to identify the locations of entries in communication buffers. Furthermore, if `u` and `v` are two valid addresses, then the (integer) difference `u − v` can be computed only if both `u` and `v` are in the same sequential storage. No other arithmetic operations can be meaningfully executed on addresses.

The rules above impose no constraints on the use of derived datatypes, as long as they are used to define a communication buffer that is wholly contained within the same sequential storage. However, the construction of a communication buffer that contains variables that are not within the same sequential storage must obey certain restrictions. Basically, a communication buffer with variables that are not within the same sequential storage can be used only by specifying in the communication call `buf = MPI_BOTTOM`, `count = 1`, and using a **datatype** argument where all displacements are valid (absolute) addresses.

**Advice to users.** It is not expected that MPI implementations will be able to detect erroneous, “out of bound” displacements—unless those overflow the user address space—since the MPI call may not know the extent of the arrays and records in the host program. (*End of advice to users.*)

**Advice to implementors.** There is no need to distinguish (absolute) addresses and (relative) displacements on a machine with contiguous address space: `MPI_BOTTOM` is zero, and both addresses and displacements are integers. On machines where the distinction is required, addresses are recognized as expressions that involve `MPI_BOTTOM`. (*End of advice to implementors.*)

### 5.1.13 Decoding a Datatype

MPI datatype objects allow users to specify an arbitrary layout of data in memory. There are several cases where accessing the layout information in opaque datatype objects would be useful. The opaque datatype object has found a number of uses outside MPI. Furthermore, a number of tools wish to display internal information about a datatype. To achieve this, datatype decoding procedures are provided. The two procedures in this section are used together to decode datatypes to recreate the calling sequence used in their initial definition. These can be used to allow a user to determine the type map and type signature of a datatype.
5.1 Derived Datatypes

MPI_Type_get_envelope(datatype, num_integers, num_addresses, num_large_counts, num_datatypes, combiner)

IN  datatype datatype to decode (handle)

OUT num_integers number of input integers used in call constructing combiner (non-negative integer)

OUT num_addresses number of input addresses used in call constructing combiner (non-negative integer)

OUT num_large_counts number of input large counts used in call constructing combiner (non-negative integer, only present for large count variants)

OUT num_datatypes number of input datatypes used in call constructing combiner (non-negative integer)

OUT combiner combiner (state)

C binding

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,
                          int *num_addresses, int *num_datatypes, int *combiner)

int MPI_Type_get_envelope_c(MPI_Datatype datatype, MPI_Count *num_integers,
                            MPI_Count *num_addresses, MPI_Count *num_large_counts,
                            MPI_Count *num_datatypes, int *combiner)

Fortran 2008 binding

MPI_Type_get_envelope(datatype, num_integers, num_addresses, num_datatypes,
                      combiner, ierror)

  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER, INTENT(OUT) :: num_integers, num_addresses, num_datatypes,
                         combiner
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_envelope(datatype, num_integers, num_addresses, num_large_counts,
                      num_datatypes, combiner, ierror) !(_c)

  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: num_integers, num_addresses,
                                            num_large_counts, num_datatypes
  INTEGER, INTENT(OUT) :: combiner
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,
                       COMBINER, IERROR)

  INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,
          IERROR

For the given datatype, MPI_TYPE_GET_ENVELOPE returns information on the number and type of input arguments used in the call that created the datatype. The number-of-arguments values returned can be used to provide sufficiently large arrays in the decoding routine MPI_TYPE_GET_CONTENTS. This call and the meaning of the returned values is
described below. The combiner reflects the MPI datatype constructor call that was used in creating datatype.

**Rationale.** By requiring that the combiner reflect the constructor used in the creation of the datatype, the decoded information can be used to effectively recreate the calling sequence used in the original creation. This is the most useful information and was felt to be reasonable even though it constrains implementations to remember the original constructor sequence even if the internal representation is different.

The decoded information keeps track of datatype duplications. This is important as one needs to distinguish between a predefined datatype and a dup of a predefined datatype. The former is a constant object that cannot be freed, while the latter is a derived datatype that can be freed. (*End of rationale.*)

The list of values that can be returned from MPI_TYPE_GET_ENVELOPE in combiner (on the left) and the call associated with them (on the right) are as follows:

- MPI_COMBINER_NAMED: a named predefined datatype
- MPI_COMBINER_DUP: MPI_TYPE_DUP
- MPI_COMBINER_CONTIGUOUS: MPI_TYPE_CONTIGUOUS
- MPI_COMBINER_VECTOR: MPI_TYPE_VECTOR
- MPI_COMBINER_HVECTOR: MPI_TYPE_CREATE_HVECTOR
- MPI_COMBINER_INDEXED: MPI_TYPE_INDEXED
- MPI_COMBINER_HINDEXED: MPI_TYPE_CREATE_HINDEXED
- MPI_COMBINER_HINDEXED_BLOCK: MPI_TYPE_CREATE_HINDEXED_BLOCK
- MPI_COMBINER_HINDEXED_BLOCK: MPI_TYPE_CREATE_HINDEXED_BLOCK
- MPI_COMBINER_STRUCT: MPI_TYPE_CREATE_STRUCT
- MPI_COMBINER_SUBARRAY: MPI_TYPE_CREATE_SUBARRAY
- MPI_COMBINER_DARRAY: MPI_TYPE_CREATE_DARRAY
- MPI_COMBINER_F90_REAL: MPI_TYPE_CREATE_F90_REAL
- MPI_COMBINER_F90_COMPLEX: MPI_TYPE_CREATE_F90_COMPLEX
- MPI_COMBINER_F90_INTEGER: MPI_TYPE_CREATE_F90_INTEGER
- MPI_COMBINER_RESIZED: MPI_TYPE_CREATE_RESIZED
- MPI_COMBINER_VALUE_INDEX: MPI_TYPE_GET_VALUE_INDEX

If combiner is MPI_COMBINER_NAMED then datatype is a named predefined datatype.

If the MPI_TYPE_GET_ENVELOPE variant without num_large_counts is invoked with a datatype that requires an output value of num_large_counts > 0, then an error of class MPI_ERR_TYPE is raised.

**Rationale.** The large count variant of this MPI procedure was added in MPI-4. It contains a new num_large_counts parameter. The other variant—the variant that existed before MPI-4—was not changed in order to preserve backwards compatibility. (*End of rationale.*)

The actual arguments used in the creation call for a datatype can be obtained using MPI_TYPE_GET_CONTENTS.

MPI_TYPE_GET_ENVELOPE and MPI_TYPE_GET_CONTENTS also support large count types in separate additional MPI procedures in C (suffixed with the “_C”) and interface polymorphism in Fortran when using USE mpi_f08.
MPI_TYPE_GET_CONTENTS(datatype, max_integers, max_addresses, max_large_counts, max_datatypes, array_of_integers, array_of_addresses, array_of_large_counts, array_of_datatypes)

**IN**
- **datatype**: datatype to decode (handle)  
- **max_integers**: number of elements in array_of_integers (non-negative integer)  
- **max_addresses**: number of elements in array_of_addresses (non-negative integer)  
- **max_large_counts**: number of elements in array_of_large_counts (non-negative integer, only present for large count variants)  
- **max_datatypes**: number of elements in array_of_datatypes (non-negative integer)  

**OUT**
- **array_of_integers**: contains integer arguments used in constructing datatype (array of integers)  
- **array_of_addresses**: contains address arguments used in constructing datatype (array of integers)  
- **array_of_large_counts**: contains large count arguments used in constructing datatype (array of integers, only present for large count variants)  
- **array_of_datatypes**: contains datatype arguments used in constructing datatype (array of handles)

**C binding**

```c
int MPI_Type_get_contents(MPI_Datatype datatype, int max_integers, int max_addresses, int max_datatypes, int array_of_integers[], MPI_Aint array_of_addresses[], MPI_Datatype array_of_datatypes[])

int MPI_Type_get_contents_c(MPI_Datatype datatype, MPI_Count max_integers, MPI_Count max_addresses, MPI_Count max_datatypes, MPI_Count max_large_counts, int array_of_integers[], MPI_Aint array_of_addresses[], MPI_Count array_of_large_counts[], MPI_Datatype array_of_datatypes[])
```

**Fortran 2008 binding**

```fortran
MPI_Type_get_contents(datatype, max_integers, max_addresses, max_datatypes, array_of_integers, array_of_addresses, array_of_datatypes, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: max_integers, max_addresses, max_datatypes
INTEGER, INTENT(OUT) :: array_of_integers(max_integers)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: array_of_addresses(max_addresses)
TYPE(MPI_Datatype), INTENT(OUT) :: array_of_datatypes(max_datatypes)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
MPI_Type_get_contents(datatype, max_integers, max_addresses, max_large_counts,
  max_datatypes, array_of_integers, array_of_addresses,
  array_of_large_counts, array_of_datatypes, ierror) !(_c)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: max_integers, max_addresses,
  max_large_counts, max_datatypes

INTEGER, INTENT(OUT) :: array_of_integers(max_integers)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) ::
  array_of_addresses(max_addresses)

INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) ::
  array_of_large_counts(max_large_counts)

TYPE(MPI_Datatype), INTENT(OUT) ::
  array_of_datatypes(max_datatypes)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TYPE_GET_CONTENTS(DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
  ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,
  IERROR)

INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
  ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES(*)

datatype must be a predefined unnamed or a derived datatype; the call is erroneous if
datatype is a predefined named datatype.

The values given for max_integers, max_addresses, max_large_counts, and max_datatypes
must be at least as large as the value returned in num_integers, num_addresses,
num_large_counts, and num_datatypes, respectively, in the call MPI_TYPE_GET_ENVELOPE
for the same datatype argument.

Rationale. The arguments max_integers, max_addresses, max_large_counts, and
max_datatypes allow for error checking in the call. (End of rationale.)

If the MPI_TYPE_GET_CONTENTS variant without max_large_counts is invoked with
a datatype that requires > 0 values in array_of_large_counts, then an error of class
MPI_ERR_TYPE is raised.

Rationale. The large count variant of this MPI procedure was added in MPI-4.
It contains new max_large_counts and array_of_large_counts parameters. The other
variant—the variant that existed before MPI-4—was not changed in order to preserve
backwards compatibility. (End of rationale.)

The datatypes returned in array_of_datatypes are handles to datatype objects that
are equivalent to the datatypes used in the original construction call. If these were derived
datatypes, then the returned datatypes are new datatype objects, and the user is responsible
for freeing these datatypes with MPI_TYPE_FREE. If these were predefined datatypes, then
the returned datatype is equal to that (constant) predefined datatype and cannot be freed.

The committed state of returned derived datatypes is undefined, i.e., the datatypes may
or may not be committed. Furthermore, the content of attributes of returned datatypes is
undefined.
Note that MPI_TYPE_GET_CONTENTS can be invoked with a datatype argument that was constructed using MPI_TYPE_CREATE_F90_REAL, MPI_TYPE_CREATE_F90_INTEGER, or MPI_TYPE_CREATE_F90_COMPLEX (an unnamed predefined datatype). In such a case, an empty array_of_datatypes is returned.

Rationale. The definition of datatype equivalence implies that equivalent predefined datatypes are equal. By requiring the same handle for named predefined datatypes, it is possible to use the == or .EQ. comparison operator to determine the datatype involved. (End of rationale.)

Advice to implementors. The datatypes returned in array_of_datatypes must appear to the user as if each is an equivalent copy of the datatype used in the type constructor call. Whether this is done by creating a new datatype or via another mechanism such as a reference count mechanism is up to the implementation as long as the semantics are preserved. (End of advice to implementors.)

Rationale. The committed state and attributes of the returned datatype is deliberately left vague. The datatype used in the original construction may have been modified since its use in the constructor call. Attributes can be added, removed, or modified as well as having the datatype committed. The semantics given allow for a reference count implementation without having to track these changes. (End of rationale.)

In the deprecated datatype constructor calls, the address arguments in Fortran are of type INTEGER. In the preferred calls, the address arguments are of type INTEGER(KIND=MPI_ADDRESS_KIND). The call MPI_TYPE_GET_CONTENTS returns all addresses in an argument of type INTEGER(KIND=MPI_ADDRESS_KIND). This is true even if the deprecated calls were used. Thus, the location of values returned can be thought of as being returned by the C bindings. It can also be determined by examining the preferred calls for datatype constructors for the deprecated calls that involve addresses.

Rationale. By having all address arguments returned in the array_of_addresses argument, the result from a C and Fortran decoding of a datatype gives the result in the same argument. It is assumed that an integer of type INTEGER(KIND=MPI_ADDRESS_KIND) will be at least as large as the INTEGER argument used in datatype construction with the old MPI-1 calls so no loss of information will occur. (End of rationale.)

The following defines what values are placed in each entry of the returned arrays depending on the datatype constructor used for datatype. It also specifies the size of the arrays needed, which is the values returned by MPI_TYPE_GET_ENVELOPE. In Fortran, the following calls were made:

```
PARAMETER (LARGE = 1000)
INTEGER DTYPE, NI, NA, ND, COMBINER, I(LARGE), D(LARGE), IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) A(LARGE)
! CONSTRUCT DATATYPE DTYPE (NOT SHOWN)
CALL MPI_TYPE_GET_ENVELOPE(DTYPE, NI, NA, ND, COMBINER, IERROR)
IF ((NI .GT. LARGE) .OR. (NA .GT. LARGE) .OR. (ND .GT. LARGE)) THEN
 WRITE (*, *) "NI, NA, OR ND = ", NI, NA, ND, &
```

" RETURNED BY MPI_TYPE_GET_ENVELOPE IS LARGER THAN LARGE = ", LARGE
CALL MPI_ABORT(MPI_COMM_WORLD, 99, IERROR)
ENDIF
CALL MPI_TYPE_GET_CONTENTS(DTYPE, NI, NA, ND, I, A, D, IERROR)

or in C the analogous calls of:

#define LARGE 1000
int ni, na, nd, combiner, i[LARGE];
MPI_Aint a[LARGE];
MPI_Datatype dtype, d[LARGE];
/* construct datatype dtype (not shown) */
MPI_Type_get_envelope(dtype, &ni, &na, &nd, &combiner);
if ((ni > LARGE) || (na > LARGE) || (nd > LARGE)) {
    fprintf(stderr, "ni, na, or nd = %d %d %d returned by ", ni, na, nd);
    fprintf(stderr, "MPI_Type_get_envelope is larger than LARGE = %d\n", LARGE);
    MPI_Abort(MPI_COMM_WORLD, 99);
}
MPI_Type_get_contents(dtype, ni, na, nd, i, a, d);

The following describes the values of the arguments for each combiner. The lower case
name of arguments is used. Also, the descriptions below refer to MPI datatypes created by
procedures without large count arguments.

**MPI_COMBINER_NAMED** the datatype represent a predefined type and therefore it is er-
roneous to call MPI_TYPE_GET CONTENTS.

**MPI_COMBINER_DUP** ni = 0, na = 0, nd = 1, and

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>

**MPI_COMBINER_CONTIGUOUS** ni = 1, na = 0, nd = 1, and

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>

**MPI_COMBINER_VECTOR** ni = 3, na = 0, nd = 1, and

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>blocklength</td>
<td>i[1]</td>
<td>I(2)</td>
</tr>
<tr>
<td>stride</td>
<td>i[2]</td>
<td>I(3)</td>
</tr>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>

**MPI_COMBINER_HVECTOR** ni = 2, na = 1, nd = 1, and

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>blocklength</td>
<td>i[1]</td>
<td>I(2)</td>
</tr>
<tr>
<td>stride</td>
<td>a[0]</td>
<td>A(1)</td>
</tr>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>
### 5.1 Derived Datatypes

#### MPI\_COMBINER\_INDEXED
\( ni = 2 \times \text{count} + 1, \ Na = 0, \ Nd = 1, \) and

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C location</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>array_of_blocklengths</td>
<td>i[1] to i[i[0]]</td>
<td>I(2) to I(I(1)+1)</td>
</tr>
<tr>
<td>array_of_displacements</td>
<td>i[i[0]+1] to i[2*i[0]]</td>
<td>I(I(1)+2) to I(2*I(1)+1)</td>
</tr>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>

#### MPI\_COMBINER\_HINDEXED
\( ni = \text{count} + 1, \ Na = \text{count}, \ Nd = 1, \) and

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C location</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>array_of_blocklengths</td>
<td>i[1] to i[i[0]]</td>
<td>I(2) to I(I(1)+1)</td>
</tr>
<tr>
<td>array_of_displacements</td>
<td>a[0] to a[i[0]-1]</td>
<td>A(1) to A(I(1))</td>
</tr>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>

#### MPI\_COMBINER\_INDEXED\_BLOCK
\( ni = \text{count} + 2, \ Na = 0, \ Nd = 1, \) and

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C location</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>blocklength</td>
<td>i[1]</td>
<td>I(2)</td>
</tr>
<tr>
<td>array_of_displacements</td>
<td>i[2] to i[i[0]+1]</td>
<td>I(3) to I(I(1)+2)</td>
</tr>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>

#### MPI\_COMBINER\_HINDEXED\_BLOCK
\( ni = 2, \ Na = \text{count}, \ Nd = 1, \) and

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C location</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>blocklength</td>
<td>i[1]</td>
<td>I(2)</td>
</tr>
<tr>
<td>array_of_displacements</td>
<td>a[0] to a[i[0]-1]</td>
<td>A(1) to A(I(1))</td>
</tr>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>

#### MPI\_COMBINER\_STRUCT
\( ni = \text{count} + 1, \ Na = \text{count}, \ Nd = \text{count}, \) and

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C location</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>array_of_blocklengths</td>
<td>i[1] to i[i[0]]</td>
<td>I(2) to I(I(1)+1)</td>
</tr>
<tr>
<td>array_of_displacements</td>
<td>a[0] to a[i[0]-1]</td>
<td>A(1) to A(I(1))</td>
</tr>
<tr>
<td>array_of_types</td>
<td>d[0] to d[i[0]-1]</td>
<td>D(1) to D(I(1))</td>
</tr>
</tbody>
</table>

#### MPI\_COMBINER\_SUBARRAY
\( ni = 3 \times \text{ndims} + 2, \ Na = 0, \ Nd = 1, \) and

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C location</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ndims</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>array_of_sizes</td>
<td>i[1] to i[i[0]]</td>
<td>I(2) to I(I(1)+1)</td>
</tr>
<tr>
<td>array_of_subsizes</td>
<td>i[i[0]+1] to i[2*i[0]]</td>
<td>I(I(1)+2) to I(2*I(1)+1)</td>
</tr>
<tr>
<td>array_of_starts</td>
<td>i[2<em>i[0]+1] to i[3</em>i[0]]</td>
<td>I(2<em>I(1)+2) to I(3</em>I(1)+1)</td>
</tr>
<tr>
<td>order</td>
<td>i[3*i[0]+1]</td>
<td>I(3*I(1)+2)</td>
</tr>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>
### MPI_COMBINER_DARRAY

\[ ni = 4 \times \text{ndims} + 4, \text{na} = 0, \text{nd} = 1, \text{and} \]

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>rank</td>
<td>i[1]</td>
<td>I(2)</td>
</tr>
<tr>
<td>ndims</td>
<td>i[2]</td>
<td>I(3)</td>
</tr>
<tr>
<td>array_of_gsizes</td>
<td>i[3] to i[2]+2</td>
<td>I(4) to I(I(3)+3)</td>
</tr>
<tr>
<td>array_of_distrib</td>
<td>i[2]+3 to i[2]+2</td>
<td>I(I(3)+4) to I(2*I(3)+3)</td>
</tr>
<tr>
<td>array_of_dargs</td>
<td>i[2]+3 to i[2]+2</td>
<td>I(2<em>I(3)+4) to I(3</em>I(3)+3)</td>
</tr>
<tr>
<td>array_of_psizes</td>
<td>i[2]+3 to i[2]+2</td>
<td>I(3<em>I(3)+4) to I(4</em>I(3)+3)</td>
</tr>
<tr>
<td>order</td>
<td>i[2]+3</td>
<td>I(4*I(3)+4)</td>
</tr>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>

### MPI_COMBINER_F90_REAL

\[ ni = 2, \text{na} = 0, \text{nd} = 0, \text{and} \]

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>r</td>
<td>i[1]</td>
<td>I(2)</td>
</tr>
</tbody>
</table>

### MPI_COMBINER_F90_COMPLEX

\[ ni = 2, \text{na} = 0, \text{nd} = 0, \text{and} \]

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
<tr>
<td>r</td>
<td>i[1]</td>
<td>I(2)</td>
</tr>
</tbody>
</table>

### MPI_COMBINER_F90_INTEGER

\[ ni = 1, \text{na} = 0, \text{nd} = 0, \text{and} \]

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>i[0]</td>
<td>I(1)</td>
</tr>
</tbody>
</table>

### MPI_COMBINER_RESIZED

\[ ni = 0, \text{na} = 2, \text{nd} = 1, \text{and} \]

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb</td>
<td>a[0]</td>
<td>A(1)</td>
</tr>
<tr>
<td>extent</td>
<td>a[1]</td>
<td>A(2)</td>
</tr>
<tr>
<td>oldtype</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
</tbody>
</table>

### MPI_COMBINER_VALUE_INDEX

\[ ni = 0, \text{na} = 0, \text{nd} = 2, \text{and} \]

<table>
<thead>
<tr>
<th>Constructor argument</th>
<th>C</th>
<th>Fortran location</th>
</tr>
</thead>
<tbody>
<tr>
<td>value_type</td>
<td>d[0]</td>
<td>D(1)</td>
</tr>
<tr>
<td>index_type</td>
<td>d[1]</td>
<td>D(2)</td>
</tr>
</tbody>
</table>

5.1.14 Examples

The following examples illustrate the use of derived datatypes.

**Example 5.13.** Send and receive a section of a 3D array.

```fortran
REAL a(100,100,100), e(9,9,9)
INTEGER oneslice, twoslice, threeslice, myrank, ierr
INTEGER(KIND=MPI_ADDRESS_KIND) lb, sizeofreal
INTEGER status(MPI_STATUS_SIZE)
```
5.1 Derived Datatypes

Example 5.14. Copy the (strictly) lower triangular part of a matrix.

```
REAL a(100,100), b(100,100)
INTEGER disp(100), blocklen(100), ltype, myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

! copy lower triangular part of array a
! onto lower triangular part of array b
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

! compute start and size of each column
DO i=1,100
 disp(i) = 100*(i-1) + i
 blocklen(i) = 100-i
END DO

! create datatype for lower triangular part
CALL MPI_TYPE_INDEXED(100, blocklen, disp, MPI_REAL, ltype, ierr)

CALL MPI_TYPE_COMMIT(ltype, ierr)
CALL MPI_SENDRECV(a, 1, ltype, myrank, 0, b, 1, ltype, myrank, 0, MPI_COMM_WORLD, status, ierr)
```

Example 5.15. Transpose a matrix.

```
REAL a(100,100), b(100,100)
INTEGER row, xpose, myrank, ierr
INTEGER(KIND=MPI_ADDRESS_KIND) lb, sizeofreal
```
Example 5.16. Another approach to the transpose problem:

```fortran
INTEGER status(MPI_STATUS_SIZE)

! transpose matrix a onto b
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lb, sizeofreal, ierr)

! create datatype for one row
CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, row, ierr)

! create datatype for matrix in row-major order
CALL MPI_TYPE_CREATE_HVECTOR(100, 1, sizeofreal, row, xpose, ierr)

CALL MPI_TYPE_COMMIT(xpose, ierr)

! send matrix in row-major order and receive in column major order
CALL MPI_SENDRECV(a, 1, xpose, myrank, 0, b, 100*100, &
 MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)
```

Example 5.17. Use of MPI datatypes to manipulate an array of structures.

```c
struct Partstruct {
```
5.1 Derived Datatypes

```c
int type; /* particle type */
double d[6]; /* particle coordinates */
char b[7]; /* some additional information */
};

struct Partstruct particle[1000];

int i, dest, tag;
MPI_Comm comm;

/* build datatype describing structure */

MPI_Datatype Particlestruct, Particletype;
MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};
int blocklen[3] = {1, 6, 7};
MPI_Aint disp[3];
MPI_Aint base, lb, sizeofentry;

/* compute displacements of structure components */

MPI_Get_address(particle, disp);
MPI_Get_address(particle[0].d, disp+1);
MPI_Get_address(particle[0].b, disp+2);
base = disp[0];
for (i=0; i < 3; i++) disp[i] = MPI_Aint_diff(disp[i], base);

MPI_Type_create_struct(3, blocklen, disp, type, &Particlestruct);

/* Since the compiler may pad the structure, it is best to explicitly set the extent of the MPI datatype for a structure element using MPI_Type_create_resized */

/* compute extent of the structure */

MPI_Get_address(particle+1, &sizeofentry);
sizeofentry = MPI_Aint_diff(sizeofentry, base);

/* build datatype describing structure */

MPI_Type_create_resized(Particlestruct, 0, sizeofentry, &Particletype);

/* 4.1: send the entire array */

MPI_Type_commit(&Particletype);
MPI_Send(particle, 1000, Particletype, dest, tag, comm);

/* 4.2: send only the entries of type zero particles, preceded by the number of such entries */

MPI_Datatype Zparticles; /* datatype describing all particles with type zero (needs to be recomputed */
if types change) */
MPI_Datatype Ztype;

int zdisp[1000];
int zblock[1000], j, k;
int zzblock[2] = {1,1};
MPI_Aint zzdisp[2];
MPI_Datatype zztype[2];

/* compute displacements of type zero particles */
j = 0;
for (i = 0; i < 1000; i++)
 if (particle[i].type == 0)
 {
 zdisp[j] = i;
 zblock[j] = 1;
 j++;
 }

/* create datatype for type zero particles */
MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);

/* prepend particle count */
MPI_Get_address(&j, zzdisp);
MPI_Get_address(particle, zzdisp+1);
zztype[0] = MPI_INT;
zztype[1] = Zparticles;
MPI_Type_create_struct(2, zzblock, zzdisp, zztype, &Ztype);
MPI_Type_commit(&Ztype);
MPI_Send(MPI_BOTTOM, 1, Ztype, dest, tag, comm);

/* A probably more efficient way of defining Zparticles */
/* consecutive particles with index zero are handled as one block */
j = 0;
for (i = 0; i < 1000; i++)
 if (particle[i].type == 0)
 {
 for (k = i+1; (k < 1000) & (particle[k].type == 0); k++)
 {zdisp[j] = i;
 zblock[j] = k-i;
 j++;
 i = k;
 }
 }

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);

/* 4.3: send the first two coordinates of all entries */

MPI_Datatype Allpairs; /* datatype for all pairs of coordinates */
Derived Datatypes

```c
MPI_Type_get_extent(Particletype, &lb, &sizeofentry);
/* sizeofentry can also be computed by subtracting the address
   of particle[0] from the address of particle[1] */

MPI_Type_create_hvector(1000, 2, sizeofentry, MPI_DOUBLE, &Allpairs);
MPI_Type_commit(&Allpairs);
MPI_Send(particle[0].d, 1, Allpairs, dest, tag, comm);

/* an alternative solution to 4.3 */

MPI_Datatype Twodouble;
MPI_Type_contiguous(2, MPI_DOUBLE, &Twodouble);

MPI_Datatype Onepair; /* datatype for one pair of coordinates, with
   the extent of one particle entry */

MPI_Type_create_resized(Twodouble, 0, sizeofentry, &Onepair);
MPI_Type_commit(&Onepair);
MPI_Send(particle[0].d, 1000, Onepair, dest, tag, comm);
```

Example 5.18. The same manipulations as in the previous example, but use absolute addresses in datatypes.

```c
struct Partstruct
{
   int type;
   double d[6];
   char b[7];
};

struct Partstruct particle[1000];

/* build datatype describing first array entry */

MPI_Datatype Particletype;
MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};
int block[3] = {1, 6, 7};
MPI_Aint disp[3];

MPI_Get_address(particle, disp);
MPI_Get_address(particle[0].d, disp+1);
MPI_Get_address(particle[0].b, disp+2);
MPI_Type_create_struct(3, block, disp, type, &Particletype);

/* Particletype describes first array entry -- using absolute
   addresses */

/* 5.1: send the entire array */

MPI_Type_commit(&Particletype);
```
Chapter 5 Datatypes

```c
MPI_Send(MPI_BOTTOM, 1000, Particletype, dest, tag, comm);

/* 5.2: send the entries of type zero, preceded by the number of such entries */

MPI_Datatype Zparticles, Ztype;

int zdisp[1000];
int zblock[1000], i, j, k;
int zzblock[2] = {1,1};
MPI_Datatype zztype[2];
MPI_Aint zzdisp[2];

j=0;
for (i=0; i < 1000; i++)
    if (particle[i]. type == 0)
        for (k=i+1; (k < 1000)&&(particle[k]. type == 0); k++)
            zdisp[j] = i;
        zblock[j] = k-i;
        j++;
    i = k;

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);
/* Zparticles describe particles with type zero, using their absolute addresses*/

/* prepend particle count */
MPI_Get_address(&j, zzdisp);
zzdisp[1] = (MPI_Aint)0;
zztype[0] = MPI_INT;
zztype[1] = Zparticles;
MPI_Type_create_struct(2, zzblock, zzdisp, zztype, &Ztype);

MPI_Type_commit(&Ztype);
MPI_Send(MPI_BOTTOM, 1, Ztype, dest, tag, comm);
```

Example 5.19. This example shows how datatypes can be used to handle unions.

```c
union {
    int ival;
    float fval;
} u[1000];

int i, utype;

/* All entries of u have identical type; variable utype keeps track of their current type */

MPI_Datatype mpi_utype[2];
MPI_Aint ubase, extent;
```
5.1 Derived Datatypes

/* compute an MPI datatype for each possible union type;
 assume values are left-aligned in union storage. */

MPI_Get_address(u, &ubase);
MPI_Get_address(u+1, &extent);
extent = MPI_Aint_diff(extent, ubase);

MPI_Type_create_resized(MPI_INT, 0, extent, &mpi_utype[0]);
MPI_Type_create_resized(MPI_FLOAT, 0, extent, &mpi_utype[1]);

for(i=0; i<2; i++) MPI_Type_commit(&mpi_utype[i]);

/* actual communication */
MPI_Send(u, 1000, mpi_utype[utype], dest, tag, comm);

Example 5.20. This example shows how a datatype can be decoded. The routine
printdatatype prints out the elements of the datatype. Note the use of MPI_Type_free for
datatypes that are not predefined.

/*
 Example of decoding a datatype.

 Returns 0 if the datatype is predefined, 1 otherwise
*/
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

int print datatype (MPI_Datatype datatype) {
 int *array_of_ints;
 MPI_Aint *array_of_adds;
 MPI_Datatype *array_of_dtypes;
 int num_ints, num_adds, num_dtypes, combiner;
 int i;

 MPI_Type_get_envelope(datatype,
 &num_ints, &num_adds, &num_dtypes, &combiner);
 switch (combiner) {
 case MPI_COMBINER_NAMED:
 printf("Datatype is named:");
 /* To print the specific type, we can match against the
 predefined forms. We can NOT use a switch statement here
 We could also use MPI_TYPE_GET_NAME if we preferred to use
 names that the user may have changed. */
 if (datatype == MPI_INT) printf("MPI_INT\n");
 else if (datatype == MPI_DOUBLE) printf("MPI_DOUBLE\n");
 ... else test for other types ...
 return 0;
 break;
case MPI_COMBINER_STRUCT:
 printf("Datatype is struct containing\n");
 array_of_ints = (int *)malloc(num_ints * sizeof(int));
 array_of_adds =
 (MPI_Aint *) malloc(num_adds * sizeof(MPI_Aint));
 array_of_dtypes = (MPI_Datatype *)
 malloc(num_dtypes * sizeof(MPI_Datatype));
 MPI_Type_get_contents(datatype, num_ints, num_adds, num_dtypes,
 array_of_ints, array_of_adds, array_of_dtypes);
 printf(" %d datatypes: \n", array_of_ints[0]);
 for (i=0; i<array_of_ints[0]; i++) {
 printf("blocklength %d, displacement %ld, type: \n",
 array_of_ints[i+1], (long)array_of_adds[i]);
 if (printdatatype(array_of_dtypes[i])) {
 /* Note that we free the type ONLY if it
 is not predefined */
 MPI_Type_free(&array_of_dtypes[i]);
 }
 }
 free(array_of_ints);
 free(array_of_adds);
 free(array_of_dtypes);
 break;
 ... other combiner values ...
default:
 printf("Unrecognized combiner type\n");
}

return 1;
}

5.2 Pack and Unpack

Some existing communication libraries provide pack/unpack procedures for sending noncontiguous data. In these, the user explicitly packs data into a contiguous buffer before sending it, and unpacks it from a contiguous buffer after receiving it. Derived datatypes, which are described in Section 5.1, allow one, in most cases, to avoid explicit packing and unpacking. The user specifies the layout of the data to be sent or received, and the communication library directly accesses a noncontiguous buffer. The pack/unpack routines are provided for compatibility with previous libraries. Also, they provide some functionality that is not otherwise available in MPI. For instance, a message can be received in several parts, where the receive operation done on a later part may depend on the content of a former part. Another use is that outgoing messages may be explicitly buffered in user supplied space, thus overriding the system buffering policy. Finally, the availability of pack and unpack operations facilitates the development of additional communication libraries layered on top of MPI.

MPI_PACK(inbuf, incount, datatype, outbuf, outsize, position, comm)
IN inbuf input buffer start (choice)
5.2 Pack and Unpack

IN	incount	number of input data items (non-negative integer)
IN	datatype	datatype of each input data item (handle)
OUT	outbuf	output buffer start (choice)
IN	outsize	output buffer size, in bytes (non-negative integer)
INOUT	position	current position in buffer, in bytes (integer)
IN	comm	communicator for packed message (handle)

C binding

```c
int MPI_Pack(const void *inbuf, int incount, MPI_Datatype datatype,
              void *outbuf, int outsize, int *position, MPI_Comm comm)

int MPI_Pack_c(const void *inbuf, MPI_Count incount, MPI_Datatype datatype,
                void *outbuf, MPI_Count outsize, MPI_Count *position,
                MPI_Comm comm)
```

Fortran 2008 binding

```fortran
MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position, comm, ierror)
    TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
    INTEGER, INTENT(IN) :: incount, outsize
    TYPE(MPI_Datatype), INTENT(IN) :: datatype
    TYPE(*), DIMENSION(..) :: outbuf
    INTEGER, INTENT(INOUT) :: position
    TYPE(MPI_Comm), INTENT(IN) :: comm
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position, comm, ierror)
    !(_c)
    TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: incount, outsize
    TYPE(MPI_Datatype), INTENT(IN) :: datatype
    TYPE(*), DIMENSION(..) :: outbuf
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(INOUT) :: position
    TYPE(MPI_Comm), INTENT(IN) :: comm
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
    <type> INBUF(*), OUTBUF(*)
    INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR
```

Packs the message in the send buffer specified by `inbuf`, `incount`, `datatype` into the buffer space specified by `outbuf` and `outsize`. The input buffer can be any communication buffer allowed in `MPI_SEND`. The output buffer is a contiguous storage area containing `outsize` bytes, starting at the address `outbuf` (length is counted in `bytes`, not elements, as if it were a communication buffer for a message of type `MPI_PACKED`).

The input value of `position` is the first location in the output buffer to be used for packing. `position` is incremented by the size of the packed message, and the output value of `position` is the first location in the output buffer following the locations occupied by the
packed message. The comm argument is the communicator that will be subsequently used for sending the packed message.

MPI_UNPACK(inbuf, insize, position, outbuf, outcount, datatype, comm)

IN inbuf input buffer start (choice)
IN insize size of input buffer, in bytes (non-negative integer)
INOUT position current position in bytes (integer)
OUT outbuf output buffer start (choice)
IN outcount number of items to be unpacked (integer)
IN datatype datatype of each output data item (handle)
IN comm communicator for packed message (handle)

C binding

int MPI_Unpack(const void *inbuf, int insize, int *position, void *outbuf,
 int outcount, MPI_Datatype datatype, MPI_Comm comm)
int MPI_Unpack_c(const void *inbuf, MPI_Count insize, MPI_Count *position,
 void *outbuf, MPI_Count outcount, MPI_Datatype datatype,
 MPI_Comm comm)

Fortran 2008 binding

MPI_Unpack(inbuf, insize, position, outbuf, outcount, datatype, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
 INTEGER, INTENT(IN) :: insize, outcount
 INTEGER, INTENT(INOUT) :: position
 TYPE(*), DIMENSION(..) :: outbuf
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Unpack(inbuf, insize, position, outbuf, outcount, datatype, comm, ierror)
 !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: insize, outcount
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(INOUT) :: position
 TYPE(*), DIMENSION(..) :: outbuf
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM, IERROR)
 <type> INBUF(*), OUTBUF(*)
 INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

 Unpacks a message into the receive buffer specified by outbuf, outcount, datatype from the buffer space specified by inbuf and insize. The output buffer can be any communication
buffer allowed in MPI_RECV. The input buffer is a contiguous storage area containing insize bytes, starting at address inbuf. The input value of position is the first location in the input buffer occupied by the packed message. position is incremented by the size of the packed message, so that the output value of position is the first location in the input buffer after the locations occupied by the message that was unpacked. comm is the communicator used to receive the packed message.

Advice to users. Note the difference between MPI_RECV and MPI_UNPACK: in MPI_RECV, the count argument specifies the maximum number of items that can be received. The actual number of items received is determined by the length of the incoming message. In MPI_UNPACK, the count argument specifies the actual number of items that are unpacked; the “size” of the corresponding message is the increment in position. The reason for this change is that the “incoming message size” is not predetermined since the user decides how much to unpack; nor is it easy to determine the “message size” from the number of items to be unpacked. In fact, in a heterogeneous system, this number may not be determined a priori. (End of advice to users.)

To understand the behavior of pack and unpack, it is convenient to think of the data part of a message as being the sequence obtained by concatenating the successive values sent in that message. The pack operation stores this sequence in the buffer space, as if sending the message to that buffer. The unpack operation retrieves this sequence from buffer space, as if receiving a message from that buffer. (It is helpful to think of internal Fortran files or sscanf in C, for a similar function.)

Several messages can be successively packed into one packing unit. This is effected by several successive related calls to MPI_PACK, where the first call provides position = 0, and each successive call inputs the value of position that was output by the previous call, and the same values for outbuf, outcount and comm. This packing unit now contains the equivalent information that would have been stored in a message by one send call with a send buffer that is the “concatenation” of the individual send buffers.

A packing unit can be sent using type MPI_PACKED. Any point-to-point or collective communication operation can be used to move the sequence of bytes that forms the packing unit from one process to another. This packing unit can now be received using any receive operation, with any datatype: the type matching rules are relaxed for messages sent with type MPI_PACKED.

A message sent with any type (including MPI_PACKED) can be received using the type MPI_PACKED. Such a message can then be unpacked by calls to MPI_UNPACK.

A packing unit (or a message created by a regular, “typed” send) can be unpacked into several successive messages. This is effected by several successive related calls to MPI_UNPACK, where the first call provides position = 0, and each successive call inputs the value of position that was output by the previous call, and the same values for inbuf, insize and comm.

The concatenation of two packing units is not necessarily a packing unit; nor is a substring of a packing unit necessarily a packing unit. Thus, one cannot concatenate two packing units and then unpack the result as one packing unit; nor can one unpack a substring of a packing unit as a separate packing unit. Each packing unit, that was created by a related sequence of pack calls, or by a regular send, must be unpacked as a unit, by a sequence of related unpack calls.
Rationale. The restriction on “atomic” packing and unpacking of packing units allows the implementation to add at the head of packing units additional information, such as a description of the sender architecture (to be used for type conversion, in a heterogeneous environment) (End of rationale.)

The following call allows the user to find out how much space is needed to pack a message and, thus, manage space allocation for buffers.

\[
\text{MPI_PACK_SIZE}(\text{incount}, \text{datatype}, \text{comm}, \text{size})
\]

- **IN** \text{incount} count argument to packing call (non-negative integer)
- **IN** \text{datatype} datatype argument to packing call (handle)
- **IN** \text{comm} communicator argument to packing call (handle)
- **OUT** \text{size} upper bound on size of packed message, in bytes (non-negative integer)

C binding

int MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm, int *size)

int MPI_Pack_size_c(MPI_Count incount, MPI_Datatype datatype, MPI_Comm comm, MPI_Count *size)

Fortran 2008 binding

MPI_Pack_size(incount, datatype, comm, size, ierror)

INTEGER, INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_size(incount, datatype, comm, size, ierror) !(_c)

INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)

INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

A call to MPI_PACK_SIZE(incount, datatype, comm, size) returns in size an upper bound on the increment in position that is effected by a call to MPI_PACK(inbuf, incount, datatype, outbuf, outcount, position, comm). If the packed size of the datatype cannot be expressed by the size parameter, then MPI_PACK_SIZE sets the value of size to MPI_UNDEFINED.

Rationale. The call returns an upper bound, rather than an exact bound, since the exact amount of space needed to pack the message may depend on the context (e.g., first message packed in a packing unit may take more space). (End of rationale.)
Example 5.21. An example using MPI_PACK.

```c
int position, i, j, a[2];
char buff[1000];

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0)
{
    /* SENDER CODE */
    position = 0;
    MPI_Pack(&i, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);
    MPI_Pack(&j, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);
    MPI_Send(buff, position, MPI_PACKED, 1, 0, MPI_COMM_WORLD);
}
else  /* RECEIVER CODE */
    MPI_Recv(a, 2, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
```

Example 5.22. An elaborate example.

```c
int position, i = 200;
float a[200];
char buff[1000]; /* larger than or equal to the size returned 
                from MPI_PACK_SIZE for 1, newtype */

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0)
{
    /* SENDER CODE */
    int len[2];
    MPI_Aint disp[2];
    MPI_Datatype type[2], newtype;

    /* build datatype for i followed by a[0]...a[i-1] */
    len[0] = 1;
    len[1] = i;
    MPI_Get_address(&i, disp);
    MPI_Get_address(a, disp+1);
    type[0] = MPI_INT;
    type[1] = MPI_FLOAT;
    MPI_Type_create_struct(2, len, disp, type, &newtype);
    MPI_Type_commit(&newtype);

    /* Pack i followed by a[0]...a[i-1]*/
    position = 0;
    MPI_Pack(MPI_BOTTOM, 1, newtype, buff, 1000, &position, MPI_COMM_WORLD);

    /* Send */
    MPI_Send(buff, position, MPI_PACKED, 1, 0, MPI_COMM_WORLD);

    /* *****
    One can replace the last three lines with
```
Example 5.23. Each process sends a count, followed by count characters to the root; the root concatenates all characters into one string.

```c
int count, gsize, counts[64], totalcount, k1, k2, k,
    displs[64], position, concat_pos;
char chr[100], *lbuf, *rbuf, *cbuf;

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);

    /* allocate local pack buffer */
MPI_Pack_size(1, MPI_INT, comm, &k1);
MPI_Pack_size(count, MPI_CHAR, comm, &k2);
    k = k1+k2;
    lbuf = (char *)malloc(k);

    /* pack count, followed by count characters */
position = 0;
MPI_Pack(&count, 1, MPI_INT, lbuf, k, &position, comm);
MPI_Pack(chr, count, MPI_CHAR, lbuf, k, &position, comm);

if (myrank != root) {
    /* gather at root sizes of all packed messages */
MPI_Gather(&position, 1, MPI_INT, NULL, 0,
    MPI_DATATYPE_NULL, root, comm);

    /* gather at root packed messages */
MPI_Gatherv(lbuf, position, MPI_PACKED, NULL,
    NULL, NULL, MPI_DATATYPE_NULL, root, comm);
} else { /* root code */
    /* gather sizes of all packed messages */
MPI_Gather(&position, 1, MPI_INT, counts, 1,
```
MPI_INT, root, comm);

/* gather all packed messages */
displs[0] = 0;
for (i=1; i < gsize; i++)
 displs[i] = displs[i-1] + counts[i-1];
totalcount = displs[gsize-1] + counts[gsize-1];
rbuf = (char *)malloc(totalcount);
cbuf = (char *)malloc(totalcount);
MPI_Gatherv(lbuf, position, MPI_PACKED, rbuf,
counts, displs, MPI_PACKED, root, comm);

/* unpack all messages and concatenate strings */
concat_pos = 0;
for (i=0; i < gsize; i++) {
 position = 0;
 MPI_Unpack(rbuf+displs[i], totalcount-displs[i],
 &position, &count, 1, MPI_INT, comm);
 MPI_Unpack(rbuf+displs[i], totalcount-displs[i],
 &position, cbuf+concat_pos, count, MPI_CHAR, comm);
 concat_pos += count;
}
cbuf[concat_pos] = '\0';}

5.3 Canonical MPI_PACK and MPI_UNPACK

These procedures read/write data to/from the buffer in the "external32" data format specified in Section 14.5.2, and calculate the size needed for packing. Their first arguments specify the data format, for future extensibility, but currently the only valid value of the datarep argument is "external32".

Advice to users. These procedures could be used, for example, to send typed data in a portable format from one MPI implementation to another. (End of advice to users.)

The buffer will contain exactly the packed data, without headers. MPI_BYTE should be used to send and receive data that is packed using MPI_PACK_EXTERNAL.

Rationale. MPI_PACK_EXTERNAL specifies that there is no header on the message and further specifies the exact format of the data. Since MPI_PACK may (and is allowed to) use a header, the datatype MPI_PACKED cannot be used for data packed with MPI_PACK_EXTERNAL. (End of rationale.)

MPI_PACK_EXTERNAL(datarep, inbuf, incount, datatype, outbuf, outsize, position)

IN datarep data representation (string)
IN inbuf input buffer start (choice)
IN incount number of input data items (integer)
IN datatype datatype of each input data item (handle)
OUT outbuf output buffer start (choice)
IN outsize output buffer size, in bytes (integer)
INOUT position current position in buffer, in bytes (integer)

C binding
int MPI_Pack_external(const char datarep[], const void *inbuf, int incount,
 MPI_Datatype datatype, void *outbuf, MPI_Aint outsize,
 MPI_Aint *position)
int MPI_Pack_external_c(const char datarep[], const void *inbuf,
 MPI_Count incount, MPI_Datatype datatype, void *outbuf,
 MPI_Count outsize, MPI_Count *position)

Fortran 2008 binding
MPI_Pack_external(datarep, inbuf, incount, datatype, outbuf, outsize, position,
 ierr)
 CHARACTER(LEN=*), INTENT(IN) :: datarep
 TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
 INTEGER, INTENT(IN) :: incount
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(*), DIMENSION(..) :: outbuf
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: outsize
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr
MPI_Pack_external(datarep, inbuf, incount, datatype, outbuf, outsize, position,
 ierr) !(_c)
 CHARACTER(LEN=*), INTENT(IN) :: datarep
 TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: incount, outsize
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(*), DIMENSION(..) :: outbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(INOUT) :: position
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

Fortran binding
MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION,
 IERROR)
 CHARACTER*(*) DATAREP
 <type> INBUF(*), OUTBUF(*)
 INTEGER INCOUNT, DATATYPE, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION
5.3 Canonical MPI_PACK and MPI_UNPACK

MPI_UNPACK_EXTERNAL(datarep, inbuf, insize, position, outbuf, outcount, datatype)

IN datarep data representation (string)
IN inbuf input buffer start (choice)
IN insize input buffer size, in bytes (integer)
INOUT position current position in buffer, in bytes (integer)
OUT outbuf output buffer start (choice)
IN outcount number of output data items (integer)
IN datatype datatype of output data item (handle)

C binding

int MPI_Unpack_external(const char datarep[], const void *inbuf,
 MPI_Aint insize, MPI_Aint *position,
 void *outbuf, int outcount,
 MPI_Datatype datatype)

int MPI_Unpack_external_c(const char datarep[], const void *inbuf,
 MPI_Count insize, MPI_Count *position,
 void *outbuf, int outcount,
 MPI_Datatype datatype)

Fortran 2008 binding

MPI_Unpack_external(datarep, inbuf, insize, position, outbuf, outcount,
 datatype, ierror)
CHARACTER(LEN=*) :: datarep
TYPE(*) :: inbuf
INTEGER(KIND=MPI_ADDRESS_KIND) :: insize
INTEGER(KIND=MPI_ADDRESS_KIND) :: position
TYPE(*) :: outbuf
INTEGER, INTENT(IN) :: outcount
TYPE(MPI_Datatype) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Unpack_external(datarep, inbuf, insize, position, outbuf, outcount,
 datatype, ierror) !(_c)
CHARACTER(LEN=*) :: datarep
TYPE(*) :: inbuf
INTEGER(KIND=MPI_COUNT_KIND) :: insize, outcount
INTEGER(KIND=MPI_COUNT_KIND) :: position
TYPE(*) :: outbuf
TYPE(MPI_Datatype) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,
 DATATYPE, IERROR)
CHARACTER*(*) :: DATAREP
<type> :: INBUF(*), OUTBUF(*)
INTEGER(KIND=MPI_ADDRESS_KIND) :: INSIZE, POSITION
INTEGER OUTCOUNT, DATATYPE, IERROR
MPI_PACK_EXTERNAL_SIZE(datarep, incount, datatype, size)

IN datarep data representation (string)
IN incount number of input data items (integer)
IN datatype datatype of each input data item (handle)
OUT size output buffer size, in bytes (integer)

C binding
int MPI_Pack_external_size(const char datarep[], int incount,
 MPI_Datatype datatype, MPI_Aint *size)
int MPI_Pack_external_size_c(const char datarep[], MPI_Count incount,
 MPI_Datatype datatype, MPI_Count *size)

Fortran 2008 binding
MPI_Pack_external_size(datarep, incount, datatype, size, ierror)
 CHARACTER(LEN=*) , INTENT(IN) :: datarep
 INTEGER, INTENT(IN) :: incount
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Pack_external_size(datarep, incount, datatype, size, ierror) !(_c)
 CHARACTER(LEN=*) , INTENT(IN) :: datarep
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: incount
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)
 CHARACTER*(*) DATAREP
 INTEGER INCOUNT, DATATYPE, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
Chapter 6
Collective Communication

6.1 Introduction and Overview

Collective communication is defined as communication that involves a group or groups of MPI processes. The functions of this type provided by MPI are the following:

- MPI_BARRIER, MPI_IBARRIER, MPI_BARRIER_INIT: Barrier synchronization across all members of a group (Section 6.3, Section 6.12.1, and Section 6.13.1).

- MPI_BCAST, MPI_IBCAST, MPI_BCAST_INIT: Broadcast from one member to all members of a group (Section 6.4, Section 6.12.2, and Section 6.13.2). This is shown as “broadcast” in Figure 6.1.

- MPI_GATHER, MPI_IGATHER, MPI_GATHER_INIT, MPI_GATHERV, MPI_IGATHERV, MPI_GATHERV_INIT: Gather data from all members of a group to one member (Section 6.5, Section 6.12.3, and Section 6.13.3). This is shown as “gather” in Figure 6.1.

- MPI_SCATTER, MPI_ISCATTER, MPI_SCATTER_INIT, MPI_SCATTERV, MPI_ISCATTERV, MPI_SCATTERV_INIT: Scatter data from one member to all members of a group (Section 6.6, Section 6.12.4, and Section 6.13.4). This is shown as “scatter” in Figure 6.1.

- MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHER_INIT, MPI_ALLGATHERV, MPI_IALLGATHERV, MPI_ALLGATHERV_INIT: A variation on Gather where all members of a group receive the result (Section 6.7, Section 6.12.5, and Section 6.13.5). This is shown as “allgather” in Figure 6.1.

- MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALL_INIT, MPI_ALLTOALLV, MPI_IALLTOALLV, MPI_ALLTOALLV_INIT, MPI_ALLTOALLW, MPI_IALLTOALLW, MPI_ALLTOALLW_INIT: Scatter/Gather data from all members to all members of a group (also called complete exchange) (Section 6.8, Section 6.12.6, and Section 6.13.6). This is shown as “complete exchange” in Figure 6.1.

- MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_ALLREDUCE_INIT, MPI_REDUCE, MPI_IREDUCE, MPI_REDUCE_INIT: Global reduction operations such as sum, max, min, or user-defined functions, where the result is returned to all members of a group (Section 6.9.6, Section 6.12.8, and Section 6.13.8) and a variation where the result is returned to only one member (Section 6.9, Section 6.12.7, and Section 6.13.7).

- MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER_BLOCK_INIT, MPI_REDUCE_SCATTER,
MPI_IREDUCE_SCATTER, MPI_REDUCE_SCATTER_INIT: A combined reduction and scatter operation (Section 6.10, Section 6.12.9, Section 6.12.10, Section 6.13.9, and Section 6.13.10).

- MPI_SCAN, MPI_ISCAN, MPI_SCAN_INIT, MPI_EXSCAN, MPI_IEXSCAN, MPI_EXSCAN_INIT: Scan across all members of a group (also called prefix) (Section 6.11, Section 6.11.2, Section 6.12.11, Section 6.12.12, Section 6.13.11, and Section 6.13.12).

One of the key arguments in a call to a collective routine is a communicator that defines the group or groups of participating MPI processes and provides a context for the operation. This is discussed further in Section 6.2. The syntax and semantics of the collective operations are defined to be consistent with the syntax and semantics of the point-to-point operations. Thus, general datatypes are allowed and must match between sending and receiving MPI processes as specified in Chapter 5. Several collective routines such as broadcast and gather have a single originating or receiving MPI process. Such an MPI process is called the root. Some arguments in the collective functions are specified as “significant only at root,” and are ignored for all participants except the root. The reader is referred to Chapter 5 for information concerning communication buffers, general datatypes and type matching rules, and to Chapter 7 for information on how to define groups and create communicators.

The type-matching conditions for the collective operations are more strict than the corresponding conditions between sender and receiver in point-to-point. Namely, for collective operations, the amount of data sent must exactly match the amount of data specified by the receiver. Different type maps (the layout in memory, see Section 5.1) between sender and receiver are still allowed.

Collective operations can (but are not required to) complete as soon as the caller’s participation in the collective communication is finished. A blocking operation is complete as soon as the call returns. A nonblocking (immediate) call requires a separate completion call (cf. Section 3.7). The completion of a collective operation indicates that the caller is free to modify locations in the communication buffer. It does not indicate that other MPI processes in the group have completed or even started the operation (unless otherwise implied by the description of the operation). Thus, a collective communication operation may, or may not, have the effect of synchronizing all participating MPI processes.

Collective communication calls may use the same communicators as point-to-point communication; MPI guarantees that messages generated on behalf of collective communication calls will not be confused with messages generated by point-to-point communication. The collective operations do not have a message tag argument. A more detailed discussion of correct use of collective routines is found in Section 6.14.

Rationale. The equal-data restriction (on type matching) was made so as to avoid the complexity of providing a facility analogous to the status argument of MPI_RECV for discovering the amount of data sent. Some of the collective routines would require an array of status values.

The statements about synchronization are made so as to allow a variety of implementations of the collective functions.

(End of rationale.)
A 0 A 1 A 2 A 3 A 4 A 5

broadcast

A 0 A 1 A 2 A 3 A 4 A 5

A 0 A 1 A 2 A 3 A 4 A 5

A 0 A 1 A 2 A 3 A 4 A 5

complete exchange

A 0 A 1 A 2 A 3 A 4 A 5

A 0 A 1 A 2 A 3 A 4 A 5

A 0 A 1 A 2 A 3 A 4 A 5

Figure 6.1: Collective move functions illustrated for a group of six MPI processes. In each case, each row of boxes represents data locations in one MPI process. Thus, in the broadcast, initially just the first MPI process contains the data \(A_0 \), but after the broadcast all MPI processes contain it.
Advice to users. It is dangerous to rely on synchronization side-effects of the collective operations for program correctness. For example, even though a particular implementation may provide a broadcast routine with a side-effect of synchronization, the standard does not require this, and a program that relies on this will not be portable.

On the other hand, a correct, portable program must allow for the fact that a collective call may be synchronizing. Though one cannot rely on any synchronization side-effect, one must program so as to allow it. These issues are discussed further in Section 6.14. (End of advice to users.)

Advice to implementors. While vendors may write optimized collective routines matched to their architectures, a complete library of the collective communication routines can be written entirely using the MPI point-to-point communication functions and a few auxiliary functions. If implementing on top of point-to-point, a hidden, special communicator might be created for the collective operation so as to avoid interference with any on-going point-to-point communication at the time of the collective call. This is discussed further in Section 6.14. (End of advice to implementors.)

Many of the descriptions of the collective routines provide illustrations in terms of blocking MPI point-to-point routines. These are intended solely to indicate what data is sent or received by which MPI process. Many of these examples are not correct MPI programs; for purposes of simplicity, they often assume infinite buffering.

6.2 Communicator Argument

The key concept of the collective functions is to have a group or groups of participating MPI processes. The routines do not have group identifiers as explicit arguments. Instead, there is a communicator argument. Groups and communicators are discussed in full detail in Chapter 7. For the purposes of this chapter, it is sufficient to know that there are two types of communicators: intra-communicators and inter-communicators. An intra-communicator can be thought of as an identifier for a single group of MPI processes linked with a context. An inter-communicator identifies two distinct groups of MPI processes linked with a context.

6.2.1 Specifics for Intra-Communicator Collective Operations

All MPI processes in the group identified by the intra-communicator must call the collective routine.

In many cases, collective communication can occur “in place” for intra-communicators, with the output buffer being identical to the input buffer. This is specified by providing a special argument value, MPI_IN_PLACE, instead of the send buffer or the receive buffer argument, depending on the operation performed.

Rationale. The “in place” operations are provided to reduce unnecessary memory motion by both the MPI implementation and by the user. Note that while the simple check of testing whether the send and receive buffers have the same address will work for some cases (e.g., MPI_ALLREDUCE), they are inadequate in others (e.g., MPI_GATHER, with root not equal to zero). Further, Fortran explicitly prohibits
Aliasing of arguments; the approach of using a special value to denote “in place” operation eliminates that difficulty. (*End of rationale.*)

Advice to users. By allowing the “in place” option, the receive buffer in many of the collective calls becomes a send-and-receive buffer. For this reason, a Fortran binding that includes `INTENT` must mark these as `INOUT`, not `OUT`.

Note that `MPI_IN_PLACE` is a special kind of value; it has the same restrictions on its use that `MPI_BOTTOM` has (not usable in Fortran for initialization or assignment). See Section 2.5.4. (*End of advice to users.*)

6.2.2 Applying Collective Operations to Inter-Communicators

To understand how collective operations apply to inter-communicators, we can view most MPI intra-communicator collective operations as fitting one of the following categories (see, for instance, [64]):

All-To-All All MPI processes contribute to the result. All MPI processes receive the result.

- `MPI_ALLGATHER`, `MPI_IALLGATHER`, `MPI_ALLGATHERV`, `MPI_IALLGATHERV`, `MPI_ALLGATHERV_INIT`
- `MPI_ALLTOALL`, `MPI_IALLTOALL`, `MPI_ALLTOALLV`, `MPI_IALLTOALLV`, `MPI_ALLTOALLV_INIT`, `MPI_IALLTOALLV_INIT`
- `MPI_ALLREDUCE`, `MPI_IALLREDUCE`, `MPI_ALLREDUCEV_INIT`, `MPI_IREDUCE_SCATTER_BLOCK`, `MPI_IREDUCE_SCATTER_BLOCK_INIT`, `MPI_IREDUCE_SCATTER`, `MPI_IREDUCE_SCATTERV_INIT`, `MPI_IREDUCE_SCATTERV_INIT`
- `MPI_BARRIER`, `MPI_IBARRIER`, `MPI_BARRIER_INIT`

All-To-One All MPI processes contribute to the result. One MPI process receives the result.

- `MPI_GATHER`, `MPI_IGATHER`, `MPI_GATHERV`, `MPI_IGATHERV`, `MPI_GATHERV_INIT`
- `MPI_REDUCE`, `MPI_IREDUCE`, `MPI_REDUCEV_INIT`

One-To-All One MPI process contributes to the result. All MPI processes receive the result.

- `MPI_BCAST`, `MPI_IBCAST`, `MPI_BCASTV_INIT`
- `MPI_SCATTER`, `MPIISCATTER`, `MPI_SCATTERV`, `MPIISCATTERV`, `MPI_SCATTERV_INIT`

Other: Collective operations that do not fit into one of the above categories.

- `MPI_SCAN`, `MPI_ISCAN`, `MPI_SCANV_INIT`, `MPI_EXSCAN`, `MPI_IEXSCAN`, `MPI_EXSCANV_INIT`

The data movement patterns of `MPI_SCAN`, `MPI_ISCAN`, `MPI_SCANV_INIT`, `MPI_EXSCAN`, `MPI_IEXSCAN` and `MPI_EXSCANV_INIT` do not fit this taxonomy.
Chapter 6 Collective Communication

The application of collective communication to inter-communicators is best described in terms of two groups. For example, an all-to-all MPI_ALLGATHER operation can be described as collecting data from all members of one group with the result appearing in all members of the other group (see Figure 6.2). As another example, a one-to-all MPI_BCAST operation sends data from one member of one group to all members of the other group. Collective computation operations such as MPI_REDUCE_SCATTER have a similar interpretation (see Figure 6.3). For intra-communicators, these two groups are the same. For inter-communicators, these two groups are distinct. For the all-to-all operations, each such operation is described in two phases, so that it has a symmetric, full-duplex behavior.

The following collective operations also apply to inter-communicators:

- **MPI_BARRIER**, **MPI_IBARRIER**, **MPI_BARRIER_INIT**,
- **MPI_BCAST**, **MPI_IBCAST**, **MPI_BCAST_INIT**,
- **MPI_GATHER**, **MPI_IGATHER**, **MPI_GATHER_INIT**, **MPI_GATHERV**, **MPI_IGATHERV**, **MPI_GATHERV_INIT**,
- **MPI_SCATTER**, **MPI_ISCATTER**, **MPI_SCATTER_INIT**, **MPI_SCATTERV**, **MPI_ISCATTERV**, **MPI_SCATTERV_INIT**,
- **MPI_ALLGATHER**, **MPI_IALLGATHER**, **MPI_ALLGATHER_INIT**, **MPI_ALLGATHERV**, **MPI_IALLGATHERV**, **MPI_ALLGATHERV_INIT**,
- **MPI_ALLTOALL**, **MPI_IALLTOALL**, **MPI_ALLTOALL_INIT**, **MPI_ALLTOALLV**, **MPI_IALLTOALLV**, **MPI_ALLTOALLV_INIT**, **MPI_ALLTOALLW**, **MPI_IALLTOALLW**, **MPI_ALLTOALLW_INIT**,
- **MPI_ALLREDUCE**, **MPI_IALLREDUCE**, **MPI_ALLREDUCE_INIT**, **MPI_REDUCE**, **MPI_IREDUCE**, **MPI_REDUCE_INIT**,
- **MPI_REDUCE_SCATTER_BLOCK**, **MPI_IREDUCE_SCATTER_BLOCK**, **MPI_REDUCE_SCATTER_BLOCK_INIT**, **MPI_REDUCE_SCATTER**, **MPI_IREDUCE_SCATTER**, **MPI_REDUCE_SCATTER_INIT**.

6.2.3 Specifics for Inter-Communicator Collective Operations

All MPI processes in both groups identified by the inter-communicator must call the collective routine.

Note that the “in place” option for intra-communicators does not apply to inter-communicators since in the inter-communicator case there is no communication from an MPI process to itself.

For inter-communicator collective communication, if the operation is in the All-To-One or One-To-All categories, then the transfer is unidirectional. The direction of the transfer is indicated by a special value of the root argument. In this case, for the group containing the root, all MPI processes in the group must call the routine using a special argument for the root. For this, the root uses the special value MPI_ROOT; all other MPI processes in the same group as the root use MPI_PROC_NULL. All MPI processes in the other group (the group that is the remote group relative to the root) must call the collective routine and
Figure 6.2: Inter-communicator allgather. The focus of data to one MPI process is represented, not mandated by the semantics. The two phases do allgathers in both directions.

Figure 6.3: Inter-communicator reduce-scatter. The focus of data to one MPI process is represented, not mandated by the semantics. The two phases do reduce-scatters in both directions.
provide the rank of the root. If the operation is in the All-To-All category, then the transfer
is bidirectional.

Rationale. Operations in the All-To-One and One-To-All categories are unidirectional
by nature, and there is a clear way of specifying direction. Operations in the All-To-All
category will often occur as part of an exchange, where it makes sense to communicate
in both directions at once. (*End of rationale.*)

6.3 Barrier Synchronization

MPI

_MPI_BARRIER(comm)_

IN comm communicator (handle)

C binding

```c
int MPI_BARRIER(MPI_Comm comm)
```

Fortran 2008 binding

```fortran
MPI_BARRIER(comm, ierror)
```

```fortran
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_BARRIER(COMM, IERROR)
```

```fortran
  INTEGER COMM, IERROR
```

If `comm` is an intra-communicator, **MPI_BARRIER** blocks the caller until all group
members have called it. The call returns at any MPI process only after all group members
have entered the call.

If `comm` is an inter-communicator, **MPI_BARRIER** involves two groups. The call returns
at MPI processes in one group (group A) of the inter-communicator only after all members
of the other group (group B) have entered the call (and vice versa). An MPI process may
return from the call before all MPI processes in its own group have entered the call.

6.4 Broadcast

MPI

_MPI_BCAST(buffer, count, datatype, root, comm)_

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer (non-negative integer)

IN datatype datatype of buffer (handle)

IN root rank of the root (integer)

IN comm communicator (handle)

C binding

```c
int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
```

```c
```
MPI_Comm comm)
int MPI_Bcast_c(void *buffer, MPI_Count count, MPI_Datatype datatype, int root,
MPI_Comm comm)

Fortran 2008 binding
MPI_Bcast(buffer, count, datatype, root, comm, ierror)
TYPE(*), DIMENSION(..) :: buffer
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Bcast(buffer, count, datatype, root, comm, ierror) !(_c)
TYPE(*), DIMENSION(..) :: buffer
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

If comm is an intra-communicator, MPI_BCAST broadcasts a message from the MPI process with rank root to all MPI processes of the group, itself included. It is called by all members of the group using the same arguments for comm and root. On return, the content of the root's buffer is copied to all other MPI processes.

General, derived datatypes are allowed for datatype. The type signature of count, datatype on any MPI process must be equal to the type signature of count, datatype at the root. This implies that the amount of data sent must be equal to the amount received, pairwise between each MPI process and the root. MPI_BCAST and all other data-movement collective routines make this restriction. Distinct type maps between sender and receiver are still allowed.

The “in place” option is not meaningful here.

If comm is an inter-communicator, then the call involves all MPI processes in the intercommunicator, but with one group (group A) defining the root. All MPI processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other MPI processes in group A pass the value MPI_PROC_NULL in root. Data is broadcast from the root to all MPI processes in group B. The buffer arguments of the MPI processes in group B must be consistent with the buffer argument of the root.

6.4.1 Example using MPI_BCAST
The examples in this section use intra-communicators.

Example 6.1. Broadcast 100 ints from MPI process 0 to every MPI process in the group.

MPI_Comm comm;
int array[100];
int root=0;
...
MPI_Bcast(array, 100, MPI_INT, root, comm);

As in many of our example code fragments, we assume that some of the variables (such as
comm in the above) have been assigned appropriate values.

6.5 Gather

MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice, significant only at root)
IN recvcount number of elements for any single receive
(non-negative integer, significant only at root)
IN recvtype datatype of recv buffer elements (handle, significant
only at root)
IN root rank of receiving MPI process (integer)
IN comm communicator (handle)

C binding
int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)
int MPI_Gather_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran 2008 binding
MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount, root
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
comm, ierror) !(_c)
6.5 Gather

```fortran
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT,
          comm, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

If comm is an intra-communicator, each MPI process (the root included) sends the contents of its send buffer to the root. The root receives the messages and stores them in rank order. The outcome is as if each of the n MPI processes in the group (including the root) had executed a call to

```fortran
MPI_Send(sendbuf, sendcount, sendtype, root , ...),
```

and the root had executed n calls to

```fortran
MPI_Recv(recvbuf+i: recvcount-extent(recvtype), recvcount, recvtype, i,...),
```

where extent(recvtype) is the type extent obtained from a call to MPI_Type_get_extent.

An alternative description is that the n messages sent by the processes in the group are concatenated in rank order, and the resulting message is received by the root as if by a call to MPI_RECV(recvbuf, recvcount*n, recvtype, ...).

The receive buffer is ignored for all nonroot MPI processes.

General, derived datatypes are allowed for both sendtype and recvtype. The type signature of sendcount, sendtype on each MPI process must be equal to the type signature of recvcount, recvtype at the root. This implies that the amount of data sent must be equal to the amount of data received, pairwise between each MPI process and the root. Distinct type maps between sender and receiver MPI processes are still allowed.

All arguments to the function are significant on the root, while on other MPI processes, only the arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments root and comm must have identical values on all MPI processes.

The specification of counts and types should not cause any location on the root to be written more than once. Such a call is erroneous.

Note that the recvcount argument at the root indicates the number of items it receives from each MPI process, not the total number of items it receives.

The “in place” option for intra-communicators is specified by passing MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and the contribution of the root to the gathered vector is assumed to be already in the correct place in the receive buffer.

If comm is an inter-communicator, then the call involves all MPI processes in the inter-communicator, but with one group (group A) defining the root. All MPI processes in the other group (group B) pass the same value in argument root, which is the rank of the root in
group A. The root passes the value MPI_ROOT in root. All other MPI processes in group A pass the value MPI_PROC_NULL in root. Data is gathered from all MPI processes in group B to the root. The send buffer arguments of the MPI processes in group B must be consistent with the receive buffer argument of the root.

MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm)

C binding
int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, const int recvcounts[], const int displs[],
MPI_Datatype recvtype, int root, MPI_Comm comm)
int MPI_Gatherv_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, void *recvbuf,
const MPI_Count recvcounts[], const MPI_Aint displs[],
MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran 2008 binding
MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, root, comm, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
  INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*), root
  TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
  TYPE(*), DIMENSION(..) :: recvbuf
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm, ierr) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcounts(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: displs(*)
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierr

Fortran binding
MPI_GATHERV(SENDBUF, SENDCOUNT, SendTYPE, RECVBUF, RECVCOUNTS, DISPLS, RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SendTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT, COMM, IERROR

MPI_GATHERV extends the functionality of MPI_GATHER by allowing a varying count of data from each MPI process, since recvcounts is now an array. It also allows more flexibility as to where the data is placed on the root, by providing the new argument, displs.

If comm is an intra-communicator, the outcome is as if each MPI process, including the root, sends a message to the root,

MPI_Send(sendbuf, sendcount, sendtype, root, ...),

and the root executes n receives,

MPI_Recv(recvbuf+displs[j]·extent(recvtype), recvcounts[j], recvtype, i, ...).

The data received from MPI process j is placed into recvbuf of the root beginning at offset displs[j] elements (in terms of the recvtype).

The receive buffer is ignored for all nonroot MPI processes.

The type signature implied by sendcount, sendtype on MPI process i must be equal to the type signature implied by recvcounts[i], recvtype at the root. This implies that the amount of data sent must be equal to the amount of data received, pairwise between each MPI process and the root. Distinct type maps between sender and receiver are still allowed, as illustrated in Example 6.6.

All arguments to the function are significant on the root, while on other MPI processes, only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments root and comm must have identical values on all MPI processes.

The specification of counts, types, and displacements should not cause any location on the root to be written more than once. Such a call is erroneous.

The “in place” option for intra-communicators is specified by passing MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and the contribution of the root to the gathered vector is assumed to be already in the correct place in the receive buffer.

If comm is an inter-communicator, then the call involves all MPI processes in the inter-communicator, but with one group (group A) defining the root. All MPI processes in the
other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other MPI processes in group A pass the value MPI_PROC_NULL in root. Data is gathered from all MPI processes in group B to the root. The send buffer arguments of the MPI processes in group B must be consistent with the receive buffer argument of the root.

6.5.1 Examples using MPI_GATHER, MPI_GATHERV

The examples in this section use intra-communicators.

**Example 6.2.** Gather 100 ints from every MPI process in group to the root. See Figure 6.4.

```c
MPI_Comm comm;
int gsize, sendarray[100];
int root, *rbuf;
...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);
```

**Example 6.3.** Previous example modified—only the root allocates memory for the receive buffer.

```c
MPI_Comm comm;
int gsize, sendarray[100];
int root, myrank, *rbuf;
...
MPI_Comm_rank(comm, &myrank);
if (myrank == root) {
 MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
}
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);
```

**Example 6.4.** Do the same as the previous example, but use a derived datatype. Note that the type cannot be the entire set of gsize*100 ints since type matching is defined pairwise between the root and each MPI process in the gather.

```c
MPI_Comm comm;
```
Figure 6.5: The root gathers 100 ints from each MPI process in the group, each set is placed stride ints apart.

```c
int gsize, sendarray[100];
int root, *rbuf;
MPI_Datatype rtype;
...
MPI_Comm_size(comm, &gsize);
MPI_Type_contiguous(100, MPI_INT, &rtype);
MPI_Type_commit(&rtype);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 1, rtype, root, comm);
```

**Example 6.5.** Now have each MPI process send 100 ints to the root, but place each set (of 100) stride ints apart at the receiving end. Use MPI_GATHERV and the displs argument to achieve this effect. Assume stride $\geq 100$. See Figure 6.5.

```c
MPI_Comm comm;
int gsize, sendarray[100];
int root, *rbuf, stride;
int *displs, i,*rcounts;
...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
 displs[i] = i*stride;
 rcounts[i] = 100;
}
MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT, root, comm);
```

Note that the program is erroneous if stride $< 100$.

**Example 6.6.** Same as Example 6.5 on the receiving side, but send the 100 ints from the 0th column of a 100×150 int array, in C. See Figure 6.6.

```c
MPI_Comm comm;
```
Figure 6.6: The root gathers column 0 of a 100 × 150 C array, and each set is placed stride ints apart.

```c
int gsize, sendarray[100][150];
int root, *rbuf, stride;
MPI_Datatype stype;
int *displs, i, *rcounts;
...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
 displs[i] = i*stride;
 rcounts[i] = 100;
}
/* Create datatype for 1 column of array */
MPI_Type_vector(100, 1, 150, MPI_INT, &stype);
MPI_Type_commit(&stype);
MPI_Gatherv(sendarray, 1, stype, rbuf, rcounts, displs, MPI_INT, root, comm);
```

Example 6.7. MPI process i sends (100−i) ints from the i-th column of a 100 × 150 int array, in C. It is received into a buffer with stride, as in the previous two examples. See Figure 6.7.

```c
MPI_Comm comm;
int gsize, sendarray[100][150], *sptr;
int root, *rbuf, stride, myrank;
MPI_Datatype stype;
int *displs, i, *rcounts;
...
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
```
Figure 6.7: The root gathers $100-i$ ints from column $i$ of a $100 \times 150$ C array, and each set is placed stride ints apart.

```c
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
 displs[i] = i*stride;
 rcounts[i] = 100-i; /* note change from previous example */
}
/* Create datatype for the column we are sending */
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit(&stype);
/* sptr is the address of start of "myrank" column */
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT, root, comm);
```

Note that a different amount of data is received from each MPI process.

**Example 6.8.** Same as Example 6.7, but done in a different way at the sending end. We create a datatype that causes the correct striding at the sending end so that we read a column of a C array. A similar thing was done in Example 5.16, Section 5.1.14.

```c
MPI_Comm comm;
int gsize, sendarray[100][150], *sptr;
int root, *rbuf, stride, myrank;
MPI_Datatype stype;
int *displs, i, *rcounts;
...
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
 displs[i] = i*stride;
 rcounts[i] = 100-i;
```
Example 6.9. Same as Example 6.7 at sending side, but at receiving side we make the stride between received blocks vary from block to block. See Figure 6.8.

```c
MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, *stride, myrank, bufsize;
MPI_Datatype stype;
int *displs,i,*rcounts,offset;
...
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);
stride = (int *)malloc(gsize*sizeof(int));
.../* stride[i] for i = 0 to gsize-1 is set somehow */
/* set up displs and rcounts vectors first */
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
offset = 0;
for (i=0; i<gsize; ++i) {
 displs[i] = offset;
 offset += stride[i];
 rcounts[i] = 100-i;
}
/* the required buffer size for rbuf is now easily obtained */
bufsize = displs[gsize-1]+rcounts[gsize-1];
rbuf = (int *)malloc(bufsize*sizeof(int));
/* Create datatype for the column we are sending */
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit(&stype);
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT, root, comm);
```
Figure 6.8: The root gathers 100-i ints from column i of a 100×150 C array, and each set is placed stride[i] ints apart (a varying stride).

Example 6.10. MPI process i sends num ints from the i-th column of a 100 × 150 int array, in C. The complicating factor is that the various values of num are not known to root, so a separate gather must first be run to find these out. The data is placed contiguously at the receiving end.

```c
MPI_Comm comm;
int gsize, sendarray[100][150], *sptr;
int root, *rbuf, myrank;
MPI_Datatype stype;
int *displs, *rcounts, num;

...

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);

/* First, gather nums to root */
rcounts = (int *)malloc(gsize*sizeof(int));
MPI_Gather(&num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);
/* root now has correct rcounts, using these we set displs[] so that * data is placed contiguously (or concatenated) at the receiving end */
displs = (int *)malloc(gsize*sizeof(int));
displs[0] = 0;
for (i=1; i<gsize; ++i) {
 displs[i] = displs[i-1]+rcounts[i-1];
}
/* And, create receive buffer */
rbuf = (int *)malloc(gsize*(displs[gsize-1]+rcounts[gsize-1])*sizeof(int));
/* Create datatype for one int, with extent of entire row */
MPI_Type_create_resized(MPI_INT, 0, 150*sizeof(int), &stype);
MPI_Type_commit(&stype);
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, num, stype, rbuf, rcounts, displs, MPI_INT,
```
6.6 Scatter

MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN  sendbuf    address of send buffer (choice, significant only at root)
IN  sendcount  number of elements sent to each MPI process
               (non-negative integer, significant only at root)
IN  sendtype   datatype of send buffer elements (handle, significant
               only at root)
OUT recvbuf    address of receive buffer (choice)
IN  recvcount  number of elements in receive buffer (non-negative integer)
IN  recvtype   datatype of receive buffer elements (handle)
IN  root       rank of sending MPI process (integer)
IN  comm       communicator (handle)

C binding

int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
                 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
                 MPI_Comm comm)

int MPI_Scatter_c(const void *sendbuf, MPI_Count sendcount,
                   MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
                   MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran 2008 binding

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
            comm, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
  INTEGER, INTENT(IN) :: sendcount, recvcount, root
  TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
  TYPE(*), DIMENSION(..) :: recvbuf
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
            comm, ierror) !(_c)
  TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
  TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
  TYPE(*), DIMENSION(..) :: recvbuf
  INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

**Fortran binding**

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR)

MPI_SCATTER is the inverse operation to MPI_GATHER.
If comm is an intra-communicator, the outcome is as if the root executed n send operations,

MPI_Send(sendbuf+i·sendcount·extent(sendtype), sendcount, sendtype, i,...),
and each MPI process executed a receive,

MPI_Recv(recvbuf, recvcount, recvtype, i,...).

An alternative description is that the root sends a message with MPI_Send(sendbuf, sendcount·n, sendtype, ...). This message is split into n equal segments, the i-th segment is sent to the i-th MPI process in the group, and each MPI process receives this message as above.

The send buffer is ignored for all nonroot MPI processes.

The type signature associated with sendcount, sendtype at the root must be equal to the type signature associated with recvcount, recvtpe at all MPI processes (however, the type maps may be different). This implies that the amount of data sent must be equal to the amount of data received, pairwise between each MPI process and the root. Distinct type maps between sender and receiver are still allowed.

All arguments to the function are significant on the root, while on other MPI processes, only arguments recvbuf, recvcount, recvtpe, root, and comm are significant. The arguments root and comm must have identical values on all MPI processes.

The specification of counts and types should not cause any location on the root to be read more than once.

**Rationale.** Though not needed, the last restriction is imposed so as to achieve symmetry with MPI_GATHER, where the corresponding restriction (a multiple-write restriction) is necessary. (End of rationale.)

The “in place” option for intra-communicators is specified by passing MPI_IN_PLACE as the value of recvbuf at the root. In such a case, recvcount and recvtpe are ignored, and the root “sends” no data to itself. The scattered vector is still assumed to contain n segments, where n is the group size; the root-th segment, which root should “send to itself,” is not moved.

If comm is an inter-communicator, then the call involves all MPI processes in the inter-communicator, but with one group (group A) defining the root. All MPI processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other MPI processes in group A pass the value MPI_PROC_NULL in root. Data is scattered from the root to all MPI
processes in group B. The receive buffer arguments of the MPI processes in group B must
be consistent with the send buffer argument of the root.

MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, 
comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcounts nonnegative integer array (of length group size) specifying the number of elements to send to each rank (significant only at root)

IN displs integer array (of length group size). Entry i specifies the displacement (relative to sendbuf) from which to take the outgoing data to MPI process i (significant only at root)

IN sendtype datatype of send buffer elements (handle, significant only at root)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative integer)

IN recvtype datatype of receive buffer elements (handle)

IN root rank of sending MPI process (integer)

IN comm communicator (handle)

C binding

int MPI_Scatterv(const void *sendbuf, const int sendcounts[],
                 const int displs[], MPI_Datatype sendtype, void *recvbuf,
                 int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Scatterv_c(const void *sendbuf, const MPI_Count sendcounts[],
                    const MPI_Aint displs[], MPI_Datatype sendtype, void *recvbuf,
                    MPI_Count recvcount, MPI_Datatype recvtype, int root,
                    MPI_Comm comm)

Fortran 2008 binding

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount,
             recvtype, root, comm, ierror)

    TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
    INTEGER, INTENT(IN) :: sendcounts(*), displs(*), recvcount, root
    TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
    TYPE(*), DIMENSION(..) :: recvbuf
    TYPE(MPI_Comm), INTENT(IN) :: comm
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount,
             recvtype, root, comm, ierror) !(_c)

    TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcounts(*), recvcount
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: displs(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)
<title>SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
COMM, IERROR

MPI_SCATTERV is the inverse operation to MPI_GATHERV.
MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a varying
count of data to be sent to each MPI process, since sendcounts is now an array. It also
allows more flexibility as to where the data is taken from on the root, by providing an
additional argument, displs.

If comm is an intra-communicator, the outcome is as if the root executed n send oper-
ations,

MPI_Send(sendbuf+displs[i]· extent(sendtype), sendcounts[i], sendtype, i,...),

and each MPI process executed a receive,

MPI_Recv(recvbuf, recvcount, recvtype, i,...).

The send buffer is ignored for all nonroot MPI processes.

The type signature implied by sendcount[i], sendtype at the root must be equal to the
type signature implied by recvcount, recvtype at MPI process i (however, the type maps may
be different). This implies that the amount of data sent must be equal to the amount of
data received, pairwise between each MPI process and the root. Distinct type maps between
sender and receiver are still allowed.

All arguments to the function are significant on the root, while on other MPI processes,
only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments
root and comm must have identical values on all MPI processes.

The specification of counts, types, and displacements should not cause any location on
the root to be read more than once.

The “in place” option for intra-communicators is specified by passing MPI_IN_PLACE
as the value of recvbuf at the root. In such a case, recvcount and recvtype are ignored, and root “sends” no data to itself. The scattered vector is still assumed to contain n segments,
where n is the group size; the root-th segment, which root should “send to itself,” is not
moved.

If comm is an inter-communicator, then the call involves all MPI processes in the inter-
communicator, but with one group (group A) defining the root. All MPI processes in the
other group (group B) pass the same value in argument root, which is the rank of the root in
group A. The root MPI process passes the value MPI_ROOT in root. All other MPI processes
in group A pass the value `MPI_PROC_NULL` in `root`. Data is scattered from the root to all MPI processes in group B. The receive buffer arguments of the MPI processes in group B must be consistent with the send buffer argument of the root.

### 6.6.1 Examples using `MPI_SCATTER`, `MPI_SCATTERV`

The examples in this section use intra-communicators.

**Example 6.11.** The reverse of Example 6.2. Scatter sets of 100 ints from the root to each MPI process in the group. See Figure 6.9.

```
MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100];
...
MPI_Comm_size(comm, &gsize);
sendbuf = (int *)malloc(gsize*100*sizeof(int));
...
MPI_Scatter(sendbuf, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);
```

**Example 6.12.** The reverse of Example 6.5. The root scatters sets of 100 ints to the other MPI processes, but the sets of 100 are stride ints apart in the sending buffer. Requires use of `MPI_SCATTERV`. Assume `stride` ≥ 100. See Figure 6.10.

```
MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100], i, *displs, *scounts;
...
MPI_Comm_size(comm, &gsize);
sendbuf = (int *)malloc(gsize*stride*sizeof(int));
...
displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
 displs[i] = i*stride;
 scounts[i] = 100;
}
MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rbuf, 100, MPI_INT,
```
Figure 6.10: The root scatters sets of 100 ints, moving by stride ints from send to send in the scatter.

**Example 6.13.** The reverse of Example 6.9. We have a varying stride between blocks at sending (root) end, at the receiving end we receive into the i-th column of a 100×150 C array. See Figure 6.11.

```c
MPI_Comm comm;
int gsize, recvarray[100][150], *rptr;
int root, *sendbuf, myrank, *stride;
MPI_Datatype rtype;
int i, *displs, *scounts, offset;
...
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);
stride = (int *)malloc(gsize*sizeof(int));
... /* stride[i] for i = 0 to gsize-1 is set somehow
 * sendbuf comes from elsewhere */
...
displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *)malloc(gsize*sizeof(int));
offset = 0;
for (i=0; i<gsize; ++i) {
 displs[i] = offset;
 offset += stride[i];
 scounts[i] = 100 - i;
}
/* Create datatype for the column we are receiving */
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &rtype);
MPI_Type_commit(&rtype);
rptr = &recvarray[0][myrank];
MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rptr, 1, rtype, root, comm);
```
Figure 6.11: The root scatters blocks of 100–i ints into column i of a 100×150 C array. At the sending side, the blocks are stride[i] ints apart.

6.7 Gather-to-all

MPI_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

1. IN sendbuf starting address of send buffer (choice)
2. IN sendcount number of elements in send buffer (non-negative integer)
3. IN sendtype datatype of send buffer elements (handle)
4. OUT recvbuf address of receive buffer (choice)
5. IN recvcount number of elements received from any MPI process (non-negative integer)
6. IN recvtype datatype of receive buffer elements (handle)
7. IN comm communicator (handle)

C binding

int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allgather_c(const void *sendbuf, MPI_Count sendcount, MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount, MPI_Datatype recvtype, MPI_Comm comm)

Fortran 2008 binding

MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,
  ierror)
  TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
  INTEGER, INTENT(IN) :: sendcount, recvcount
  TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
  TYPE(*), DIMENSION(..) :: recvbuf
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
6.7 Gather-to-all

MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, IERROR)

INTEGER SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHER can be thought of as MPI_GATHER, but where all MPI processes receive the result, instead of just the root. The block of data sent from the j-th MPI process is received by every MPI process and placed in the j-th block of the buffer recvbuf.

The type signature associated with sendcount, sendtype, at an MPI process must be equal to the type signature associated with recvcount, recvtype at any other MPI process.

If comm is an intra-communicator, the outcome of a call to MPI_ALLGATHER(...) is as if all MPI processes executed n calls to

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
            recvtype,root,comm)

for root = 0, ..., n-1. The rules for correct usage of MPI_ALLGATHER can be found in the corresponding rules for MPI_GATHER (see Section 6.5).

The “in place” option for intra-communicators is specified by passing the value MPI_IN_PLACE to the argument sendbuf at all MPI processes. sendcount and sendtype are ignored. Then the input data of each MPI process is assumed to be in the area where that MPI process would receive its own contribution to the receive buffer.

If comm is an inter-communicator, then each MPI process of one group (group A) contributes sendcount data items; these data are concatenated and the result is stored at each MPI process in the other group (group B). Conversely the concatenation of the contributions of the MPI processes in group B is stored at each MPI process in group A. The send buffer arguments in group A must be consistent with the receive buffer arguments in group B, and vice versa.

Advice to users. In the inter-communicator case, the communication pattern of MPI_ALLGATHER need not be symmetric. The number of items sent by MPI processes in group A (as specified by the arguments sendcount, sendtype in group A and the arguments recvcount, recvtype in group B), need not equal the number of items sent by MPI processes in group B (as specified by the arguments sendcount, sendtype in group B and the arguments recvcount, recvtype in group A). In particular, one can move data in only one direction by specifying sendcount = 0 for the communication in the reverse direction. (End of advice to users.)
MPI_ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm)

IN    sendbuf      starting address of send buffer (choice)
IN    sendcount    number of elements in send buffer (non-negative integer)
IN    sendtype     datatype of send buffer elements (handle)
OUT   recvbuf      address of receive buffer (choice)
IN    recvcounts   nonnegative integer array (of length group size) containing the number of elements that are received from each MPI process
IN    displs       integer array (of length group size). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from MPI process i
IN    recvtype     datatype of receive buffer elements (handle)
IN    comm         communicator (handle)

C binding
int MPI_Allgatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
                    void *recvbuf, const int recvcounts[], const int displs[],
                    MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allgatherv_c(const void *sendbuf, MPI_Count sendcount,
                      MPI_Datatype sendtype, void *recvbuf,
                      const MPI_Count recvcounts[], const MPI_Aint displs[],
                      MPI_Datatype recvtype, MPI_Comm comm)

Fortran 2008 binding
MPI_Allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
                recvtype, comm, ierror)
    TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
    INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*)
    TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
    TYPE(*), DIMENSION(..) :: recvbuf
    TYPE(MPI_Comm), INTENT(IN) :: comm
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
                recvtype, comm, ierror) !(_c)
    TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcounts(*)
    TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
    TYPE(*), DIMENSION(..) :: recvbuf
    INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: displs(*)
    TYPE(MPI_Comm), INTENT(IN) :: comm
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
Fortran binding

MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDER0TYPE, RECVBUF, RECVCOUNTS, DISPLS,
               RECVCOUNT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDER0TYPE, RECVCOUNTS(*), DISPLS(*), RECVCOUNT, COMM,
          IERROR

MPI_ALLGATHERV can be thought of as MPI_GATHERV, but where all processes receive the result, instead of just the root. The block of data sent from the j-th MPI process is received by every MPI process and placed in the j-th block of the buffer recvbuf. These blocks need not all be the same size.

The type signature associated with sendcount, sendtype, at MPI process j must be equal to the type signature associated with recvcounts[j], recvtype at any other MPI process.

If comm is an intra-communicator, the outcome is as if all MPI processes executed calls to

MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
             recvtype, root, comm),

for root = 0, ..., n-1. The rules for correct usage of MPI_ALLGATHERV can be found in the corresponding rules for MPI_GATHERV (see Section 6.5).

The “in place” option for intra-communicators is specified by passing the value MPI_IN_PLACE to the argument sendbuf at all MPI processes. In such a case, sendcount and sendtype are ignored, and the input data of each MPI process is assumed to be in the area where that MPI process would receive its own contribution to the receive buffer.

If comm is an inter-communicator, then each MPI process of one group (group A) contributes sendcount data items; these data are concatenated and the result is stored at each MPI process in the other group (group B). Conversely the concatenation of the contributions of the MPI processes in group B is stored at each MPI process in group A. The send buffer arguments in group A must be consistent with the receive buffer arguments in group B, and vice versa.

6.7.1 Example using MPI_ALLGATHER

The example in this section uses intra-communicators.

Example 6.14. The all-gather version of Example 6.2. Using MPI_ALLGATHER, we will gather 100 ints from every MPI process in the group to every MPI process.

MPI_Comm comm;
int gsize,sendarray[100];
int *rbuf;
...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Allgatherv(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, comm);
After the call, every MPI process has the group-wide concatenation of the sets of data.
6.8 All-to-All Scatter/Gather

MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>sendbuf</td>
<td>starting address of send buffer (choice)</td>
</tr>
<tr>
<td>IN</td>
<td>sendcount</td>
<td>number of elements sent to each MPI process (non-negative integer)</td>
</tr>
<tr>
<td>IN</td>
<td>sendtype</td>
<td>datatype of send buffer elements (handle)</td>
</tr>
<tr>
<td>OUT</td>
<td>recvbuf</td>
<td>address of receive buffer (choice)</td>
</tr>
<tr>
<td>IN</td>
<td>recvcount</td>
<td>number of elements received from any MPI process (non-negative integer)</td>
</tr>
<tr>
<td>IN</td>
<td>recvtype</td>
<td>datatype of receive buffer elements (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>comm</td>
<td>communicator (handle)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 MPI_Comm comm)

int MPI_Alltoall_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm)
```

Fortran 2008 binding

```fortran
MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,
 ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,
 ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM,
 IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR
```
MPI_ALLTOALL is an extension of MPI_ALLGATHER to the case where each MPI process sends distinct data to each of the receivers. The j-th block sent from MPI process i is received by MPI process j and is placed in the i-th block of recvbuf.

The type signature associated with sendcount, sendtype, at an MPI process must be equal to the type signature associated with recvcnt, recvtype at any other MPI process. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of MPI processes. As usual, however, the type maps may be different.

If comm is an intra-communicator, the outcome is as if each MPI process executed a send to each MPI process (itself included) with a call to,

\[
\text{MPI
d Send} (\text{sendbuf}+i \times \text{sendcount} \times \text{extent} (\text{sendtype}), \text{sendcount}, \text{sendtype}, i, \ldots,)
\]

and a receive from every other MPI process with a call to,

\[
\text{MPI
d Recv} (\text{recvbuf}+i \times \text{recvcnt} \times \text{extent} (\text{recvtype}), \text{recvcnt}, \text{recvtype}, i, \ldots,).
\]

All arguments on all MPI processes are significant. The argument comm must have identical values on all MPI processes.

The “in place” option for intra-communicators is specified by passing MPI_IN_PLACE to the argument sendbuf at all MPI processes. In such a case, sendcount and sendtype are ignored. The data to be sent is taken from the recvbuf and replaced by the received data. Data sent and received must have the same type map as specified by recvcnt and recvtype.

**Rationale.** For large MPI_ALLTOALL instances, allocating both send and receive buffers may consume too much memory. The “in place” option effectively halves the application memory consumption and is useful in situations where the data to be sent will not be used by the sending MPI process after the MPI_ALLTOALL exchange (e.g., in parallel Fast Fourier Transforms). (End of rationale.)

**Advice to implementors.** Users may opt to use the “in place” option in order to conserve memory. Quality MPI implementations should thus strive to minimize system buffering. (End of advice to implementors.)

If comm is an inter-communicator, then the outcome is as if each MPI process in group A sends a message to each MPI process in group B, and vice versa. The j-th send buffer of MPI process i in group A should be consistent with the i-th receive buffer of MPI process j in group B, and vice versa.

**Advice to users.** When a complete exchange is executed in the inter-communicator case, then the number of data items sent from MPI processes in group A to MPI processes in group B need not equal the number of items sent in the reverse direction. In particular, one can have unidirectional communication by specifying sendcount = 0 in the reverse direction. (End of advice to users.)
### MPI_ALLTOALLV

```
MPI_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls,
 recvtype, comm)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sendbuf</code></td>
<td>Starting address of send buffer (choice)</td>
</tr>
<tr>
<td><code>sendcounts</code></td>
<td>Nonnegative integer array (of length group size) specifying the number of elements to send to each rank</td>
</tr>
<tr>
<td><code>sdispls</code></td>
<td>Integer array (of length group size). Entry j specifies the displacement (relative to <code>sendbuf</code>) from which to take the outgoing data destined for MPI process j</td>
</tr>
<tr>
<td><code>sendtype</code></td>
<td>Datatype of send buffer elements (handle)</td>
</tr>
<tr>
<td><code>recvbuf</code></td>
<td>Address of receive buffer (choice)</td>
</tr>
<tr>
<td><code>recvcounts</code></td>
<td>Nonnegative integer array (of length group size) specifying the number of elements that can be received from each rank</td>
</tr>
<tr>
<td><code>rdispls</code></td>
<td>Integer array (of length group size). Entry i specifies the displacement (relative to <code>recvbuf</code>) at which to place the incoming data from MPI process i</td>
</tr>
<tr>
<td><code>recvtype</code></td>
<td>Datatype of receive buffer elements (handle)</td>
</tr>
<tr>
<td><code>comm</code></td>
<td>Communicator (handle)</td>
</tr>
</tbody>
</table>

### C binding

```
int MPI_Alltoallv(const void *sendbuf, const int sendcounts[],
 const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const int recvcounts[], const int rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm)
```

```
int MPI_Alltoallv_c(const void *sendbuf, const MPI_Count sendcounts[],
 const MPI_Aint sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm)
```

### Fortran 2008 binding

```
MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
 rdispls, recvtype, comm, ierror)
```

```
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
```

```
MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
 rdispls, recvtype, comm, ierror) !(_c)
```

```
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcounts(*), recvcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: sdispls(*), rdispls(*)
```
6.8 All-to-All Scatter/Gather

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
 RDISPLS, RECVTYPE, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
 RECVTYPE, COMM, IERROR

MPI_ALLTOALLV adds flexibility to MPI_ALLTOALL in that the location of data for
the send is specified by sdispls and the location of the placement of the data on the receive
side is specified by rdispls.

If comm is an intra-communicator, then the j-th block sent from MPI process i is received
by MPI process j and is placed in the i-th block of recvbuf. These blocks need not all have
the same size.

The type signature associated with sendcounts[j], sendtype at MPI process i must be
equal to the type signature associated with recvcounts[i], recvtype at MPI process j. This
implies that the amount of data sent must be equal to the amount of data received, pairwise
between every pair of MPI processes. Distinct type maps between sender and receiver are
still allowed.

The outcome is as if each MPI process sent a message to every other MPI process with,

MPI_Send(sendbuf+sdispls[i]·extent(sendtype),sendcounts[i],sendtype,i,...),

and received a message from every other MPI process with a call to

MPI_Recv(recvbuf+rdispls[i]·extent(recvtype),recvcounts[i],recvtype,i,...).

All arguments on all MPI processes are significant. The argument comm must have
identical values on all MPI processes.

The “in place” option for intra-communicators is specified by passing MPI_IN_PLACE to
the argument sendbuf at all MPI processes. In such a case, sendcounts, sdispls and sendtype
are ignored. The data to be sent is taken from the recvbuf and replaced by the received
data. Data sent and received must have the same type map as specified by the recvcounts
array and the recvtype, and is taken from the locations of the receive buffer specified by
rdispls.

Advice to users. Specifying the “in place” option (which must be given on all
MPI processes) implies that the same amount and type of data is sent and received
between any two MPI processes in the group of the communicator. Different pairs
of MPI processes can exchange different amounts of data. Users must ensure that
recvcounts[j] and recvtype on MPI process i match recvcounts[i] and recvtype on MPI
process j. This symmetric exchange can be useful in applications where the data to be
sent will not be used by the sending MPI process after the MPI_ALLTOALLV exchange.
(End of advice to users.)

If comm is an inter-communicator, then the outcome is as if each MPI process in group
A sends a message to each MPI process in group B, and vice versa. The j-th send buffer of
MPI process \(i \) in group A should be consistent with the \(i \)-th receive buffer of MPI process \(j \) in group B, and vice versa.

Rationale. The definitions of MPI_ALLTOALL and MPI_ALLTOALLV give as much flexibility as one would achieve by specifying \(n \) independent, point-to-point communications, with two exceptions: all messages use the same datatype, and messages are scattered from (or gathered to) sequential storage. (*End of rationale.*)

Advice to implementors. Although the discussion of collective communication in terms of point-to-point operation implies that each message is transferred directly from sender to receiver, implementations may use a tree communication pattern. Messages can be forwarded by intermediate nodes where they are split (for scatter) or concatenated (for gather), if this is more efficient. (*End of advice to implementors.*)

\[
\text{MPI_ALLTOALLW}(\text{sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm})
\]

- **IN** `sendbuf` starting address of send buffer (choice)
- **IN** `sendcounts` nonnegative integer array (of length group size) specifying the number of elements to send to each rank
- **IN** `sdispls` integer array (of length group size). Entry \(j \) specifies the displacement in bytes (relative to `sendbuf`) from which to take the outgoing data destined for MPI process \(j \) (array of integers)
- **IN** `sendtypes` array of datatypes (of length group size). Entry \(j \) specifies the type of data to send to MPI process \(j \) (array of handles)
- **OUT** `recvbuf` address of receive buffer (choice)
- **IN** `recvcounts` nonnegative integer array (of length group size) specifying the number of elements that can be received from each rank
- **IN** `rdispls` integer array (of length group size). Entry \(i \) specifies the displacement in bytes (relative to `recvbuf`) at which to place the incoming data from MPI process \(i \) (array of integers)
- **IN** `recvtypes` array of datatypes (of length group size). Entry \(i \) specifies the type of data received from MPI process \(i \) (array of handles)
- **IN** `comm` communicator (handle)

C binding

```c
int MPI_Alltoallw(const void *sendbuf, const int sendcounts[],
                  const int sdispls[], const MPI_Datatype sendtypes[],
```
6.8 All-to-All Scatter/Gather

```c
void *recvbuf, const int recvcounds[], const int rdispls[],
const MPI_Datatype recvtypes[], MPI_Comm comm)
```

```c
int MPI_Alltoallw_c(const void *sendbuf, const MPI_Count sendcounts[],
const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
void *recvbuf, const MPI_Count recvcounts[],
const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],
MPI_Comm comm)
```

Fortran 2008 binding

```fortran
MPI_Alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounds,
  rdispls, recvtypes, comm)  !(_c)
```

```fortran
MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,
  RDISPLS, RECVTYPES, COMM, IERROR)
```

Fortran binding

If `comm` is an intra-communicator, then the j-th block sent from MPI process i is received by MPI process j and is placed in the i-th block of `recvbuf`. These blocks need not all have the same size.

The type signature associated with `sendcounts[j]`, `sendtypes[j]` at MPI process i must be equal to the type signature associated with `recvcounds[i]`, `recvtypes[i]` at MPI process j. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of MPI processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each MPI process sent a message to every other MPI process with
MPI_Send(sendbuf+sdispls[i],sendcounts[i],sendtypes[i] ,i,...),
and received a message from every other MPI process with a call to
MPI_Recv(recvbuf+rdispls[i],recvcounts[i],recvtypes[i] ,i,...).

All arguments on all MPI processes are significant. The argument comm must describe
the same communicator on all MPI processes.

Like for MPI_ALLTOALLV, the “in place” option for intra-communicators is specified
by passing MPI_IN_PLACE to the argument sendbuf at all MPI processes. In such a case, sendcounts, sdispls and sendtypes are ignored. The data to be sent is taken from the recvbuf
and replaced by the received data. Data sent and received must have the same type map
as specified by the recvcounts and recvtypes arrays, and is taken from the locations of the
receive buffer specified by rdispls.

If comm is an inter-communicator, then the outcome is as if each MPI process in group
A sends a message to each MPI process in group B, and vice versa. The j-th send buffer of
MPI process i in group A should be consistent with the i-th receive buffer of MPI process j
in group B, and vice versa.

Rationale. The MPI_ALLTOALLW function generalizes several MPI functions by
carefully selecting the input arguments. For example, by making all but one MPI
process have sendcounts[i] = 0, this achieves an MPI_SCATTERW function. (End of
rationale.)

6.9 Global Reduction Operations

The functions in this section perform a global reduce operation (for example sum, maximum,
and logical and) across all members of a group. The reduction operation can be either one of
a predefined list of operations, or a user-defined operation. The global reduction functions
come in several flavors: a reduce that returns the result of the reduction to one member of a
group, an all-reduce that returns this result to all members of a group, and two scan (parallel
prefix) operations. In addition, a reduce-scatter operation combines the functionality of a
reduce and of a scatter operation.

6.9.1 Reduce

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send buffer (choice)
OUT recvbuf address of receive buffer (choice, significant only at root)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of elements of send buffer (handle)
IN op reduce operation (handle)
IN root rank of the root (integer)
6.9 Global Reduction Operations

C binding

```c
int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
               MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)
int MPI_Reduce_c(const void *sendbuf, void *recvbuf, MPI_Count count,
                 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)
```

Fortran 2008 binding

```fortran
MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
  TYPE(*), DIMENSION(..) :: recvbuf
  INTEGER, INTENT(IN) :: count, root
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror) !(_c)
  TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
  TYPE(*), DIMENSION(..) :: recvbuf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  INTEGER, INTENT(IN) :: root
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
  <type> SENDBUF(*), RECVBUF(*)
  INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR
```

If `comm` is an intra-communicator, `MPI_REDUCE` combines the elements provided in the input buffer of each MPI process in the group, using the operation `op`, and returns the combined value in the output buffer of the MPI process with rank `root`. The input buffer is defined by the arguments `sendbuf`, `count` and `datatype`; the output buffer is defined by the arguments `recvbuf`, `count` and `datatype`; both have the same number of elements, with the same type. The routine is called by all group members using the same arguments for `count`, `datatype`, `op`, `root` and `comm`. Thus, all MPI processes provide input buffers of the same length, with elements of the same type as the output buffer at the root. Each MPI process can provide one element, or a sequence of elements, in which case the combine operation is executed element-wise on each entry of the sequence. For example, if the operation is `MPI_MAX` and the send buffer contains two elements that are floating point numbers (`count = 2` and `datatype = MPI_FLOAT`), then `recvbuf(1) = global max(sendbuf(1))` and `recvbuf(2) = global max(sendbuf(2))`.

Section 6.9.2, lists the set of predefined operations provided by MPI. That section also enumerates the datatypes to which each operation can be applied.

In addition, users may define their own operations that can be overloaded to operate on several datatypes, either basic or derived. This is further explained in Section 6.9.5.
The operation \texttt{op} is always assumed to be associative. All predefined operations are also assumed to be commutative. Users may define operations that are assumed to be associative, but not commutative. The “canonical” evaluation order of a reduction is determined by the ranks of the MPI processes in the group. However, the implementation can take advantage of associativity, or associativity and commutativity in order to change the order of evaluation. This may change the result of the reduction for operations that are not strictly associative and commutative, such as floating point addition.

\textit{Advice to implementors.} It is strongly recommended that \texttt{MPI_REDUCE} be implemented so that the same result be obtained whenever the function is applied on the same arguments, appearing in the same order. Note that this may prevent optimizations that take advantage of the physical location of ranks. (End of advice to implementors.)

\textit{Advice to users.} Some applications may not be able to ignore the nonassociative nature of floating-point operations or may use user-defined operations (see Section 6.9.5) that require a special reduction order and cannot be treated as associative. Such applications should enforce the order of evaluation explicitly. For example, in the case of operations that require a strict left-to-right (or right-to-left) evaluation order, this could be done by gathering all operands at a single MPI process (e.g., with \texttt{MPI_GATHER}), applying the reduction operation in the desired order (e.g., with \texttt{MPI_REDUCE_LOCAL}), and if needed, broadcast or scatter the result to the other MPI processes (e.g., with \texttt{MPI_BCAST}). (End of advice to users.)

The \texttt{datatype} argument of \texttt{MPI_REDUCE} must be compatible with \texttt{op}. Predefined operators work only with the MPI types listed in Section 6.9.2 and Section 6.9.4. Furthermore, the \texttt{datatype} and \texttt{op} given for predefined operators must be the same on all MPI processes.

Note that it is possible for users to supply different user-defined operations to \texttt{MPI_REDUCE} in each MPI process. MPI does not define which operations are used on which operands in this case. User-defined operators may operate on general, derived datatypes. In this case, each argument that the reduce operation is applied to is one element described by such a datatype, which may contain several basic values. This is further explained in Section 6.9.5.

\textit{Advice to users.} Users should make no assumptions about how \texttt{MPI_REDUCE} is implemented. It is safest to ensure that the same function is passed to \texttt{MPI_REDUCE} by each MPI process. (End of advice to users.)

Overlapping datatypes are permitted in “send” buffers. Overlapping datatypes in “receive” buffers are erroneous and may give unpredictable results.

The “in place” option for intra-communicators is specified by passing the value \texttt{MPI_IN_PLACE} to the argument \texttt{sendbuf} at the root. In such a case, the input data is taken at the root from the receive buffer, where it will be replaced by the output data.

If \texttt{comm} is an inter-communicator, then the call involves all MPI processes in the inter-communicator, but with one group (group A) defining the root. All MPI processes in the other group (group B) pass the same value in argument \texttt{root}, which is the rank of the root in group A. The root passes the value \texttt{MPI_ROOT} in \texttt{root}. All other MPI processes in group A pass the value \texttt{MPI_PROC_NULL} in \texttt{root}. Only send buffer arguments are significant in group B and only receive buffer arguments are significant at the root.
6.9.2 Predefined Reduction Operations

The following predefined operations are supplied for MPI_REDUCE and related functions MPI_ALLREDUCE, MPI_REDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER, MPI_SCAN, MPI_EXSCAN, all nonblocking variants of those (see Section 6.12), and MPI_REDUCE_LOCAL. These operations are invoked by placing the following in op.

<table>
<thead>
<tr>
<th>Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_MAX</td>
<td>maximum</td>
</tr>
<tr>
<td>MPI_MIN</td>
<td>minimum</td>
</tr>
<tr>
<td>MPI_SUM</td>
<td>sum</td>
</tr>
<tr>
<td>MPI_PROD</td>
<td>product</td>
</tr>
<tr>
<td>MPI_BAND</td>
<td>logical and</td>
</tr>
<tr>
<td>MPI_BOR</td>
<td>bit-wise and</td>
</tr>
<tr>
<td>MPI_LOR</td>
<td>logical or</td>
</tr>
<tr>
<td>MPI_BXOR</td>
<td>bit-wise exclusive or (xor)</td>
</tr>
<tr>
<td>MPI_LXOR</td>
<td>logical exclusive or (xor)</td>
</tr>
<tr>
<td>MPI_MAXLOC</td>
<td>max value and location</td>
</tr>
<tr>
<td>MPI_MINLOC</td>
<td>min value and location</td>
</tr>
</tbody>
</table>

The two operations MPI_MINLOC and MPI_MAXLOC are discussed separately in Section 6.9.4. For the other predefined operations, we enumerate below the allowed combinations of op and datatype arguments. First, define groups of MPI basic datatypes in the following way.

C integer:
- MPI_INT, MPI_LONG, MPI_SHORT,
- MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
- MPI_UNSIGNED_LONG,
- MPI_LONG_LONG_INT,
- MPI_LONG_LONG (as synonym),
- MPI_UNSIGNED_LONG_LONG,
- MPI_SIGNED_CHAR,
- MPI_UNSIGNED_CHAR,
- MPI_INT8_T, MPI_INT16_T,
- MPI_INT32_T, MPI_INT64_T,
- MPI_UINT8_T, MPI_UINT16_T,
- MPI_UINT32_T, and MPI_UINT64_T

Fortran integer:
- MPI_INTEGER
 and handles returned from
- MPI_TYPE_CREATE_F90_INTEGER
 and, if available, MPI_INTEGER1,
- MPI_INTEGER2, MPI_INTEGER4,
- MPI_INTEGER8, and MPI_INTEGER16

Floating point:
- MPI_FLOAT, MPI_DOUBLE, MPI_REAL,
- MPI_DOUBLE_PRECISION,
- MPI_LONG_DOUBLE,
 and handles returned from
- MPI_TYPE_CREATE_F90_REAL
Chapter 6 Collective Communication

and, if available, MPI_REAL2, MPI_REAL4, MPI_REAL8, and MPI_REAL16

Logical:

MPI_LOGICAL, MPI_C_BOOL, and MPI_CXX_BOOL

Complex:

MPI_COMPLEX, MPI_C_COMPLEX, MPI_C_FLOAT_COMPLEX (as synonym),
MPI_C_DOUBLE_COMPLEX, MPI_C_LONG_DOUBLE_COMPLEX,
MPI_CXX_FLOAT_COMPLEX, MPI_CXX_DOUBLE_COMPLEX,
MPI_CXX_LONG_DOUBLE_COMPLEX,
and handles returned from

MPI_TYPE_CREATE_F90_COMPLEX
and, if available, MPI_DOUBLE_COMPLEX, MPI_COMPLEX4, MPI_COMPLEX8,
MPI_COMPLEX16, and MPI_COMPLEX32

Byte:

MPI_BYTE

Multi-language types:

MPI_AINT, MPI_OFFSET, and MPI_COUNT

Now, the valid datatypes for each operation are specified below.

<table>
<thead>
<tr>
<th>Op</th>
<th>Allowed Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_MAX, MPI_MIN</td>
<td>C integer, Fortran integer, Floating point,</td>
</tr>
<tr>
<td></td>
<td>Multi-language types</td>
</tr>
<tr>
<td>MPI_SUM, MPI_PROD</td>
<td>C integer, Fortran integer, Floating point, Complex,</td>
</tr>
<tr>
<td></td>
<td>Multi-language types</td>
</tr>
<tr>
<td>MPI_LAND, MPI_LOR, MPI_LXOR</td>
<td>C integer, Logical</td>
</tr>
<tr>
<td>MPI_BAND, MPI_BOR, MPI_BXOR</td>
<td>C integer, Fortran integer, Byte, Multi-language types</td>
</tr>
</tbody>
</table>

These operations together with all listed datatypes are valid in all supported programming languages, see also Reduce Operations in Section 19.3.6.

The following examples use intra-communicators.

Example 6.15. A routine that computes the dot product of two vectors that are distributed across a group of MPI processes and returns the answer at node zero.

```
SUBROUTINE PAR_BLAS1(m, a, b, c, comm)
USE MPI
REAL a(m), b(m) ! local slice of array
REAL c ! result (at node zero)
REAL sum
INTEGER m, comm, i, ierr
! local sum
sum = 0.0
DO i = 1, m
    sum = sum + a(i)*b(i)
END DO
```
Example 6.16. A routine that computes the product of a vector and an array that are distributed across a group of MPI processes and returns the answer at node zero.

```
SUBROUTINE PAR_BLAS2 (m, n, a, b, c, comm)
USE MPI
REAL a(m), b(m,n) ! local slice of array
REAL c(n) ! result
REAL sum(n)
INTEGER m, n, comm, i, j, ierr

! local sum
DO j=1,n
    sum(j) = 0.0
    DO i=1,m
        sum(j) = sum(j) + a(i)*b(i,j)
    END DO
END DO

! global sum
CALL MPI_REDUCE(sum, c, n, MPI_REAL, MPI_SUM, 0, comm, ierr)

! return result at node zero (and garbage at the other nodes)
RETURN
END
```

6.9.3 Signed Characters and Reductions

The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR can be used in reduction operations. MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER (which represent printable characters) cannot be used in reduction operations. In a heterogeneous environment, MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER will be translated so as to preserve the printable character, whereas MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR will be translated so as to preserve the integer value.

Advice to users. The types MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER are intended for characters, and so will be translated to preserve the printable representation, rather than the integer value, if sent between machines with different character codes. The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR should be used in C if the integer value should be preserved. (End of advice to users.)

6.9.4 MINLOC and MAXLOC

The operator MPI_MINLOC is used to compute a global minimum and also an index attached to the minimum value. MPI_MAXLOC similarly computes a global maximum and index. One
application of these is to compute a global minimum (maximum) and the rank of the MPI process containing this value.

The operation that defines MPI_MAXLOC is:

\[
\left(\begin{array}{c}
u_i \\
j
\end{array} \right) \circ \left(\begin{array}{c}
v_j \\
j
\end{array} \right) = \left(\begin{array}{c}
w_k \\
k
\end{array} \right)
\]

where

\[
w = \max(u, v)
\]

and

\[
k = \begin{cases}
i & \text{if } u > v \\
\min(i, j) & \text{if } u = v \\
j & \text{if } u < v
\end{cases}
\]

MPI_MINLOC is defined similarly:

\[
\left(\begin{array}{c}
u_i \\
j
\end{array} \right) \circ \left(\begin{array}{c}
v_j \\
j
\end{array} \right) = \left(\begin{array}{c}
w_k \\
k
\end{array} \right)
\]

where

\[
w = \min(u, v)
\]

and

\[
k = \begin{cases}
i & \text{if } u < v \\
\min(i, j) & \text{if } u = v \\
j & \text{if } u > v
\end{cases}
\]

Both operations are associative and commutative. Note that if MPI_MAXLOC is applied to reduce a sequence of pairs \((u_0, 0), (u_1, 1), \ldots, (u_{n-1}, n-1)\), then the value returned is \((u, r)\), where \(u = \max_i u_i\) and \(r\) is the index of the first global maximum in the sequence. Thus, if each MPI process supplies a value and its rank within the group, then a reduce operation with \(\text{op} = \text{MPI_MAXLOC}\) will return the maximum value and the rank of the first MPI process with that value. Similarly, MPI_MINLOC can be used to return a minimum and its index. More generally, MPI_MINLOC computes a lexicographic minimum, where elements are ordered according to the first component of each pair, and ties are resolved according to the second component.

The reduce operation is defined to operate on arguments that consist of a pair: value and index. For both Fortran and C, types are provided to describe the pair. The potentially mixed-type nature of such arguments is a problem in older versions of Fortran. The problem is circumvented there by having the MPI-provided type consist of a pair of the same type as value, and coercing the index to this type also. In C, the MPI-provided pair type has distinct types and the index is an integer type. For named predefined pair types in C the index is of type \text{int}. For unnamed predefined pair types, other integer types are allowed as index instead. To use pair types with distinct value and index in Fortran, these types need to be defined using \text{BIND(C)} and be equivalent to the corresponding C struct.

In order to use MPI_MINLOC and MPI_MAXLOC in a reduce operation, one must provide a \textbf{datatype} argument that represents a pair (value and index). MPI provides nine
such named predefined datatypes as well as the function `MPI_TYPE_GET_VALUE_INDEX` to query named and unnamed predefined types using value type and index type. The operations `MPI_MAXLOC` and `MPI_MINLOC` can be used with each of the following named datatypes.

Fortran:

```
Name        Description
MPI_2REAL   pair of REALs
MPI_2DOUBLE_PRECISION pair of DOUBLE PRECISION variables
MPI_2INTEGER pair of INTEGERS
```

C:

```
Name        Description
MPI_FLOAT_INT  float and int
MPI_DOUBLE_INT double and int
MPI_LONG_INT   long and int
MPI_2INT       pair of int
MPI_SHORT_INT  short and int
MPI_LONG_DOUBLE_INT long double and int
```

The datatype `MPI_2REAL` is *as if* defined by the following (see Section 5.1).

```
MPI_Type_contiguous(2, MPI_REAL, MPI_2REAL);
```

Similar statements apply for `MPI_2INTEGER`, `MPI_2DOUBLE_PRECISION`, and `MPI_2INT`.

The datatype `MPI_SHORT_INT` is *as if* defined by the following sequence of instructions.

```
struct mystruct {
   short val;
   int rank;
};
type[0] = MPI_SHORT;
type[1] = MPI_INT;
disp[0] = 0;
disp[1] = offsetof(struct mystruct, rank);
block[0] = 1;
block[1] = 1;
MPI_Type_create_struct(2, block, disp, type, &MPI_SHORT_INT);
MPI_Type_commit(&MPI_SHORT_INT);
```

Similar statements apply for `MPI_FLOAT_INT`, `MPI_LONG_INT` and `MPI_DOUBLE_INT`.

```
MPI_TYPE_GET_VALUE_INDEX(value_type, index_type, pair_type)
```

C binding

```
int MPI_Type_get_value_index(MPI_Datatype value_type, MPI_Datatype index_type,
                            MPI_Datatype *pair_type)
```
Fortran 2008 binding

```fortran
MPI_Type_get_value_index(value_type, index_type, pair_type, ierror)
  TYPE(MPI_Datatype), INTENT(IN) :: value_type, index_type
  TYPE(MPI_Datatype), INTENT(OUT) :: pair_type
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_TYPE_GET_VALUE_INDEX(VALUE_TYPE, INDEX_TYPE, PAIR_TYPE, IERROR)
```

INTEGER VALUE_TYPE, INDEX_TYPE, PAIR_TYPE, IERROR

`MPI_TYPE_GET_VALUE_INDEX` returns a handle to a predefined datatype suitable for the use with `MPI_MINLOC` and `MPI_MAXLOC` if such a predefined type exists. If the provided combination of `value_type` and `index_type` does not match a predefined pair datatype (named or unnamed), the function will set `pair_type` to `MPI_DATATYPE_NULL` and return `MPI_SUCCESS`. The returned type is not a duplicate. This type cannot be freed. Types supported by the underlying compiler for which the operators `MPI_MIN` and `MPI_MAX` are defined in Section 6.9.2 are acceptable value types. Integer types supported by the underlying compiler are acceptable index types.

Advice to users. Note that a named type handle returned by `MPI_TYPE_GET_VALUE_INDEX` will yield the combiner value `MPI_COMBINER_NAMED` when queried with `MPI_TYPE_GET_ENVELOPE` to ensure backward compatibility to existing behavior, whereas all unnamed type handles returned by `MPI_TYPE_GET_VALUE_INDEX` will yield the combiner value `MPI_COMBINER_VALUE_INDEX` when queried with `MPI_TYPE_GET_ENVELOPE`. There is no observable difference between the named constant value used via its symbol name or via `MPI_TYPE_GET_VALUE_INDEX`. Code evaluating the combiner of type handles returned from `MPI_TYPE_GET_VALUE_INDEX` must therefore handle both `MPI_COMBINER_NAMED` and `MPI_COMBINER_VALUE_INDEX`. (**End of advice to users.**)

Example 6.17. An unnamed predefined value-index type is retrieved for use with the corresponding C struct. If the requested value-index pair does not exist as a predefined type `MPI_DATATYPE_NULL` is returned.

```c
struct mystruct {
    double val;
    uint64_t index;
};

MPI_Datatype dtype;
MPI_Type_get_value_index(MPI_DOUBLE, MPI_UINT64_T, &dtype);
if (dtype == MPI_DATATYPE_NULL) {
    // Handling for unsupported value-index type
}
```

Advice to users. Implementations may apply certain optimizations to operations on compound types with equally sized value and index types. Such optimizations may not be applicable to operations on compound types where value and index type are of different size. (**End of advice to users.**)
The following examples use intra-communicators.

Example 6.18. Each MPI process has an array of 30 doubles, in C. For each of the 30 locations, compute the value and rank of the MPI process containing the largest value.

```c
/* each MPI process has an array of 30 double: ain[30] */
double ain[30], aout[30];
int ind[30];
struct {
    double val;
    int rank;
} in[30], out[30];
int i, myrank, root;

MPI_Comm_rank(comm, &myrank);
for (i=0; i<30; ++i) {
    in[i].val = ain[i];
    in[i].rank = myrank;
}
MPI_Reduce(in, out, 30, MPI_DOUBLE_INT, MPI_MAXLOC, root, comm);
/* At this point, the answer resides on root MPI process */
if (myrank == root) {
    /* read ranks out */
    for (i=0; i<30; ++i) {
        aout[i] = out[i].val;
        ind[i] = out[i].rank;
    }
}
```

Example 6.19. Same example, in Fortran.

```fortran
! each process has an array of 30 double: ain(30)

DOUBLE PRECISION ain(30), aout(30)
INTEGER ind(30)
DOUBLE PRECISION in(2,30), out(2,30)
INTEGER i, myrank, root, ierr

CALL MPI_COMM_RANK(comm, myrank, ierr)
DO i=1,30
   in(1,i) = ain(i)
   in(2,i) = myrank ! myrank is coerced to a double
END DO
CALL MPI_REDUCE(in, out, 30, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, root,&
                comm, ierr)
! At this point, the answer resides on root MPI process
```
IF (myrank .EQ. root) THEN
 ! read ranks out
 DO i=1,30
 aout(i) = out(1,i)
 ind(i) = out(2,i) ! rank is coerced back to an integer
 END DO
END IF

Example 6.20. Each MPI process has a nonempty array of values. Find the minimum global value, the rank of the MPI process that holds it and its index on this MPI process.

#define LEN 1000
float val[LEN]; /* local array of values */
int count; /* local number of values */
int myrank, minrank, minindex;
float minval;

struct {
 float value;
 int index;
} in, out;

/* local minloc */
in.value = val[0];
in.index = 0;
for (i=1; i < count; i++) {
 if (in.value > val[i]) {
 in.value = val[i];
 in.index = i;
 }
}

/* global minloc */
MPI_Comm_rank(comm, &myrank);
in.index = myrank*LEN + in.index;
MPI_Reduce(&in, &out, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm);

/* At this point, the answer resides on the root */
if (myrank == root) {
 /* read answer out */
 minval = out.value;
 minrank = out.index / LEN;
 minindex = out.index % LEN;
}

Rationale. The definition of MPI_MINLOC and MPI_MAXLOC given here has the advantage that it does not require any special-case handling of these two operations: they are handled like any other reduce operation. By assigning a value other than myrank to the in.index field, a programmer can provide a different definition of MPI_MAXLOC and MPI_MINLOC, if so desired. The disadvantage is that values and indices have to be first interleaved, and that indices and values have to be coerced to
the same type, in Fortran. (*End of rationale.*)

6.9.5 User-Defined Reduction Operations

\[
\text{MPI_OP_CREATE}(\text{user_fn}, \text{commute}, \text{op})
\]

\begin{verbatim}
IN user_fn user defined function (function)
IN commute true if commutative; false otherwise.
OUT op operation (handle)
\end{verbatim}

C binding

\[
\text{int MPI_Op_create(MPI_User_function *user_fn, int commute, MPI_Op *op)}
\]

\[
\text{int MPI_Op_create_c(MPI_User_function_c *user_fn, int commute, MPI_Op *op)}
\]

Fortran 2008 binding

\[
\text{MPI_Op_create(user_fn, commute, op, ierror)}
\]

\[
\text{PROCEDURE(MPI_User_function) :: user_fn}
\]

\[
\text{LOGICAL, INTENT(IN) :: commute}
\]

\[
\text{TYPE(MPI_Op), INTENT(OUT) :: op}
\]

\[
\text{INTEGER, OPTIONAL, INTENT(OUT) :: ierror}
\]

\[
\text{MPI_Op_create_c(user_fn, commute, op, ierror) \!(_c)}
\]

\[
\text{PROCEDURE(MPI_User_function_c) :: user_fn}
\]

\[
\text{LOGICAL, INTENT(IN) :: commute}
\]

\[
\text{TYPE(MPI_Op), INTENT(OUT) :: op}
\]

\[
\text{INTEGER, OPTIONAL, INTENT(OUT) :: ierror}
\]

Fortran binding

\[
\text{MPI_OP_CREATE(USER_FN, COMMUTE, OP, IERROR)}
\]

\[
\text{EXTERNAL USER_FN}
\]

\[
\text{LOGICAL COMMUTE}
\]

\[
\text{INTEGER OP, IERROR}
\]

\[
\text{MPI_OP_CREATE} \text{ binds a user-defined reduction operation to an op handle that can subsequently be used in MPI_REDUCE, MPI_ALLREDUCE, MPI_REDUCE_SCATTER, MPI_REDUCE_SCATTER_BLOCK, MPI_SCAN, MPI_EXSCAN, all nonblocking and persistent variants of those (see Section 6.12 and Section 6.13), and MPI_REDUCE_LOCAL. The user-defined operation is assumed to be associative. If commute = true, then the operation should be both commutative and associative. If commute = false, then the order of operands is fixed and is defined to be in ascending, process rank order, beginning with MPI process with rank 0 in the communicator comm. The order of evaluation can be changed, talking advantage of the associativity of the operation. If commute = true then the order of evaluation can be changed, taking advantage of commutativity and associativity.}
\]

In Fortran when using USE mpi_f08, the large count variant shall be called explicitly as MPI_Op_create_c (i.e., with suffix “_c”) because interface polymorphism cannot be used to differentiate between the two different user callback prototypes despite their different type signatures.
The argument **user_fn** is the user-defined function, which must have the following four arguments: `invec, inoutvec, len, and datatype`.

MPI_USER_FUNCTION also supports large count types in separate additional MPI callback function prototype declarations in C (suffixed with the "_c") and in Fortran when using USE _mpi_f08_

The ISO C prototypes for the functions are the following.

```c
typedef void MPI_User_function(void *invec, void *inoutvec, int *len,
                               MPI_Datatype *datatype);
typedef void MPI_User_function_c(void *invec, void *inoutvec, MPI_Count *len,
                                 MPI_Datatype *datatype);
```

The Fortran declarations of the user-defined function **user_fn** appear below.

```
ABSTRACT INTERFACE
SUBROUTINE MPI_User_function(invec, inoutvec, len, datatype)
  USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
  TYPE(C_PTR), VALUE :: invec, inoutvec
  INTEGER :: len
  TYPE(MPI_Datatype) :: datatype
ABSTRACT INTERFACE
SUBROUTINE MPI_User_function_c(invec, inoutvec, len, datatype) !(_c)
  USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
  TYPE(C_PTR), VALUE :: invec, inoutvec
  INTEGER(KIND=MPI_COUNT_KIND) :: len
  TYPE(MPI_Datatype) :: datatype
SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, DATATYPE)
  <type> INVEC(LEN), INOUTVEC(LEN)
  INTEGER LEN, DATATYPE
```

The **datatype** argument is a handle to the datatype that was passed into the call to **MPI_REDUCE**. The user reduce function should be written such that the following holds:

Let \(u[0], \ldots, u[len-1] \) be the \(len \) elements in the communication buffer described by the arguments `invec, len, and datatype` when the function is invoked; let \(v[0], \ldots, v[len-1] \) be \(len \) elements in the communication buffer described by the arguments `inoutvec, len, and datatype` when the function is invoked; let \(w[0], \ldots, w[len-1] \) be \(len \) elements in the communication buffer described by the arguments `inoutvec, len, and datatype` when the function returns; then \(w[i] = u[i] \circ v[i] \), for \(i=0, \ldots, len-1 \), where \(\circ \) is the reduce operation that the function computes.

Informally, we can think of `invec` and `inoutvec` as arrays of \(len \) elements that **user_fn** is combining. The result of the reduction over-writes values in `inoutvec`, hence the name. Each invocation of the function results in the pointwise evaluation of the reduce operator on \(len \) elements: i.e., the function returns in `inoutvec[i]` the value \(invec[i] \circ inoutvec[i] \), for \(i=0, \ldots, count-1 \), where \(\circ \) is the combining operation computed by the function.

Rationale. The **len** argument allows **MPI_REDUCE** to avoid calling the function for each element in the input buffer. Rather, the system can choose to apply the function to chunks of input. In C, it is passed in as a reference for reasons of compatibility with Fortran.
By internally comparing the value of the `datatype` argument to known, global handles, it is possible to overload the use of a single user-defined function for several, different datatypes. *(End of rationale.)*

When calling any reduction or prefix scan MPI procedure with a user-defined MPI operator, the type of the `count` parameter in the call to the reduction or prefix scan MPI procedure does not need to be identical to the type of the `len` parameter in the user function associated with the user-defined MPI operator. If the `count` parameter has a type of `int` in C or `INTEGER` in Fortran and the `len` parameter has a type of `MPI_COUNT`, then MPI will perform the appropriate widening type conversion of the `len` parameter. If the `count` parameter has a type of `MPI_COUNT` and the `len` parameter has a type of `int` in C or `INTEGER` in Fortran, then MPI will perform the appropriate narrowing type conversion of the `len` parameter. If this narrowing conversion would result in truncation of the `len` value, then MPI will call the user function multiple times with a sequence of values for `len` that sum to the value of `count`.

Advice to implementors. If the number of data items cannot be represented in `len`, the implementation may need to invoke `user_fn` multiple times. *(End of advice to implementors.)*

General datatypes may be passed to the user function. However, use of datatypes that are not contiguous is likely to lead to inefficiencies.

No MPI communication function may be called inside the user function. MPI_ABORT may be called inside the function in case of an error.

Advice to users. Suppose one defines a library of user-defined reduce functions that are overloaded: the `datatype` argument is used to select the right execution path at each invocation, according to the types of the operands. The user-defined reduce function cannot “decode” the `datatype` argument that it is passed, and cannot identify, by itself, the correspondence between the datatype handles and the datatype they represent. This correspondence was established when the datatypes were created. Before the library is used, a library initialization preamble must be executed. This preamble code will define the datatypes that are used by the library, and store handles to these datatypes in global, static variables that are shared by the user code and the library code.

The Fortran version of MPI_REDUCE will invoke a user-defined reduce function using the Fortran calling conventions and will pass a Fortran-type datatype argument; the C version will use C calling convention and the C representation of a datatype handle. Users who plan to mix languages should define their reduction functions accordingly. *(End of advice to users.)*

Advice to implementors. We outline below a naive and inefficient implementation of MPI_REDUCE not supporting the “in place” option and only valid for intra-communicators.

```c
MPI_Comm_size(comm, &groupsize);
MPI_Comm_rank(comm, &rank);
if (rank > 0) {
   MPI_Recv(tempbuf, count, datatype, rank-1,...);
```

```c
```
The reduction computation proceeds, sequentially, from MPI process with rank 0 to MPI process with rank groupsize-1. This order is chosen so as to respect the order of a possibly noncommutative operator defined by the function User_reduce(). A more efficient implementation is achieved by taking advantage of associativity and using a logarithmic tree reduction. Commutativity can be used to advantage, for those cases in which the commute argument to MPI_OP_CREATE is true. Also, the amount of temporary buffer space required can be reduced, and communication can be pipelined with computation, by transferring and reducing the elements in chunks of size len < count.

The predefined reduce operations can be implemented as a library of user-defined operations. However, better performance might be achieved if MPI_REDUCE handles these functions as a special case. (End of advice to implementors.)

C binding

```c
int MPI_Op_free(MPI_Op *op)
```

Fortran 2008 binding

```fortran
MPI_Op_free(op, ierror)
```

FORTRAN binding

```fortran
MPI_OP_FREE(OP, IERROR)
```

Marks a user-defined reduction operation for deallocation and sets op to MPI_OP_NULL.
Example of User-Defined Reduce

The example in this section uses an intra-communicator.

Example 6.21. Compute the product of an array of complex numbers, in C.

```c
typedef struct {
    double real, imag;
} Complex;

/* the user-defined function */
void myProd(void *inP, void *inoutP, int *len, MPI_Datatype *dptr) {
    int i;
    Complex c;
    Complex *in = (Complex *)inP, *inout = (Complex *)inoutP;

    for (i=0; i<*len; ++i) {
        c.real = inout->real*in->real -
                 inout->imag*in->imag;
        c.imag = inout->real*in->imag +
                 inout->imag*in->real;
        *inout = c;
        in++; inout++;
    }
}

/* and, to call it... */
...

/* each MPI process has an array of 100 Complexes */
Complex a[100], answer[100];
MPI_Op myOp;
MPI_Datatype ctype;

/* explain to MPI how type Complex is defined */
MPI_Type_contiguous(2, MPI_DOUBLE, &ctype);
MPI_Type_commit(&ctype);
/* create the complex-product user-op */
MPI_Op_create(myProd, 1, &myOp);

MPI_Reduce(a, answer, 100, ctype, myOp, root, comm);

/* At this point, the answer, which consists of 100 Complexes, * resides on root MPI process */
Example 6.22. How to use the mpi_f08 interface of the Fortran MPI_User_function.

```fortran
subroutine my_user_function(invec, inoutvec, len, dtype) bind(c)
 use, intrinsic :: iso_c_binding, only : c_ptr, c_f_pointer
 use mpi_f08
 type(c_ptr), value :: invec, inoutvec
 integer :: len
 type(MPI_Datatype) :: dtype
 real, pointer :: invec_r (:), inoutvec_r (:)
 if (dtype == MPI_REAL) then
 call c_f_pointer(invec, invec_r, (/ len /))
 call c_f_pointer(inoutvec, inoutvec_r, (/ len /))
 inoutvec_r = invec_r + inoutvec_r
 end if
end subroutine
```

6.9.6 All-Reduce

MPI includes a variant of the reduce operations where the result is returned to all MPI processes in a group. MPI requires that all MPI processes from the same group participating in these operations receive identical results.

**MPI_ROOTREDUCE** (sendbuf, recvbuf, count, datatype, op, comm)

- **IN** sendbuf: starting address of send buffer (choice)
- **OUT** recvbuf: starting address of receive buffer (choice)
- **IN** count: number of elements in send buffer (non-negative integer)
- **IN** datatype: datatype of elements of send buffer (handle)
- **IN** op: operation (handle)
- **IN** comm: communicator (handle)

**C binding**

```c
int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Allreduce_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
```

**Fortran 2008 binding**

```fortran
MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm, ierror)
```

- **TYPE(*), DIMENSION(..), INTENT(IN)** :: sendbuf
- **TYPE(*), DIMENSION(..)** :: recvbuf
- **INTEGER, INTENT(IN)** :: count
- **TYPE(MPI_Datatype), INTENT(IN)** :: datatype
- **TYPE(MPI_Op), INTENT(IN)** :: op
- **TYPE(MPI_Comm), INTENT(IN)** :: comm
- **INTEGER, OPTIONAL, INTENT(OUT)** :: ierror
6.9 Global Reduction Operations

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm, ierror) !(_c)
  TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
  TYPE(*), DIMENSION(..) :: recvbuf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
  INTEGER COUNT, DATATYPE, OP, COMM, IERROR

If comm is an intra-communicator, MPI_ALLREDUCE behaves the same as
MPI_REDUCE except that the result appears in the receive buffer of all the group members.

Advice to implementors. The all-reduce operations can be implemented as a re-
duce, followed by a broadcast. However, a direct implementation can lead to better
performance. (End of advice to implementors.)

The “in place” option for intra-communicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. value MPI_IN_PLACE to the argu-
ment sendbuf at all MPI processes. In this case, the input data is taken at each MPI process
from the receive buffer, where it will be replaced by the output data.

If comm is an inter-communicator, then the result of the reduction of the data provided
by MPI processes in group A is stored at each MPI process in group B, and vice versa. Both
groups should provide count and datatype arguments that specify the same type signature.

The following example uses an intra-communicator.

Example 6.23. A routine that computes the product of a vector and an array that are
distributed across a group of MPI processes and returns the answer at all nodes (see also
Example 6.16).

SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
  USE MPI
  REAL a(m), b(m,n) ! local slice of array
  REAL c(n) ! result
  REAL sum(n)
  INTEGER m, n, comm, i, j, ierr

  ! local sum
  DO j=1,n
    sum(j) = 0.0
    DO i=1,m
      sum(j) = sum(j) + a(i)*b(i,j)
    END DO
  END DO

  ! global sum
  CALL MPI_ALLREDUCE(sum, c, n, MPI_REAL, MPI_SUM, comm, ierr)
6.9.7 MPI Process-Local Reduction

The functions in this section are of importance to library implementors who may want to
implement special reduction patterns that are otherwise not easily covered by the standard
MPI operations.

The following function applies a reduction operator to local arguments.

MPI_REDUCE_LOCAL(inbuf, inoutbuf, count, datatype, op)

IN inbuf       input buffer (choice)
INOUT inoutbuf combined input and output buffer (choice)
IN count       number of elements in inbuf and inoutbuf buffers
                (non-negative integer)
IN datatype    datatype of elements of inbuf and inoutbuf buffers
                (handle)
IN op          operation (handle)

C binding
int MPI_Reduce_local(const void *inbuf, void *inoutbuf, int count,
                     MPI_Datatype datatype, MPI_Op op)

int MPI_Reduce_local_c(const void *inbuf, void *inoutbuf, MPI_Count count,
                       MPI_Datatype datatype, MPI_Op op)

Fortran 2008 binding
MPI_Reduce_local(inbuf, inoutbuf, count, datatype, op, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
  TYPE(*), DIMENSION(..) :: inoutbuf
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_local(inbuf, inoutbuf, count, datatype, op, ierror) !(_c)
  TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
  TYPE(*), DIMENSION(..) :: inoutbuf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_REDUCE_LOCAL(INBUF, INOUTBUF, COUNT, DATATYPE, OP, IERROR)
  <type> INBUF(*), INOUTBUF(*)
INTEGER COUNT, DATATYPE, OP, IERROR

The function applies the operation given by op element-wise to the elements of inbuf and inoutbuf with the result stored element-wise in inoutbuf, as explained for user-defined operations in Section 6.9.5. Both inbuf and inoutbuf (input as well as result) have the same number of elements given by count and the same datatype given by datatype. The MPI_IN_PLACE option is not allowed.

Reduction operations can be queried for their commutativity.

MPI_OP_COMMUTATIVE(op, commute)

IN op operation (handle)
OUT commute true if op is commutative, false otherwise (logical)

C binding
int MPI_Op_commutative(MPI_Op op, int *commute)

Fortran 2008 binding
MPI_Op_commutative(op, commute, ierror)

TYPE(MPI_Op), INTENT(IN) :: op
LOGICAL, INTENT(OUT) :: commute
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_OP_COMMUTATIVE(OP, COMMUTE, IERROR)
INTEGER OP, IERROR
LOGICAL COMMUTE

6.10 Reduce-Scatter

MPI includes variants of the reduce operations where the result is scattered to all MPI processes in a group on return. One variant scatters equal-sized blocks to all MPI processes, while another variant scatters blocks that may vary in size for each MPI process.

6.10.1 MPI_REDUCE_SCATTER_BLOCK

MPI_REDUCE_SCATTER_BLOCK(sendbuf, recvbuf, recvcount, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN recvcount element count per block (non-negative integer)
IN datatype datatype of elements of send and receive buffers (handle)
IN op operation (handle)
IN comm communicator (handle)
C binding

int MPI_Reduce_scatter_block(const void *sendbuf, void *recvbuf, int recvcount,
   MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Reduce_scatter_block_c(const void *sendbuf, void *recvbuf,
   MPI_Count recvcount, MPI_Datatype datatype, MPI_Op op,
   MPI_Comm comm)

Fortran 2008 binding

MPI_Reduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm,
   ierror)
   TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
   TYPE(*), DIMENSION(..) :: recvbuf
   INTEGER, INTENT(IN) :: recvcount
   TYPE(MPI_Datatype), INTENT(IN) :: datatype
   TYPE(MPI_Op), INTENT(IN) :: op
   TYPE(MPI_Comm), INTENT(IN) :: comm
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm,
   ierror) !(_c)
   TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
   TYPE(*), DIMENSION(..) :: recvbuf
   INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: recvcount
   TYPE(MPI_Datatype), INTENT(IN) :: datatype
   TYPE(MPI_Op), INTENT(IN) :: op
   TYPE(MPI_Comm), INTENT(IN) :: comm
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_REDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,
   IERROR)
   <type> SENDBUF(*), RECVBUF(*)
   INTEGER RECVCOUNT, DATATYPE, OP, COMM, IERROR

If comm is an intra-communicator, MPI_REDUCE_SCATTER_BLOCK first performs a
global, element-wise reduction on vectors of count = n*recvcount elements in the send buffers
defined by sendbuf, count and datatype, using the operation op, where n is the number of
MPI processes in the group of comm. The routine is called by all group members using the
same arguments for recvcount, datatype, op and comm. The resulting vector is treated as
n consecutive blocks of recvcount elements that are scattered to the MPI processes of the
group. The i-th block is sent to MPI process i and stored in the receive buffer defined by
recvbuf, recvcount, and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER_BLOCK routine is function-
ally equivalent to an MPI_REDUCE collective operation with count equal to
recvcount*n, followed by an MPI_SCATTER with sendcount equal to recvcount. How-
ever, a direct implementation may run faster. *(End of advice to implementors.)*

The “in place” option for intra-communicators is specified by passing MPI_IN_PLACE in
the sendbuf argument on all MPI processes. In this case, the input data is taken from the
receive buffer.
If \texttt{comm} is an inter-communicator, then the result of the reduction of the data provided by MPI processes in one group (group A) is scattered among MPI processes in the other group (group B) and vice versa. Within each group, all MPI processes provide the same value for the \texttt{recvcount} argument, and provide input vectors of \texttt{count} = \texttt{n*recvcount} elements stored in the send buffers, where \texttt{n} is the size of the group. The number of elements \texttt{count} must be the same for the two groups. The resulting vector from the other group is scattered in blocks of \texttt{recvcount} elements among the MPI processes in the group.

\textit{Rationale.} The last restriction is needed so that the length of the send buffer of one group can be determined by the local \texttt{recvcount} argument of the other group. Otherwise, communication is needed to figure out how many elements are reduced. (End of rationale.)

### 6.10.2 MPI\textunderscore REDUCE\textunderscore SCATTER

\texttt{MPI\textunderscore REDUCE\textunderscore SCATTER} extends the functionality of \texttt{MPI\textunderscore REDUCE\textunderscore SCATTER\_BLOCK} such that the scattered blocks can vary in size. Block sizes are determined by the \texttt{recvcounts} array, such that the i-th block contains \texttt{recvcounts[i]} elements.

\begin{verbatim}
MPI\_REDUCE\_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm)
IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN recvcounts nonnegative integer array (of length group size)
specifying the number of elements of the result distributed to each MPI process.
IN datatype datatype of elements of send and receive buffers (handle)
IN op operation (handle)
IN comm communicator (handle)

C binding
int MPI\_Reduce\_scatter(const void *sendbuf, void *recvbuf,
const int recvcounts[], MPI\_Datatype datatype, MPI\_Op op,
MPI\_Comm comm)

int MPI\_Reduce\_scatter\_c(const void *sendbuf, void *recvbuf,
const MPI\_Count recvcounts[], MPI\_Datatype datatype, MPI\_Op op,
MPI\_Comm comm)

Fortran 2008 binding
MPI\_Reduce\_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm, ierror)
  TYPE(*), DIMENSION(....), INTENT(IN) :: sendbuf
  TYPE(*), DIMENSION(....) :: recvbuf
  INTEGER, INTENT(IN) :: recvcounts(*)
  TYPE(MPI\_Datatype), INTENT(IN) :: datatype
  TYPE(MPI\_Op), INTENT(IN) :: op
\end{verbatim}
Chapter 6 Collective Communication

246

TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm, ierror)

!(_c)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: recvcounts(*)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

If comm is an intra-communicator, MPI_REDUCE_SCATTER first performs a global, element-wise reduction on vectors of count = \sum_{i=0}^{n-1} recvcounts[i] elements in the send buffers defined by sendbuf, count and datatype, using the operation op, where n is the number of MPI processes in the group of comm. The routine is called by all group members using the same arguments for recvcounts, datatype, op and comm. The resulting vector is treated as n consecutive blocks where the number of elements of the i-th block is recvcounts[i]. The blocks are scattered to the MPI processes of the group. The i-th block is sent to MPI process i and stored in the receive buffer defined by recvbuf, recvcounts[i] and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER routine is functionally equivalent to an MPI_REDUCE collective operation with count equal to the sum of recvcounts[i] followed by MPI_SCATTERV with sendcounts equal to recvcounts. However, a direct implementation may run faster. (End of advice to implementors.)

The “in place” option for intra-communicators is specified by passing MPI_IN_PLACE in the sendbuf argument. In this case, the input data is taken from the receive buffer. It is not required to specify the “in place” option on all MPI processes, since the MPI processes for which recvcounts[i] =0 may not have allocated a receive buffer.

If comm is an inter-communicator, then the result of the reduction of the data provided by MPI processes in one group (group A) is scattered among MPI processes in the other group (group B), and vice versa. Within each group, all MPI processes provide the same recvcounts argument, and provide input vectors of count = \sum_{i=0}^{n-1} recvcounts[i] elements stored in the send buffers, where n is the size of the group. The resulting vector from the other group is scattered in blocks of recvcounts[i] elements among the MPI processes in the group. The number of elements count must be the same for the two groups.

Rationale. The last restriction is needed so that the length of the send buffer can be determined by the sum of the local recvcounts entries. Otherwise, communication is needed to figure out how many elements are reduced. (End of rationale.)
6.11 Scan

6.11.1 Inclusive Scan

MPI_SCAN(sendbuf, recvbuf, count, datatype, op, comm)

<table>
<thead>
<tr>
<th>IN</th>
<th>sendbuf</th>
<th>starting address of send buffer (choice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>recvbuf</td>
<td>starting address of receive buffer (choice)</td>
</tr>
<tr>
<td>IN</td>
<td>count</td>
<td>number of elements in input buffer (non-negative integer)</td>
</tr>
<tr>
<td>IN</td>
<td>datatype</td>
<td>datatype of elements of input buffer (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>op</td>
<td>operation (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>comm</td>
<td>communicator (handle)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
int MPI_Scan_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
```

Fortran 2008 binding

```fortran
MPI_Scan(sendbuf, recvbuf, count, datatype, op, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

MPI_Scan(sendbuf, recvbuf, count, datatype, op, comm, ierror) !(._c)

```fortran
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_SCAN(SENDBUF, recvbuf, count, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), recvbuf(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR
```

If comm is an intra-communicator, MPI_SCAN is used to perform a prefix reduction on data distributed across the group. The operation returns, in the receive buffer of the MPI process with rank i, the reduction of the values in the send buffers of MPI processes
with ranks $0,\ldots,i$ (inclusive). The routine is called by all group members using the same arguments for `count`, `datatype`, `op` and `comm`, except that for user-defined operations, the same rules apply as for `MPI\_REDUCE`. The type of operations supported, their semantics, and the constraints on send and receive buffers are as for `MPI\_REDUCE`.

The “in place” option for intra-communicators is specified by passing `MPI\_IN\_PLACE` in the `sendbuf` argument. In this case, the input data is taken from the receive buffer, and replaced by the output data.

This operation is invalid for inter-communicators.

### 6.11.2 Exclusive Scan

```c
MPI_EXSCAN(sendbuf, recvbuf, count, datatype, op, comm)
```

IN	sendbuf	starting address of send buffer (choice)
OUT	recvbuf	starting address of receive buffer (choice)
IN	count	number of elements in input buffer (non-negative integer)
IN	datatype	datatype of elements of input buffer (handle)
IN	op	operation (handle)
IN	comm	intra-communicator (handle)

**C binding**

```c
int MPI_Exscan(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
```

```c
int MPI_Exscan_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
```

**Fortran 2008 binding**

```fortran
MPI_Exscan(sendbuf, recvbuf, count, datatype, op, comm, ierror)
```

```fortran
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 TYPE(*), DIMENSION(..) :: recvbuf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran 2008 binding**

```fortran
MPI_Exscan(sendbuf, recvbuf, count, datatype, op, comm, ierror)!(_c)
```

```fortran
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 TYPE(*), DIMENSION(..) :: recvbuf
 INTEGER(KIND=_MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
**Fortran binding**

MPI_EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

\[
\begin{align*}
\text{SENDBUF}(\ast), \text{RECVBUF}(\ast) \\
\text{INTEGER COUNT, DATATYPE, OP, COMM, IERROR}
\end{align*}
\]

If `comm` is an intra-communicator, MPI_EXSCAN is used to perform a prefix reduction on data distributed across the group. The value in `recvbuf` on the MPI process with rank 0 is undefined, and `recvbuf` is not significant on that MPI process. The value in `recvbuf` on the MPI process with rank 1 is defined as the value in `sendbuf` on the MPI process with rank 0. For MPI processes with rank \(i > 1\), the operation returns, in the receive buffer of the MPI process with rank \(i\), the reduction of the values in the send buffers of MPI processes with ranks \(0, \ldots, i - 1\) (inclusive). The routine is called by all group members using the same arguments for `count`, `datatype`, `op` and `comm`, except that for user-defined operations, the same rules apply as for MPI_REDUCE. The type of operations supported, their semantics, and the constraints on send and receive buffers, are as for MPI_REDUCE.

The “in place” option for intra-communicators is specified by passing MPI_IN_PLACE in the `sendbuf` argument. In this case, the input data is taken from the receive buffer, and replaced by the output data. The receive buffer on rank 0 is not changed by this operation.

This operation is invalid for inter-communicators.

*Rationale.* The exclusive scan is more general than the inclusive scan. Any inclusive scan operation can be achieved by using the exclusive scan and then locally combining the local contribution. Note that for noninvertable operations such as MPI_MAX, the exclusive scan cannot be computed with the inclusive scan. *(End of rationale.)*

### 6.11.3 Example using MPI_SCAN

The example in this section uses an intra-communicator.

**Example 6.24.** This example uses a user-defined operation to produce a **segmented scan.** A segmented scan takes, as input, a set of values and a set of logicals, and the logicals delineate the various segments of the scan. For example:

<table>
<thead>
<tr>
<th>values</th>
<th>v₁</th>
<th>v₂</th>
<th>v₃</th>
<th>v₄</th>
<th>v₅</th>
<th>v₆</th>
<th>v₇</th>
<th>v₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>logicals</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>result</td>
<td>v₁</td>
<td>v₁ + v₂</td>
<td>v₃ + v₄</td>
<td>v₃ + v₄ + v₅</td>
<td>v₆</td>
<td>v₆ + v₇</td>
<td>v₈</td>
<td></td>
</tr>
</tbody>
</table>

The operator that produces this effect is

\[
\begin{pmatrix} u \\ i \end{pmatrix} \circ \begin{pmatrix} v \\ j \end{pmatrix} = \begin{pmatrix} w \\ j \end{pmatrix},
\]

where

\[
w = \begin{cases} 
  u + v & \text{if } i = j \\
  v & \text{if } i \neq j
\end{cases}
\]

Note that this is a noncommutative operator. C code that implements it is given below.

```c
typedef struct {
 double val;
 int log;
```
```c
} SegScanPair;

/* the user-defined function */
void segScan(SegScanPair *in, SegScanPair *inout, int *len,
 MPI_Datatype *dptr)
{
 int i;
 SegScanPair c;

 for (i = 0; i < *len; ++i) {
 if (in->log == inout->log)
 c.val = in->val + inout->val;
 else
 c.val = inout->val;
 c.log = inout->log;
 *inout = c;
 in++; inout++;
 }
}
```

Note that the inout argument to the user-defined function corresponds to the right-hand operand of the operator. When using this operator, we must be careful to specify that it is noncommutative, as in the following.

```c
int i, base;
SegScanPair a, answer;
MPI_Op myOp;
MPI_Datatype type[2] = {MPI_DOUBLE, MPI_INT};
MPI_Aint disp[2];
int blocklen[2] = {1, 1};
MPI_Datatype sspair;

/* explain to MPI how type SegScanPair is defined */
MPI_Get_address(&a, disp); // Check the type of SegScanPair
MPI_Get_address(&a.log, disp[1]);
base = disp[0];
for (i = 0; i < 2; ++i) disp[i] -= base;
MPI_Type_create_struct(2, blocklen, disp, type, &sspair);
MPI_Type_commit(&sspair);
/* create the segmented-scan user-op */
MPI_Op_create(segScan, 0, &myOp);
...
MPI_Scan(&a, &answer, 1, sspair, myOp, comm);
```

### 6.12 Nonblocking Collective Operations

As described in Section 3.7, performance of many applications can be improved by overlapping communication and computation, and many systems enable this. Nonblocking collective operations combine the potential benefits of nonblocking point-to-point opera-
tions, to exploit overlap and to avoid synchronization, with the optimized implementation and message scheduling provided by collective operations [35, 39]. One way of doing this would be to perform a blocking collective operation in a separate thread. An alternative mechanism that often leads to better performance (e.g., avoids context switching, scheduler overheads, and thread management) is to use nonblocking collective communication [37].

The nonblocking collective communication model is similar to the model used for nonblocking point-to-point communication. A nonblocking call initiates a collective operation, which must be completed in a separate completion call. Once initiated, the operation may progress independently of any computation or other communication at participating MPI processes. In this manner, nonblocking collective operations can mitigate possible synchronizing effects of collective operations by running them in the “background.” In addition to enabling communication-computation overlap, nonblocking collective operations can perform collective operations on overlapping communicators, which would lead to deadlocks with blocking operations. Their semantic advantages can also be useful in combination with point-to-point communication.

As in the nonblocking point-to-point case, all calls are local and return immediately, irrespective of the status of other MPI processes. The call initiates the operation, which indicates that the system may start to copy data out of the send buffer and into the receive buffer. Once initiated, all associated send buffers and buffers associated with input arguments (such as arrays of counts, displacements, or datatypes in the vector versions of the collectives) should not be modified, and all associated receive buffers should not be accessed, until the collective operation completes. The call returns a request handle, which must be passed to a completion call.

All completion calls (e.g., MPI_WAIT) described in Section 3.7.3 are supported for nonblocking collective operations. Similarly to the blocking case, nonblocking collective operations are considered to be complete when the local part of the operation is finished, i.e., for the caller, the semantics of the operation are guaranteed and all buffers can be safely accessed and modified. Completion does not indicate that other MPI processes have completed or even started the operation (unless otherwise implied by the description of the operation). Completion of a particular nonblocking collective operation also does not indicate completion of any other posted nonblocking collective (or send-receive) operations, whether they are posted before or after the completed operation.

Advice to users. Users should be aware that implementations are allowed, but not required (with exception of MPI_IBARRIER), to synchronize MPI processes during the completion of a nonblocking collective operation. (End of advice to users.)

Upon returning from a completion call in which a nonblocking collective operation completes, the values of the MPI_SOURCE and MPI_TAG fields in the associated status object, if any, are undefined. The value of MPI_ERROR may be defined, if appropriate, according to the specification in Section 3.2.5. It is valid to mix different request types (i.e., any combination of collective requests, I/O requests, generalized requests, or point-to-point requests) in functions that enable multiple completions (e.g., MPI_WAITALL). It is erroneous to call MPI_REQUEST_FREE or MPI_CANCEL for a request associated with a nonblocking collective operation. Nonblocking collective requests created using the APIs described in this section are not persistent. However, persistent collective requests can be created using persistent collective operations described in Sections 6.13 and 8.8.

Rationale. Freeing an active nonblocking collective request could cause similar
problems as discussed for point-to-point requests (see Section 3.7.3). Cancelling a request is not supported because the semantics of this operation are not well-defined. (End of rationale.)

Multiple nonblocking collective operations can be outstanding on a single communicator. If the nonblocking call causes some system resource to be exhausted, then it will fail and raise an error. Quality implementations of MPI should ensure that this happens only in pathological cases. That is, an MPI implementation should be able to support a large number of pending nonblocking operations.

Unlike point-to-point operations, nonblocking collective operations do not match with blocking collective operations, and collective operations do not have a tag argument. All MPI processes must call collective operations (blocking and nonblocking) in the same order per communicator. In particular, once a MPI process calls a collective operation, all other MPI processes in the communicator must eventually call the same collective operation, and no other collective operation with the same communicator in between. This is consistent with the ordering rules for blocking collective operations in threaded environments.

Rationale. Matching blocking and nonblocking collective operations is not allowed because the implementation might use different communication algorithms for the two cases. Blocking collective operations may be optimized for minimal time to completion, while nonblocking collective operations may balance time to completion with CPU overhead and asynchronous progress.

The use of tags for collective operations can prevent certain hardware optimizations. (End of rationale.)

Advice to users. If program semantics require matching blocking and nonblocking collective operations, then a nonblocking collective operation can be initiated and immediately completed with a blocking wait to emulate blocking behavior. (End of advice to users.)

In terms of data movement, each nonblocking collective operation has the same effect as its blocking counterpart for intra-communicators and inter-communicators after completion. Likewise, upon completion, nonblocking collective reduction operations have the same effect as their blocking counterparts, and the same restrictions and recommendations on reduction orders apply.

The use of the “in place” option is allowed exactly as described for the corresponding blocking collective operations. When using the “in place” option, message buffers function as both send and receive buffers. Such buffers should not be modified or accessed until the operation completes.

The progress rules for nonblocking collective operations are similar to the progress rules for nonblocking point-to-point operations, refer to Sections 2.9 and 3.7.4.

Advice to implementors. Nonblocking collective operations can be implemented with local execution schedules [38] using nonblocking point-to-point communication and a reserved tag-space. (End of advice to implementors.)
6.12 Nonblocking Collective Operations

6.12.1 Nonblocking Barrier Synchronization

**MPI_IBARRIER**(*comm*, *request*)

**IN**  *comm*   
communicator (handle)

**OUT**  *request*   
communication request (handle)

**C binding**

```c
int MPI_Ibarrier(MPI_Comm comm, MPI_Request *request)
```

**Fortran 2008 binding**

```fortran
MPI_Ibarrier(comm, request, ierr)
```

```fortran
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

**Fortran binding**

```fortran
MPI_IBARRIER(COMM, REQUEST, IERROR)
```

```fortran
INTEGER COMM, REQUEST, IERROR
```

**MPI_IBARRIER** is a nonblocking version of **MPI_BARRIER**. By calling **MPI_IBARRIER**, an MPI process notifies that it has reached the barrier. The call returns immediately, independent of whether other MPI processes have called **MPI_IBARRIER**. The usual barrier semantics are enforced at the corresponding completion operation (test or wait), which in the intra-communicator case will complete only after all other MPI processes in the communicator have called **MPI_IBARRIER**. In the inter-communicator case, it will complete when all MPI processes in the remote group have called **MPI_IBARRIER**.

**Advice to users.** A nonblocking barrier can be used to hide latency. Moving independent computations between the **MPI_IBARRIER** and the subsequent completion call can overlap the barrier latency and therefore shorten possible waiting times. The semantic properties are also useful when mixing collective operations and point-to-point messages. (*End of advice to users.*)

6.12.2 Nonblocking Broadcast

**MPI_IBCAST**(*buffer*, *count*, *datatype*, *root*, *comm*, *request*)

**INOUT**  *buffer*   
starting address of buffer (choice)

**IN**  *count*   
number of entries in buffer (non-negative integer)

**IN**  *datatype*   
datatype of buffer (handle)

**IN**  *root*   
rank of broadcast root (integer)

**IN**  *comm*   
communicator (handle)

**OUT**  *request*   
communication request (handle)

**C binding**

```c
int MPI_Ibcast(void *buffer, int count, MPI_Datatype datatype, int root,
```

```c
```
Chapter 6 Collective Communication

```c
MPI_Comm comm, MPI_Request *request)

int MPI_Ibcast_c(void *buffer, MPI_Count count, MPI_Datatype datatype,
int root, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Ibcast(buffer, count, datatype, root, comm, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ibcast(buffer, count, datatype, root, comm, request, ierror) !(_c)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_BCAST (see Section 6.4).

Example using MPI_IBCAST

Example 6.25. Start a broadcast of 100 ints from MPI process 0 to every MPI process in the group, perform some computation on independent data, and then complete the outstanding broadcast operation.

```
6.12.3 Nonblocking Gather

MPI_AGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, request)

IN	sendbuf	starting address of send buffer (choice)
IN	sendcount	number of elements in send buffer (non-negative integer)
IN	sendtype	datatype of send buffer elements (handle)
OUT	recvbuf	address of receive buffer (choice, significant only at root)
IN	recvcount	number of elements for any single receive (non-negative integer, significant only at root)
IN	recvtype	datatype of recv buffer elements (handle, significant only at root)
IN	root	rank of receiving MPI process (integer)
IN	comm	communicator (handle)
OUT	request	communication request (handle)

C binding

int MPI_Igather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Request *request)

int MPI_Igather_c(const void *sendbuf, MPI_Count sendcount, MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding

MPI_Igather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN) :: sendcount, recvcount, root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Igather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, request, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPICH_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_IGATHER(SENDBUF, SENDCOUNT, SENDBUF, RECVBUF, RECVCOUNT, RECVBUF, ROOT,
COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDBUF, RECVBUF, RECVCOUNT, RECVBUF, ROOT, COMM, REQUEST,
IERROR

This call starts a nonblocking variant of MPI_GATHER (see Section 6.5).

MPI_IGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,
COMM, REQUEST, sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,
comm, request)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice, significant only at root)
IN recvcounts nonnegative integer array (of length group size) containing the number of elements that are received from each MPI process (significant only at root)
IN displs integer array (of length group size). Entry i specifies the displacement relative to recvbuf at which to place the incoming data from MPI process i (significant only at root)
IN recvtype datatype of recv buffer elements (handle, significant only at root)
IN root rank of receiving MPI process (integer)
IN comm communicator (handle)
OUT request communication request (handle)

C binding
int MPI_Igatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, const int recvcounts[], const int displs[],
MPI_Datatype recvtype, int root, MPI_Comm comm,
MPI_Request *request)
int MPI_Igatherv_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, void *recvbuf,
const MPI_Count recvcounts[], const MPI_Aint displs[],
MPI_Datatype recvtype, int root, MPI_Comm comm,
MPI_Request *request)
6.12 Nonblocking Collective Operations

Fortran 2008 binding

MPI_Igatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
    recvtype, root, comm, request, ierror)

    TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
    INTEGER, INTENT(IN) :: sendcount, root
    INTEGER(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
    TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
    INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
    TYPE(MPI_Comm), INTENT(IN) :: comm
    TYPE(MPI_Request), INTENT(OUT) :: request
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Igatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
    recvtype, root, comm, request, ierror) !(_c)

    TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount
    INTEGER(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
    TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: recvcounts(*)
    INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: displs(*)
    INTEGER, INTENT(IN) :: root
    TYPE(MPI_Comm), INTENT(IN) :: comm
    TYPE(MPI_Request), INTENT(OUT) :: request
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_IGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
    RECVTYP, ROOT, COMM, REQUEST, IERROR)

    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNT, SENDTYPE, REVCOUNTS(*), DISPLS(*), RECVTYP, ROOT,
        COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_GATHERV (see Section 6.5).

6.12.4 Nonblocking Scatter

MPI_ISCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm,
    request)

    IN sendbuf        address of send buffer (choice, significant only at root)
    IN sendcount      number of elements sent to each MPI process (non-negative integer, significant only at root)
    IN sendtype       datatype of send buffer elements (handle, significant only at root)
    OUT recvbuf       address of receive buffer (choice)
    IN recvcount      number of elements in receive buffer (non-negative integer)
IN recvtype  datatype of receive buffer elements (handle)
IN root  rank of sending MPI process (integer)
IN comm  communicator (handle)
OUT request  communication request (handle)

C binding
int MPI_Iscatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm, MPI_Request *request)

int MPI_Iscatter_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm,
MPI_Request *request)

Fortran 2008 binding
MPI_Iscatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
comm, request, ierror)

MPI_Iscatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
comm, request, ierror) !(_c)

Fortran binding
MPI_ISCATTER(SENDBUF, SENDCOUNT, SENTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT,
COMM, REQUEST, IERROR)

This call starts a nonblocking variant of MPI_SCATTER (see Section 6.6).
6.12 Nonblocking Collective Operations

MPI ISCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, comm, request)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcounts nonnegative integer array (of length group size) specifying the number of elements to send to each MPI process (significant only at root)

IN displs integer array (of length group size). Entry i specifies the displacement (relative to sendbuf) from which to take the outgoing data to MPI process i (significant only at root)

IN sendtype datatype of send buffer elements (handle, significant only at root)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative integer)

IN recvtype datatype of receive buffer elements (handle)

IN root rank of sending MPI process (integer)

IN comm communicator (handle)

OUT request communication request (handle)

C binding

int MPI_Iscatterv(const void *sendbuf, const int sendcounts[],
                   const int displs[], MPI_Datatype sendtype, void *recvbuf,
                   int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm,
                   MPI_Request *request)

int MPI_Iscatterv_c(const void *sendbuf, const MPI_Count sendcounts[],
                     const MPI_Aint displs[], MPI_Datatype sendtype, void *recvbuf,
                     MPI_Count recvcount, MPI_Datatype recvtype, int root,
                     MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding

MPI_Iscatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), displs(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: recvcount, root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iscatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, comm, request, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: displs(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: recvcount
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_ISCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
               RECVTYPE, ROOT, COMM, REQUEST, IERROR)

This call starts a nonblocking variant of MPI_SCATTERV (see Section 6.6).

6.12.5 Nonblocking Gather-to-all

MPI_IALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,
               request)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements received from any MPI process (non-negative integer)
IN recvtype datatype of receive buffer elements (handle)
IN comm communicator (handle)
OUT request communication request (handle)

C binding
int MPI_Iallgather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
                    void *recvbuf, int recvcount, MPI_Datatype recvtype,
                    MPI_Comm comm, MPI_Request *request)
int MPI_Iallgather_c(const void *sendbuf, MPI_Count sendcount,
                      MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
                      MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)
Fortran 2008 binding

MPI_Iallgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
               comm, request, ierror)
         TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
         INTEGER, INTENT(IN) :: sendcount, recvcount
         TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
         TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
         TYPE(MPI_Comm), INTENT(IN) :: comm
         TYPE(MPI_Request), INTENT(OUT) :: request
         INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iallgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
               comm, request, ierror) !(_c)
         TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
         INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
         TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
         TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
         TYPE(MPI_Comm), INTENT(IN) :: comm
         TYPE(MPI_Request), INTENT(OUT) :: request
         INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_IALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
                COMM, REQUEST, IERROR)
            <type> SENDBUF(*), RECVBUF(*)
            INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_ALLGATHER (see Section 6.7).

MPI_IALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype,
                 comm, request)
        IN    sendbuf         starting address of send buffer (choice)
        IN    sendcount       number of elements in send buffer (non-negative integer)
        IN    sendtype        datatype of send buffer elements (handle)
        OUT   recvbuf         address of receive buffer (choice)
        IN    recvcounts      nonnegative integer array (of length group size) containing the number of elements that are received from each MPI process
        IN    displs          integer array (of length group size). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from MPI process i
        IN    recvtype        datatype of receive buffer elements (handle)
        IN    comm            communicator (handle)
        OUT   request         communication request (handle)
6.12.6 Nonblocking All-to-All Scatter/Gather

MPI_IALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, request)

IN sendbuf starting address of send buffer (choice)
6.12 Nonblocking Collective Operations

IN sendcount number of elements sent to each MPI process (non-negative integer)

IN sendtype datatype of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any MPI process (non-negative integer)

IN recvtype datatype of receive buffer elements (handle)

IN comm communicator (handle)

OUT request communication request (handle)

C binding

```
int MPI_Ialltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 MPI_Comm comm, MPI_Request *request)
```

Fortran 2008 binding

```
MPI_Ialltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,
 request, ierror)
```

Fortran binding

```
MPI_IALLTOALL(SENDBUF, SENDCOUNT, SEndTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM,
 REQUEST, IERROR)
```

This call starts a nonblocking variant of MPI_ALLTOALL (see Section 6.8).
MPI_IALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype, comm, request)

**IN** sendbuf      starting address of send buffer (choice)
**IN** sendcounts   nonnegative integer array (of length group size)
                    specifying the number of elements to send to each
                    MPI process
**IN** sdispls      integer array (of length group size). Entry j specifies
                    the displacement (relative to sendbuf) from which to
                    take the outgoing data destined for MPI process j
**IN** sendtype     datatype of send buffer elements (handle)
**OUT** recvbuf     address of receive buffer (choice)
**IN** recvcounts   nonnegative integer array (of length group size)
                    specifying the number of elements that can be
                    received from each MPI process
**IN** rdispls      integer array (of length group size). Entry i specifies
                    the displacement (relative to recvbuf) at which to
                    place the incoming data from MPI process i
**IN** recvtype     datatype of receive buffer elements (handle)
**IN** comm         communicator (handle)
**OUT** request     communication request (handle)

**C binding**

```c
int MPI_Ialltoallv(const void *sendbuf, const int sendcounts[],
 const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const int recvcounts[], const int rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)
```

```c
int MPI_Ialltoallv_c(const void *sendbuf, const MPI_Count sendcounts[],
 const MPI_Aint sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)
```

**Fortran 2008 binding**

```fortran
MPI_Ialltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
 rdispls, recvtype, comm, request, ierror)
```

```fortran
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
recvcounts(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ialltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
 rdispls, recvtype, comm, request, ierror) !(_c)
```
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_IALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*), RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_ALLTOALLV (see Section 6.8).

MPI_IALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm, request)

IN sendbuf starting address of send buffer (choice)
IN sendcounts integer array (of length group size) specifying the number of elements to send to each MPI process (array of non-negative integers)
IN sdispls integer array (of length group size). Entry j specifies the displacement in bytes (relative to sendbuf) from which to take the outgoing data destined for MPI process j (array of integers)
IN sendtypes array of datatypes (of length group size). Entry j specifies the type of data to send to MPI process j (array of handles)
OUT recvbuf address of receive buffer (choice)
IN recvcounts integer array (of length group size) specifying the number of elements that can be received from each MPI process (array of non-negative integers)
IN rdispls integer array (of length group size). Entry i specifies the displacement in bytes (relative to recvbuf) at which to place the incoming data from MPI process i (array of integers)
IN recvtypes array of datatypes (of length group size). Entry i specifies the type of data received from MPI process i (array of handles)
IN comm communicator (handle)
C binding

```c
int MPI_Ialltoallw(const void *sendbuf, const int sendcounts[],
 const int sdispls[], const MPI_Datatype sendtypes[],
 void *recvbuf, const int recvcounts[], const int rdispls[],
 const MPI_Datatype recvtypes[], MPI_Comm comm,
 MPI_Request *request)

int MPI_Ialltoallw_c(const void *sendbuf, const MPI_Count sendcounts[],
 const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
 void *recvbuf, const MPI_Count recvcounts[],
 const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],
 MPI_Comm comm, MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Ialltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,
 rdispls, recvtypes, comm, request, ierror)
```

```fortran
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
 recvcounts(*), rdispls(*)
```

```fortran
TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)
```

```fortran
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
```

```fortran
TYPE(MPI_Comm), INTENT(IN) :: comm
```

```fortran
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_Ialltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,
 rdispls, recvtypes, comm, request, ierror) !(_c)
```

```fortran
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*),
 recvcounts(*)
```

```fortran
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),
 rdispls(*)
```

```fortran
TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)
```

```fortran
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
```

```fortran
TYPE(MPI_Comm), INTENT(IN) :: comm
```

```fortran
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_IALLTOALLW(SENDBUF, SENDCOUNTS, SDSPLS, SENDTYPES, RECVBUF, RECVCOUNTS,
 RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)
```

```fortran
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDSPLS(*), SENDTYPES(*), RECVCOUNTS(*), RDISPLS(*),
 RECVTYPES(*), COMM, REQUEST, IERROR
```

This call starts a nonblocking variant of MPI_ALLTOALLW (see Section 6.8).
6.12 Nonblocking Collective Operations

6.12.7 Nonblocking Reduce

MPI_IREDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, request)

**IN**
- sendbuf: address of send buffer (choice)

**OUT**
- recvbuf: address of receive buffer (choice, significant only at root)

**IN**
- count: number of elements in send buffer (non-negative integer)
- datatype: datatype of elements of send buffer (handle)
- op: reduce operation (handle)
- root: rank of the root (integer)
- comm: communicator (handle)

**OUT**
- request: communication request (handle)

**C binding**

```c
int MPI_Ireduce(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
 MPI_Request *request)
```

```c
int MPI_Ireduce_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
 MPI_Request *request)
```

**Fortran 2008 binding**

```fortran
MPI_Ireduce(sendbuf, recvbuf, count, datatype, op, root, comm, request, ierror)
```

```fortran
!(_c)
MPI_Ireduce(sendbuf, recvbuf, count, datatype, op, root, comm, request, ierror)
```

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ireduce(sendbuf, recvbuf, count, datatype, op, root, comm, request, ierror)

```

```fortran
!(_c)
```

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
Fortran binding

MPI_IREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_REDUCE (see Section 6.9.1).

Advice to implementors. The implementation is explicitly allowed to use different algorithms for blocking and nonblocking reduction operations that might change the order of evaluation of the operations. However, as for MPI_REDUCE, it is strongly recommended that MPI_IREDUCE be implemented so that the same result be obtained whenever the function is applied on the same arguments, appearing in the same order. Note that this may prevent optimizations that take advantage of the physical location of MPI processes. (End of advice to implementors.)

Advice to users. For operations that are not truly associative, the result delivered upon completion of the nonblocking reduction may not exactly equal the result delivered by the blocking reduction, even when specifying the same arguments in the same order. (End of advice to users.)

6.12.8 Nonblocking All-Reduce

MPI_IALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm, request)

IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of elements of send buffer (handle)
IN op operation (handle)
IN comm communicator (handle)
OUT request communication request (handle)

C binding

int MPI_Iallreduce(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
 MPI_Request *request)
int MPI_Iallreduce_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
 MPI_Request *request)

Fortran 2008 binding

MPI_Iallreduce(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN) :: count
6.12 Nonblocking Collective Operations

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iallreduce(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)
```

Fortran binding

```fortran
MPI_IALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)
```

This call starts a nonblocking variant of `MPI_ALLREDUCE` (see Section 6.9.6).

6.12.9 Nonblocking Reduce-Scatter with Equal Blocks

```fortran
MPI_IREDUCE_SCATTER_BLOCK(sendbuf, recvbuf, recvcount, datatype, op, comm, request)
```

C binding

```c
int MPI_Ireduce_scatter_block(const void *sendbuf, void *recvbuf,
                               int recvcount, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
                               MPI_Request *request)
```

```c
int MPI_Ireduce_scatter_block_c(const void *sendbuf, void *recvbuf,
                                 MPI_Count recvcount, MPI_Datatype datatype, MPI_Op op,
                                 MPI_Comm comm, MPI_Request *request)
```
Fortran 2008 binding

MPI_Ireduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN) :: recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ireduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm, request, ierror) !(_c)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_IREDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)
 INTEGER RECVCOUNT, DATATYPE, OP, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_REDUCE_SCATTER_BLOCK (see Section 6.10.1).

6.12.10 Nonblocking Reduce-Scatter

MPI_IREDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm, request)

 IN sendbuf starting address of send buffer (choice)
 OUT recvbuf starting address of receive buffer (choice)
 IN recvcounts nonnegative integer array specifying the number of elements in result distributed to each MPI process.
 This array must be identical on all calling MPI processes.
 IN datatype datatype of elements of input buffer (handle)
 IN op operation (handle)
 IN comm communicator (handle)
 OUT request communication request (handle)
C binding

```c
int MPI_Ireduce_scatter(const void *sendbuf, void *recvbuf,
const int recvcounts[], MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm, MPI_Request *request)

int MPI_Ireduce_scatter_c(const void *sendbuf, void *recvbuf,
const MPI_Count recvcounts[], MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm, MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Ireduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm, request,
    ierror)
    TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
    TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
    INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
    TYPE(MPI_Datatype), INTENT(IN) :: datatype
    TYPE(MPI_Op), INTENT(IN) :: op
    TYPE(MPI_Comm), INTENT(IN) :: comm
    TYPE(MPI_Request), INTENT(OUT) :: request
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ireduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm, request,
    ierror) !(_c)
    TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
    TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
    TYPE(MPI_Datatype), INTENT(IN) :: datatype
    TYPE(MPI_Op), INTENT(IN) :: op
    TYPE(MPI_Comm), INTENT(IN) :: comm
    TYPE(MPI_Request), INTENT(OUT) :: request
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_IREDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM, REQUEST,
    IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, REQUEST, IERROR
```

This call starts a nonblocking variant of `MPI_REDUCE_SCATTER` (see Section 6.10.2).

6.12.11 Nonblocking Inclusive Scan

```fortran
MPI_ISCAN(sendbuf, recvbuf, count, datatype, op, comm, request)
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>sendbuf</td>
</tr>
<tr>
<td>OUT</td>
<td>recvbuf</td>
</tr>
<tr>
<td>IN</td>
<td>count</td>
</tr>
<tr>
<td>IN</td>
<td>datatype</td>
</tr>
</tbody>
</table>
IN op
operation (handle)

IN comm
communicator (handle)

OUT request
communication request (handle)

C binding

```c
int MPI_Iscan(const void *sendbuf, void *recvbuf, int count,
               MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
               MPI_Request *request)
int MPI_Iscan_c(const void *sendbuf, void *recvbuf, MPI_Count count,
                MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
                MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Iscan(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)
```

This call starts a nonblocking variant of MPI_SCAN (see Section 6.11).

6.12.12 Nonblocking Exclusive Scan

MPI_IEXSCAN

```c
MPI_IEXSCAN(sendbuf, recvbuf, count, datatype, op, comm, request)
```

IN sendbuf
starting address of send buffer (choice)

OUT recvbuf
starting address of receive buffer (choice)

IN count
number of elements in input buffer (non-negative integer)
6.13 Persistent Collective Operations

Many parallel computation algorithms involve repetitively executing a collective communication operation with the same arguments each time. As with persistent point-to-point operations (see Section 3.9), persistent collective operations allow the MPI programmer to...
specify operations that will be reused frequently (with fixed arguments). MPI can be
designed to select a more efficient way to perform the collective operation based on the param-
eters specified when the operation is initialized. This “planned-transfer” approach [53, 42]
can offer significant performance benefits for programs with repetitive communication pat-
terns.

In terms of data movement, each persistent collective operation has the same effect as its
blocking and nonblocking counterparts for intra-communicators and inter-communicators
after completion. Likewise, upon completion, persistent collective reduction operations
perform the same operation as their blocking and nonblocking counterparts, and the same
restrictions and recommendations on reduction orders apply (see also Section 6.9.1).

Initialization calls for MPI persistent collective operations are nonlocal and follow all
the existing rules for collective operations, in particular ordering; programs that do not
conform to these restrictions are erroneous. After initialization, all arrays associated with
input arguments (such as arrays of counts, displacements, and datatypes in the vector
versions of the collectives) must not be modified until the corresponding persistent request
is freed with MPI_REQUEST_FREE.

According to the definitions in Section 2.4.2, the persistent collective initialization
procedures are incomplete. They are also nonlocal procedures because they may or may
not return before they are called in all MPI processes of the MPI process group associated
with the specified communicator.

Advice to users. This is one of the exceptions in which incomplete procedures are
nonlocal and therefore blocking. (End of advice to users.)

The request argument is an output argument that can be used zero or more times with
MPI_START or MPI_STARTALL in order to start the collective operation. The request is
initially inactive after the initialization call. Once initialized, persistent collective opera-
tions can be started in any order and the order can differ among the MPI processes in the
communicator.

Rationale. All ordering requirements that an implementation may need to match
up collective operations across the communicator are achieved through the ordering
requirements of the initialization functions. This enables out-of-order starts for the
persistent operations, and particularly supports their use in MPI_STARTALL. (End of
rationale.)

Advice to implementors. An MPI implementation should do no worse than duplicat-
ing the communicator during the initialization function, caching the input arguments,
and calling the appropriate nonblocking collective function, using the cached argu-
ments, during MPI_START. High-quality implementations should be able to amortize
setup costs and further optimize by taking advantage of early-binding, such as effi-
cient and effective pre-allocation of certain resources and algorithm selection. (End
of advice to implementors.)

A request must be inactive when it is started. Starting the operation makes the request
active. Once any MPI process starts a persistent collective operation, it must complete that
operation and all other MPI processes in the communicator must eventually start (and
complete) the same persistent collective operation. Persistent collective operations cannot
be matched with blocking or nonblocking collective operations. Completion of a persistent
collective operation makes the corresponding request inactive. After starting a persistent collective operation, all associated send buffers must not be modified and all associated receive buffers must not be accessed until the corresponding persistent request is completed.

Completing a persistent collective request, for example using MPI_TEST or MPI_WAIT, makes it inactive, but does not free the request. This is the same behavior as for persistent point-to-point requests. Inactive persistent collective requests can be freed using MPI_REQUEST_FREE. It is erroneous to free an active persistent collective request. Persistent collective operations cannot be canceled; it is erroneous to use MPI_CANCELP on a persistent collective request.

For every nonblocking collective communication operation in MPI, there is a corresponding persistent collective operation with the analogous API signature.

The collective persistent API signatures include an info object in order to support optimization hints and other information that may be nonstandard. Persistent collective operations may be optimized during communicator creation or by the initialization operation of an individual persistent collective. Note that communicator-scoped hints should be provided using MPI_COMM_SET_INFO while, for operation-scoped hints, they are supplied to the persistent collective communication initialization functions using the info argument.

6.13.1 Persistent Barrier Synchronization

MPI_BARRIER_INIT

```plaintext
IN comm communicator (handle)
IN info info argument (handle)
OUT request communication request (handle)
```

C binding

```c
int MPI_Barrier_init(MPI_Comm comm, MPI_Info info, MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Barrier_init(comm, info, request, ierror)
```

Fortran binding

```fortran
MPI_BARRIER_INIT(COMM, INFO, REQUEST, IERROR)
```

Creates a persistent collective communication request for the barrier operation.
6.13.2 Persistent Broadcast

\(\text{MPI_BCAST_INIT}(\text{buffer, count, datatype, root, comm, info, request}) \)

- **OUT** buffer \(\text{starting address of buffer (choice)} \)
- **IN** count \(\text{number of entries in buffer (non-negative integer)} \)
- **IN** datatype \(\text{datatype of buffer (handle)} \)
- **IN** root \(\text{rank of broadcast root (integer)} \)
- **IN** comm \(\text{communicator (handle)} \)
- **IN** info \(\text{info argument (handle)} \)
- **OUT** request \(\text{communication request (handle)} \)

C binding

```
int MPI_Bcast_init(void *buffer, int count, MPI_Datatype datatype, int root,
                   MPI_Comm comm, MPI_Info info, MPI_Request *request)
int MPI_Bcast_init_c(void *buffer, MPI_Count count, MPI_Datatype datatype,
                     int root, MPI_Comm comm, MPI_Info info, MPI_Request *request)
```

Fortran 2008 binding

```
MPI_Bcast_init(buffer, count, datatype, root, comm, info, request, ierror)
```

```
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```
MPI_Bcast_init(buffer, count, datatype, root, comm, info, request, ierror)
```

```
!(_c)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```
MPI_BCAST_INIT(BUFFER, COUNT, DATATYPE, ROOT, COMM, INFO, REQUEST, IERROR)
```

```
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, INFO, REQUEST, IERROR
```

Create a persistent collective communication request for the broadcast operation.
6.13 Persistent Collective Operations

6.13.3 Persistent Gather

MPI_GATHER_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative integer)

IN sendtype datatype of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at root)

IN recvcount number of elements for any single receive (non-negative integer, significant only at root)

IN recvtype datatype of recv buffer elements (handle, significant only at root)

IN root rank of receiving MPI process (integer)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

C binding

int MPI_Gather_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Gather_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

Fortran 2008 binding

MPI_Gather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
 root, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN) :: sendcount, recvcount, root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
 root, comm, info, request, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
Chapter 6 Collective Communication

278

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_GATHER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
 ROOT, COMM, INFO, REQUEST, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, INFO,
 REQUEST, IERROR

Creates a persistent collective communication request for the gather operation.

MPI_GATHERV_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype,
 root, comm, info, request)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice, significant only at root)
IN recvcounts nonnegative integer array (of length group size) containing the number of elements that are received from each MPI process (significant only at root)
IN displs integer array (of length group size). Entry i specifies the displacement relative to recvbuf at which to place the incoming data from MPI process i (significant only at root)
IN recvtype datatype of recv buffer elements (handle, significant only at root)
IN root rank of receiving MPI process (integer)
IN comm communicator (handle)
IN info info argument (handle)
OUT request communication request (handle)

C binding
int MPI_Gatherv_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, const int recvcounts[], const int displs[],
 MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)
int MPI_Gatherv_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint displs[],
 MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

Fortran 2008 binding

MPI_Gatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
 recvtype, root, comm, info, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, root
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
 recvtype, root, comm, info, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: displs(*)
 INTEGER, INTENT(IN) :: root
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_GATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
 RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
 COMM, INFO, REQUEST, IERROR

Creates a persistent collective communication request for the gatherv operation.

6.13.4 Persistent Scatter

MPI_SCATTER_INIT(sendbuf, sendcount, sendtype,recvbuf, recvcount, recvtype, root,
 comm, info, request)

IN sendbuf address of send buffer (choice, significant only at root)
IN sendcount number of elements sent to each MPI process (non-negative integer, significant only at root)

IN sendtype datatype of send buffer elements (handle, significant only at root)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative integer)

IN recvtype datatype of receive buffer elements (handle)

IN root rank of sending MPI process (integer)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

C binding

```c
int MPI_Scatter_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype, 
                    void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, 
                    MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Scatter_init_c(const void *sendbuf, MPI_Count sendcount, 
                       MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount, 
                       MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info, 
                       MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Scatter_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, 
                 root, comm, info, request, ierror)
```

```fortran
MPI_Scatter_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, 
                 root, comm, info, request, ierror) !(_c)
```
Fortran binding

MPI_SCATTER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR

Creates a persistent collective communication request for the scatter operation.

MPI_SCATTERV_INIT(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, comm, info, request)

IN sendbuf address of send buffer (choice, significant only at root)
IN sendcounts nonnegative integer array (of length group size) specifying the number of elements to send to each MPI process (significant only at root)
IN displs integer array (of length group size). Entry i specifies the displacement (relative to sendbuf) from which to take the outgoing data to MPI process i (significant only at root)
IN sendtype datatype of send buffer elements (handle, significant only at root)
OUT recvbuf address of receive buffer (choice, significant only at root)
IN recvcount number of elements in receive buffer (non-negative integer)
IN recvtype datatype of receive buffer elements (handle)
IN root rank of sending MPI process (integer)
IN comm communicator (handle)
IN info info argument (handle)
OUT request communication request (handle)

C binding

int MPI_Scatterv_init(const void *sendbuf, const int sendcounts[],
const int displs[], MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm,
MPI_Info info, MPI_Request *request)

int MPI_Scatterv_init_c(const void *sendbuf, const MPI_Count sendcounts[],
const MPI_Aint displs[], MPI_Datatype sendtype, void *recvbuf,
MPI_Count recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm, MPI_Info info, MPI_Request *request)

Fortran 2008 binding

MPI_Scatterv_init(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, comm, info, request, ierror)
Chapter 6 Collective Communication

282

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), displs(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: recvcount, root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatterv_init(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, comm, info, request, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: displs(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: recvcount
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_SCATTERV_INIT(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT, RECEVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)
	<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECEVTYPE, ROOT,
	COMM, INFO, REQUEST, IERROR

Creates a persistent collective communication request for the scatterv operation.

6.13.5 Persistent Gather-to-all

MPI_ALLGATHER_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements received from any MPI process (non-negative integer)
IN recvtype datatype of receive buffer elements (handle)
IN comm communicator (handle)
6.13 Persistent Collective Operations

IN info info argument (handle)

OUT request communication request (handle)

C binding

```c
int MPI_Allgather_init(const void *sendbuf, int sendcount,
                       MPI_Datatype sendtype, void *recvbuf, int recvcount,
                       MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
                       MPI_Request *request)

int MPI_Allgather_init_c(const void *sendbuf, MPI_Count sendcount,
                         MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
                         MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
                         MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Allgather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
                   comm, info, request, ierror)
```

Fortran binding

```fortran
MPI_ALLGATHER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
                    COMM, INFO, REQUEST, IERROR)
```

Creates a persistent collective communication request for the allgather operation.
Chapter 6 Collective Communication

MPI_ALLGATHERV_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm, info, request)

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sendbuf</td>
<td>starting address of send buffer (choice)</td>
</tr>
<tr>
<td>sendcount</td>
<td>number of elements in send buffer (non-negative integer)</td>
</tr>
<tr>
<td>sendtype</td>
<td>datatype of send buffer elements (handle)</td>
</tr>
<tr>
<td>recvbuf</td>
<td>address of receive buffer (choice)</td>
</tr>
<tr>
<td>recvcounts</td>
<td>nonnegative integer array (of length group size) containing the number of elements that are received from each MPI process</td>
</tr>
<tr>
<td>displs</td>
<td>integer array (of length group size). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from MPI process i</td>
</tr>
<tr>
<td>recvtype</td>
<td>datatype of receive buffer elements (handle)</td>
</tr>
<tr>
<td>comm</td>
<td>communicator (handle)</td>
</tr>
<tr>
<td>info</td>
<td>info argument (handle)</td>
</tr>
<tr>
<td>request</td>
<td>communication request (handle)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Allgatherv_init(const void *sendbuf, int sendcount,
                         MPI_Datatype sendtype, void *recvbuf,
                         const int recvcounts[],
                         const int displs[], MPI_Datatype recvtype,
                         MPI_Comm comm,
                         MPI_Info info, MPI_Request *request)

int MPI_Allgatherv_init_c(const void *sendbuf, MPI_Count sendcount,
                          MPI_Datatype sendtype, void *recvbuf,
                          const MPI_Count recvcounts[], const MPI_Aint displs[],
                          MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
                          MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Allgatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
                    recvtype, comm, info, request, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
  INTEGER, INTENT(IN) :: sendcount
  TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
  INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Info), INTENT(IN) :: info
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allgatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
                    recvtype, comm, info, request, ierror) !(_c)
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
```
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtpe
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: displs(*)
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_ALLGATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, COMM, INFO, REQUEST, IERROR)

Creates a persistent collective communication request for the allgatherv operation.

6.13.6 Persistent All-to-All Scatter/Gather

MPI_ALLTOALL_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,
info, request)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements sent to each MPI process (non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements received from any MPI process (non-negative integer)
IN recvtype datatype of receive buffer elements (handle)
IN comm communicator (handle)
IN info info argument (handle)
OUT request communication request (handle)

C binding

int MPI_Alltoall_init(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_Alltoall_init_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
MPI_Request *request)
Fortran 2008 binding

```fortran
MPI_Alltoall_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
                  comm, info, request, ierror)
```

- `TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf`
- `INTEGER, INTENT(IN) :: sendcount, recvcount`
- `TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype`
- `TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf`
- `TYPE(MPI_Comm), INTENT(IN) :: comm`
- `TYPE(MPI_Info), INTENT(IN) :: info`
- `TYPE(MPI_Request), INTENT(OUT) :: request`
- `INTEGER, OPTIONAL, INTENT(OUT) :: ierror`

```fortran
MPI_Alltoall_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
                  comm, info, request, ierror) !(_c)
```

- `TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf`
- `INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount`
- `TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype`
- `TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf`
- `TYPE(MPI_Comm), INTENT(IN) :: comm`
- `TYPE(MPI_Info), INTENT(IN) :: info`
- `TYPE(MPI_Request), INTENT(OUT) :: request`
- `INTEGER, OPTIONAL, INTENT(OUT) :: ierror`

Fortran binding

```fortran
MPI_ALLTOALL_INIT(SENDBUF, SENDCOUNT, SENDINGTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
                  COMM, INFO, REQUEST, IERROR)
```

- `<type> SENDBUF(*), RECVBUF(*)`
- `INTEGER SENDCOUNT, SENDINGTYPE, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR`

Creates a persistent collective communication request for the alltoall operation.

```
MPI_ALLTOALLV_INIT(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls,
                    recvtype, comm, info, request)
```

- `IN sendbuf` starting address of send buffer (choice)
- `IN sendcounts` nonnegative integer array (of length group size) specifying the number of elements to send to each MPI process
- `IN sdispls` integer array (of length group size). Entry j specifies the displacement (relative to `sendbuf`) from which to take the outgoing data destined for MPI process j
- `IN sendtype` datatype of send buffer elements (handle)
- `OUT recvbuf` address of receive buffer (choice)
- `IN recvcounts` nonnegative integer array (of length group size) specifying the number of elements that can be received from each MPI process
6.13 Persistent Collective Operations

IN rdispls integer array (of length group size). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from MPI process i

IN recvtype datatype of receive buffer elements (handle)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

C binding

```c
int MPI_Alltoallv_init(const void *sendbuf, const int sendcounts[],
                        const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
                        const int recvcounts[], const int rdispls[],
                        MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
                        MPI_Request *request)

int MPI_Alltoallv_init_c(const void *sendbuf, const MPI_Count sendcounts[],
                          const MPI_Aint sdispls[], MPI_Datatype sendtype, void *recvbuf,
                          const MPI_Count recvcounts[], const MPI_Aint rdispls[],
                          MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
                          MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
                   rdispls, recvtype, comm, info, request, ierror)
```

```fortran
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
      recvcounts(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
Fortran binding

MPI_ALLTOALLV_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYP3, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
RECVTYPE, COMM, INFO, REQUEST, IERROR

Creates a persistent collective communication request for the alltoallv operation.

MPI_ALLTOALLW_INIT(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls,
recvtypes, comm, info, request)

IN sendbuf starting address of send buffer (choice)
IN sendcounts integer array (of length group size) specifying the
number of elements to send to each MPI process
(array of non-negative integers)
IN sdispls integer array (of length group size). Entry j specifies
the displacement in bytes (relative to sendbuf) from
which to take the outgoing data destined for MPI
process j (array of integers)
IN sendtypes array of datatypes (of length group size). Entry j
specifies the type of data to send to MPI process j
(array of handles)
OUT recvbuf address of receive buffer (choice)
IN recvcounts integer array (of length group size) specifying the
number of elements that can be received from each
MPI process (array of non-negative integers)
IN rdispls integer array (of length group size). Entry i specifies
the displacement in bytes (relative to recvbuf) at
which to place the incoming data from MPI process i
(array of integers)
IN recvtypes array of datatypes (of length group size). Entry i
specifies the type of data received from MPI process i
(array of handles)
IN comm communicator (handle)
IN info info argument (handle)
OUT request communication request (handle)

C binding

int MPI_Alltoallw_init(const void *sendbuf, const int sendcounts[],
const int sdispls[], const MPI_Datatype sendtypes[],
void *recvbuf, const int recvcounts[], const int rdispls[],
const MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Info info,
MPI_Request *request)
int MPI_Alltoallw_init_c(const void *sendbuf, const MPI_Count sendcounts[],
 const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
 void *recvbuf, const MPI_Count recvcounts[],
 const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],
 MPI_Comm comm, MPI_Info info, MPI_Request *request)

Fortran 2008 binding
MPI_Alltoallw_init(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
 recvcounts, rdispls, recvtypes, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
 recvcounts(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)

Fortran binding
MPI_ALLTOALLW_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,
 RECVCOUNTS, RDISPLS, RECVTYPES, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*), RDISPLS(*),
 RECVTYPES(*)

Creates a persistent collective communication request for the alltoallw operation.

6.13.7 Persistent Reduce

MPI_REDUCE_INIT(sendbuf, recvbuf, count, datatype, op, root, comm, info, request)

IN sendbuf address of send buffer (choice)
OUT recvbuf address of receive buffer (choice, significant only at root)

IN count number of elements in send buffer (non-negative integer)

IN datatype datatype of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of the root (integer)

IN comm communicator (handle)

IN info info argument (handle)

OUT request communication request (handle)

C binding
int MPI_Reduce_init(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)

int MPI_Reduce_init_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)

Fortran 2008 binding
MPI_Reduce_init(sendbuf, recvbuf, count, datatype, op, root, comm, info,
 request, ierror)!(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_init(sendbuf, recvbuf, count, datatype, op, root, comm, info,
 request, ierror)!(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
6.13 Persistent Collective Operations

Fortran binding

MPI_REDUCE_INIT(SENDBUF, RECDBGUF, COUNT, DATATYPE, OP, ROOT, COMM, INFO,
REQUEST, IERROR)
ctype> SENDBUF(*), RECDBGUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, INFO, REQUEST, IERROR

Creates a persistent collective communication request for the reduce operation.

6.13.8 Persistent All-Reduce

MPI_ALLREDUCE_INIT(sendbuf, recvbuf, count, datatype, op, comm, info, request)
IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of elements of send buffer (handle)
IN op operation (handle)
IN comm communicator (handle)
IN info info argument (handle)
OUT request communication request (handle)

C binding

int MPI_Allreduce_init(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_Allreduce_init_c(const void *sendbuf, void *recvbuf, MPI_Count count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

Fortran 2008 binding

MPI_Allreduce_init(sendbuf, recvbuf, count, datatype, op, comm, info, request,
, ierr)!
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierr
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_ALLREDUCE_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

Creates a persistent collective communication request for the allreduce operation.

6.13.9 Persistent Reduce-Scatter with Equal Blocks

MPI_REDUCE_SCATTER_BLOCK_INIT(sendbuf, recvbuf, recvcount, datatype, op, comm, info, request)

IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN recvcount element count per block (non-negative integer)
IN datatype datatype of elements of send and receive buffers (handle)
IN op operation (handle)
IN comm communicator (handle)
IN info info argument (handle)
OUT request communication request (handle)

C binding
int MPI_Reduce_scatter_block_init(const void *sendbuf, void *recvbuf,
int recvcount, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
MPI_Info info, MPI_Request *request)

int MPI_Reduce_scatter_block_init_c(const void *sendbuf, void *recvbuf,
MPI_Count recvcount, MPI_Datatype datatype, MPI_Op op,
MPI_COMM comm, MPI_Info info, MPI_Request *request)

Fortran 2008 binding
MPI_Reduce_scatter_block_init(sendbuf, recvbuf, recvcount, datatype, op, comm,
info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: recvcount
6.13 Persistent Collective Operations

TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_scatter_block_init(sendbuf, recvbuf, recvcount, datatype, op, comm, info, request, ierror) !(_c)

Fortran binding

MPI_REDUCE_SCATTER_BLOCK_INIT(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR)

C binding

int MPI_Reduce_scatter_init(const void *sendbuf, void *recvbuf,
const int recvcounts[], MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Reduce_scatter_init_c(const void *sendbuf, void *recvbuf,
 const MPI_Count recvcounts[], MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm, MPI_Info info, MPI_Request *request)

Fortran 2008 binding

MPI_Reduce_scatter_init(sendbuf, recvbuf, recvcounts, datatype, op, comm, info,
 request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_scatter_init(sendbuf, recvbuf, recvcounts, datatype, op, comm, info,
 request, ierror) !(_c)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_REDUCE_SCATTER_INIT(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM, INFO,
 REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)
 INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, INFO, REQUEST, IERROR

 Creates a persistent collective communication request for the reduce-scatter operation.

6.13.11 Persistent Inclusive Scan

MPI_SCAN_INIT(sendbuf, recvbuf, count, datatype, op, comm, info, request)

IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN count number of elements in input buffer (non-negative integer)
IN datatype datatype of elements of input buffer (handle)
6.13 Persistent Collective Operations

IN op operation (handle)
IN comm communicator (handle)
IN info info argument (handle)
OUT request communication request (handle)

C binding

```c
int MPI_Scan_init(const void *sendbuf, void *recvbuf, int count,
                  MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
                  MPI_Request *request)
```

```c
int MPI_Scan_init_c(const void *sendbuf, void *recvbuf, MPI_Count count,
                     MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
                     MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Scan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request,
              ierr)
```

```fortran
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Info), INTENT(IN) :: info
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

```fortran
MPI_Scan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request,
              ierr) !(_c)
```

```fortran
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Info), INTENT(IN) :: info
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

Fortran binding

```fortran
MPI_SCAN_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO, REQUEST,
              IERROR)
```

```fortran
  <type> SENDBUF(*), RECVBUF(*)
  INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR
```

Creates a persistent collective communication request for the inclusive scan operation.
6.13.12 Persistent Exclusive Scan

MPI_EXSCAN_INIT(sendbuf, recvbuf, count, datatype, op, comm, info, request)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>sendbuf starting address of send buffer (choice)</td>
</tr>
<tr>
<td>OUT</td>
<td>recvbuf starting address of receive buffer (choice)</td>
</tr>
<tr>
<td>IN</td>
<td>count number of elements in input buffer (non-negative integer)</td>
</tr>
<tr>
<td>IN</td>
<td>datatype datatype of elements of input buffer (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>op operation (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>comm intra-communicator (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>info info argument (handle)</td>
</tr>
<tr>
<td>OUT</td>
<td>request communication request (handle)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Exscan_init(const void *sendbuf, void *recvbuf, int count,
                     MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
                     MPI_Request *request)
```

```c
int MPI_Exscan_init_c(const void *sendbuf, void *recvbuf, MPI_Count count,
                       MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
                       MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Exscan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request,
                 ierror)
```

```fortran
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Info), INTENT(IN) :: info
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Exscan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request,
                 ierror) !(_c)
```

```fortran
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Info), INTENT(IN) :: info
  TYPE(MPI_Request), INTENT(OUT) :: request
```
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_EXSCAN_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO, REQUEST,
 IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

Creates a persistent collective communication request for the exclusive scan operation.

6.14 Correctness

A correct, portable program must invoke collective communications so that deadlock will not occur, whether collective communications are synchronizing or not. The following examples illustrate dangerous use of collective routines on intra-communicators.

Example 6.26. The following is erroneous.

```c
/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */
switch(rank) {
    case 0:
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Bcast(buf2, count, type, 1, comm);
        break;
    case 1:
        MPI_Bcast(buf2, count, type, 1, comm);
        MPI_Bcast(buf1, count, type, 0, comm);
        break;
}
```

We assume that the group of comm is \{0,1\}. Two MPI processes execute two broadcast operations in reverse order. If the operation is synchronizing then a deadlock will occur. Collective operations must be executed in the same order at all members of the communication group.

Example 6.27. The following is erroneous.

```c
/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */
switch(rank) {
    case 0:
        MPI_Bcast(buf1, count, type, 0, comm0);
        MPI_Bcast(buf2, count, type, 2, comm2);
        break;
    case 1:
        MPI_Bcast(buf1, count, type, 1, comm1);
        MPI_Bcast(buf2, count, type, 0, comm0);
        break;
    case 2:
        MPI_Bcast(buf1, count, type, 2, comm2);
        MPI_Bcast(buf2, count, type, 1, comm1);
        break;
}
```
Assume that the group of \texttt{comm0} is \{0,1\}, of \texttt{comm1} is \{1, 2\} and of \texttt{comm2} is \{2,0\}. If the broadcast is a synchronizing operation, then there is a cyclic dependency: the broadcast in \texttt{comm2} completes only after the broadcast in \texttt{comm0}; the broadcast in \texttt{comm0} completes only after the broadcast in \texttt{comm1}; and the broadcast in \texttt{comm1} completes only after the broadcast in \texttt{comm2}. Thus, the code will deadlock.

Collective operations must be executed in an order so that no cyclic dependencies occur. Nonblocking collective operations can alleviate this issue.

\textbf{Example 6.28.} The following is erroneous.

\begin{verbatim}
/* ---------------- THIS EXAMPLE IS ERRONEOUS ---------------- */
switch(rank) {
 case 0:
 MPI_Bcast(buf1, count, type, 0, comm);
 MPI_Send(buf2, count, type, 1, tag, comm);
 break;
 case 1:
 MPI_Recv(buf2, count, type, 0, tag, comm, status);
 MPI_Bcast(buf1, count, type, 0, comm);
 break;
}
\end{verbatim}

MPI process with rank 0 executes a broadcast, followed by a blocking send operation. MPI process with rank 1 first executes a blocking receive that matches the send, followed by a broadcast call that matches the broadcast of MPI process with rank 0. This program may deadlock. The broadcast call on MPI process with rank 0 \textit{may} block until MPI process with rank 1 executes the matching broadcast call, so that the send is not executed. MPI process with rank 1 will definitely block on the receive and so, in this case, never executes the broadcast.

The relative order of execution of collective operations and point-to-point operations should be such, so that even if the collective operations and the point-to-point operations are synchronizing, no deadlock will occur.

\textbf{Example 6.29.} An unsafe, nondeterministic program.

\begin{verbatim}
switch(rank) {
 case 0:
 MPI_Bcast(buf1, count, type, 0, comm);
 MPI_Send(buf2, count, type, 1, tag, comm);
 break;
 case 1:
 MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
 MPI_Bcast(buf1, count, type, 0, comm);
 break;
 case 2:
 MPI_Send(buf2, count, type, 1, tag, comm);
 MPI_Bcast(buf1, count, type, 0, comm);
 break;
}
\end{verbatim}
First Execution

0 1 2
recv
match
send
broadcast
broadcast
broadcast
send
recv

Second Execution

broadcast
send
match
recv
broadcast
recv
match
send
broadcast

Figure 6.12: A race condition causes nondeterministic matching of sends and receives. One cannot rely on synchronization from a broadcast to make the program deterministic.

All three MPI processes participate in a broadcast. MPI process with rank 0 sends a message to MPI process with rank 1 after the broadcast, and MPI process with rank 2 sends a message to MPI process with rank 1 before the broadcast. MPI process with rank 1 receives before and after the broadcast, with a wildcard source argument.

Two possible executions of this program, with different matchings of sends and receives, are illustrated in Figure 6.12. Note that the second execution has the peculiar effect that a send executed after the broadcast is received at another node before the broadcast. This example illustrates the fact that one should not rely on collective communication functions to have particular synchronization effects. A program that works correctly only when the first execution occurs (only when broadcast is synchronizing) is erroneous.

Finally, in multithreaded implementations, one can have more than one, concurrently executing, collective communication initialization call at an MPI process. In these situations, it is the user’s responsibility to ensure that the same communicator is not used concurrently by two different collective communication initialization calls at the same MPI process. Collective communication initialization calls include all calls for blocking collective operations, all initiation calls for nonblocking collective operations, and all initialization calls for persistent collective operations.

Advice to implementors. Assume that broadcast is implemented using point-to-point MPI communication. Suppose the following two rules are followed.

1. All receives specify their source explicitly (no wildcards).
2. Each MPI process sends all messages that pertain to one collective call before sending any message that pertain to a subsequent collective call.
Then, messages belonging to successive broadcasts cannot be confused, as the order of point-to-point messages is preserved.

It is the implementor’s responsibility to ensure that point-to-point messages are not confused with collective messages. One way to accomplish this is, whenever a communicator is created, to also create a “hidden communicator” for collective communication. One could achieve a similar effect more cheaply, for example, by using a hidden tag or context bit to indicate whether the communicator is used for point-to-point or collective communication. (End of advice to implementors.)

Example 6.30. Blocking and nonblocking collective operations can be interleaved, i.e., a blocking collective operation can be posted even if there is a nonblocking collective operation outstanding.

```c
MPI_Request req;
MPI_Ibarrier(comm, &req);
MPI_Bcast(buf1, count, type, 0, comm);
MPI_Wait(&req, MPI_STATUS_IGNORE);
```

Each MPI process starts a nonblocking barrier operation, participates in a blocking broadcast and then waits until every other MPI process started the barrier operation. This effectively turns the broadcast into a synchronizing broadcast with possible communication/communication overlap (MPI_Bcast is allowed, but not required to synchronize).

Example 6.31. The starting order of collective operations on a particular communicator defines their matching. The following example shows an erroneous matching of different collective operations on the same communicator.

```c
/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */
MPI_Request req;
switch(rank) {
  case 0:
    /* erroneous matching */
    MPI_Ibarrier(comm, &req);
    MPI_Bcast(buf1, count, type, 0, comm);
    MPI_Wait(&req, MPI_STATUS_IGNORE);
    break;
  case 1:
    /* erroneous matching */
    MPI_Bcast(buf1, count, type, 0, comm);
    MPI_Ibarrier(comm, &req);
    MPI_Wait(&req, MPI_STATUS_IGNORE);
    break;
}
```

This ordering would match MPI_Ibarrier on rank 0 with MPI_Bcast on rank 1, which is erroneous and the program behavior is undefined. However, if such an order is required, the user must create different duplicate communicators and perform the operations on them. If started with two MPI processes, the following program would be correct:

```c
MPI_Request req;
MPI_Comm dupcomm;
```
MPI_Comm_dup(comm, &dupcomm);
switch(rank) {
 case 0:
 MPI_Ibarrier(comm, &req);
 MPI_Bcast(buf1, count, type, 0, dupcomm);
 MPI_Wait(&req, MPI_STATUS_IGNORE);
 break;
 case 1:
 MPI_Bcast(buf1, count, type, 0, dupcomm);
 MPI_Ibarrier(comm, &req);
 MPI_Wait(&req, MPI_STATUS_IGNORE);
 break;
}

Advice to users. The use of different communicators offers some flexibility regarding the matching of nonblocking collective operations. In this sense, communicators could be used as an equivalent to tags. However, communicator construction might induce overheads so that this should be used carefully. (End of advice to users.)

Example 6.32. Nonblocking collective operations can rely on the similar progress rules as nonblocking point-to-point operations. Thus, if started with two MPI processes, the following program is a valid MPI program and is guaranteed to terminate:

```c
MPI_Request req;
switch(rank) {
  case 0:
    MPI_Ibarrier(comm, &req);
    MPI_Wait(&req, MPI_STATUS_IGNORE);
    MPI_Send(buf, count, dtype, 1, tag, comm);
    break;
  case 1:
    MPI_Ibarrier(comm, &req);
    MPI_Recv(buf, count, dtype, 0, tag, comm, MPI_STATUS_IGNORE);
    MPI_Wait(&req, MPI_STATUS_IGNORE);
    break;
}
```

The MPI library must progress the barrier in the MPI_Recv call. Thus, the MPI_Wait call in rank 0 will eventually complete, which enables the matching MPI_Send so all calls eventually return.

Example 6.33. Blocking and nonblocking collective operations do not match. The following example is erroneous.

```c
/* ---------------- THIS EXAMPLE IS ERRONEOUS ---------------- */
MPI_Request req;
switch(rank) {
  case 0:
    /* erroneous false matching of Alltoall and Ialltoall */
    MPI_Ialltoall(sbuf, scnt, stype, rbuf, rcnt, rtype, comm, &req);
```
Example 6.34. Collective and point-to-point requests can be mixed in functions that enable multiple completions. If started with two MPI processes, the following program is valid.

```c
MPI_Request reqs[2];
switch (rank) {
    case 0:
        MPI_Ibarrier(comm, &reqs[0]);
        MPI_Send(buf, count, dtype, 1, tag, comm);
        MPI_Wait(&reqs[0], MPI_STATUS_IGNORE);
        break;
    case 1:
        MPI_Irecv(buf, count, dtype, 0, tag, comm, &reqs[0]);
        MPI_Ibarrier(comm, &reqs[1]);
        MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);
        break;
}
```

The MPI_Waitall call returns only after the barrier and the receive completed.

Example 6.35. Multiple nonblocking collective operations can be outstanding on a single communicator and match in order.

```c
MPI_Request reqs[3];
compute(buf1);
MPI_Ibcast(buf1, count, type, 0, comm, &reqs[0]);
compute(buf2);
MPI_Ibcast(buf2, count, type, 0, comm, &reqs[1]);
compute(buf3);
MPI_Ibcast(buf3, count, type, 0, comm, &reqs[2]);
MPI_Waitall(3, reqs, MPI_STATUSES_IGNORE);
```

Advice to users. Pipelining and double-buffering techniques can efficiently be used to overlap computation and communication. However, having too many outstanding requests might have a negative impact on performance. *(End of advice to users.)*

Advice to implementors. The use of pipelining may generate many outstanding requests. A high-quality hardware-supported implementation with limited resources should be able to fall back to a software implementation if its resources are exhausted. In this way, the implementation could limit the number of outstanding requests only by the available memory. *(End of advice to implementors.)*
Example 6.36. Nonblocking collective operations can also be used to enable simultaneous collective operations on multiple overlapping communicators (see Figure 6.13). The following example is started with three MPI processes and three communicators. The first communicator \texttt{comm1} includes ranks 0 and 1, \texttt{comm2} includes ranks 1 and 2, and \texttt{comm3} spans ranks 0 and 2. It is not possible to perform a blocking collective operation on all communicators because there exists no deadlock-free order to invoke them. However, nonblocking collective operations can easily be used to achieve this task.

```c
MPI_Request reqs[2];
switch(rank) {
    case 0:
        MPI_Iallreduce(sbuf1, rbuf1, count, dtype, MPI_SUM, comm1, &reqs[0]);
        MPI_Iallreduce(sbuf3, rbuf3, count, dtype, MPI_SUM, comm3, &reqs[1]);
        break;
    case 1:
        MPI_Iallreduce(sbuf1, rbuf1, count, dtype, MPI_SUM, comm1, &reqs[0]);
        MPI_Iallreduce(sbuf2, rbuf2, count, dtype, MPI_SUM, comm2, &reqs[1]);
        break;
    case 2:
        MPI_Iallreduce(sbuf2, rbuf2, count, dtype, MPI_SUM, comm2, &reqs[0]);
        MPI_Iallreduce(sbuf3, rbuf3, count, dtype, MPI_SUM, comm3, &reqs[1]);
        break;
}
MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);
```

Advice to users. This method can be useful if overlapping neighboring regions (halo or ghost zones) are used in collective operations. The sequence of the two calls in each MPI process is irrelevant because the two nonblocking operations are performed on different communicators. (End of advice to users.)

Example 6.37. The progress of multiple outstanding nonblocking collective operations is completely independent.

```c
MPI_Request reqs[2];
compute(buf1);
MPI_Ibcast(buf1, count, type, 0, comm, &reqs[0]);
```
compute(buf2);
MPI_Ibcast(buf2, count, type, 0, comm, &reqs[1]);
MPI_Wait(&reqs[1], MPI_STATUS_IGNORE);
/* nothing is known about the status of the first bcast here */
MPI_Wait(&reqs[0], MPI_STATUS_IGNORE);

Finishing the second MPI_IBCAST is completely independent of the first one. This means that it is not guaranteed that the first broadcast operation is finished or even started after the second one is completed via reqs[1].
Chapter 7
Groups, Contexts, Communicators, and Caching

7.1 Introduction

This chapter introduces MPI features that support the development of parallel libraries. Parallel libraries are needed to encapsulate the distracting complications inherent in parallel implementations of key algorithms. They help to ensure consistent correctness of such procedures, and provide a “higher level” of portability than MPI itself can provide. As such, libraries prevent each programmer from repeating the work of defining consistent data structures, data layouts, and methods that implement key algorithms (such as matrix operations). Since the best libraries come with several variations on parallel systems (different data layouts, different strategies depending on the size of the system or problem, or type of floating point), this too needs to be hidden from the user.

We refer the reader to [5] and [63] for further information on writing libraries in MPI, using the features described in this chapter.

7.1.1 Features Needed to Support Libraries

The key features needed to support the creation of robust parallel libraries are as follows:

- Safe communication space, that guarantees that libraries can communicate as they need to, without conflicting with communication extraneous to the library,
- Group scope for collective operations, that allow libraries to avoid unnecessarily synchronizing uninvolved MPI processes (potentially running unrelated code),
- Abstract naming of MPI processes to allow libraries to describe their communication in terms suitable to their own data structures and algorithms,
- The ability to “adorn” a set of communicating MPI processes with additional user-defined attributes, such as extra collective operations. This mechanism should provide a means for the user or library writer effectively to extend a message-passing notation.

In addition, a unified mechanism or object is needed for conveniently denoting communication context, the group of communicating MPI processes, to house abstract naming of MPI processes, and to store adornments.

7.1.2 MPI’s Support for Libraries

The corresponding concepts that MPI provides, specifically to support robust libraries, are as follows:
• **Contexts** of communication,

• **Groups** of MPI processes,

• **Virtual topologies**,

• **Attribute caching**,

• **Communicators**.

Communicators (see [23, 61, 65]) encapsulate all of these ideas in order to provide the appropriate scope for all communication operations in MPI. Communicators are divided into two kinds: intra-communicators for operations within a single group of MPI processes and inter-communicators for operations between two groups of MPI processes.

Caching. Communicators (see below) provide a “caching” mechanism that allows one to associate new attributes with communicators, on par with MPI built-in features. This can be used by advanced users to adorn communicators further, and by MPI to implement some communicator functions. For example, the virtual-topology functions described in Chapter 8 are likely to be supported this way.

Groups. Groups define an ordered collection of MPI processes, each with a rank, and it is this group that defines the low-level names (ranks) for communication. Thus, groups define a scope for MPI process names in point-to-point communication. In addition, groups define the scope of collective operations. Groups may be manipulated separately from communicators in MPI, but only communicators can be used in communication operations.

Intra-Communicators. The most commonly used means for message-passing in MPI is via intra-communicators. Intra-communicators contain an instance of a group, contexts of communication for both point-to-point and collective communication, and the ability to include virtual topology and other attributes. These features work as follows:

• **Contexts** provide the ability to have separate safe “universes” of message-passing in MPI. A context is akin to an additional tag that differentiates messages. The system manages this differentiation process. The use of separate communication contexts by distinct libraries (or distinct library invocations) insulates communication internal to the library execution from external communication. This allows the invocation of the library even if there are *pending* communication operations or *decoupled MPI activities* on “other” communicators, and avoids the need to synchronize entry or exit into library code. *Pending* communication or *decoupled MPI activities* of point-to-point operations are also guaranteed not to interfere with collective communication operations within a single communicator.

• **Groups** define the participants in the communication (see above) of a communicator.

• **A virtual topology** defines a special mapping of the MPI processes ranks in a group to and from a topology. Special constructors for communicators are defined in Chapter 8 to provide this feature. Intra-communicators as described in this chapter do not have topologies.

• **Attributes** define the local information that the user or library has added to a communicator for later reference.
Advice to users. The practice in many communication libraries is that there is a unique, predefined communication universe that includes all MPI processes available when the parallel program is initiated; the MPI processes are assigned consecutive ranks. Participants in a point-to-point communication are identified by their rank; a collective communication (such as broadcast) always involves all MPI processes. When using the World Model (Section 11.2), this practice can be followed in MPI by using the predefined communicator MPI_COMM_WORLD. (End of advice to users.)

Inter-Communicators. The discussion has dealt so far with intra-communication: communication within a group. MPI also supports inter-communication: communication between two nonoverlapping groups. When an application is built by composing several parallel modules, it is convenient to allow one module to communicate with another using local ranks for addressing within the second module. This is especially convenient in a client-server computing paradigm, where either client or server are parallel. The support of inter-communication also provides a mechanism for the extension of MPI to a dynamic model where not all MPI processes are preallocated at initialization time. In such a situation, it becomes necessary to support communication across “universes.” Inter-communication is supported by objects called inter-communicators. These objects bind two groups together with communication contexts shared by both groups. For inter-communicators, these features work as follows:

- Contexts provide the ability to have a separate safe “universe” of message-passing between the two groups. A send operation in the local group is always matched by a receive operation in the remote group, and vice versa. The system manages this differentiation process. The use of separate communication contexts by distinct libraries (or distinct library invocations) insulates communication internal to the library execution from external communication. This allows the invocation of the library even if there are pending communication operations or decoupled MPI activities on “other” communicators, and avoids the need to synchronize entry or exit into library code.

- A local and remote group specify the recipients and destinations for an inter-communicator.

- Virtual topology is undefined for an inter-communicator.

- As before, attributes cache defines the local information that the user or library has added to a communicator for later reference.

MPI provides mechanisms for creating and manipulating inter-communicators. They are used for point-to-point and collective communication in a related manner to intra-communicators. Users who do not need inter-communication in their applications can safely ignore this extension. Users who require inter-communication between overlapping groups must layer this capability on top of MPI.

7.2 Basic Concepts

In this section, we turn to a more formal definition of the concepts introduced above.
7.2.1 Groups

A group is an ordered set of MPI process identifiers (henceforth MPI processes); MPI processes are implementation-dependent objects. Each MPI process in a group is associated with an integer rank. Ranks are consecutive and start from zero. Groups are represented by opaque group objects, and hence cannot be directly transferred from one MPI process to another. A group is used within a communicator to describe the participants in a communication “universe” and to rank such participants (thus giving them unique names within that “universe” of communication).

There is a special pre-defined group: MPI_GROUP_EMPTY, which is a group with no members. The predefined constant MPI_GROUP_NULL is the value used for invalid group handles.

Advice to users. MPI_GROUP_EMPTY, which is a valid handle to an empty group, should not be confused with MPI_GROUP_NULL, which in turn is an invalid handle. The former may be used as an argument to group procedures; the latter is not a valid input value for an input argument. (End of advice to users.)

Advice to implementors. Simple implementations of MPI will enumerate groups, such as in a table. However, more advanced data structures make sense in order to improve scalability and memory usage with large numbers of MPI processes. Such implementations are possible with MPI. (End of advice to implementors.)

7.2.2 Contexts

A context is a property of communicators (defined next) that allows partitioning of the communication space. A message sent in one context cannot be received in another context. Furthermore, where permitted, collective operations are independent of pending point-to-point operations and decoupled MPI activities of point-to-point operations. Contexts are not explicit MPI objects; they appear only as part of the realization of communicators (below).

Advice to implementors. Distinct communicators in the same MPI process have distinct contexts. A context is essentially a system-managed tag (or tags) needed to make a communicator safe for point-to-point and MPI-defined collective communication. Safety means that collective and point-to-point communication within one communicator do not interfere, and that communication over distinct communicators do not interfere.

A possible implementation for a context is as a supplemental tag attached to messages on send and matched on receive. Each intra-communicator stores the value of its two tags (one for point-to-point and one for collective communication). Communicator-generating functions use a collective communication to agree on a new group-wide unique context.

Analogously, in inter-communication, two context tags are stored per communicator, one used by group A to send and group B to receive, and a second used by group B to send and for group A to receive.

Since contexts are not explicit objects, other implementations are also possible. (End of advice to implementors.)
7.2.3 Intra-Communicators

Intra-communicators bring together the concepts of group and context. To support implementation-specific optimizations, and application topologies (defined in the next chapter, Chapter 8), communicators may also “cache” additional information (see Section 7.7). MPI communication operations reference communicators to determine the scope and the “communication universe” in which a point-to-point or collective operation is to operate.

Each communicator contains a group of valid participants; this group always includes the local MPI process. The source and destination of a message are identified by MPI process ranks within that group.

For collective communication, the intra-communicator specifies the set of MPI processes that participate in the collective operation (and their order, when significant). Thus, the communicator restricts the “spatial” scope of communication, and provides machine-independent MPI process addressing through ranks.

Intra-communicators are represented by opaque intra-communicator objects, and hence cannot be directly transferred from one MPI process to another.

7.2.4 Predefined Intra-Communicators

When using the World Model (Section 11.2) for MPI initialization, an initial intra-communicator MPI_COMM_WORLD of all MPI processes the local MPI process can communicate with after initialization (itself included) is defined once MPI_INIT or MPI_INIT_THREAD has been called. In addition, the communicator MPI_COMM_SELF is provided, which includes only the MPI process itself. When using the Sessions Model (Section 11.3) for initialization of MPI resources, MPI_COMM_WORLD and MPI_COMM_SELF are not valid for use as a communicator. See the discussion concerning use of MPI named constants in 2.5.4 for valid uses of MPI_COMM_WORLD and MPI_COMM_SELF prior to initialization of MPI. See also the discussion concerning interoperability of the World Model and Sessions Model in Section 11.1.

The predefined constant MPI_COMM_NULL is the value used for invalid communicator handles.

In a static-process-model implementation of MPI, all MPI processes that participate in the computation are available after MPI is initialized. For this case, MPI_COMM_WORLD is a communicator of all MPI processes available for the computation; this communicator has the same value in all MPI processes. In an implementation of MPI where MPI processes can dynamically join an MPI execution, it may be the case that an MPI process starts an MPI computation without having access to all other MPI processes. In such situations, MPI_COMM_WORLD is a communicator incorporating all MPI processes with which the joining MPI process can immediately communicate. Therefore, MPI_COMM_WORLD may simultaneously represent disjoint groups in different MPI processes.

All MPI implementations are required to provide the MPI_COMM_WORLD communicator. It cannot be deallocated during the life of an MPI process. The group corresponding to this communicator does not appear as a pre-defined constant, but it may be accessed using MPI_COMM_GROUP (see below). MPI does not specify the correspondence between the MPI process rank in MPI_COMM_WORLD and its (machine-dependent) absolute address. Other implementation-dependent, predefined communicators may also be provided.
7.3 Group Management

This section describes the manipulation of MPI process groups. These operations are local.

7.3.1 Group Accessors

\textbf{MPI_GROUP_SIZE}(group, size)

\textbf{C binding}

\textbf{int MPI_Group_size(MPI_Group group, int *size)}

\textbf{Fortran 2008 binding}

\textbf{MPI_Group_size(group, size, ierror)}

\hspace{1em} \textbf{TYPE(MPI_Group), INTENT(IN)} :: group

\hspace{2em} \textbf{INTEGER, INTENT(OUT)} :: size

\hspace{3em} \textbf{INTEGER, OPTIONAL, INTENT(OUT)} :: ierror

\textbf{Fortran binding}

\textbf{MPI_GROUP_SIZE(GROUP, SIZE, IERROR)}

\hspace{1em} \textbf{INTEGER GROUP, SIZE, IERROR}

\textbf{MPI_GROUP_RANK}(group, rank)

\textbf{C binding}

\textbf{int MPI_Group_rank(MPI_Group group, int *rank)}

\textbf{Fortran 2008 binding}

\textbf{MPI_Group_rank(group, rank, ierror)}

\hspace{1em} \textbf{TYPE(MPI_Group), INTENT(IN)} :: group

\hspace{2em} \textbf{INTEGER, INTENT(OUT)} :: rank

\hspace{3em} \textbf{INTEGER, OPTIONAL, INTENT(OUT)} :: ierror

\textbf{Fortran binding}

\textbf{MPI_GROUP_RANK(GROUP, RANK, IERROR)}

\hspace{1em} \textbf{INTEGER GROUP, RANK, IERROR}
7.3 Group Management

MPI_GROUP_TRANSLATE_RANKS(group1, n, ranks1, group2, ranks2)

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>group1</td>
<td>group1 (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>n</td>
<td>number of elements in ranks1 and ranks2 arrays (integer)</td>
</tr>
<tr>
<td>IN</td>
<td>ranks1</td>
<td>array of zero or more valid ranks in group1</td>
</tr>
<tr>
<td>IN</td>
<td>group2</td>
<td>group2 (handle)</td>
</tr>
<tr>
<td>OUT</td>
<td>ranks2</td>
<td>array of corresponding ranks in group2, MPI_UNDEFINED when no correspondence exists.</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Group_translate_ranks(MPI_Group group1, int n, const int ranks1[],
                                 MPI_Group group2, int ranks2[])
```

Fortran 2008 binding

```fortran
MPI_Group_translate_ranks(group1, n, ranks1, group2, ranks2, ierror)
```

```fortran
  TYPE(MPI_Group), INTENT(IN) :: group1, group2
  INTEGER, INTENT(IN) :: n, ranks1(n)
  INTEGER, INTENT(OUT) :: ranks2(n)
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)
```

```
  INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR
```

This function is important for determining the relative numbering of the same MPI processes in two different groups. For instance, if one knows the ranks of certain MPI processes in the group of MPI_COMM_WORLD, one might want to know their ranks in a subset of that group.

MPI_PROC_NULL is a valid rank for input to MPI_GROUP_TRANSLATE_RANKS, which returns MPI_PROC_NULL as the translated rank.

MPI_GROUP_COMPARE(group1, group2, result)

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>group1</td>
<td>first group (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>group2</td>
<td>second group (handle)</td>
</tr>
<tr>
<td>OUT</td>
<td>result</td>
<td>result (integer)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Group_compare(MPI_Group group1, MPI_Group group2, int *result)
```

Fortran 2008 binding

```fortran
MPI_Group_compare(group1, group2, result, ierror)
```

```fortran
  TYPE(MPI_Group), INTENT(IN) :: group1, group2
  INTEGER, INTENT(OUT) :: result
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)
```
INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI_IDENT results if the group members and group order are exactly the same in both
groups. This happens for instance if group1 and group2 are the same handle. MPI_SIMILAR
results if the group members are the same but the order is different. MPI_UNEQUAL results
otherwise.

7.3.2 Group Constructors

MPI provides two approaches to constructing groups. In the first approach, MPI procedures
are provided to subset and superset existing groups. These constructors construct new
groups from existing groups. In the second approach, a group is created using a session
handle and associated process set. This second approach is available when using the Ses-
sions Model. With both approaches, these are local operations, and distinct groups may
be defined on different MPI processes; an MPI process may also define a group that does
not include itself. Consistent definitions are required when groups are used as arguments
in communicator creation functions. When using the World Model (Section 11.2) for MPI
initialization, the base group, upon which all other groups are defined, is the group asso-
ciated with the initial communicator MPI_COMM_WORLD (accessible through the function
MPI_COMM_GROUP).

Rationale. In what follows, there is no group duplication function analogous to
MPI_COMM_DUP, defined later in this chapter. There is no need for a group duplica-
tor. A group, once created, can have several references to it by making copies of
the handle. The following constructors address the need for subsets and supersets of
existing groups. (End of rationale.)

Advice to implementors. Each group constructor behaves as if it returned a new
group object. When this new group is a copy of an existing group, then one can
avoid creating such new objects, using a reference-count mechanism. (End of advice
to implementors.)

MPI_COMM_GROUP(comm, group)
IN comm communicator (handle)
OUT group group corresponding to comm (handle)

C binding
int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

Fortran 2008 binding
MPI_Comm_group(comm, group, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Group), INTENT(OUT) :: group
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_GROUP(COMM, GROUP, IERROR)
 INTEGER COMM, GROUP, IERROR
MPI_COMM_GROUP returns in group a handle to the group of comm.

MPI_GROUP_UNION(group1, group2, newgroup)
IN group1 first group (handle)
IN group2 second group (handle)
OUT newgroup union group (handle)

C binding
int MPI_Group_union(MPI_Group group1, MPI_Group group2, MPI_Group *newgroup)

Fortran 2008 binding
MPI_Group_union(group1, group2, newgroup, ierror)
 TYPE(MPI_Group), INTENT(IN) :: group1, group2
 TYPE(MPI_Group), INTENT(OUT) :: newgroup
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)
 INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_INTERSECTION(group1, group2, newgroup)
IN group1 first group (handle)
IN group2 second group (handle)
OUT newgroup intersection group (handle)

C binding
int MPI_Group_intersection(MPI_Group group1, MPI_Group group2,
MPI_Group *newgroup)

Fortran 2008 binding
MPI_Group_intersection(group1, group2, newgroup, ierror)
 TYPE(MPI_Group), INTENT(IN) :: group1, group2
 TYPE(MPI_Group), INTENT(OUT) :: newgroup
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)
 INTEGER GROUP1, GROUP2, NEWGROUP, IERROR
The set-like operations are defined as follows:

union: All elements of the first group \((\text{group1})\), followed by all elements of second group \((\text{group2})\) not in the first group.

intersect: All elements of the first group that are also in the second group, ordered as in the first group.

difference All elements of the first group that are not in the second group, ordered as in the first group.

Note that for these operations the order of MPI processes in the output group is determined primarily by order in the first group (if possible) and then, if necessary, by order in the second group. Neither union nor intersection are commutative, but both are associative. The new group can be empty, that is, equal to MPI_GROUP_EMPTY.

MPI_GROUP_DIFFERENCE(group1, group2, newgroup)

IN group1 first group (handle)
IN group2 second group (handle)
OUT newgroup difference group (handle)

C binding
int MPI_Group_difference(MPI_Group group1, MPI_Group group2, MPI_Group *newgroup)

Fortran 2008 binding
MPI_Group_difference(group1, group2, newgroup, ierr)
 TYPE(MPI_Group), INTENT(IN) :: group1, group2
 TYPE(MPI_Group), INTENT(OUT) :: newgroup
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

Fortran binding
MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)
 INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_INCL(group, n, ranks, newgroup)

IN group group (handle)
IN n number of elements in array ranks (and size of newgroup) (integer)
IN ranks ranks of processes in group to appear in newgroup (array of integers)
OUT newgroup new group derived from above, in the order defined by ranks (handle)

C binding
int MPI_Group_incl(MPI_Group group, int n, const int ranks[], MPI_Group *newgroup)
7.3 Group Management

Fortran 2008 binding

```fortran
MPI_Group_incl(group, n, ranks, newgroup, ierror)
```

```fortran
  TYPE(MPI_Group), INTENT(IN) :: group
  INTEGER, INTENT(IN) :: n, ranks(n)
  TYPE(MPI_Group), INTENT(OUT) :: newgroup
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)
```

```fortran
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR
```

The function `MPI_GROUP_INCL` creates a group `newgroup` that consists of the `n` MPI processes in `group` with ranks `ranks[0],..., ranks[n-1]`; the MPI process with rank `ranks[i]` in `newgroup` is the MPI process with rank `ranks[i]` in `group`. Each of the `n` elements of `ranks` must be a valid rank in `group` and all elements must be distinct, or else the program is erroneous. If `n = 0`, then `newgroup` is `MPI_GROUP_EMPTY`. This function can, for instance, be used to reorder the elements of a group. See also `MPI_GROUP_COMPARE`.

C binding

```c
int MPI_Group_excl(MPI_Group group, int n, const int ranks[],
                   MPI_Group *newgroup)
```

Fortran 2008 binding

```fortran
MPI_Group_excl(group, n, ranks, newgroup, ierror)
```

```fortran
  TYPE(MPI_Group), INTENT(IN) :: group
  INTEGER, INTENT(IN) :: n, ranks(n)
  TYPE(MPI_Group), INTENT(OUT) :: newgroup
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)
```

```fortran
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR
```

The function `MPI_GROUP_EXCL` creates a group of MPI processes `newgroup` that is obtained by deleting from `group` those MPI processes with ranks `ranks[0],..., ranks[n-1]`. The ordering of MPI processes in `newgroup` is identical to the ordering in `group`. Each of the `n` elements of `ranks` must be a valid rank in `group` and all elements must be distinct; otherwise, the program is erroneous. If `n = 0`, then `newgroup` is identical to `group`.
MPI_GROUP_RANGE_INCL\((\text{group, } n, \text{ ranges, newgroup})\)

\begin{verbatim}
IN group group (handle)
IN n number of triplets in \text{ranges} (integer)
IN ranges a one-dimensional array of integer triplets, of the
 form \((\text{first rank, last rank, stride})\) indicating ranks in
 \text{group} of MPI processes to be included in \text{newgroup}

OUT newgroup new group derived from above, in the order defined
 by \text{ranges} (handle)
\end{verbatim}

\textbf{C binding}

\begin{verbatim}
int MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3],
 MPI_Group *newgroup)
\end{verbatim}

\textbf{Fortran 2008 binding}

\begin{verbatim}
MPI_Group_range_incl(group, n, ranges, newgroup, ierror)
 TYPE(MPI_Group), INTENT(IN) :: group
 INTEGER, INTENT(IN) :: n, ranges(3, n)
 TYPE(MPI_Group), INTENT(OUT) :: newgroup
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}

\begin{verbatim}
MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)
 INTEGER GROUP, N, RANGES(3, *), NEWGROUP, IERROR
\end{verbatim}

If \text{ranges} consists of the triplets

\[(\text{first}_1, \text{last}_1, \text{stride}_1), \ldots, (\text{first}_n, \text{last}_n, \text{stride}_n)\]

then \text{newgroup} consists of the sequence of MPI processes in \text{group} with ranks

\[
\text{first}_1, \text{first}_1 + \text{stride}_1, \ldots, \text{first}_1 + \left\lfloor \frac{\text{last}_1 - \text{first}_1}{\text{stride}_1} \right\rfloor \text{stride}_1, \ldots,
\]

\[
\text{first}_n, \text{first}_n + \text{stride}_n, \ldots, \text{first}_n + \left\lfloor \frac{\text{last}_n - \text{first}_n}{\text{stride}_n} \right\rfloor \text{stride}_n.
\]

Each computed rank must be a valid rank in \text{group} and all computed ranks must be
distinct, or else the program is erroneous. Note that we may have \text{first}_i > \text{last}_i, and \text{stride}_i
may be negative, but cannot be zero.

The functionality of this routine is specified to be equivalent to expanding the array
of \text{ranges} to an array of the included ranks and passing the resulting array of ranks and
other arguments to MPI_GROUP_INCL. A call to MPI_GROUP_INCL is equivalent to a call
to MPI_GROUP_RANGE_INCL with each rank \(i\) in \text{ranges} replaced by the triplet \((i, i, 1)\) in the
argument \text{ranges}.
MPI_GROUP_RANGE_EXCL\(\text{group, } n, \text{ranges, } \text{newgroup}\)

\begin{itemize}
 \item [IN] \(\text{group}\) \hspace{1cm} \text{group (handle)}
 \item [IN] \(n\) \hspace{1cm} \text{number of triplets in } \text{ranges} \ (\text{integer})
 \item [IN] \(\text{ranges}\) \hspace{1cm} \text{a one-dimensional array of integer triplets, of the form (first rank, last rank, stride) indicating ranks in } \text{group} \text{ of MPI processes to be excluded from the output group } \text{newgroup} \ (\text{array of integers})
 \item [OUT] \(\text{newgroup}\) \hspace{1cm} \text{new group derived from above, preserving the order in } \text{group} \ (\text{handle})
\end{itemize}

C binding

\begin{verbatim}
int MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3],
 MPI_Group *newgroup)
\end{verbatim}

Fortran 2008 binding

\begin{verbatim}
MPI_Group_range_excl(group, n, ranges, newgroup, ierror)
 TYPE(MPI_Group), INTENT(IN) :: group
 INTEGER, INTENT(IN) :: n, ranges(3, n)
 TYPE(MPI_Group), INTENT(OUT) :: newgroup
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

Fortran binding

\begin{verbatim}
MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)
 INTEGER GROUP, N, RANGES(3, *), NEWGROUP, IERROR
\end{verbatim}

Each computed rank must be a valid rank in \text{group} and all computed ranks must be distinct, or else the program is erroneous.

The functionality of this routine is specified to be equivalent to expanding the array of ranges to an array of the excluded ranks and passing the resulting array of ranks and other arguments to MPI_GROUP_EXCL. A call to MPI_GROUP_EXCL is equivalent to a call to MPI_GROUP_RANGE_EXCL with each rank \(i\) in \text{ranges} replaced by the triplet \((i,i,1)\) in the argument \text{ranges}.

Advice to users. The range operations do not explicitly enumerate ranks, and therefore are more scalable if implemented efficiently. Hence, we recommend MPI programmers to use them whenever possible, as high-quality implementations will take advantage of this fact. (*End of advice to users.*)

Advice to implementors. The range operations should be implemented, if possible, without enumerating the group members, in order to obtain better scalability (time and space). (*End of advice to implementors.*)
The function `MPI_GROUP_FROM_SESSION_PSET` creates a group `newgroup` using the provided session handle and process set. The process set name must be one returned from an invocation of `MPI_SESSION_GET_NTH_PSET` using the supplied `session` handle. If the `pset_name` does not exist, `MPI_GROUP_NULL` will be returned in the `newgroup` argument. As with other group constructors, `MPI_GROUP_FROM_SESSION_PSET` is a local function. See Section 11.3 for more information on sessions and process sets.

7.3.3 Group Destructors

```
MPI_GROUP_FREE(group)
```

C binding
```
int MPI_Group_free(MPI_Group *group)
```

Fortran 2008 binding
```
MPI_Group_free(group, ierror)
```

Fortran binding
```
MPI_GROUP_FREE(GROUP, IERROR)
```

 INTEGER GROUP, IERROR
This operation marks a group object for deallocation. The handle group is set to MPI_GROUP_NULL by the call. Any on-going operation using this group will complete normally.

Advice to implementors. One can keep a reference count that is incremented for each call to MPI_COMM_GROUP, MPI_COMM_CREATE, MPI_COMM_DUP, MPI_COMM_IDUP, MPI_COMM_DUP_WITH_INFO, MPI_COMM_IDUP_WITH_INFO, MPI_COMM_SPLIT, MPI_COMM_SPLIT_TYPE, MPI_COMM_CREATE_GROUP, MPI_COMM_CREATE_FROM_GROUP, MPI_INTERCOMM_CREATE, and MPI_INTERCOMM_CREATE_FROM_GROUPS, and decremented for each call to MPI_GROUP_FREE or MPI_COMM_FREE; the group object is ultimately deallocated when the reference count drops to zero. (End of advice to implementors.)

7.4 Communicator Management

This section describes the manipulation of communicators in MPI. Operations that access communicators are local. Operations that create communicators are collective.

Advice to implementors. High-quality implementations should amortize the overheads associated with the creation of communicators (for the same group, or subsets thereof) over several calls, by allocating multiple contexts with one collective communication. (End of advice to implementors.)

7.4.1 Communicator Accessors

The following are all local operations.

MPI_COMM_SIZE(comm, size)

| IN | comm | communicator (handle) |
| OUT | size | number of MPI processes in the group of comm (integer) |

C binding

int MPI_Comm_size(MPI_Comm comm, int *size)

Fortran 2008 binding

MPI_Comm_size(comm, size, ierror)

 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_COMM_SIZE(COMM, SIZE, IERROR)

 INTEGER COMM, SIZE, IERROR
Rationale. This function is equivalent to accessing the communicator’s group with MPI_COMM_GROUP (see above), computing the size using MPI_GROUP_SIZE, and then freeing the temporary group via MPI_GROUP_FREE. However, this functionality is so commonly used that this shortcut was introduced. (End of rationale.)

Advice to users. This function indicates the number of MPI processes involved in a communicator. For MPI_COMM_WORLD, it indicates the total number of MPI processes available unless the number of MPI processes has been changed by using the functions described in Chapter 11; note that the number of MPI processes in MPI_COMM_WORLD does not change during the life of an MPI program. This call is often used with the next call to determine the amount of concurrency available for a specific library or program. The following call, MPI_COMM_RANK indicates the rank of the MPI process that calls it in the range from 0, ..., size – 1, where size is the return value of MPI_COMM_SIZE. (End of advice to users.)

MPI_COMM_RANK(comm, rank)
IN comm communicator (handle)
OUT rank rank of the calling MPI process in group of comm (integer)

C binding
int MPI_Comm_rank(MPI_Comm comm, int *rank)

Fortran 2008 binding
MPI_Comm_rank(comm, rank, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(OUT) :: rank
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_RANK(COMM, RANK, IERROR)
 INTEGER COMM, RANK, IERROR

Rationale. This function is equivalent to accessing the communicator’s group with MPI_COMM_GROUP (see above), computing the rank using MPI_GROUP_RANK, and then freeing the temporary group via MPI_GROUP_FREE. However, this functionality is so commonly used that this shortcut was introduced. (End of rationale.)

Advice to users. This function gives the rank of the MPI process in the particular communicator’s group. It is useful, as noted above, in conjunction with MPI_COMM_SIZE.

Many programs will follow the supervisor/executor or manager/worker model, where one MPI process will play a supervisory role while the other MPI processes will play an executory role. In this framework, the two preceding calls are useful for determining the roles of the various MPI processes of a communicator. (End of advice to users.)
7.4 Communicator Management

MPI_COMM_COMPARE(comm1, comm2, result)

IN comm1 first communicator (handle)
IN comm2 second communicator (handle)
OUT result result (integer)

C binding
int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm comm2, int *result)

Fortran 2008 binding
MPI_Comm_compare(comm1, comm2, result, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm1, comm2
 INTEGER, INTENT(OUT) :: result
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)
 INTEGER COMM1, COMM2, RESULT, IERROR

MPI_IDENT results if and only if comm1 and comm2 are handles for the same object (identical groups and same contexts). MPI_CONGRUENT results if the underlying groups are identical in constituents and rank order; these communicators differ only by context. MPI_SIMILAR results if the group members of both communicators are the same but the rank order differs. MPI_UNEQUAL results otherwise.

7.4.2 Communicator Constructors

The following are collective functions that are invoked by all MPI processes in the group or groups associated with comm, with the exception of MPI_COMM_CREATE_GROUP, MPI_COMM_CREATE_FROM_GROUP, and MPI_INTERCOMM_CREATE_FROM_GROUPS. MPI_COMM_CREATE_GROUP and MPI_COMM_CREATE_FROM_GROUP are invoked only by the MPI processes in the group of the new communicator being constructed. MPI_INTERCOMM_CREATE_FROM_GROUPS is invoked by all the MPI processes in the local and remote groups of the new communicator being constructed. See the discussion below for the definition of local and remote groups.

Rationale. Note that, when using the World Model, there is a chicken-and-egg aspect to MPI in that a communicator is needed to create a new communicator. In the World Model, the base communicator for all MPI communicators is predefined outside of MPI, and is MPI_COMM_WORLD. The World Model was arrived at after considerable debate, and was chosen to increase “safety” of programs written in MPI. (End of rationale.)

This chapter presents the following communicator construction routines:
MPI_COMM_CREATE, MPI_COMM_DUP, MPI_COMM_IDUP,
MPI_COMM_DUP_WITH_INFO, MPI_COMM_IDUP_WITH_INFO, MPI_COMM_SPLIT
and MPI_COMM_SPLIT_TYPE can be used to create both intra-communicators and inter-communicators; MPI_COMM_CREATE_GROUP, MPI_COMM_CREATE_FROM_GROUP and MPI_INTERCOMM_MERGE (see Section 7.6.2) can be used to create intra-communicators;
MPI_INTERCOMM_CREATE and MPI_INTERCOMM_CREATE_FROM_GROUPS (see Section 7.6.2) can be used to create inter-communicators.

An intra-communicator involves a single group while an inter-communicator involves two groups. Where the following discussions address inter-communicator semantics, the two groups in an inter-communicator are called the left and right groups. An MPI process in an inter-communicator is a member of either the left or the right group. From the point of view of that MPI process, the group that the MPI process is a member of is called the local group; the other group (relative to that MPI process) is the remote group. The left and right group labels give us a way to describe the two groups in an inter-communicator that is not relative to any particular MPI process (as the local and remote groups are).

MPI_COMM_DUP(comm, newcomm)

C binding
int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

Fortran 2008 binding
MPI_Comm_dup(comm, newcomm, ierror)

Fortran binding
MPI_COMM_DUP(COMM, NEWCOMM, IERROR)

MPI_COMM_DUP duplicates the existing communicator comm with associated key values, topology information and error handlers. For each key value, the respective copy callback function determines the attribute value associated with this key in the new communicator; one particular action that a copy callback may take is to delete the attribute from the new communicator. MPI_COMM_DUP returns in newcomm a new communicator with the same group or groups, same topology, same error handlers and any copied cached information, but a new context (see Section 7.7.1). The newly created communicator will have no buffer attached (see Section 3.6).

Advice to users. This operation is used to provide a parallel library with a duplicate communication space that has the same properties as the original communicator. This includes any attributes (see below) and topologies (see Chapter 8). This call is valid even if there are pending point-to-point communication operations or decoupled MPI activities involving the communicator comm. A typical call might involve a MPI_COMM_DUP at the beginning of the parallel call, and an MPI_COMM_FREE of that duplicated communicator at the end of the call. Other models of communicator management are also possible.

This call applies to both intra- and inter-communicators. (End of advice to users.)
Advice to implementors. One need not actually copy the group information, but only add a new reference and increment the reference count. Copy on write can be used for the cached information. (End of advice to implementors.)

MPI_COMM_DUP_WITH_INFO(comm, info, newcomm)

IN comm communicator (handle)
IN info info object (handle)
OUT newcomm copy of comm (handle)

C binding
int MPI_Comm_dup_with_info(MPI_Comm comm, MPI_Info info, MPI_Comm *newcomm)

Fortran 2008 binding
MPI_Comm_dup_with_info(comm, info, newcomm, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(OUT) :: newcomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_DUP_WITH_INFO(COMM, INFO, NEWCOMM, IERROR)
 INTEGER COMM, INFO, NEWCOMM, IERROR

MPI_COMM_DUP_WITH_INFO behaves exactly as MPI_COMM_DUP except that the hints provided by the argument info are associated with the output communicator newcomm.

Rationale. It is expected that some hints will only be valid at communicator creation time. However, for legacy reasons, most communicator creation calls do not provide an info argument. One may associate info hints with a duplicate of any communicator at creation time through a call to MPI_COMM_DUP_WITH_INFO. (End of rationale.)

MPI_COMM_IDUP(comm, newcomm, request)

IN comm communicator (handle)
OUT newcomm copy of comm (handle)
OUT request communication request (handle)

C binding
int MPI_Comm_idup(MPI_Comm comm, MPI_Comm *newcomm, MPI_Request *request)

Fortran 2008 binding
MPI_Comm_idup(comm, newcomm, request, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Comm), INTENT(OUT), ASYNCHRONOUS :: newcomm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
Fortran binding

MPI_COMM_IDUP(COMM, NEWCOMM, REQUEST, IERROR)

 INTEGER COMM, NEWCOMM, REQUEST, IERROR

MPI_COMM_IDUP is a nonblocking variant of MPI_COMM_DUP. With the exception of its nonblocking behavior, the semantics of MPI_COMM_IDUP are as if MPI_COMM_DUP was executed at the time that MPI_COMM_IDUP is called. For example, attributes changed after MPI_COMM_IDUP will not be copied to the new communicator. All restrictions and assumptions for nonblocking collective operations (see Section 6.12) apply to MPI_COMM_IDUP and the returned request.

It is erroneous to use the communicator newcomm as an input argument to other MPI functions before the MPI_COMM_IDUP operation completes.

C binding

int MPI_Comm_idup_with_info(MPI_Comm comm, MPI_Info info, MPI_Comm *newcomm, MPI_Request *request)

Fortran 2008 binding

MPI_Comm_idup_with_info(comm, info, newcomm, request, ierror)

 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(OUT), ASYNCHRONOUS :: newcomm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_COMM_IDUP_WITH_INFO(COMM, INFO, NEWCOMM, REQUEST, IERROR)

 INTEGER COMM, INFO, NEWCOMM, REQUEST, IERROR

MPI_COMM_IDUP_WITH_INFO is a nonblocking variant of MPI_COMM_DUP_WITH_INFO. With the exception of its nonblocking behavior, the semantics of MPI_COMM_IDUP_WITH_INFO are as if MPI_COMM_DUP_WITH_INFO was executed at the time that MPI_COMM_IDUP_WITH_INFO is called. For example, attributes or info hints changed after MPI_COMM_IDUP_WITH_INFO will not be copied to the new communicator. All restrictions and assumptions for nonblocking collective operations (see Section 6.12) apply to MPI_COMM_IDUP_WITH_INFO and the returned request.

It is erroneous to use the communicator newcomm as an input argument to other MPI functions before the MPI_COMM_IDUP_WITH_INFO operation completes.

Rationale. The MPI_COMM_IDUP and MPI_COMM_IDUP_WITH_INFO functions are crucial for the development of purely nonblocking libraries (see [41]). (End of rationale.)
MPI_Comm_create(comm, group, newcomm)

C binding
int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

Fortran 2008 binding
MPI_Comm_create(comm, group, newcomm, ierror)

Fortran binding
MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)

If comm is an intra-communicator, this function returns a new communicator newcomm with communication group defined by the group argument. No cached information propagates from comm to newcomm and no virtual topology information is added to the created communicator. Each MPI process must call MPI_COMM_CREATE with a group argument that is a subgroup of the group associated with comm; this could be MPI_GROUP_EMPTY. The MPI processes may specify different values for the group argument. If an MPI process calls with a nonempty group then all MPI processes in that group must call the function with the same group as argument, that is the same MPI processes in the same order. Otherwise, the call is erroneous. This implies that the set of groups specified across the MPI processes must be disjoint. If the calling MPI process is a member of the group given as group argument, then newcomm is a communicator with group as its associated group. In the case that an MPI process calls with a group to which it does not belong, e.g., MPI_GROUP_EMPTY, then MPI_COMM_NULL is returned as newcomm. The function is collective and must be called by all MPI processes in the group of comm.

Rationale. The interface supports the original mechanism from MPI-1.1, which required the same group in all MPI processes of comm. It was extended in MPI-2.2 to allow the use of disjoint subgroups in order to allow implementations to eliminate unnecessary communication that MPI_COMM_SPLIT would incur when the user already knows the membership of the disjoint subgroups. (End of rationale.)

Rationale. The requirement that the entire group of comm participate in the call stems from the following considerations:

- It allows the implementation to layer MPI_COMM_CREATE on top of regular collective communications.
- It provides additional safety, in particular in the case where partially overlapping groups are used to create new communicators.
• It permits implementations to sometimes avoid communication related to context creation.

(End of rationale.)

Advice to users. MPI_COMM_CREATE provides a means to subset a group of MPI processes for the purpose of separate MIMD computation, with separate communication space. newcomm, which emerges from MPI_COMM_CREATE, can be used in subsequent calls to MPI_COMM_CREATE (or other communicator constructors) to further subdivide a computation into parallel sub-computations. A more general service is provided by MPI_COMM_SPLIT, below. (End of advice to users.)

Advice to implementors. When calling MPI_COMM_DUP, all MPI processes call with the same group (the group associated with the communicator). When calling MPI_COMM_CREATE, the MPI processes provide the same group or disjoint subgroups. For both calls, it is theoretically possible to agree on a group-wide unique context with no communication. However, local execution of these functions requires use of a larger context name space and reduces error checking. Implementations may strike various compromises between these conflicting goals, such as bulk allocation of multiple contexts in one collective operation.

Important: If new communicators are created without synchronizing the MPI processes involved then the communication system must be able to cope with messages arriving in a context that has not yet been allocated at the receiving MPI process. (End of advice to implementors.)
If \texttt{comm} is an inter-communicator, then the output communicator is also an inter-communicator where the local group consists only of those MPI processes contained in \texttt{group} (see Figure 7.1). The \texttt{group} argument should only contain those MPI processes in the local group of the input inter-communicator that are to be a part of \texttt{newcomm}. All MPI processes in the same local group of \texttt{comm} must specify the same value for \texttt{group}, i.e., the same members in the same order. If either \texttt{group} does not specify at least one MPI process in the local group of the inter-communicator, or if the calling MPI process is not included in the \texttt{group}, MPI_COMM_NULL is returned.

\textit{Rationale.} In the case where either the left or right group is empty, a null communicator is returned instead of an inter-communicator with MPI_GROUP_EMPTY because the side with the empty group must return MPI_COMM_NULL. (\textit{End of rationale.})

\begin{example}
Example 7.1. Inter-communicator creation.
The following example illustrates how the first node in the left side of an inter-communicator could be joined with all members on the right side of an inter-communicator to form a new inter-communicator.

\begin{verbatim}
MPI_Comm inter_comm, new_inter_comm;
MPI_Group local_group, group;
int rank = 0; /* rank on left side to include in new inter-comm */

/* Construct the original inter-communicator: "inter_comm" */...

/* Construct the group of MPI processes to be in new inter-communicator */
if (/* I'm on the left side of the inter-communicator */) {
 MPI_Comm_group(inter_comm, &local_group);
 MPI_Group_incl(local_group, 1, &rank, &group);
 MPI_Group_free(&local_group);
} else
 MPI_Comm_group(inter_comm, &group);

MPI_Comm_create(inter_comm, group, &new_inter_comm);
MPI_Group_free(&group);
\end{verbatim}
\end{example}

\begin{verbatim}
MPI_COMM_CREATE_GROUP(comm, group, tag, newcomm)
\end{verbatim}

<table>
<thead>
<tr>
<th>IN</th>
<th>comm</th>
<th>intra-communicator (handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>group</td>
<td>group, which is a subset of the group of \texttt{comm} (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>tag</td>
<td>tag (integer)</td>
</tr>
<tr>
<td>OUT</td>
<td>newcomm</td>
<td>new communicator (handle)</td>
</tr>
</tbody>
</table>

C binding
\begin{verbatim}
int MPI_Comm_create_group(MPI_Comm comm, MPI_Group group, int tag,
\end{verbatim}
MPI_Comm *newcomm)

Fortran 2008 binding

```fortran
MPI_Comm_create_group(comm, group, tag, newcomm, ierr)
```

```plaintext
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Group), INTENT(IN) :: group
INTEGER, INTENT(IN) :: tag
TYPE(MPI_Comm), INTENT(OUT) :: newcomm
INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

Fortran binding

```fortran
MPI_COMM_CREATE_GROUP(COMM, GROUP, TAG, NEWCOMM, IERROR)
```

INTEGER COMM, GROUP, TAG, NEWCOMM, IERROR

MPI_COMM_CREATE_GROUP is similar to MPI_COMM_CREATE; however, MPI_COMM_CREATE must be called by all MPI processes in the group of comm, whereas MPI_COMM_CREATE_GROUP must be called by all MPI processes in group, which is a subgroup of the group of comm. In addition, MPI_COMM_CREATE_GROUP requires that comm is an intra-communicator. MPI_COMM_CREATE_GROUP returns a new intra-communicator, newcomm, for which the group argument defines the communication group. No cached information propagates from comm to newcomm and no virtual topology information is added to the created communicator. Each MPI process must provide a group argument that is a subgroup of the group associated with comm; this could be MPI_GROUP_EMPTY. If a nonempty group is specified, then all MPI processes in that group must call the function, and each of these MPI processes must provide the same arguments, including a group that contains the same members with the same ordering. Otherwise the call is erroneous. If the calling MPI process is a member of the group given as the group argument, then newcomm is a communicator with group as its associated group. If the calling MPI process is not a member of group, e.g., group is MPI_GROUP_EMPTY, then the call is a local operation and MPI_COMM_NULL is returned as newcomm.

Rationale. Functionality similar to MPI_COMM_CREATE_GROUP can be implemented through repeated MPI_INTERCOMM_CREATE and MPI_INTERCOMM_MERGE calls that start with the MPI_COMM_SELF communicators at each MPI process in group and build up an intra-communicator with group [18]. Such an algorithm requires the creation of many intermediate communicators; MPI_COMM_CREATE_GROUP can provide a more efficient implementation that avoids this overhead. (End of rationale.)

Advice to users. An inter-communicator can be created collectively over MPI processes in the union of the local and remote groups by creating the local communicator using MPI_COMM_CREATE_GROUP and using that communicator as the local communicator argument to MPI_INTERCOMM_CREATE. (End of advice to users.)

The tag argument does not conflict with tags used in point-to-point communication and is not permitted to be a wildcard. If multiple threads at a given MPI process perform concurrent MPI_COMM_CREATE_GROUP operations, the user must distinguish these operations by providing different tag or comm arguments.

Advice to users. MPI_COMM_CREATE may provide lower overhead than MPI_COMM_CREATE_GROUP because it can take advantage of collective communication on comm when constructing newcomm. (End of advice to users.)
MPI_COMM_SPLIT(comm, color, key, newcomm)

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>comm</td>
<td>communicator (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>color</td>
<td>control of subset assignment (integer)</td>
</tr>
<tr>
<td>IN</td>
<td>key</td>
<td>control of rank assignment (integer)</td>
</tr>
<tr>
<td>OUT</td>
<td>newcomm</td>
<td>new communicator (handle)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)
```

Fortran 2008 binding

```fortran
MPI_Comm_split(comm, color, key, newcomm, ierror)
```

```
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(IN) :: color, key
TYPE(MPI_Comm), INTENT(OUT) :: newcomm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)
```

```
INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR
```

This function partitions the group associated with `comm` into disjoint subgroups, one for each value of `color`. Each subgroup contains all MPI processes of the same color. Within each subgroup, the MPI processes are ranked in the order defined by the value of the argument `key`, with ties broken according to their rank in the old group. A new communicator is created for each subgroup and returned in `newcomm`. An MPI process may supply the color value `MPI_UNDEFINED`, in which case `newcomm` returns `MPI_COMM_NULL`. This is a collective call, but each MPI process is permitted to provide different values for `color` and `key`. No cached information propagates from `comm` to `newcomm` and no virtual topology information is added to the created communicators.

With an intra-communicator `comm`, a call to `MPI_COMM_CREATE(comm, group, newcomm)` is equivalent to a call to `MPI_COMM_SPLIT(comm, color, key, newcomm)`, where MPI processes that are members of their `group` argument provide a `color` argument equal to the number of the `group` (based on a unique numbering of all disjoint groups) and a `key` argument equal to their rank in `group`, and all MPI processes that are not members of their `group` argument provide a `color` argument equal to `MPI_UNDEFINED`. The value of `color` must be nonnegative or `MPI_UNDEFINED`.

Advice to users. This is an extremely powerful mechanism for dividing a single communicating group of MPI processes into k subgroups, with k chosen implicitly by the user (by the number of colors asserted over all the MPI processes). Each resulting communicator will be nonoverlapping. Such a division could be useful for defining a hierarchy of computations, such as for multigrid, or linear algebra. For intra-communicators, `MPI_COMM_SPLIT` provides similar capability as `MPI_COMM_CREATE` to split a communicating group into disjoint subgroups. `MPI_COMM_SPLIT` is useful when some MPI processes do not have complete information of the other members in their group, but all MPI processes know (the color of) the group to which they belong. In this case, the MPI implementation discovers the other group members via communication. `MPI_COMM_CREATE` is useful when all MPI processes have complete...
information of the members of their group. In this case, MPI can avoid the extra communication required to discover group membership. MPI_COMM_CREATE_GROUP is useful when all MPI processes in a given group have complete information of the members of their group and synchronization with MPI processes outside the group can be avoided.

Multiple calls to MPI_COMM_SPLIT can be used to overcome the requirement that any call have no overlap of the resulting communicators (each MPI process is of only one color per call). In this way, multiple overlapping communication structures can be created. Creative use of the color and key in such splitting operations is encouraged.

Note that, for a fixed color, the keys need not be unique. It is MPI_COMM_SPLIT’s responsibility to sort MPI processes in ascending order according to this key, and to break ties in a consistent way. If all the keys are specified in the same way, then all the MPI processes in a given color will have the relative rank order as they did in their parent group.

(End of advice to users.)

Rationale. color is restricted to be nonnegative, so as not to conflict with the value assigned to MPI_UNDEFINED. (End of rationale.)

The result of MPI_COMM_SPLIT on an inter-communicator is that those MPI processes on the left with the same color as those MPI processes on the right combine to create a new inter-communicator. The key argument describes the relative rank of MPI processes on each side of the inter-communicator (see Figure 7.2). For those colors that are specified only on one side of the inter-communicator, MPI_COMM_NULL is returned. MPI_COMM_NULL is also returned to those MPI processes that specify MPI_UNDEFINED as the color.

Advice to users. For inter-communicators, MPI_COMM_SPLIT is more general than MPI_COMM_CREATE. A single call to MPI_COMM_SPLIT can create a set of disjoint inter-communicators, while a call to MPI_COMM_CREATE creates only one. (End of advice to users.)

Example 7.2. Parallel client-server model.
The following client code illustrates how clients on the left side of an inter-communicator could be assigned to a single server from a pool of servers on the right side of an inter-communicator.

```c
/* Client code */
MPI_Comm multiple_server_comm;
MPI_Comm single_server_comm;
int    color, rank, num_servers;

/* Create inter-communicator with clients and servers: */
   multiple_server_comm */
   ...

/* Find out the number of servers available */
MPI_Comm_remote_size(multiple_server_comm, &num_servers);

/* Determine my color */
```
Figure 7.2: Inter-communicator construction achieved by splitting an existing inter-communicator with `MPI_COMM_SPLIT` extended to inter-communicators.
MPI_Comm_rank(multiple_server_comm, &rank);
color = rank % num_servers;

/* Split the inter-communicator */
MPI_Comm_split(multiple_server_comm, color, rank,
 &single_server_comm);

The following is the corresponding server code:

/* Server code */
MPI_Comm multiple_client_comm;
MPI_Comm single_server_comm;
int rank;

/* Create inter-communicator with clients and servers:
multiple_client_comm */
...

/* Split the inter-communicator for a single server per group
of clients */
MPI_Comm_rank(multiple_client_comm, &rank);
MPI_Comm_split(multiple_client_comm, rank, 0,
 &single_server_comm);

MPI_COMM_SPLIT_TYPE(comm, split_type, key, info, newcomm)

IN comm communicator (handle)
IN split_type type of processes to be grouped together (integer)
IN key control of rank assignment (integer)
INOUT info info argument (handle)
OUT newcomm new communicator (handle)

C binding
int MPI_Comm_split_type(MPI_Comm comm, int split_type, int key, MPI_Info info,
 MPI_Comm *newcomm)

Fortran 2008 binding
MPI_Comm_split_type(comm, split_type, key, info, newcomm, ierror)

 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: split_type, key
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(OUT) :: newcomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_SPLIT_TYPE(COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR)

 INTEGER COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR

This function partitions the group associated with comm into disjoint subgroups such that
each subgroup contains all MPI processes in the same grouping referred to by split_type.
Within each subgroup, the MPI processes are ranked in the order defined by the value of the argument key, with ties broken according to their rank in the old group. A new communicator is created for each subgroup and returned in newcomm. This is a collective call. All MPI processes in the group associated with comm must provide the same split_type, but each MPI process is permitted to provide different values for key. An exception to this rule is that an MPI process may supply the type value MPI_UNDEFINED, in which case MPI_COMM_NULL is returned in newcomm for such MPI process. No cached information propagates from comm to newcomm and no virtual topology information is added to the created communicators.

For split_type, the following values are defined by MPI:

MPI_COMM_TYPE_SHARED: all MPI processes in the group of newcomm are part of the same shared memory domain and can create a shared memory segment (e.g., with a successful call to MPI_WIN_ALLOCATE_SHARED). This segment can subsequently be used for load/store accesses by all MPI processes in newcomm.

Advice to users. Since the location of some of the MPI processes may change during the application execution, the communicators created with the value MPI_COMM_TYPE_SHARED before this change may not reflect an actual ability to share memory between MPI processes after this change. (*End of advice to users.*)

MPI_COMM_TYPE_HW_GUIDED: this value specifies that the communicator comm is split according to a hardware resource type (for example a computing core or an L3 cache) specified by the "mpi_hw_resource_type" info key. Each output communicator newcomm corresponds to a single instance of the specified hardware resource type. The MPI processes in the group associated with the output communicator newcomm utilize that specific hardware resource type instance, and no other instance of the same hardware resource type.

If an MPI process does not meet the above criteria, then MPI_COMM_NULL is returned in newcomm for such MPI process.

MPI_COMM_NULL is also returned in newcomm in the following cases:

- MPI_INFO_NULL is provided.
- The info handle does not include the key "mpi_hw_resource_type".
- The MPI implementation neither recognizes nor supports the info key "mpi_hw_resource_type".
- The MPI implementation does not recognize the value associated with the info key "mpi_hw_resource_type".

The MPI implementation will return in the group of the output communicator newcomm the largest subset of MPI processes that match the splitting criterion.

The MPI processes in the group associated with newcomm are ranked in the order defined by the value of the argument key with ties broken according to their rank in the group associated with comm.

Advice to users. The set of hardware resources that an MPI process is able to utilize may change during the application execution (e.g., because of the relocation of an MPI process), in which case the communicators created with the value
MPI_COMM_TYPE_HW_GUIDED before this change may not reflect the utilization of hardware resources of such MPI process at any time after the communicator creation. (*End of advice to users.*)

The user explicitly constrains with the info argument the splitting of the input communicator `comm`. To this end, the info key "mpi_hw_resource_type" is reserved and its associated value is an implementation-defined string designating the type of the requested hardware resource (e.g., "NUMANode", "Package" or "L3Cache").

The value "mpi_shared_memory" is reserved and its use is equivalent to using MPI_COMM_TYPE_SHARED for the `split_type` parameter.

Rationale. The value "mpi_shared_memory" is defined in order to ensure consistency between the use of MPI_COMM_TYPE_SHARED and the use of MPI_COMM_TYPE_HW_GUIDED. (*End of rationale.*)

All MPI processes must provide the same value for the info key "mpi_hw_resource_type".

Example 7.3. Splitting MPI_COMM_WORLD into NUMANode subcommunicators.

```c
MPI_Info info;
MPI_Comm hwcomm;
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Info_create(&info);
MPI_Info_set(info, "mpi_hw_resource_type", "NUMANode");
MPI_Comm_split_type(MPI_COMM_WORLD,
                    MPI_COMM_TYPE_HW_GUIDED,
                    rank, info, &hwcomm);
```

MPI_COMM_TYPE_RESOURCE_GUIDED: this value specifies that the communicator `comm` is split according to a hardware resource type (for example a computing core or an L3 cache) specified by the "mpi_hw_resource_type" info key or to a logical resource type (for example a process set name, see Section 11.3.2) specified by the "mpi_pset_name" info key.

Each output communicator `newcomm` corresponds to a single instance of the specified resource type. The MPI processes in the group associated with the output communicator `newcomm` utilize that specific resource type instance, and no other instance of the same resource type.

If an MPI process does not meet the above criteria, then MPI_COMM_NULL is returned in `newcomm` for such process.

MPI_COMM_NULL is also returned in `newcomm` in the following cases:
- MPI_INFO_NULL is provided.
- The info handle includes neither the key "mpi_hw_resource_type" nor the key "mpi_pset_name".
- The MPI implementation neither recognizes nor supports the info keys "mpi_hw_resource_type" and "mpi_pset_name".
- The MPI implementation does not recognize the value associated with the info key "mpi_hw_resource_type" or "mpi_pset_name".
The MPI implementation will return in the group of the output communicator `newcomm` the largest subset of MPI processes that match the splitting criterion.

Advice to users. The set of resources that an MPI process is able to utilize may change during the application execution (e.g., because of the relocation of an MPI process), in which case the communicators created with the value `MPI_COMM_TYPERESOURCEGUIDED` before this change may not reflect the utilization of resources of such process at any time after the communicator creation. *(End of advice to users.)*

The user explicitly constrains with the `info` argument the splitting of the input communicator `comm`. To this end, the following `info` keys are reserved and their associated values are implementation-defined strings designating the type of the requested resource. Only one of these `info` keys can be used in `info` at a time in a call to `MPI_COMM_SPLIT_TYPE`; use of more than one `info` key is erroneous.

"mpi_hw_resource_type" is used to specify the type of a requested hardware resource (e.g., “NUMANode”, “Package” or “L3Cache”). The value "mpi_shared_memory" is reserved and its use is equivalent to using `MPI_COMM_TYPE_SHARED` for the `split_type` parameter.

Rationale. The value "mpi_shared_memory" is defined in order to ensure consistency between the use of `MPI_COMM_TYPE_SHARED` and the use of `MPI_COMM_TYPERESOURCEGUIDED`. *(End of rationale.)*

All MPI processes in the group of the input communicator `comm` must provide the same `info` key to perform the splitting action. All MPI processes in the group of the input communicator `comm` must provide the same value for the `info` key "mpi_hw_resource_type".

"mpi_pset_name" is used to specify the type of a requested logical resource through the utilization of a process set name (e.g., “app://ocean” or “app://atmos”). This process set name must be valid in the session from which the input communicator `comm` is derived. If this input communicator is not derived from a session, then `MPI_COMM_NULL` is returned in `newcomm`.

All MPI processes that are both in the group of the input communicator `comm` and in the process set identified by the given process set name must provide the same `info` key to perform the splitting action. All MPI processes that are both in the group of the input communicator `comm` and in the process set identified by the given process set name must provide the same value for the `info` key "mpi_pset_name".

Example 7.4. Splitting `MPI_COMM_WORLD` into NUMANode subcommunicators.

```c
MPI_Info info;
MPI_Comm hwcomm;
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Info_create(&info);
MPI_Info_set(info, "mpi_hw_resource_type", "NUMANode");
MPI_Comm_split_type(MPI_COMM_WORLD,
```

```c
```
MPI_COMM_TYPE_RESOURCE_GUIDED,
 rank, info, &hwcomm);

MPI_COMM_TYPE_HW_UNGUIDED: the group of MPI processes associated with
newcomm must be a strict subset of the group associated with comm and each
newcomm corresponds to a single instance of a hardware resource type (for example
a computing core or an L3 cache).

All MPI processes in the group associated with comm that utilize that specific hard-
ware resource type instance—and no other instance of the same hardware resource
type—are included in the group of newcomm.

If a given MPI process cannot be a member of a communicator that forms such a
strict subset, or does not meet the above criteria, then MPI_COMM_NULL is returned
in newcomm for this process.

Advice to implementors. In a high-quality MPI implementation, the number of
different new valid communicators newcomm produced by this splitting operation
should be minimal unless the user provides a key/value pair that modifies this
behavior. The sets of hardware resource types used for the splitting operation are
implementation-dependent, but should reflect the hardware of the actual system
on which the application is currently executing. (End of advice to implementors.)

Rationale. If the hardware resources are hierarchically organized, calling this
routine several times using as its input communicator comm the output commu-
icator newcomm of the previous call creates a sequence of newcomm communic-
ators in each MPI process, which exposes a hierarchical view of the hardware
platform, as shown in Example 7.5. This sequence of returned newcomm commu-
nicators may differ from the sets of hardware resource types, as shown in the
second splitting operation in Figure 7.3. (End of rationale.)

Advice to users. Each output communicator newcomm can represent a different
hardware resource type (see Figure 7.3 for an example). The set of hardware
resources an MPI process utilizes may change during the application execution
(e.g., because of MPI process relocation), in which case the communicators cre-
ated with the value MPI_COMM_TYPE_HW_UNGUIDED before this change may
not reflect the utilization of hardware resources for such MPI process at any time
after the communicator creation. (End of advice to users.)

If a valid info handle is provided as an argument, the MPI implementation sets the
info key “mpi_hw_resource_type” for each MPI process in the group associated with a
returned newcomm communicator and the info key value is an implementation-defined
string that indicates the hardware resource type represented by newcomm. The same
hardware resource type must be set in all MPI processes in the group associated with
newcomm.

Example 7.5. Recursive splitting of MPI_COMM_WORLD.
#define MAX_NUM_LEVELS 32
MPI_Comm hwcomm[MAX_NUM_LEVELS];
Figure 7.3: Recursive splitting of MPI_COMM_WORLD with MPI_COMM_SPLIT_TYPE and MPI_COMM_TYPE_HW_UNGUIDED. Dashed lines represent communicators whilst solid lines represent hardware resources. MPI processes (P0 to P11) utilize exclusively their respective core, except for P6 and P7, which utilize CPU #3 of Rack #0 and can therefore use Cores #6 and #7 indifferently. The second splitting operation yields two subcommunicators corresponding to NUMANodes in Rack #0 and to CPUs in Rack #1 because Rack #1 features only one NUMANode, which corresponds to the whole portion of the Rack that is included in MPI_COMM_WORLD and hwcomm[1]. For the first splitting operation, the hardware resource type returned in the info argument is “Rack” on the MPI processes on Rack #0, whereas on Rack #1, it can be either “Rack” or “NUMANode”.
```c
int rank, level_num = 0;

hwcomm[level_num] = MPI_COMM_WORLD;

while((hwcomm[level_num] != MPI_COMM_NULL)
    && (level_num < MAX_NUM_LEVELS -1)){
    MPI_Comm_rank(hwcomm[level_num],&rank);
    MPI_Comm_split_type(hwcomm[level_num],
        MPI_COMM_TYPE_HW_UN GUIDED, rank,
        MPI_INFO_NULL, &hwcomm[level_num+1]);
    level_num ++;
}
```

Advice to implementors. Implementations can define their own split_type values, or use the info argument, to assist in creating communicators that help expose platform-specific information to the application. The concept of hardware-based communicators was first described by Träff [68] for SMP systems. Guided and unguided modes description as well as an implementation path are introduced by Goglin et al. [28]. (End of advice to implementors.)

MPI_COMM_CREATE_FROM_GROUP

IN group group (handle)

IN stringtag unique identifier for this operation (string)

IN info info object (handle)

IN errhandler error handler to be attached to new intra-communicator (handle)

OUT newcomm new communicator (handle)

C binding

```c
int MPI_Comm_create_from_group(MPI_Group group, const char *stringtag, MPI_Info info, MPI_Errhandler errhandler, MPI_Comm *newcomm)
```

Fortran 2008 binding

```fortran
MPI_Comm_create_from_group(group, stringtag, info, errhandler, newcomm, ierr)
```

Fortran binding

```fortran
MPI_COMM_CREATE_FROM_GROUP(GROUP, STRINGTAG, INFO, ERRHANDLER, NEWCOMM, IERROR)
```

INTEGER GROUP, INFO, ERRHANDLER, NEWCOMM, IERROR
7.4.3 Communicator Destructors

MPI_COMM_FREE(comm)
INOUT comm communicator to be destroyed (handle)

C binding
int MPI_Comm_free(MPI_Comm *comm)

Fortran 2008 binding
MPI_Comm_free(comm, ierror)
 TYPE(MPI_Comm), INTENT(INOUT) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_FREE(COMM, IERROR)
 INTEGER COMM, IERROR

This collective operation marks the communication object for deallocation. Any operations that use the communicator comm (whether active or inactive at the time of this
procedure call) will continue to work; the object is actually deallocated only if there are no other active references to it. The handle is set to MPI_COMM_NULL in the calling MPI process. This call applies to intra- and inter-communicators. The delete callback functions for all cached attributes (see Section 7.7) are called in arbitrary order.

Advice to implementors. Though collective, it is anticipated that this operation will normally be implemented to be local, though a debugging version of an MPI library might choose to synchronize. (End of advice to implementors.)

7.4.4 Communicator Info

Hints specified via info (see Chapter 10) allow a user to provide information to direct optimization. Providing hints may enable an implementation to deliver increased performance or minimize use of system resources. As described in Section 10, an implementation is free to ignore all hints; however, applications must comply with any info hints they provide that are used by the MPI implementation (i.e., are returned by a call to MPI_COMM_GET_INFO) and that place a restriction on the behavior of the application. Hints are specified on a per communicator basis, in MPI_COMM_DUP_WITH_INFO, MPI_COMM_IDUP_WITH_INFO, MPI_COMM_SET_INFO, MPI_COMM_SPLIT_TYPE, MPI_COMM_SPLIT_WITH_INFO, MPI_COMM_SPLIT_WITH_INFO, MPI_COMM_SHUFFLE, MPI_COMM_SPLIT_TYPE, MPI_COMM_SPLIT_TYPE, MPI_COMM_SPLIT_TYPE, and MPI_COMM_SPLIT_TYPE, via the opaque info object. When an info object that specifies a subset of valid hints is passed to MPI_COMM_SET_INFO, there will be no effect on previously set or defaulted hints that the info does not specify.

Advice to implementors. It may happen that a program is coded with hints for one system, and later executes on another system that does not support these hints. In general, unsupported hints should simply be ignored. Needless to say, no hint can be mandatory. However, for each hint used by a specific implementation, a default value must be provided when the user does not specify a value for this hint. (End of advice to implementors.)

Advice to users. Some optimizations may only be possible when all processes in the group of the communicator provide a given info key with the same value. (End of advice to users.)

Info hints are not propagated by MPI from one communicator to another. The following info keys are valid for all communicators.

Advice to users. Some optimizations may only be possible when all MPI processes in the group of the communicator provide a given info key with the same value. (End of advice to users.)

"mpi_assert_no_any_tag" (boolean, default: "false"): If set to "true", then the implementation may assume that the MPI process will not use the MPI_ANY_TAG wildcard on the given communicator.

"mpi_assert_no_any_source" (boolean, default: "false"): If set to "true", then the implementation may assume that the MPI process will not use the MPI_ANY_SOURCE wildcard on the given communicator.
"mpi_assert_exact_length" (boolean, default: "false"): If set to "true", then the implementation may assume that the lengths of messages received by the MPI process are equal to the lengths of the corresponding receive buffers, for point-to-point communication operations on the given communicator.

"mpi_assert_allow_overtaking" (boolean, default: "false"): If set to "true", then the implementation may assume that point-to-point communications on the given communicator do not rely on the nonovertaking rule specified in Section 3.5. In other words, the application asserts that send operations are not required to be matched at the receiver in the order in which the send operations were posted by the sender, and receive operations are not required to be matched in the order in which they were posted by the receiver.

Advice to users. Use of the "mpi_assert_allow_overtaking" info key can result in nondeterminism in the message matching order. (End of advice to users.)

"mpi_assert_strict_persistent_collective_ordering" (boolean, default: "false"): If set to "true", then the implementation may assume that all the persistent collective operations are started in the same order across all MPI processes in the group of the communicator. It is required that if this assertion is made on one member of the communicator’s group, then it must be made on all members of that communicator’s group with the same value.

Advice to users. Use of the "mpi_assert_strict_persistent_collective_ordering" may be needed because some optimizations may only be possible on certain systems when strict collective ordering is asserted for the underlying communicator of a persistent collective operation. (End of advice to users.)

"mpi_assert_memory_alloc_kinds" (string, not set by default): If set, the implementation may assume that the memory for all communication buffers passed to MPI operations performed by the calling MPI process on the given communicator will use only the memory allocation kinds listed in the value string. See Section 11.4.3.

MPI_COMM_SET_INFO(comm, info)

| INOUT | comm | communicator (handle) |
| IN | info | info object (handle) |

C binding

int MPI_Comm_set_info(MPI_Comm comm, MPI_Info info)

Fortran 2008 binding

MPI_Comm_set_info(comm, info, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_COMM_SET_INFO(COMM, INFO, IERROR)
MPI_COMM_SET_INFO updates the hints of the communicator associated with comm using the hints provided in info. This operation has no effect on previously set or defaulted hints that are not specified by info. It also has no effect on previously set or defaulted hints that are specified by info, but are ignored by the MPI implementation in this call to MPI_COMM_SET_INFO. MPI_COMM_SET_INFO is a collective routine. The info object may be different on each MPI process, but any info entries that an implementation requires to be the same on all MPI processes must appear with the same value in each MPI process’s info object.

Advice to users. Some info items that an implementation can use when it creates a communicator cannot easily be changed once the communicator has been created. Thus, an implementation may ignore hints issued in this call that it would have accepted in a creation call. An implementation may also be unable to update certain info hints in a call to MPI_COMM_SET_INFO. MPI_COMM_GET_INFO can be used to determine whether updates to existing info hints were ignored by the implementation. (End of advice to users.)

Advice to users. Setting info hints on the predefined communicators MPI_COMM_WORLD and MPI_COMM_SELF may have unintended effects, as changes to these global objects may affect all components of the application, including libraries and tools. Users must ensure that all components of the application that use a given communicator, including libraries and tools, can comply with any info hints associated with that communicator. (End of advice to users.)

MPI_COMM_GET_INFO(comm, info_used)

IN commute communicator object (handle)
OUT info_used new info object (handle)

C binding
int MPI_Comm_get_info(MPI_Comm comm, MPI_Info *info_used)

Fortran 2008 binding
MPI_Comm_get_info(comm, info_used, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(OUT) :: info_used
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_GET_INFO(COMM, INFO_USED, IERROR)
 INTEGER COMM, INFO_USED, IERROR

MPI_COMM_GET_INFO returns a new info object containing the hints of the communicator associated with comm. The current setting of all hints related to this communicator is returned in info_used. An MPI implementation is required to return all hints that are supported by the implementation and have default values specified; any user-supplied hints that were not ignored by the implementation; and any additional hints that were set by
the implementation. If no such hints exist, a handle to a newly created info object is returned that contains no key/value pair. The user is responsible for freeing info_used via MPI_INFO_FREE.

7.5 Motivating Examples

7.5.1 Current Practice #1

Example 7.6. Parallel output of a message

```c
int main(int argc, char *argv[])
{
    int me, size;
    ...
    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &me);
    MPI_Comm_size(MPI_COMM_WORLD, &size);
    (void)printf("MPI process %d size %d\n", me, size);
    ...
    MPI_Finalize();
    return 0;
}
```

Example 7.6 is a do-nothing program that initializes itself, and refers to the “all” communicator, and prints a message. It terminates itself too. This example does not imply that MPI supports printf-like communication itself.

Example 7.7. Message exchange (supposing that size is even)

```c
int main(int argc, char *argv[])
{
    int me, size;
    int SOME_TAG = 0;
    ...
    MPI_Init(&argc, &argv);

    MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */
    MPI_Comm_size(MPI_COMM_WORLD, &size); /* local */

    if((me % 2) == 0)
    {
        /* send unless highest-numbered MPI process */
        if((me + 1) < size)
            MPI_Send(..., me + 1, SOME_TAG, MPI_COMM_WORLD);
    }
    else
        MPI_Recv(..., me - 1, SOME_TAG, MPI_COMM_WORLD, &status);

    ...
    MPI_Finalize();
    return 0;
}
Example 7.7 schematically illustrates message exchanges between “even” and “odd” MPI processes in the “all” communicator.

7.5.2 Current Practice #2

Example 7.8.

```c
int main(int argc, char *argv[])
{
 int me, count;
 void *data;
 ...

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);

 if(me == 0)
 {
 /* get input, create buffer ‘data’ */
 ...
 }
 MPI_Bcast(data, count, MPI_BYTE, 0, MPI_COMM_WORLD);
 ...
 MPI_Finalize();
 return 0;
}
```

Example 7.8 illustrates the use of a collective communication.

7.5.3 (Approximate) Current Practice #3

Example 7.9.

```c
int main(int argc, char *argv[])
{
 int me, count, count2;
 void *send_buf, *recv_buf, *send_buf2, *recv_buf2;
 MPI_Group group_world, grprem;
 MPI_Comm commWorker;
 static int ranks[] = {0};
 ...
 MPI_Init(&argc, &argv);
 MPI_Comm_group(MPI_COMM_WORLD, &group_world);
 MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */

 MPI_Group_excl(group_world, 1, ranks, &grprem); /* local */
 MPI_Comm_create(MPI_COMM_WORLD, grprem, &commWorker);

 if(me != 0)
 {
```
7.5 Motivating Examples

Example 7.9 illustrates how a group consisting of all but the zeroth MPI process of the “all” group is created, and then how a communicator is formed (commWorker) for that new group. The new communicator is used in a collective call, and all MPI processes execute a collective call in the MPI_COMM_WORLD context. This example illustrates how the two communicators (that inherently possess distinct contexts) protect communication. That is, communication in MPI_COMM_WORLD is insulated from communication in commWorker, and vice versa.

In summary, “group safety” is achieved via communicators because distinct contexts within communicators are enforced to be unique on any MPI process.

7.5.4 Communication Safety Example

The following example (7.10) is meant to illustrate “safety” between point-to-point and collective communication. MPI guarantees that a single communicator can do safe point-to-point and collective communication.
if (me != MPI_UNDEFINED)
{
    MPI_Irecv(buff1, count, MPI_DOUBLE, MPI_ANY_SOURCE,
               TAG_ARBITRARY, the_comm, request);
    MPI_Isend(buff2, count, MPI_DOUBLE, (me+1)%4, TAG_ARBITRARY,
              the_comm, request+1);
    for(i = 0; i < SOME_COUNT; i++)
        MPI_Reduce(..., the_comm);
    MPI_Waitall(2, request, status);
    MPI_Comm_free(&the_comm);
}
MPI_Group_free(&group_world);
MPI_Group_free(&subgroup);
MPI_Finalize();
return 0;

7.5.5 Library Example #1

Example 7.11. First library example
The main program:

```c
int main(int argc, char *argv[])
{
 int done = 0;
 user_lib_t *libh_a, *libh_b;
 void *dataset1, *dataset2;
 ...
 MPI_Init(&argc, &argv);
 ...
 init_user_lib(MPI_COMM_WORLD, &libh_a);
 init_user_lib(MPI_COMM_WORLD, &libh_b);
 ...
 user_start_op(libh_a, dataset1);
 user_start_op(libh_b, dataset2);
 ...
 while(!done)
 {
 /* work */
 ...
 MPI_Reduce(..., MPI_COMM_WORLD);
 ...
 /* see if done */
 ...
 }
 user_end_op(libh_a);
 user_end_op(libh_b);
```
7.5 Motivating Examples

```c
uninit_user_lib(libh_a);
uninit_user_lib(libh_b);
MPI_Finalize();
return 0;
}
```

The user library initialization code:

```c
void init_user_lib(MPI_Comm comm, user_lib_t **handle)
{
 user_lib_t *save;

 user_lib_initsave(&save); /* local */
 MPI_Comm_dup(comm, &(save->comm));

 /* other inits */
 ...
 *handle = save;
}
```

User start-up code:

```c
void user_start_op(user_lib_t *handle, void *data)
{
 MPI_Irecv(... , handle->comm, &(handle->irecv_handle));
 MPI_Isend(... , handle->comm, &(handle->isend_handle));
}
```

User communication clean-up code:

```c
void user_end_op(user_lib_t *handle)
{
 MPI_Status status;
 MPI_Wait(&handle->isend_handle, &status);
 MPI_Wait(&handle->irecv_handle, &status);
}
```

User object clean-up code:

```c
void uninit_user_lib(user_lib_t *handle)
{
 MPI_Comm_free(&(handle->comm));
 free(handle);
}
```

7.5.6 Library Example #2

Example 7.12. Second library example
The main program:

```c
int main(int argc, char *argv[])
{
 int ma, mb;
 MPI_Group group_world, group_a, group_b;
```
MPI_Comm comm_a, comm_b;

static int list_a[] = {0, 1};
#if defined(EXAMPLE_2B) || defined(EXAMPLE_2C)
  static int list_b[] = {0, 2, 3};
#else /* EXAMPLE_2A */
  static int list_b[] = {0, 2};
#endif

int size_list_a = sizeof(list_a)/sizeof(int);
int size_list_b = sizeof(list_b)/sizeof(int);

MPI_Init(&argc, &argv);
MPI_Comm_group(MPI_COMM_WORLD, &group_world);
MPI_Group_incl(group_world, size_list_a, list_a, &group_a);
MPI_Group_incl(group_world, size_list_b, list_b, &group_b);
MPI_Comm_create(MPI_COMM_WORLD, group_a, &comm_a);
MPI_Comm_create(MPI_COMM_WORLD, group_b, &comm_b);

if(comm_a != MPI_COMM_NULL)
  MPI_Comm_rank(comm_a, &ma);
if(comm_b != MPI_COMM_NULL)
  MPI_Comm_rank(comm_b, &mb);

if(comm_a != MPI_COMM_NULL)
  lib_call(comm_a);

if(comm_b != MPI_COMM_NULL)
{
  lib_call(comm_b);
  lib_call(comm_b);
}

if(comm_a != MPI_COMM_NULL)
  MPI_Comm_free(&comm_a);
if(comm_b != MPI_COMM_NULL)
  MPI_Comm_free(&comm_b);
MPI_Group_free(&group_a);
MPI_Group_free(&group_b);
MPI_Group_free(&group_world);
MPI_Finalize();
return 0;

The library:

void lib_call(MPI_Comm comm)
{
  int me, done = 0;
  MPI_Status status;
  MPI_Comm_rank(comm, &me);
  if(me == 0)
while(!done)
{
    MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);
    ...
}
else
{
    /* work */
    MPI_Send(..., 0, ARBITRARY_TAG, comm);
    ...
}

#ifdef EXAMPLE_2C
    /* include (resp, exclude) for safety (resp, no safety): */
    MPI_Barrier(comm);
#endif

The above example is three examples, depending on whether or not one includes rank 3 in list_b, and whether or not a synchronizing operation is included in lib_call. This example illustrates that, despite contexts, subsequent calls to lib_call with the same context need not be safe from one another (colloquially, “back-masking”). Safety is realized if a call to MPI_Barrier is added. What this demonstrates is that libraries have to be written carefully, even with contexts. When rank 3 is excluded, then the synchronizing operation is not needed to get safety from back-masking.

Algorithms like “reduce” and “allreduce” have strong enough source selectivity properties so that they are inherently okay (no back-masking), provided that MPI provides basic guarantees. So are multiple calls to a typical tree-broadcast algorithm with the same root or different roots (see [65]). Here we rely on two guarantees of MPI: pairwise ordering of messages between MPI processes in the same context, and source selectivity—deleting either feature removes the guarantee that back-masking cannot be required.

Algorithms that try to do nondeterministic broadcasts or other calls that include wildcard operations will not generally have the good properties of the deterministic implementations of “reduce,” “allreduce,” and “broadcast.” Such algorithms would have to utilize the monotonically increasing tags (within a communicator scope) to keep things straight.

All of the foregoing is a supposition of “collective calls” implemented with point-to-point operations. MPI implementations may or may not implement collective calls using point-to-point operations. These algorithms are used to illustrate the issues of correctness and safety, independent of how MPI implements its collective calls. See also Section 7.9.

7.6 Inter-Communication

This section introduces the concept of inter-communication and describes the portions of MPI that support it. It describes support for writing programs that contain user-level servers.

All communication described thus far has involved communication between MPI processes that are members of the same group. This type of communication is called “intra-communication” and the communicator used is called an “intra-communicator,” as we have noted earlier in the chapter.

In modular and multi-disciplinary applications, different MPI process groups execute
distinct modules and MPI processes within different modules communicate with one another in a pipeline or a more general module graph. In these applications, the most natural way for a MPI process to specify a target MPI process is by the rank of the target MPI process within the target group. In applications that contain internal user-level servers, each server may be a MPI process group that provides services to one or more clients, and each client may be a MPI process group that uses the services of one or more servers. It is again most natural to specify the target MPI process by rank within the target group in these applications. This type of communication is called “inter-communication” and the communicator used is called an “inter-communicator,” as introduced earlier.

An inter-communication is a point-to-point communication between MPI processes in different groups. The group containing an MPI process that initiates an inter-communication operation is called the “local group,” that is, the sender in a send and the receiver in a receive. The group containing the target MPI process is called the “remote group,” that is, the receiver in a send and the sender in a receive. As in intra-communication, the target MPI process is specified using a (communicator, rank) pair. Unlike intra-communication, the rank is relative to a second, remote group.

All inter-communicator constructors are blocking except for MPI_COMM_IDUP and require that the local and remote groups be disjoint.

Advice to users. The groups must be disjoint for several reasons. First, the intent of the inter-communicators is to provide a communicator for communication between disjoint groups. This is reflected in the definition of MPI_INTERCOMM_MERGE, which allows the user to control the ranking of the MPI processes in the created intra-communicator; this ranking makes little sense if the groups are not disjoint. In addition, the natural extension of collective operations to inter-communicators makes the most sense when the groups are disjoint. (End of advice to users.)

Here is a summary of the properties of inter-communication and inter-communicators:

- The syntax of point-to-point and collective communication is the same for both inter- and intra-communication. The same communicator can be used both for send and for receive operations.
- A target MPI process is addressed by its rank in the remote group, both for sends and for receives.
- Communications using an inter-communicator are guaranteed not to conflict with any communications that use a different communicator.
- A communicator will provide either intra- or inter-communication, never both.

The routine MPI_COMM_TEST_INTER may be used to determine if a communicator is an inter- or intra-communicator. Inter-communicators can be used as arguments to some of the other communicator access routines. Inter-communicators cannot be used as input to some of the constructor routines for intra-communicators (for instance, MPI_CART_CREATE).

Advice to implementors. For the purpose of point-to-point communication, communicators can be represented in each process by a tuple consisting of:

group
send_context
receive_context

source

For inter-communicators, group describes the remote group, and source is the rank of the MPI process in the local group. For intra-communicators, group is the communicator group (remote=local), source is the rank of the MPI process in this group, and send context and receive context are identical. A group can be represented by a rank-to-absolute-address translation table.

The inter-communicator cannot be discussed sensibly without considering MPI processes in both the local and remote groups. Imagine an MPI process P in group P, which has an inter-communicator C_P, and an MPI process Q in group Q, which has an inter-communicator C_Q. Then

- C_P.group describes the group Q and C_Q.group describes the group P.
- C_P.send_context = C_Q.receive_context and the context is unique in Q;
  C_P_receive_context = C_Q.send_context and this context is unique in P.
- C_P.source is rank of P in P and C_Q.source is rank of Q in Q.

Assume that P sends a message to Q using the inter-communicator. Then P uses the group table to find the absolute address of Q; source and send context are appended to the message.

Assume that Q posts a receive with an explicit source argument using the inter-communicator. Then Q matches receive context to the message context and source argument to the message source.

The same algorithm is appropriate for intra-communicators as well.

In order to support inter-communicator accessors and constructors, it is necessary to supplement this model with additional structures, that store information about the local communication group, and additional safe contexts. (End of advice to implementors.)

7.6.1 Inter-Communicator Accessors

MPI_COMM_TEST_INTER(comm, flag)

IN comm communicator (handle)
OUT flag true if comm is an inter-communicator (logical)

C binding
int MPI_Comm_test_inter(MPI_Comm comm, int *flag)

Fortran 2008 binding
MPI_Comm_test_inter(comm, flag, ierror)
  TYPE(MPI_Comm), INTENT(IN) :: comm
  LOGICAL, INTENT(OUT) :: flag
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)
Table 7.1: MPI_COMM_* function behavior (in inter-communication mode)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_COMM_SIZE</td>
<td>returns the size of the local group.</td>
</tr>
<tr>
<td>MPI_COMM_GROUP</td>
<td>returns the local group.</td>
</tr>
<tr>
<td>MPI_COMM_RANK</td>
<td>returns the rank in the local group.</td>
</tr>
</tbody>
</table>

```plaintext
INTEGER COMM, IERROR
LOGICAL FLAG
```

This local routine allows the calling MPI process to determine if a communicator is an inter-communicator or an intra-communicator. It returns true if it is an inter-communicator, otherwise false.

Table 7.1 describes the behavior when an inter-communicator is used as an input argument to the communicator accessors described above under intra-communication. Furthermore, the operation MPI_COMMCOMPARE is valid for inter-communicators. Both communicators must be either intra- or inter-communicators, or else MPI_UNEQUAL results. Both corresponding local and remote groups must compare correctly to get the results MPI_CONGRUENT or MPI_SIMILAR. In particular, it is possible for MPI_SIMILAR to result because either the local or remote groups were similar but not identical.

The following accessors provide consistent access to the remote group of an inter-communicator. The following are all local operations.

```plaintext
MPI_COMM_REMOTE_SIZE(comm, size)
```

IN comm inter-communicator (handle)

OUT size number of MPI processes in the remote group of comm (integer)

C binding

```plaintext
int MPI_Comm_remote_size(MPI_Comm comm, int *size)
```

Fortran 2008 binding

```plaintext
MPI_Comm_remote_size(comm, size, ierror)
```

```plaintext
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```plaintext
MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)
```

```plaintext
 INTEGER COMM, SIZE, IERROR
```

```plaintext
MPI_COMM_REMOTE_GROUP(comm, group)
```

IN comm inter-communicator (handle)

OUT group remote group corresponding to comm (handle)
C binding

```c
int MPI_Comm_remote_group(MPI_Comm comm, MPI_Group *group)
```

Fortran binding

```fortran
MPI_Comm_remote_group(comm, group, ierror)
```

```
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Group), INTENT(OUT) :: group
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran 2008 binding

```fortran
MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)
```

```
INTEGER COMM, GROUP, IERROR
```

Rationale. Symmetric access to both the local and remote groups of an inter-communicator is important, so this function, as well as `MPI_COMM_REMOTE_SIZE` have been provided. (End of rationale.)

7.6.2 Inter-Communicator Operations

This section introduces five blocking inter-communicator operations.

- **MPI_INTERCOMM_CREATE** is used to bind two intra-communicators into an inter-communicator; the function **MPI_INTERCOMM_CREATE_FROM_GROUPS** constructs an inter-communicator from two previously defined disjoint groups; the function **MPI_INTERCOMM_MERGE** creates an intra-communicator by merging the local and remote groups of an inter-communicator. The functions **MPI_COMM_DUP** and **MPI_COMM_FREE**, introduced previously, duplicate and free an inter-communicator, respectively.

Overlap of local and remote groups that are bound into an inter-communicator is prohibited. If there is overlap, then the program is erroneous and is likely to deadlock.

The function **MPI_INTERCOMM_CREATE** can be used to create an inter-communicator from two existing intra-communicators, in the following situation: At least one selected member from each group (the “group leader”) has the ability to communicate with the selected member from the other group; that is, a “peer” communicator exists to which both leaders belong, and each leader knows the rank of the other leader in this peer communicator. Furthermore, members of each group know the rank of their leader.

Construction of an inter-communicator from two intra-communicators requires separate collective operations in the local group and in the remote group, as well as a point-to-point communication between an MPI process in the local group and an MPI process in the remote group.

When using the World Model (Section 11.2), the **MPI_COMM_WORLD** communicator (or preferably a dedicated duplicate thereof) can be this peer communicator. For applications that use the Sessions Model, or the spawn or join operations, it may be necessary to first create an intra-communicator to be used as the peer communicator.

The application topology functions described in Chapter 8 do not apply to inter-communicators. Users that require this capability should utilize **MPI_INTERCOMM_MERGE** to build an intra-communicator, then apply the graph or cartesian topology capabilities to that intra-communicator, creating an appropriate topology-oriented intra-communicator. Alternatively, it may be reasonable to devise one’s own application topology mechanisms for this case, without loss of generality.
This call creates an inter-communicator. It is collective over the union of the local and remote groups. MPI processes should provide identical local_comm and local_leader arguments within each group. Wildcards are not permitted for remote_leader, local_leader, and tag.
7.6 Inter-Communication

**C binding**

```c
int MPI_Intercomm_create_from_groups(MPI_Group local_group, int local_leader,
MPI_Group remote_group, int remote_leader, const char *stringtag,
MPI_Info info, MPI_Errhandler errhandler, MPI_Comm *newintercomm)
```

**Fortran 2008 binding**

```fortran
MPI_Intercomm_create_from_groups(local_group, local_leader, remote_group,
 remote_leader, stringtag, info, errhandler, newintercomm, ierror)
```

**Fortran binding**

```fortran
MPI_INTERCOMM_CREATE_FROM_GROUPS(LOCAL_GROUP, LOCAL_LEADER, REMOTE_GROUP,
 REMOTE_LEADER, STRINGTAG, INFO, ERRHANDLER, NEWINTERCOMM, IERROR)
```

This call creates an inter-communicator. Unlike `MPI_INTERCOMM_CREATE`, this function uses as input previously defined, disjoint local and remote groups. The calling MPI process must be a member of the local group. The call is collective over the union of the local and remote groups. All involved MPI processes shall provide an identical value for the `stringtag` argument. Within each group, all MPI processes shall provide identical `local_group`, `local_leader` arguments. Wildcards are not permitted for the `remote_leader` or `local_leader` arguments. The `stringtag` argument serves the same purpose as the `stringtag` used in the `MPI_COMM_CREATE_FROM_GROUP` function; it differentiates concurrent calls in a multithreaded environment. The `stringtag` shall not exceed `MPI_MAX_STRINGTAG_LEN` characters in length. For C, this includes space for a null terminating character.

`MPI_MAX_STRINGTAG_LEN` shall have a value of at least 63. In the event that `MPI_GROUP_EMPTY` is supplied as the `local_group` or `remote_group` or both, then the call is a local operation and `MPI_COMM_NULL` is returned as the `newintercomm`.

The `errhandler` argument specifies an error handler to be attached to the new inter-communicator. Section 9.3 specifies the error handler to be invoked if an error is encountered during the invocation of `MPI_INTERCOMM_CREATE_FROM_GROUPS`.

The `info` argument provides hints and assertions, possibly MPI implementation dependent, which indicate desired characteristics and guide communicator creation.
Chapter 7 Groups, Contexts, Communicators, and Caching

356

MPI_INTERCOMM_MERGE(intercomm, high, newintracomm)

IN intercomm inter-communicator (handle)

IN high ordering of the local and remote groups in the new intra-communicator (logical)

OUT newintracomm new intra-communicator (handle)

C binding

int MPI_Intercomm_merge(MPI_Comm intercomm, int high, MPI_Comm *newintracomm)

Fortran 2008 binding

MPI_Intercomm_merge(intercomm, high, newintracomm, ierror)

    TYPE(MPI_Comm), INTENT(IN) :: intercomm
    LOGICAL, INTENT(IN) :: high
    TYPE(MPI_Comm), INTENT(OUT) :: newintracomm
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_INTERCOMM_MERGE(INTERCOMM, HIGH, NEWINTRACOMM, IERROR)

    INTEGER INTERCOMM, NEWINTRACOMM, IERROR
    LOGICAL HIGH

This function creates an intra-communicator from the union of the two groups that are associated with intercomm. All MPI processes should provide the same high value within each of the two groups. If MPI processes in one group provided the value high = false and MPI processes in the other group provided the value high = true then the union orders the “low” group before the “high” group. If all MPI processes provided the same high argument then the order of the union is arbitrary. This call is blocking and collective within the union of the two groups.

The error handler on the new inter-communicator in each MPI process is inherited from the communicator that contributes the local group. Note that this can result in different MPI processes in the same communicator having different error handlers.

Advice to implementors. The implementation of MPI_INTERCOMM_MERGE, MPI_COMM_FREE, and MPI_COMM_DUP are similar to the implementation of MPI_INTERCOMM_CREATE, except that contexts private to the input inter-communicator are used for communication between group leaders rather than contexts inside a bridge communicator. (End of advice to implementors.)

7.6.3 Inter-Communication Examples

Example 1: Three-Group “Pipeline”

As shown in Figure 7.4, groups 0 and 1 communicate. Groups 1 and 2 communicate. Therefore, group 0 requires one inter-communicator, group 1 requires two inter-communicators, and group 2 requires 1 inter-communicator.

Example 7.13.

int main(int argc, char *argv[])
{
    MPI_Comm myComm; /* intra-communicator of local sub-group */
7.6 Inter-Communication

![Diagram of three groups communicating](image)

**Figure 7.4: Three-group pipeline**

```c
MPI_Comm myFirstComm; /* inter-communicator */
MPI_Comm mySecondComm; /* second inter-communicator (group 1 only) */
int membershipKey;
int rank;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* User code must generate membershipKey in the range [0, 1, 2] */
membershipKey = rank % 3;

/* Build intra-communicator for local sub-group */
MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);

/* Build inter-communicators. Tags are hard-coded. */
if (membershipKey == 0)
{ /* Group 0 communicates with group 1. */
 MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,
 1, &myFirstComm);
}
else if (membershipKey == 1)
{ /* Group 1 communicates with groups 0 and 2. */
 MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,
 1, &myFirstComm);
 MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,
 12, &mySecondComm);
}
else if (membershipKey == 2)
{ /* Group 2 communicates with group 1. */
 MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,
 12, &myFirstComm);
}

/* Do work ... */

switch(membershipKey) /* free communicators appropriately */
{
 case 1:
 MPI_Comm_free(&mySecondComm);
 case 0:
 case 2:
 MPI_Comm_free(&myFirstComm);
 break;
}

MPI_Finalize();
return 0;
```
Example 2: Three-Group “Ring”

As shown in Figure 7.5, groups 0 and 1 communicate. Groups 1 and 2 communicate. Groups 0 and 2 communicate. Therefore, each requires two inter-communicators.

Example 7.14.

```c
int main(int argc, char *argv[])
{
 MPI_Comm myComm; /* intra-communicator of local sub-group */
 MPI_Comm myFirstComm; /* inter-communicators */
 MPI_Comm mySecondComm;
 int membershipKey;
 int rank;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 ...
 /* User code must generate membershipKey in the range [0, 1, 2] */
 membershipKey = rank % 3;
 /* Build intra-communicator for local sub-group */
 MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);
 /* Build inter-communicators. Tags are hard-coded. */
 if (membershipKey == 0)
 {
 /* Group 0 communicates with groups 1 and 2. */
 MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,
 1, &myFirstComm);
 MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,
 2, &mySecondComm);
 }
 else if (membershipKey == 1)
 {
 /* Group 1 communicates with groups 0 and 2. */
 MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,
 1, &myFirstComm);
 MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,
 12, &mySecondComm);
 }

 ...
}
```
else if (membershipKey == 2)
{
    /* Group 2 communicates with groups 0 and 1. */
    MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,
                          2, &myFirstComm);
    MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,
                          12, &mySecondComm);
}
/* Do some work ... */

/* Then free communicators before terminating... */
MPI_Comm_free(&myFirstComm);
MPI_Comm_free(&mySecondComm);
MPI_Comm_free(&myComm);
MPI_Finalize();
return 0;

7.7 Caching

MPI provides a “caching” facility that allows an application to attach arbitrary pieces of
information, called attributes, to three kinds of MPI objects: communicators, windows,
and datatypes. More precisely, the caching facility allows a portable library to do the
following:

- pass information between calls by associating it with an MPI intra- or inter-communicator, window, or datatype,
- quickly retrieve that information, and
- be guaranteed that out-of-date information is never retrieved, even if the object is
  freed and its handle subsequently reused by MPI.

The caching capabilities, in some form, are required by built-in MPI routines such as
collective communication and application topology. Defining an interface to these capa-
bilities as part of the MPI standard is valuable because it permits routines like collective
communication and application topologies to be implemented as portable code, and also
because it makes MPI more extensible by allowing user-written routines to use standard
MPI calling sequences.

Advice to users. The communicator MPI_COMM_SELF is a suitable choice for posting
MPI process-local attributes, via this attribute-caching mechanism. (End of advice to
users.)

Rationale. In one extreme one can allow caching on all opaque handles. The other
extreme is to only allow it on communicators. Caching has a cost associated with it
and should only be allowed when it is clearly needed and the increased cost is modest.
This is the reason that windows and datatypes were added but not other handles.
(End of rationale.)
One difficulty is the potential for size differences between Fortran integers and C pointers. For this reason, the Fortran versions of these routines use integers of kind \texttt{MPI\_ADDRESS\_KIND}.

\textit{Advice to implementors.} High-quality implementations should raise an error when a keyval that was created by a call to \texttt{MPI\_XXX\_CREATE\_KEYVAL} is used with an object of the wrong type with a call to \texttt{MPI\_YYY\_GET\_ATTR}, \texttt{MPI\_YYY\_SET\_ATTR}, \texttt{MPI\_YYY\_DELETE\_ATTR}, or \texttt{MPI\_YYY\_FREE\_KEYVAL}. To do so, it is necessary to maintain, with each keyval, information on the type of the associated user function. \textit{(End of advice to implementors.)}

\section*{7.7.1 Functionality}

Attributes can be attached to communicators, windows, and datatypes. Attributes are local to the MPI process and specific to the communicator to which they are attached. Attributes are not propagated by MPI from one communicator to another except when the communicator is duplicated using \texttt{MPI\_COMM\_DUP}, \texttt{MPI\_COMM\_IDUP}, \texttt{MPI\_COMM\_DUP\_WITH\_INFO}, and \texttt{MPI\_COMM\_IDUP\_WITH\_INFO} (and even then the application must give specific permission through callback functions for the attribute to be copied. Please refer to Section 7.4.2 and Section 7.7.2 for attributes propagation rules).

\textit{Advice to users.} Attributes in C are of type \texttt{void*}. Typically, such an attribute will be a pointer to a structure that contains further information, or a handle to an MPI object. In Fortran, attributes are of type \texttt{INTEGER}. Such attribute can be a handle to an MPI object, or just an integer-valued attribute. \textit{(End of advice to users.)}

\textit{Advice to implementors.} Attributes are scalar values, equal in size to, or larger than a C-language pointer. Attributes can always hold an MPI handle. \textit{(End of advice to implementors.)}

The caching interface defined here requires that attributes be stored by MPI opaquely within a communicator, window, or datatype. Accessor functions include the following:

- obtain a key value (used to identify an attribute); the user specifies "callback" functions by which MPI informs the application when the communicator is destroyed or copied.

- store and retrieve the value of an attribute;

\textit{Advice to implementors.} Caching and callback functions are only called synchronously, in response to explicit application requests. This avoids problems that result from repeated crossings between user and system space. \textit{(This synchronous calling rule is a general property of MPI.)}

The choice of key values is under control of MPI. This allows MPI to optimize its implementation of attribute sets. It also avoids conflict between independent modules caching information on the same communicators.

A much smaller interface, consisting of just a callback facility, would allow the entire caching facility to be implemented by portable code. However, with the minimal callback interface, some form of table searching is implied by the need to handle arbitrary
communicators. In contrast, the more complete interface defined here permits rapid access to attributes through the use of pointers in communicators (to find the attribute table) and cleverly chosen key values (to retrieve individual attributes). In light of the efficiency “hit” inherent in the minimal interface, the more complete interface defined here is seen to be superior. (*End of advice to implementors.*).

MPI provides the following services related to caching. They are all MPI process local.

### 7.7.2 Communicators

Functions for caching on communicators are:

```
MPI_COMM_CREATE_KEYVAL(comm_copy_attr_fn, comm_delete_attr_fn, comm_keyval, extra_state)
```

- **IN** `comm_copy_attr_fn` copy callback function for `comm_keyval` (function)
- **IN** `comm_delete_attr_fn` delete callback function for `comm_keyval` (function)
- **OUT** `comm_keyval` key value for future access (integer)
- **IN** `extra_state` extra state for callback function

**C binding**

```c
int MPI_Comm_create_keyval(MPI_Comm_copy_attr_function *comm_copy_attr_fn,
 MPI_Comm_delete_attr_function *comm_delete_attr_fn,
 int *comm_keyval, void *extra_state)
```

**Fortran 2008 binding**

```fortran
MPI_Comm_create_keyval(comm_copy_attr_fn, comm_delete_attr_fn, comm_keyval, extra_state, ierror)
```

- PROCEDURE `MPI_Comm_copy_attr_function` :: `comm_copy_attr_fn`
- PROCEDURE `MPI_Comm_delete_attr_function` :: `comm_delete_attr_fn`
- INTEGER, INTENT(OUT) :: `comm_keyval`
- INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: `extra_state`
- INTEGER, OPTIONAL, INTENT(OUT) :: `ierror`

**Fortran binding**

```fortran
MPI_COMM_CREATE_KEYVAL(COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL, EXTRA_STATE, IERROR)
```

EXTERNAL `COMM_COPY_ATTR_FN`, `COMM_DELETE_ATTR_FN`

GENERATES a new attribute key. Keys are locally unique in an MPI process, and opaque to user, though they are explicitly stored in integers. Once allocated, the key value can be used to associate attributes and access them on any locally defined communicator.

The C callback functions are:

```c
typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm, int comm_keyval,
 void *extra_state, void *attribute_val_in,
 void *attribute_val_out, int *flag);
```
and

typdef int MPI_Comm_delete_attr_function(MPI_Comm comm, int comm_keyval,
    void *attribute_val, void *extra_state);

which are the same as the MPI-1.1 calls but with a new name. The old names are deprecated.

With the mpi_f08 module, the Fortran callback functions are:

ABSTRACT INTERFACE

SUBROUTINE MPI_Comm_copy_attr_function(oldcomm, comm_keyval, extra_state,
    attribute_val_in, attribute_val_out, flag, ierror)
TYPE(MPI_Comm) :: oldcomm
INTEGER :: comm_keyval, ierror
INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
    attribute_val_out
LOGICAL :: flag

and

ABSTRACT INTERFACE

SUBROUTINE MPI_Comm_delete_attr_function(comm, comm_keyval, attribute_val,
    extra_state, ierror)
TYPE(MPI_Comm) :: comm
INTEGER :: comm_keyval, ierror
INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

With the mpi module and (deprecated) mpif.h include file, the Fortran callback functions are:

SUBROUTINE COMM_COPY_ATTR_FUNCTION(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,
    ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDCOMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
    ATTRIBUTE_VAL_OUT
LOGICAL FLAG

and

SUBROUTINE COMM_DELETE_ATTR_FUNCTION(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,
    EXTRA_STATE, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The comm_copy_attr_fn function is invoked when a communicator is duplicated by
MPI_COMM DUP, MPI_COMM_IDUP, MPI_COMM_DUP_WITH_INFO or
MPI_COMM_IDUP_WITH_INFO. comm_copy_attr_fn should be of type
MPI_Comm_copy_attr_function. The copy callback function is invoked for each key value in
oldcomm in arbitrary order. Each call to the copy callback is made with a key value and its
corresponding attribute. If it returns flag = 0 or .FALSE., then the attribute is deleted in
the duplicated communicator. Otherwise (flag = 1 or .TRUE.), the new attribute value is set
to the value returned in attribute_val_out. The function returns MPI SUCCESS on success
and an error code on failure (in which case MPI_COMM DUP or MPI_COMM_IDUP will fail).

The argument comm_copy_attr_fn may be specified as MPI_COMM NULL COPY FN
or MPI_COMM DUP FN from either C or Fortran. MPI_COMM NULL COPY FN is a
function that does nothing other than returning flag = 0 or .FALSE. (depending on whether
the keyval was created with a C or Fortran binding to MPI_COMM_CREATE_KEYVAL) and MPI_SUCCESS. MPI_COMM_DUP_FN is a simple copy function that sets flag = 1 or .TRUE., returns the value of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS. These replace the MPI-1 predefined callbacks MPI_NULL_COPY_FN and MPI_DUP_FN, whose use is deprecated.

Advice to users. Even though both formal arguments attribute_val_in and attribute_val_out are of type void*, their usage differs. The C copy function is passed by MPI in attribute_val_in the value of the attribute, and in attribute_val_out the address of the attribute, so as to allow the function to return the (new) attribute value. The use of type void* for both is to avoid messy type casts.

A valid copy function is one that completely duplicates the information by making a full duplicate copy of the data structures implied by an attribute; another might just make another reference to that data structure, while using a reference-count mechanism. Other types of attributes might not copy at all (they might be specific to oldcomm only). (End of advice to users.)

Advice to implementors. A C interface should be assumed for copy and delete functions associated with key values created in C; a Fortran calling interface should be assumed for key values created in Fortran. (End of advice to implementors.)

Analogous to comm_copy_attr_fn is a callback deletion function, defined as follows. The comm_delete_attr_fn function is invoked when a communicator is deleted by MPI_COMM_FREE, MPI_COMM_DISCONNECT or when a call is made explicitly to MPI_COMM_DELETE_ATTR. comm_delete_attr_fn should be of type MPI_Comm_delete_attr_function.

This function is called by MPI_COMM_FREE, MPI_COMM_DISCONNECT, MPI_COMM_DELETE_ATTR, and MPI_COMM_SETATTR to do whatever is needed to remove an attribute. The function returns MPI_SUCCESS on success and an error code on failure (in which case MPI_COMM_FREE will fail).

The argument comm_delete_attr_fn may be specified as MPI_COMM_NULL_DELETE_FN from either C or Fortran. MPI_COMM_NULL_DELETE_FN is a function that does nothing, other than returning MPI_SUCCESS. MPI_COMM_NULL_DELETE_FN replaces MPI_NULL_DELETE_FN, whose use is deprecated.

If an attribute copy function or attribute delete function returns other than MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_COMM_FREE) is erroneous.

The special key value MPI_KEYVAL_INVALID is never returned by MPI_COMM_CREATE_KEYVAL. Therefore, it can be used for static initialization of key values.

Advice to implementors. The predefined Fortran functions

MPI_COMM_NULL_COPY_FN, MPI_COMM_DUP_FN, and

MPI_COMM_NULL_DELETE_FN are defined in the mpi module (and deprecated mpif.h) and the mpi_f08 module with the same name, but with different interfaces.

Each function can coexist twice with the same name in the same MPI library, one routine as an implicit interface outside of the mpi module, i.e., declared as EXTERNAL,
and the other routine within mpi_f08 declared with CONTAINS. These routines have
different link names, which are also different to the link names used for the routines
used in C. (End of advice to implementors.)

Advice to users. Callbacks, including the predefined Fortran functions
MPI_COMM_NULL_COPY_FN, MPI_COMM_DUP_FN, and
MPI_COMM_NULL_DELETE_FN should not be passed from one application routine
that uses the mpi_f08 module to another application routine that uses the mpi module
or (deprecated) mpif.h include file, and vice versa; see also the advice to users on
page 842. (End of advice to users.)

MPI_COMM_FREE_KEYVAL(comm_keyval)

INOUT comm_keyval key value (integer)

C binding
int MPI_Comm_free_keyval(int *comm_keyval)

Fortran 2008 binding
MPI_Comm_free_keyval(comm_keyval, ierror)
    INTEGER, INTENT(INOUT) :: comm_keyval
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_FREE_KEYVAL(COMM_KEYVAL, IERROR)
    INTEGER COMM_KEYVAL, IERROR

Frees an extant attribute key. This function sets the value of keyval to
MPI_KEYVAL_INVALID. Note that it is not erroneous to free an attribute key that is in use,
because the actual free does not transpire until after all references (in other communicators
on the MPI process) to the key have been freed. These references need to be explicitly freed
by the program, either via calls to MPI_COMM_DELETE_ATTR that free one attribute
instance, or by calls to MPI_COMM_FREE that free all attribute instances associated with
the freed communicator.

MPI_COMM_SET_ATTR(comm, comm_keyval, attribute_val)

INOUT comm communicator to which attribute will be attached
    (handle)
IN comm_keyval key value (integer)
IN attribute_val attribute value

C binding
int MPI_Comm_set_attr(MPI_Comm comm, int comm_keyval, void *attribute_val)

Fortran 2008 binding
MPI_Comm_set_attr(comm, comm_keyval, attribute_val, ierror)
    TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(IN) :: comm_keyval
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)
  INTEGER COMM, COMM_KEYVAL, IERROR
  INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

This function stores the stipulated attribute value attribute_val for subsequent retrieval by MPI_COMM_GET_ATTR. If the value is already present, then the outcome is as if

MPI_COMM_DELETE_ATTR was first called to delete the previous value (and the callback function comm_delete_attr_fn was executed), and a new value was next stored. The call is erroneous if there is no key with value keyval; in particular MPI_KEYVAL_INVALID is an erroneous key value. The call will fail if the comm_delete_attr_fn function returned an error code other than MPI_SUCCESS.

MPI_COMM_GET_ATTR(comm, comm_keyval, attribute_val, flag)

IN  comm  communicator to which the attribute is attached (handle)
IN  comm_keyval  key value (integer)
OUT attribute_val  attribute value, unless flag = false
OUT flag  false if no attribute is associated with the key (logical)

C binding

int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void *attribute_val, int *flag)

Fortran 2008 binding

MPI_Comm_get_attr(comm, comm_keyval, attribute_val, flag, ierr)
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, INTENT(IN) :: comm_keyval
  INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val
  LOGICAL, INTENT(OUT) :: flag
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr

Fortran binding

MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
  INTEGER COMM, COMM_KEYVAL, IERROR
  INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
  LOGICAL FLAG

Retrieves attribute value by key. The call is erroneous if there is no key with value keyval. On the other hand, the call is correct if the key value exists, but no attribute is attached on comm for that key; in such case, the call returns flag = false. In particular MPI_KEYVAL_INVALID is an erroneous key value.
**Advice to users.** The call to `MPI_Comm_set_attr` passes in `attribute_val` the value of the attribute; the call to `MPI_Comm_get_attr` passes in `attribute_val` the address of the location where the attribute value is to be returned. Thus, if the attribute value itself is a pointer of type `void*`, then the actual `attribute_val` parameter to `MPI_Comm_set_attr` will be of type `void*` and the actual `attribute_val` parameter to `MPI_Comm_get_attr` will be of type `void**`. *(End of advice to users.)*

**Rationale.** The use of a formal parameter `attribute_val` of type `void*` (rather than `void**`) avoids the messy type casting that would be needed if the attribute value is declared with a type other than `void*`. *(End of rationale.)*

```c
MPI_COMM_DELETE_ATTR(comm, comm_keyval)
```

- **INOUT** `comm` communicator from which the attribute is deleted (handle)
- **IN** `comm_keyval` key value (integer)

**C binding**
```c
int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)
```

**Fortran 2008 binding**
```fortran
MPI_Comm_delete_attr(comm, comm_keyval, ierror)
```
- **TYPE(MPI_Comm), INTENT(IN)** :: `comm`
- **INTEGER, INTENT(IN)** :: `comm_keyval`
- **INTEGER, OPTIONAL, INTENT(OUT)** :: `ierror`

**Fortran binding**
```fortran
MPI_COMM_DELETE_ATTR(COMM, COMM_KEYVAL, IERROR)
```
- **INTEGER COMM, COMM_KEYVAL, IERROR**

Delete attribute from cache by key. This function invokes the attribute delete function `comm_delete_attr_fn` specified when the `keyval` was created. The call will fail if the `comm_delete_attr_fn` function returns an error code other than `MPI_SUCCESS`.

Whenever a communicator is replicated using the function `MPI_COMM_DUP`, `MPI_COMM_IDUP`, `MPI_COMM_DUP_WITH_INFO` or `MPI_COMM_IDUP_WITH_INFO`, all call-back copy functions for attributes that are currently set are invoked (in arbitrary order). Whenever a communicator is deleted using the function `MPI_COMM_FREE` all callback delete functions for attributes that are currently set are invoked.

### 7.7.3 Windows

The functions for caching on windows are:
MPI_WIN_CREATE_KEYVAL(win_copy_attr_fn, win_delete_attr_fn, win_keyval, extra_state)

IN win_copy_attr_fn copy callback function for win_keyval (function)
IN win_delete_attr_fn delete callback function for win_keyval (function)
OUT win_keyval key value for future access (integer)
IN extra_state extra state for callback function

C binding
int MPI_Win_create_keyval(MPI_Win_copy_attr_function *win_copy_attr_fn,
    MPI_Win_delete_attr_function *win_delete_attr_fn,
    int *win_keyval, void *extra_state)

Fortran 2008 binding
MPI_Win_create_keyval(win_copy_attr_fn, win_delete_attr_fn, win_keyval,
    extra_state, ierror)
    PROCEDURE(MPI_Win_copy_attr_function) :: win_copy_attr_fn
    PROCEDURE(MPI_Win_delete_attr_function) :: win_delete_attr_fn
    INTEGER, INTENT(OUT) :: win_keyval
    INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,
    EXTRA_STATE, IERROR)
    EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN
    INTEGER WIN_KEYVAL, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

The argument win_copy_attr_fn may be specified as MPI_WIN_NULL_COPY_FN or
MPI_WIN_DUP_FN from either C or Fortran. MPI_WIN_NULL_COPY_FN is a function
that does nothing other than returning flag = 0 and MPI_SUCCESS. MPI_WIN_DUP_FN is
a simple copy function that sets flag = 1, returns the value of attribute_val_in in
attribute_val_out, and returns MPI_SUCCESS.

The argument win_delete_attr_fn may be specified as MPI_WIN_NULL_DELETE_FN
from either C or Fortran. MPI_WIN_NULL_DELETE_FN is a function that does nothing,
other than returning MPI_SUCCESS.

The C callback functions are:
typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag);

and
typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,
void *attribute_val, void *extra_state);

With the mpi_f08 module, the Fortran callback functions are:
ABSTRACT INTERFACE
    SUBROUTINE MPI_Win_copy_attr_function(oldwin, win_keyval, extra_state,
        attribute_val_in, attribute_val_out, flag, ierror)
TYPE(MPI_Win) :: oldwin
INTEGER :: win_keyval, ierror
INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
  attribute_val_out
LOGICAL :: flag

and
ABSTRACT INTERFACE
  SUBROUTINE MPI_Win_delete_attr_function(win, win_keyval, attribute_val,
    extra_state, ierror)
    TYPE(MPI_Win) :: win
    INTEGER :: win_keyval, ierror
    INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state
  END SUBROUTINE MPI_Win_delete_attr_function

With the mpi module and (deprecated) mpif.h include file, the Fortran callback functions are:
  SUBROUTINE WIN_COPY_ATTR_FUNCTION(OLDWIN, WIN_KEYVAL, EXTRA_STATE,
    ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
    INTEGER OLDWIN, WIN_KEYVAL, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
      ATTRIBUTE_VAL_OUT
    LOGICAL FLAG
  END SUBROUTINE WIN_COPY_ATTR_FUNCTION

and
  SUBROUTINE WIN_DELETE_ATTR_FUNCTION(WIN, WIN_KEYVAL, ATTRIBUTE_VAL,
    EXTRA_STATE, IERROR)
    INTEGER WIN, WIN_KEYVAL, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE
  END SUBROUTINE WIN_DELETE_ATTR_FUNCTION

If an attribute copy function or attribute delete function returns other than
MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_WIN_FREE), is
erroneous.

MPI_WIN_FREE_KEYVAL(win_keyval)
  INOUT win_keyval key value (integer)

C binding
int MPI_Win_free_keyval(int *win_keyval)

Fortran 2008 binding
  MPI_Win_free_keyval(win_keyval, ierror)
    INTEGER, INTENT(INOUT) :: win_keyval
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
  MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)
    INTEGER WIN_KEYVAL, IERROR
Caching

MPI

WIN

_SET

ATTR

(win, win_keyval, attribute_val)

INOUT win window to which attribute will be attached (handle)

IN win_keyval key value (integer)

IN attribute_val attribute value

C binding

int MPI_Win_set_attr(MPI_Win win, int win_keyval, void *attribute_val)

Fortran 2008 binding

MPI_Win_set_attr(win, win_keyval, attribute_val, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_WIN_SET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI

WIN

_GET

ATTR

(win, win_keyval, attribute_val, flag)

IN win window to which the attribute is attached (handle)

IN win_keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

C binding

int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val, int *flag)

Fortran 2008 binding

MPI_Win_get_attr(win, win_keyval, attribute_val, flag, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG
MPI\_WIN\_DELETE\_ATTR(win, win\_keyval)

INOUT win window from which the attribute is deleted (handle)

IN win\_keyval key value (integer)

C binding
int MPI\_Win\_delete\_attr(MPI\_Win win, int win\_keyval)

Fortran 2008 binding
MPI\_Win\_delete\_attr(win, win\_keyval, ierror)
  TYPE(MPI\_Win), INTENT(IN) :: win
  INTEGER, INTENT(IN) :: win\_keyval
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI\_WIN\_DELETE\_ATTR(WIN, WIN\_KEYVAL, IERROR)
  INTEGER WIN, WIN\_KEYVAL, IERROR

7.7.4 Datatypes
The new functions for caching on datatypes are:

MPI\_TYPE\_CREATE\_KEYVAL(type\_copy\_attr\_fn, type\_delete\_attr\_fn, type\_keyval, extra\_state)

IN type\_copy\_attr\_fn copy callback function for type\_keyval (function)

IN type\_delete\_attr\_fn delete callback function for type\_keyval (function)

OUT type\_keyval key value for future access (integer)

IN extra\_state extra state for callback function

C binding
int MPI\_Type\_create\_keyval(MPI\_Type\_copy\_attr\_function *type\_copy\_attr\_fn,
  MPI\_Type\_delete\_attr\_function *type\_delete\_attr\_fn,
  int *type\_keyval, void *extra\_state)

Fortran 2008 binding
MPI\_Type\_create\_keyval(type\_copy\_attr\_fn, type\_delete\_attr\_fn, type\_keyval,
  extra\_state, ierror)
  PROCEDURE(MPI\_Type\_copy\_attr\_function) :: type\_copy\_attr\_fn
  PROCEDURE(MPI\_Type\_delete\_attr\_function) :: type\_delete\_attr\_fn
  INTEGER, INTENT(OUT) :: type\_keyval
  INTEGER(KIND=MPI\_ADDRESS\_KIND), INTENT(IN) :: extra\_state
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI\_TYPE\_CREATE\_KEYVAL(TYPE\_COPY\_ATTR\_FN, TYPE\_DELETE\_ATTR\_FN, TYPE\_KEYVAL,
  EXTRA\_STATE, IERROR)
  EXTERNAL TYPE\_COPY\_ATTR\_FN, TYPE\_DELETE\_ATTR\_FN
  INTEGER TYPE\_KEYVAL, IERROR
The argument type_copy_attr_fn may be specified as MPI_TYPE_NULL_COPY_FN or MPI_TYPE_DUP_FN from either C or Fortran. MPI_TYPE_NULL_COPY_FN is a function that does nothing other than returning flag = 0 and MPI_SUCCESS. MPI_TYPE_DUP_FN is a simple copy function that sets flag = 1, returns the value of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS.

The argument type_delete_attr_fn may be specified as MPI_TYPE_NULL_DELETE_FN from either C or Fortran. MPI_TYPE_NULL_DELETE_FN is a function that does nothing, other than returning MPI_SUCCESS.

The C callback functions are:

```c
typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype, int type_keyval,
 void *extra_state, void *attribute_val_in,
 void *attribute_val_out, int *flag);
```

and

```c
typedef int MPI_Type_delete_attr_function(MPI_Datatype datatype,
 int type_keyval, void *attribute_val, void *extra_state);
```

With the mpi_f08 module, the Fortran callback functions are:

```fortran
SUBROUTINE MPI_Type_copy_attr_function(oldtype, type_keyval, extra_state,
 attribute_val_in, attribute_val_out, flag, ierror)
 TYPE(MPI_Datatype) :: oldtype
 INTEGER :: type_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
 attribute_val_out
 LOGICAL :: flag
```

and

```fortran
SUBROUTINE MPI_Type_delete_attr_function(datatype, type_keyval, extra_state,
 ierror)
 TYPE(MPI_Datatype) :: datatype
 INTEGER :: type_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state
```

With the mpi module and (deprecated) mpif.h include file, the Fortran callback functions are:

```fortran
SUBROUTINE TYPE_COPY_ATTR_FUNCTION(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,
 ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
 INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
 ATTRIBUTE_VAL_OUT
 LOGICAL FLAG
```

and

```fortran
SUBROUTINE TYPE_DELETE_ATTR_FUNCTION(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,
 EXTRA_STATE, IERROR)
 INTEGER DATATYPE, TYPE_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE
```
If an attribute copy function or attribute delete function returns other than MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_TYPE_FREE), is erroneous.

MPI_TYPE_FREE_KEYVAL(type_keyval)

C binding
int MPI_Type_free_keyval(int *type_keyval)

Fortran 2008 binding
MPI_Type_free_keyval(type_keyval, ierror)
  INTEGER, INTENT(INOUT) :: type_keyval
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_FREE_KEYVAL(TYPE_KEYVAL, IERROR)
  INTEGER TYPE_KEYVAL, IERROR

MPI_TYPE_SET_ATTR(datatype, type_keyval, attribute_val)

C binding
int MPI_Type_set_attr(MPI_Datatype datatype, int type_keyval, void *attribute_val)

Fortran 2008 binding
MPI_Type_set_attr(datatype, type_keyval, attribute_val, ierror)
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER, INTENT(IN) :: type_keyval
  INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_SET_ATTR(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)
  INTEGER DATATYPE, TYPE_KEYVAL, IERROR
  INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
7.7 Caching

MPI_TYPE_GET_ATTR(datatype, type_keyval, attribute_val, flag)

IN  datatype  datatype to which the attribute is attached (handle)
IN  type_keyval  key value (integer)
OUT attribute_val  attribute value, unless flag = false
OUT flag  false if no attribute is associated with the key (logical)

C binding
int MPI_Type_get_attr(MPI_Datatype datatype, int type_keyval,
void *attribute_val, int *flag)

Fortran 2008 binding
MPI_Type_get_attr(datatype, type_keyval, attribute_val, flag, ierror)

  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER, INTENT(IN) :: type_keyval
  INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val
  LOGICAL, INTENT(OUT) :: flag
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_GET_ATTR(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

  INTEGER DATATYPE, TYPE_KEYVAL, IERROR
  INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
  LOGICAL FLAG

MPI_TYPE_DELETE_ATTR(datatype, type_keyval)

INOUT datatype  datatype from which the attribute is deleted (handle)
IN type_keyval  key value (integer)

C binding
int MPI_Type_delete_attr(MPI_Datatype datatype, int type_keyval)

Fortran 2008 binding
MPI_Type_delete_attr(datatype, type_keyval, ierror)

  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER, INTENT(IN) :: type_keyval
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_DELETE_ATTR(DATATYPE, TYPE_KEYVAL, IERROR)

  INTEGER DATATYPE, TYPE_KEYVAL, IERROR

7.7.5 Error Class for Invalid Keyval

Key values for attributes are system-allocated, by
MPI_{XXX}_CREATE_KEYVAL. Only such values can be passed to the functions that use
key values as input arguments. In order to signal that an erroneous key value has been passed to one of these functions, there is a new MPI error class: MPI_ERR_KEYVAL. It can be returned by MPIATTR_PUT, MPIATTR_GET, MPIATTR_DELETE, MPIKEYVAL_FREE, MPI_{XXX}_DELETE_ATTR, MPI_{XXX}_SET_ATTR, MPI_{XXX}_GET_ATTR, MPI_{XXX}_FREE_KEYVAL, MPICOMM_DUP, MPICOMM_IDUP, MPICOMM_DUP_WITH_INFO, MPICOMM_IDUP_WITH_INFO, MPICOMM_DISCONNECT, and MPICOMM_FREE. The last six are included because keyval is an argument to the copy and delete functions for attributes.

### 7.7.6 Attributes Example

Advice to users. This example shows how to write a collective communication operation that uses caching to be more efficient after the first call. *(End of advice to users.)*

```c
/* key for this module's stuff: */
static int gop_key = MPI_KEYVAL_INVALID;

typedef struct {
 int ref_count; /* reference count */
 /* other stuff, whatever else we want */
} gop_stuff_type;

void Efficient_Collective_Op(MPI_Comm comm, ...) {
 gop_stuff_type *gop_stuff;
 MPI_Group group;
 int foundflag;

 MPI_Comm_group(comm, &group);

 if (gop_key == MPI_KEYVAL_INVALID) /* get a key on first call ever */ {
 if (!MPI_Comm_create_keyval(gop_stuff_copier, gop_stuff_destructor, gop_key, NULL)) {
 /* get the key while assigning its copy and delete callback behavior. */
 } else {
 MPI_Abort(comm, 99);
 }
 }

 MPI_Comm_get_attr(comm, gop_key, &gop_stuff, &foundflag);
 if (foundflag) {
 /* This module has executed in this group before.
 * We will use the cached information */
 }
 else {
 /* This is a group that we have not yet cached anything in.
 * We will now do so.
 */
```
/* First, allocate storage for the stuff we want, and initialize the reference count */

gop_stuff = (gop_stuff_type *) malloc(sizeof(gop_stuff_type));
if (gop_stuff == NULL) { /* abort on out-of-memory error */ }

gop_stuff->ref_count = 1;

/* Second, fill in *gop_stuff with whatever we want. This part isn’t shown here */

/* Third, store gop_stuff as the attribute value */
MPI_Comm_set_attr(comm, gop_key, gop_stuff);

/* Then, in any case, use contents of *gop_stuff to do the global op ... */

/* The following routine is called by MPI when a group is freed */

int gop_stuff_destructor(MPI_Comm comm, int keyval, void *gop_stuffP,
                        void *extra)
{
    gop_stuff_type *gop_stuff = (gop_stuff_type *)gop_stuffP;
    if (keyval != gop_key) { /* abort -- programming error */ }

    /* The group’s being freed removes one reference to gop_stuff */
    gop_stuff->ref_count -= 1;

    /* If no references remain, then free the storage */
    if (gop_stuff->ref_count == 0) {
        free((void *)gop_stuff);
    }
    return MPI_SUCCESS;
}

/* The following routine is called by MPI when a group is copied */

int gop_stuff_copier(MPI_Comm comm, int keyval, void *extra,
                      void *gop_stuff_inP, void *gop_stuff_outP, int *flag)
{
    gop_stuff_type *gop_stuff_in = (gop_stuff_type *)gop_stuff_inP;
    gop_stuff_type **gop_stuff_out = (gopstuff_type **)gop_stuff_outP;
    if (keyval != gop_key) { /* abort -- programming error */ }

    /* The new group adds one reference to this gop_stuff */
    gop_stuff_in->ref_count += 1;
    *gop_stuff_out = gop_stuff_in;
    return MPI_SUCCESS;
}
7.8 Naming Objects

There are many occasions on which it would be useful to allow a user to associate a printable identifier with an MPI communicator, window, or datatype, for instance error reporting, debugging, and profiling. The names attached to opaque objects do not propagate when the object is duplicated or copied by MPI routines. For communicators this can be achieved using the following two functions.

\[
\text{MPI COMM SET NAME}(\text{comm}, \text{comm name})
\]

- **C binding**
  
  \[
  \text{int MPI Comm set name(MPI Comm comm, const char *comm name)}
  \]

- **Fortran 2008 binding**
  
  \[
  \text{MPI Comm set name(comm, comm name, ierror)}
  \]

- **Fortran binding**
  
  \[
  \text{MPI COMM SET NAME(COMM, COMM NAME, IERROR)}
  \]

The length of the name that can be stored is limited to the value of \text{MPI MAX OBJECT NAME} in Fortran and \text{MPI MAX OBJECT NAME}-1 in C to allow for the null terminator. Attempts to put names longer than this will result in truncation of the name. \text{MPI MAX OBJECT NAME} must have a value of at least 64.

**Advice to users.** Since \text{MPI COMM SET NAME} is provided to help debug code, it is sensible to give the same name to a communicator in all of the MPI processes where it exists, to avoid confusion. \text{End of advice to users.}

The length of the name that can be stored is limited to the value of \text{MPI MAX OBJECT NAME} in Fortran and \text{MPI MAX OBJECT NAME}-1 in C to allow for the null terminator. Attempts to put names longer than this will result in truncation of the name. \text{MPI MAX OBJECT NAME} must have a value of at least 64.

**Advice to users.** Under circumstances of store exhaustion an attempt to put a name of any length could fail, therefore the value of \text{MPI MAX OBJECT NAME} should be viewed only as a strict upper bound on the name length, not a guarantee that setting names of less than this length will always succeed. \text{End of advice to users.}
Advice to implementors. Implementations that pre-allocate a fixed size space for a name should use the length of that allocation as the value of MPI_MAX_OBJECT_NAME. Implementations that allocate space for the name from the heap should still define MPI_MAX_OBJECT_NAME to be a relatively small value, since the user has to allocate space for a string of up to this size when calling MPI_COMM_GET_NAME. (End of advice to implementors.)

MPI_COMM_GET_NAME(comm, comm_name, resultlen)

IN comm  communicator whose name is to be returned (handle)
OUT comm_name the name previously stored on the communicator, or an empty string if no such name exists (string)
OUT resultlen length of returned name (integer)

C binding
int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)

Fortran 2008 binding
MPI_Comm_get_name(comm, comm_name, resultlen, ierror)
    TYPE(MPI_Comm), INTENT(IN) :: comm
    CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: comm_name
    INTEGER, INTENT(OUT) :: resultlen
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR)
    INTEGER COMM, RESULTLEN, IERROR
    CHARACTER(*) COMM_NAME

MPI_COMM_GET_NAME returns the last name that has previously been associated with the given communicator. The name may be set and retrieved from any language. The same name will be returned independent of the language used. comm_name should be allocated so that it can hold a resulting string of length MPI_MAX_OBJECT_NAME characters. MPI_COMM_GET_NAME returns a copy of the set name in comm_name.

In C, a null character is additionally stored at comm_name[resultlen]. The value of resultlen cannot be larger than MPI_MAX_OBJECT_NAME-1. In Fortran, comm_name is padded on the right with blank characters. The value of resultlen cannot be larger than MPI_MAX_OBJECT_NAME.

If the user has not associated a name with a communicator, or an error occurs, MPI_COMM_GET_NAME will return an empty string (all spaces in Fortran, "" in C). The three predefined communicators will have predefined names associated with them. Thus, the names of MPI_COMM_WORLD, MPI_COMM_SELF, and the communicator returned by MPI_COMM_GET_PARENT (if not MPI_COMM_NULL) will have the default of "MPI_COMM_WORLD", "MPI_COMM_SELF", and "MPI_COMM_PARENT". Passing MPI_COMM_NULL as comm will return the string "MPI_COMM_NULL". The fact that the system may have chosen to give a default name to a communicator does not prevent the user from setting a name on the same communicator; doing this removes the old name and assigns the new one.
Rationale. We provide separate functions for setting and getting the name of a communicator, rather than simply providing a predefined attribute key for the following reasons:

- It is not, in general, possible to store a string as an attribute from Fortran.
- It is not easy to set up the delete function for a string attribute unless it is known to have been allocated from the heap.
- To make the attribute key useful additional code to call `strdup` is necessary. If this is not standardized then users have to write it. This is extra unneeded work that we can easily eliminate.
- The Fortran binding is not trivial to write (it will depend on details of the Fortran compilation system), and will not be portable. Therefore it should be in the library rather than in user code.

(End of rationale.)

Advice to users. The above definition means that it is safe simply to print the string returned by `MPI_COMM_GET_NAME`, as it is always a valid string even if there was no name.

Note that associating a name with a communicator has no effect on the semantics of an MPI program, and will (necessarily) increase the store requirement of the program, since the names must be saved. Therefore there is no requirement that users use these functions to associate names with communicators. However debugging and profiling MPI applications may be made easier if names are associated with communicators, since the debugger or profiler should then be able to present information in a less cryptic manner. (End of advice to users.)

The following functions are used for setting and getting names of datatypes. The constant `MPI_MAX_OBJECT_NAME` also applies to these names.

```
MPI>Type_set_name(datatype, type_name)

INOUT datatype datatype whose identifier is to be set (handle)
IN type_name the character string that is remembered as the name
 (string)
```

C binding

```
int MPI_Type_set_name(MPI_Datatype datatype, const char *type_name)
```

Fortran 2008 binding

```
MPI_Type_set_name(datatype, type_name, ierror)

 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 CHARACTER(LEN=*) , INTENT(IN) :: type_name
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```
MPI_TYPE_SET_NAME(DATATYPE, TYPE_NAME, IERROR)

INTEGER DATATYPE, IERROR
CHARACTER*(*) TYPE_NAME
```
8.5 Naming Objects

MPI_TYPE_GET_NAME(datatype, type_name, resultlen)

- **IN** datatype - datatype whose name is to be returned (handle)
- **OUT** type_name - the name previously stored on the datatype, or an empty string if no such name exists (string)
- **OUT** resultlen - length of returned name (integer)

**C binding**

```c
int MPI_Type_get_name(MPI_Datatype datatype, char *type_name, int *resultlen)
```

**Fortran 2008 binding**

```fortran
MPI_Type_get_name(datatype, type_name, resultlen, ierror)
```

```fortran
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: type_name
 INTEGER, INTENT(OUT) :: resultlen
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPI_TYPE_GET_NAME(DATATYPE, TYPE_NAME, RESULTLEN, IERROR)
```

```fortran
 INTEGER DATATYPE, RESULTLEN, IERROR
 CHARACTER*(*) TYPE_NAME
```

Named predefined datatypes have the default names of the datatype name. For example, MPI_WCHAR has the default name of "MPI_WCHAR". Passing MPI_DATATYPE_NULL as datatype will return the string "MPI_DATATYPE_NULL".

The following functions are used for setting and getting names of windows. The constant MPI_MAX_OBJECT_NAME also applies to these names.

MPI_WIN_SET_NAME(win, win_name)

- **INOUT** win - window whose identifier is to be set (handle)
- **IN** win_name - the character string that is remembered as the name (string)

**C binding**

```c
int MPI_Win_set_name(MPI_Win win, const char *win_name)
```

**Fortran 2008 binding**

```fortran
MPI_Win_set_name(win, win_name, ierror)
```

```fortran
 TYPE(MPI_Win), INTENT(IN) :: win
 CHARACTER(LEN=*) , INTENT(IN) :: win_name
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)
```

```fortran
 INTEGER WIN, IERROR
 CHARACTER*(*) WIN_NAME
```
Chapter 7 Groups, Contexts, Communicators, and Caching

MPI_WIN_GET_NAME(win, win_name, resultlen)

IN win window whose name is to be returned (handle)

OUT win_name the name previously stored on the window, or an empty string if no such name exists (string)

OUT resultlen length of returned name (integer)

C binding

int MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)

Fortran 2008 binding

MPI_Win_get_name(win, win_name, resultlen, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: win_name

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)

INTEGER WIN, RESULTLEN, IERROR

CHARACTER(*) WIN_NAME

Passing MPI_WIN_NULL as win will return the string "MPI_WIN_NULL".

7.9 Formalizing the Loosely Synchronous Model

In this section, we make further statements about the loosely synchronous model, with particular attention to intra-communication.

7.9.1 Basic Statements

When a caller passes a communicator (that contains a context and group) to a callee, that communicator must be free of side effects throughout execution of the subprogram: there should be no active operations on that communicator that might involve the MPI process. This provides one model in which libraries can be written, and work “safely.” For libraries so designated, the callee has permission to do whatever communication it likes with the communicator, and under the above guarantee knows that no other communications will interfere. Since we permit good implementations to create new communicators without synchronization (such as by preallocated contexts on communicators), this does not impose a significant overhead.

This form of safety is analogous to other common computer-science usages, such as passing a descriptor of an array to a library routine. The library routine has every right to expect such a descriptor to be valid and modifiable.

7.9.2 Models of Execution

In the loosely synchronous model, transfer of control to a parallel procedure is effected by having each executing MPI process invoke the procedure. The invocation is a collective operation: it is executed by all MPI processes in the execution group, and invocations are similarly ordered at all MPI processes. However, the invocation need not be synchronized.
We say that a parallel procedure is *active* in an MPI process if the MPI process belongs to a group that may collectively execute the procedure, and some member of that group is currently executing the procedure code. If a parallel procedure is active in an MPI process, then this MPI process may be receiving messages pertaining to this procedure, even if it does not currently execute the code of this procedure.

**Static Communicator Allocation**

This covers the case where, at any point in time, at most one invocation of a parallel procedure can be active at any MPI process, and the group of executing MPI processes is fixed. For example, all invocations of parallel procedures involve all MPI processes, MPI processes are single-threaded, and there are no recursive invocations.

In such a case, a communicator can be statically allocated to each procedure. The static allocation can be done in a preamble, as part of initialization code. If the parallel procedures can be organized into libraries, so that only one procedure of each library can be concurrently active in each processor, then it is sufficient to allocate one communicator per library.

**Dynamic Communicator Allocation**

Calls of parallel procedures are well-nested if a new parallel procedure is always invoked in a subset of a group executing the same parallel procedure. Thus, MPI processes that execute the same parallel procedure have the same execution stack.

In such a case, a new communicator needs to be dynamically allocated for each new invocation of a parallel procedure. The allocation is done by the caller. A new communicator can be generated by a call to `MPI_COMM_DUP`, if the callee execution group is identical to the caller execution group, or by a call to `MPI_COMM_SPLIT` if the caller execution group is split into several subgroups executing distinct parallel routines. The new communicator is passed as an argument to the invoked routine.

The need for generating a new communicator at each invocation can be alleviated or avoided altogether in some cases: If the execution group is not split, then one can allocate a stack of communicators in a preamble, and next manage the stack in a way that mimics the stack of recursive calls.

One can also take advantage of the well-ordering property of communication to avoid confusing caller and callee communication, even if both use the same communicator. To do so, one needs to abide by the following two rules:

- messages sent before a procedure call (or before a return from the procedure) are also received before the matching call (or return) at the receiving end;
- messages are always selected by source (no use is made of `MPI_ANY_SOURCE`).

**The General Case**

In the general case, there may be multiple concurrently active invocations of the same parallel procedure within the same group; invocations may not be well-nested. A new communicator needs to be created for each invocation. It is the user’s responsibility to make sure that, should two distinct parallel procedures be invoked concurrently on overlapping sets of MPI processes, communicator creation is properly coordinated.
Chapter 8

Virtual Topologies for MPI Processes

8.1 Introduction

This chapter discusses the MPI virtual topology mechanism. A virtual topology is an extra, optional attribute that one can give to an intra-communicator; virtual topologies cannot be added to inter-communicators. A virtual topology can provide a convenient naming mechanism for the MPI processes of a group (within a communicator), and additionally, may assist the runtime system in mapping the processes onto hardware.

As stated in Chapter 7, a group in MPI is an ordered set of $n$ process identifiers (henceforth MPI processes). Each MPI process in the group is assigned a rank between 0 and $n-1$. In many parallel applications, a linear assignment of integer ranks to the MPI processes does not adequately reflect the logical communication pattern of the MPI processes (which is usually determined by the underlying problem geometry and the numerical algorithm used). Often the MPI processes are arranged in topological patterns such as two- or three-dimensional grids. More generally, the logical MPI process arrangement is described by a graph. In this chapter we will refer to this logical MPI process arrangement as the virtual topology.

A clear distinction must be made between the virtual topology and the topology of the underlying, physical hardware. The virtual topology can be exploited by the system in the assignment of processes to physical processors, if this helps to improve the communication performance on a given machine. How this mapping is done, however, is outside the scope of MPI. The description of the virtual topology, on the other hand, depends only on the application, and is machine-independent. The functions that are described in this chapter deal with machine-independent mapping and communication on virtual topologies.

Rationale. Though physical mapping is not discussed, the existence of the virtual topology information may be used as advice by the runtime system. There are well-known techniques for mapping grid/torus structures to hardware topologies such as hypercubes or grids. For more complicated graph structures good heuristics often yield nearly optimal results [51]. On the other hand, if there is no way for the user to specify the logical process arrangement as a virtual topology, a random mapping is most likely to result. On some machines, this will lead to unnecessary contention in the interconnection network. Some details about predicted and measured performance improvements that result from good process-to-processor mapping on wormhole-routing architectures can be found in [13, 14].

Besides possible performance benefits, the virtual topology can function as a convenient, process-naming structure, with significant benefits for program readability and notational power in message-passing programming. (End of rationale.)
8.2 Virtual Topologies

The communication pattern of a set of MPI processes can be represented by a graph. The nodes represent MPI processes, and the edges connect MPI processes that communicate with each other. MPI provides message-passing between any pair of MPI processes in a group. There is no requirement for opening a channel explicitly. Therefore, a “missing link” in the user-defined graph of MPI processes does not prevent the corresponding MPI processes from exchanging messages. It means rather that this connection is neglected in the virtual topology. This strategy implies that the virtual topology gives no convenient way of naming this pathway of communication. Another possible consequence is that an automatic mapping tool (if one exists for the runtime environment) will not take account of this edge when mapping.

Specifying the virtual topology in terms of a graph is sufficient for all applications. However, in many applications the graph structure is regular, and the detailed set-up of the graph would be inconvenient for the user and might be less efficient at run time. A large fraction of all parallel applications use MPI process topologies like rings, two- or higher-dimensional grids, or tori. These structures are completely defined by the number of dimensions and the numbers of MPI processes in each coordinate direction. Also, the mapping of grids and tori is generally an easier problem than that of general graphs. Thus, it is desirable to address these cases explicitly.

The coordinates of MPI processes in a Cartesian structure begin their numbering at 0. Row-major numbering is always used for the MPI processes in a Cartesian structure. This means that, for example, for four MPI processes in a $(2 \times 2)$ grid, the relationship between their ranks in the group and their coordinates in the virtual topology is as follows:

\[
\begin{align*}
\text{coord (0,0):} & \quad \text{rank 0} \\
\text{coord (0,1):} & \quad \text{rank 1} \\
\text{coord (1,0):} & \quad \text{rank 2} \\
\text{coord (1,1):} & \quad \text{rank 3}
\end{align*}
\]

8.3 Embedding in MPI

The support for virtual topologies as defined in this chapter is consistent with other parts of MPI, and, whenever possible, makes use of functions that are defined elsewhere. Topology information is associated with communicators. It is added to communicators using the caching mechanism described in Chapter 7.

Information representing a virtual topology may be added to a communicator at the time of its creation. If a communicator creation function adds information representing a virtual topology to the output communicator it creates, then it either propagates the topology representation from the input communicator to the output communicator, or adds a new topology representation generated from the input parameters that describe a virtual topology. The description of every MPI communicator creation function explicitly states how topology information is handled. Communicator creation functions that create new topology representations are described in Section 8.5.
8.4 Overview of the Functions

MPI supports three types of virtual topology: Cartesian, graph, and distributed graph. The function MPI_CART_CREATE can be used to create Cartesian topologies, the function MPI_GRAPH_CREATE can be used to create graph topologies, and the functions MPI_DIST_GRAPH_CREATE_ADJACENT and MPI_DIST_GRAPH_CREATE can be used to create distributed graph topologies. These topology creation functions are collective. As with other collective calls, the program must be written to work correctly, whether the call synchronizes or not.

The above topology creation functions take as input an existing communicator comm_old, which defines the set of MPI processes on which the topology is to be mapped. For MPI_GRAPH_CREATE and MPI_CART_CREATE, all input arguments must have identical values on all MPI processes of the group of comm_old. When calling MPI_GRAPH_CREATE, each MPI process specifies all nodes and edges in the graph. In contrast, the functions MPI_DIST_GRAPH_CREATE_ADJACENT or MPI_DIST_GRAPH_CREATE are used to specify the graph in a distributed fashion, whereby each MPI process only specifies a subset of the edges in the graph such that the entire graph structure is defined collectively across the set of MPI processes. Therefore the MPI processes provide different values for the arguments specifying the graph. However, all MPI processes must give the same value for reorder and the info argument. In all cases, a new communicator comm_topol is created that carries the topological structure as cached information (see Chapter 7). In analogy to function MPI_COMM_CREATE, no cached information propagates from comm_old to comm_topol.

MPI_CART_CREATE can be used to describe Cartesian structures of arbitrary dimension. For each coordinate direction one specifies whether the MPI process structure is periodic or not. Note that an n-dimensional hypercube is an n-dimensional torus with two processes per coordinate direction. Thus, special support for hypercube structures is not necessary. The local auxiliary function MPI_DIMS_CREATE can be used to compute a balanced distribution of MPI processes among a given number of dimensions.

MPI defines functions to query a communicator for topology information. The function MPI_TOPO_TEST is used to query for the type of topology associated with a communicator. Depending on the topology type, different information can be extracted. For a graph topology, the functions MPI_GRAPHDIMS_GET and MPI_GRAPH_GET retrieve the graph topology information that is associated with the communicator. Additionally, the functions MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS can be used to obtain the neighbors of an arbitrary node in the graph. For a distributed graph topology, the functions MPI_DIST_GRAPH_NEIGHBORS_COUNT and MPI_DIST_GRAPH_NEIGHBORS can be used to obtain the neighbors of the calling MPI process. For a Cartesian topology, the function MPI_CARTDIM_GET returns the number of dimensions and MPI_CART_GET returns the numbers of MPI processes in each dimension and periodicity of the associated Cartesian topology. Additionally, the functions MPI_CART_RANK and MPI_CART_COORDS translate Cartesian coordinates into a group rank, and vice-versa. The function MPI_CART_SHIFT provides the information needed to communicate with neighbors along a Cartesian dimension. All of these query functions are local.

For Cartesian topologies, the function MPI_CART_SUB can be used to extract a Cartesian subspace (analogous to MPI_COMM_SPLIT). This function is collective over the input communicator’s group.

The two additional functions, MPI_GRAPH_MAP and MPI_CART_MAP, are, in gen-
eral, not called by the user directly. However, together with the communicator manipulation
functions presented in Chapter 7, they are sufficient to implement all other topology func-
tions. Section 8.5.8 outlines such an implementation.

The neighborhood collective communication routines MPI_NEIGHBOR_ALLGATHER,
MPI_NEIGHBOR_ALLGATHERV, MPI_NEIGHBOR_ALLTOALL,
MPI_NEIGHBOR_ALLTOALLV, and MPI_NEIGHBOR_ALLTOALLW communicate with the
nearest neighbors on the topology associated with the communicator. The nonblocking
variants are MPI_INEIGHBOR_ALLGATHER, MPI_INEIGHBOR_ALLGATHERV,
MPI_INEIGHBOR_ALLTOALL, MPI_INEIGHBOR_ALLTOALLV, and
MPI_INEIGHBOR_ALLTOALLW.

8.5 Topology Constructors

8.5.1 Cartesian Constructor

MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder, comm_cart)

IN    comm_old      input communicator (handle)
IN    ndims         number of dimensions of Cartesian grid (integer)
IN    dims          integer array of size ndims specifying the number of
                   processes in each dimension
IN    periods       logical array of size ndims specifying whether the grid
                   is periodic (true) or not (false) in each dimension
IN    reorder       ranks may be reordered (true) or not (false) (logical)
OUT   comm_cart     new communicator with associated Cartesian
topology (handle)

C binding
int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[],
                    const int periods[], int reorder, MPI_Comm *comm_cart)

Fortran 2008 binding
MPI_Cart_create(comm_old, ndims, dims, periods, reorder, comm_cart, ierror)
    TYPE(MPI_Comm), INTENT(IN) :: comm_old
    INTEGER, INTENT(IN) :: ndims, dims(ndims)
    LOGICAL, INTENT(IN) :: periods(ndims), reorder
    TYPE(MPI_Comm), INTENT(OUT) :: comm_cart
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)
    INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR
    LOGICAL PERIODS(*), REORDER

MPI_CART_CREATE returns a handle to a new communicator to which the Cartesian
topology information is attached. If reorder = false then the rank of each MPI process in the
group of the new communicator is identical to its rank in the group of the old communicator.
If `reorder = true` then the procedure may reorder the ranks of the MPI processes (possibly so as to choose a good embedding of the virtual topology onto the physical machine). If the total size of the Cartesian grid is smaller than the size of the group of `comm_old`, then some MPI processes return `MPI_COMM_NULL`, in analogy to `MPI_COMM_SPLIT`. If `ndims` is zero then a zero-dimensional Cartesian topology is created. The call is erroneous if it specifies a grid that is larger than the group size or if `ndims` is negative. `MPI_CART_CREATE` will associate information representing a Cartesian topology with the specified number of dimensions, numbers of MPI processes in each coordinate direction, and periodicity with the new communicator.

8.5.2 Cartesian Convenience Function: `MPI_DIMS_CREATE`

For Cartesian topologies, the function `MPI_DIMS_CREATE` helps the user select a balanced distribution of MPI processes per coordinate direction, depending on the number of MPI processes in the group to be balanced and optional constraints that can be specified by the user.

```
MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes number of nodes in a grid (integer)
IN ndims number of Cartesian dimensions (integer)
INOUT dims integer array of size `ndims` specifying the number of nodes in each dimension
```

C binding

```
int MPI_Dims_create(int nnodes, int ndims, int dims[])
```

Fortran 2008 binding

```
MPI_Dims_create(nnodes, ndims, dims, ierror)
 INTEGER, INTENT(IN) :: nnodes, ndims
 INTEGER, INTENT(INOUT) :: dims(ndims)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```
MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)
 INTEGER NNODES, NDIMS, DIMS(*), IERROR
```

The entries in the array `dims` are set to describe a Cartesian grid with `ndims` dimensions and a total of `nnodes` nodes. The dimensions are set to be as close to each other as possible, using an appropriate divisibility algorithm. The caller may further constrain the operation of this routine by specifying elements of array `dims`. If `dims[i]` is set to a positive number, the routine will not modify the number of nodes in dimension `i`; only those entries where `dims[i] = 0` are modified by the call.

Negative input values of `dims[i]` are erroneous. An error will occur if `nnodes` is not a multiple of

$$\prod_{i, \text{ dims}[i] \neq 0} \text{dims}[i].$$
For $\text{dims}[i]$ set by the call, $\text{dims}[i]$ will be ordered in nonincreasing order. Array $\text{dims}$ is suitable for use as input to routine $\text{MPI\_CART\_CREATE}$. $\text{MPI\_DIM\_CREATE}$ is local. If $\text{ndims}$ is zero and $\text{nnodes}$ is one, $\text{MPI\_DIM\_CREATE}$ returns $\text{MPI\_SUCCESS}$.

### Example 8.1. The use of the array argument $\text{dims}$ in $\text{MPI\_DIM\_CREATE}$.

<table>
<thead>
<tr>
<th>$\text{dims}$ before call</th>
<th>function call</th>
<th>$\text{dims}$ on return</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>$\text{MPI_DIM_CREATE}(6, 2, \text{dims})$</td>
<td>(3,2)</td>
</tr>
<tr>
<td>(0,0)</td>
<td>$\text{MPI_DIM_CREATE}(7, 2, \text{dims})$</td>
<td>(7,1)</td>
</tr>
<tr>
<td>(0,3,0)</td>
<td>$\text{MPI_DIM_CREATE}(6, 3, \text{dims})$</td>
<td>(2,3,1)</td>
</tr>
<tr>
<td>(0,3,0)</td>
<td>$\text{MPI_DIM_CREATE}(7, 3, \text{dims})$</td>
<td>erroneous call</td>
</tr>
</tbody>
</table>

#### 8.5.3 Graph Constructor

$\text{MPI\_GRAPH\_CREATE}(\text{comm\_old}, \text{nnodes}, \text{index}, \text{edges}, \text{reorder}, \text{comm\_graph})$

- **IN** $\text{comm\_old}$: input communicator (handle)
- **IN** $\text{nnodes}$: number of nodes in graph (integer)
- **IN** $\text{index}$: array of integers describing node degrees (see below)
- **IN** $\text{edges}$: array of integers describing graph edges (see below)
- **IN** $\text{reorder}$: ranks may be reordered (true) or not (false) (logical)
- **OUT** $\text{comm\_graph}$: new communicator with associated graph topology (handle)

**C binding**

```c
int MPI_Graph_create(MPI_Comm comm_old, int nnodes, const int index[],
 const int edges[], int reorder, MPI_Comm *comm_graph)
```

**Fortran 2008 binding**

```fortran
MPI_Graph_create(comm_old, nnodes, index, edges, reorder, comm_graph, ierr)
```

- **TYPE(MPI_Comm), INTENT(IN)** :: $\text{comm\_old}$
- **INTEGER, INTENT(IN)** :: $\text{nnodes}$, $\text{index}(\text{nnodes})$, $\text{edges}(*)$
- **LOGICAL, INTENT(IN)** :: $\text{reorder}$
- **TYPE(MPI_Comm), INTENT(OUT)** :: $\text{comm\_graph}$
- **INTEGER, OPTIONAL, INTENT(OUT)** :: $\text{ierror}$

**Fortran binding**

```fortran
MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH, IERROR)
```

- **INTEGER COMM\_OLD, NNODES, INDEX(*), EDGES(*), COMM\_GRAPH, IERROR**
- **LOGICAL REORDER**

$\text{MPI\_GRAPH\_CREATE}$ returns a handle to a new communicator to which the graph topology information is attached. If $\text{reorder} = \text{false}$ then the rank of each MPI process in the group of the new communicator is identical to its rank in the group of the old communicator. If $\text{reorder} = \text{true}$ then the procedure may reorder the ranks of the MPI processes. If the number of nodes in the graph ($\text{nnodes}$) is smaller than the size of the
8.5 Topology Constructors

A group of comm_old, then MPI_COMM_NULL is returned by some MPI processes, in analogy to MPI_CART_CREATE and MPI_COMM_SPLIT. If the graph is empty, i.e., \( nnodes = 0 \), then MPI_COMM_NULL is returned in all MPI processes. The call is erroneous if it specifies a graph that is larger than the group size of the input communicator.

The three parameters \( nnodes \), index and edges define the graph structure. \( nnodes \) is the number of nodes of the graph. The nodes are numbered from 0 to \( nnodes - 1 \). The i-th entry of array index stores the total number of neighbors of the first i graph nodes. The lists of neighbors of nodes 0, 1, . . . , \( nnodes - 1 \) are stored in consecutive locations in array edges. The array edges is a flattened representation of the edge lists. The total number of entries in index is \( nnodes \) and the total number of entries in edges is equal to the number of graph edges.

The definitions of the arguments \( nnodes \), index, and edges are illustrated with the following simple example.

**Example 8.2.** Specification of the adjacency matrix for MPI_GRAPH_CREATE.

Assume there are four MPI processes with ranks 0, 1, 2, 3 in the input communicator with the following adjacency matrix:

<table>
<thead>
<tr>
<th>MPI process</th>
<th>neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1, 3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0, 2</td>
</tr>
</tbody>
</table>

Then, the input arguments are:

\[
\begin{align*}
nnodes &= 4 \\
index &= 2, 3, 4, 6 \\
edges &= 1, 3, 0, 3, 0, 2
\end{align*}
\]

Thus, in C, index[0] is the degree of node zero, and index[i] - index[i-1] is the degree of node i, i=1, . . . , \( nnodes - 1 \); the list of neighbors of node zero is stored in edges[j], for \( 0 \leq j \leq index[0] - 1 \) and the list of neighbors of node i, i > 0, is stored in edges[j], index[i-1] ≤ j ≤ index[i] - 1.

In Fortran, index(1) is the degree of node zero, and index(i+1) - index(i) is the degree of node i, i=1, . . . , \( nnodes - 1 \); the list of neighbors of node zero is stored in edges(j), for \( 1 \leq j \leq index(1) \) and the list of neighbors of node i, i > 0, is stored in edges(j), index(i)+1 ≤ j ≤ index(i+1).

A single MPI process is allowed to be defined multiple times in the list of neighbors of an MPI process (i.e., there may be multiple edges between two MPI processes). An MPI process is also allowed to be a neighbor to itself (i.e., a self loop in the graph). The adjacency matrix is allowed to be nonsymmetric.

*Advice to users.* Performance implications of using multiple edges or a nonsymmetric adjacency matrix are not defined. The definition of a node-neighbor edge does not imply a direction of the communication. *(End of advice to users.)*

*Advice to implementors.* The following topology information is likely to be stored with a communicator:
• Type of topology (Cartesian/graph)
  • For a Cartesian topology:
    1. ndims (number of dimensions)
    2. dims (numbers of MPI processes per coordinate direction)
    3. periods (periodicity information)
    4. own_position (own position in grid, could also be computed from rank and dims)
  • For a graph topology:
    1. index
    2. edges

which are the arrays defining the graph structure.

For a graph structure the number of nodes is equal to the number of MPI processes in the group. Therefore, the number of nodes does not have to be stored explicitly. An additional zero entry at the start of array index simplifies access to the topology information. (End of advice to implementors.)

8.5.4 Distributed Graph Constructor

MPI_GRAPH_CREATE requires that each MPI process passes the full (global) communication graph to the call. This limits the scalability of this constructor. With the distributed graph interface, the communication graph is specified in a fully distributed fashion. Each MPI process specifies only the part of the communication graph of which it is aware. Typically, this could be the set of MPI processes from which the MPI process will eventually receive or get data, or the set of MPI processes to which the MPI process will send or put data, or some combination of such edges. Two different interfaces can be used to create a distributed graph topology. MPI_DIST_GRAPH_CREATE_ADJACENT creates a distributed graph communicator with each MPI process specifying each of its incoming and outgoing (adjacent) edges in the logical communication graph and thus requires minimal communication during creation. MPI_DIST_GRAPH_CREATE provides full flexibility such that any MPI process can indicate that communication will occur between any pair of MPI processes in the graph.

To provide better possibilities for optimization by the MPI library, the distributed graph constructors permit weighted communication edges and take an info argument that can further influence process reordering or other optimizations performed by the MPI library. For example, hints can be provided on how edge weights are to be interpreted, the quality of the reordering, and/or the time permitted for the MPI library to process the graph.

MPI_DIST_GRAPH_CREATE_ADJACENT(comm_old, indegree, sources, sourceweights, outdegree, destinations, destweights, info, reorder, comm_dist_graph)

IN comm_old input communicator (handle)
IN indegree size of sources and sourceweights arrays (non-negative integer)
IN sources ranks of MPI processes for which the calling process is a destination (array of non-negative integers)

IN sourceweights weights of the edges into the calling MPI process (array of non-negative integers)

IN outdegree size of destinations and destweights arrays (non-negative integer)

IN destinations ranks of MPI processes for which the calling MPI process is a source (array of non-negative integers)

IN destweights weights of the edges out of the calling MPI process (array of non-negative integers)

IN info hints on optimization and interpretation of weights (handle)

IN reorder ranks may be reordered (true) or not (false) (logical)

OUT comm_dist_graph new communicator with associated distributed graph topology (handle)

C binding
int MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree,
const int sources[], const int sourceweights[], int outdegree,
const int destinations[], const int destweights[], MPI_Info info,
int reorder, MPI_Comm *comm_dist_graph)

Fortran 2008 binding
MPI_Dist_graph_create_adjacent(comm_old, indegree, sources, sourceweights,
outdegree, destinations, destweights, info, reorder,
comm_dist_graph, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old
INTEGER, INTENT(IN) :: indegree, sources(indegree), sourceweights(*),
outdegree, destinations(outdegree), destweights(*)
TYPE(MPI_Info), INTENT(IN) :: info
LOGICAL, INTENT(IN) :: reorder
TYPE(MPI_Comm), INTENT(OUT) :: comm_dist_graph
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_DIST_GRAPH_CREATE_ADJACENT(COMM_OLD, INDEGREE, SOURCES, SOURCEWEIGHTS,
OUTDEGREE, DESTINATIONS, DESTWEIGHTS, INFO, REORDER,
COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, INDEGREE, SOURCES(*), SOURCEWEIGHTS(*), OUTDEGREE,
DESTINATIONS(*), DESTWEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR

LOGICAL REORDER

MPI_DIST_GRAPH_CREATE_ADJACENT returns a handle to a new communicator to which the distributed graph topology information is attached. Each MPI process passes all information about its incoming and outgoing edges in the virtual distributed graph topology. The calling MPI processes must ensure that each edge of the graph is described in the source and in the destination process with the same weights. If there are multiple
edges for a given (source, dest) pair, then the sequence of the weights of these edges does not matter. The complete communication topology is the combination of all edges shown in the sources arrays of all MPI processes in comm_old, which must be identical to the combination of all edges shown in the destinations arrays. Source and destination MPI processes must be specified by their rank in the group of comm_old. This allows a fully distributed specification of the communication graph. Isolated MPI processes (i.e., MPI processes with no outgoing or incoming edges, that is, MPI processes that have specified indegree and outdegree as zero and thus do not occur as source or destination in the graph specification) are allowed.

The call creates a new communicator comm_dist_graph of distributed graph topology type to which topology information has been attached. The number of MPI processes in comm_dist_graph is identical to the number of MPI processes in comm_old. The call to MPI_DIST_GRAPH_CREATE_ADJACENT is collective.

Weights are specified as nonnegative integers and can be used to influence the process mapping strategy and other internal MPI optimizations. For instance, approximate count arguments of later communication calls along specific edges could be used as their edge weights. Multiplicity of edges can likewise indicate more intense communication between pairs of MPI processes. However, the exact meaning of edge weights is not specified by the MPI standard and is left to the implementation. In C or Fortran, an application can supply the special value MPI_UNWEIGHTED for the weight array to indicate that all edges have the same (effectively no) weight. It is erroneous to supply MPI_UNWEIGHTED for some but not all MPI processes of comm_old. If the graph is weighted but indegree or outdegree is zero, then MPI_WEIGHTS_EMPTY or any arbitrary array may be passed to sourceweights or destweights respectively. Note that MPI_UNWEIGHTED and MPI_WEIGHTS_EMPTY are not special weight values; rather they are special values for the total array argument. In Fortran, MPI_UNWEIGHTED and MPI_WEIGHTS_EMPTY are objects like MPI_BOTTOM (not usable for initialization or assignment). See Section 2.5.4.

Advice to users. In the case of an empty weights array argument passed while constructing a weighted graph, one should not pass NULL because the value of MPI_UNWEIGHTED may be equal to NULL. The value of this argument would then be indistinguishable from MPI_UNWEIGHTED to the implementation. In this case MPI_WEIGHTS_EMPTY should be used instead. (End of advice to users.)

Advice to implementors. It is recommended that MPI_UNWEIGHTED not be implemented as NULL. (End of advice to implementors.)

Rationale. To ensure backward compatibility, MPI_UNWEIGHTED may still be implemented as NULL. See Annex B.4. (End of rationale.)

The meaning of the info and reorder arguments is defined in the description of the following routine.

MPI_DIST_GRAPH_CREATE(comm_old, n, sources, degrees, destinations, weights, info, reorder, comm_dist_graph)
IN sources array containing the n source nodes for which this MPI process specifies edges (array of non-negative integers)

IN degrees array specifying the number of destinations for each source node in the source node array (array of non-negative integers)

IN destinations destination nodes for the source nodes in the source node array (array of non-negative integers)

IN weights weights for source to destination edges (array of non-negative integers)

IN info hints on optimization and interpretation of weights (handle)

IN reorder ranks may be reordered (true) or not (false) (logical)

OUT comm_dist_graph new communicator with associated distributed graph topology (handle)

C binding

int MPI_Dist_graph_create(MPI_Comm comm_old, int n, const int sources[], const int degrees[], const int destinations[], const int weights[], MPI_Info info, int reorder, MPI_Comm *comm_dist_graph)

Fortran 2008 binding

MPI_Dist_graph_create(comm_old, n, sources, degrees, destinations, weights,
                      info, reorder, comm_dist_graph, ierror)

Fortran binding

MPI_DIST_GRAPH_CREATE(COMM_OLD, N, SOURCES, DEGREES, DESTINATIONS, WEIGHTS,
                       INFO, REORDER, COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, N, SOURCES(*), DEGREES(*), DESTINATIONS(*), WEIGHTS(*),
       INFO, COMM_DIST_GRAPH, IERROR

LOGICAL REORDER

MPI_DIST_GRAPH_CREATE returns a handle to a new communicator to which the distributed graph topology information is attached. Concretely, each MPI process calls the constructor with a set of directed (source,destination) communication edges as described below. Every MPI process passes an array of n source nodes in the sources array. For each source node, a nonnegative number of destination nodes is specified in the degrees array. The destination nodes are stored in the corresponding consecutive segment of the destinations array. More precisely, if the i-th node in sources is s, this specifies degrees[i] edges
In C or Fortran, an application can supply the special value \texttt{MPI}

The weight associated with each edge is a hint to the program about the amount or intensity of communication on that edge, and may be used to compute a “best” reordering.

Weights are specified as nonnegative integers and can be used to influence the MPI process remapping strategy and other internal MPI optimizations. For instance, approximate count arguments of later communication calls along specific edges could be used as their edge weights. Multiplicity of edges can likewise indicate more intense communication between pairs of MPI processes. However, the exact meaning of edge weights and multiplicity of edges is not specified by the MPI standard and is left to the implementation. In C or Fortran, an application can supply the special value \texttt{MPI\_UNWEIGHTED} for the weights to indicate that all edges have the same (effectively no) weight. It is erroneous to supply MPI\_UNWEIGHTED for some but not all MPI processes of comm\_old. If the graph is weighted but \( n = 0 \), then MPI\_WEIGHTS\_EMPTY or any arbitrary array may be passed to weights. Note that MPI\_UNWEIGHTED and MPI\_WEIGHTS\_EMPTY are not special weight values; rather they are special values for the total array argument. In Fortran, MPI\_UNWEIGHTED and MPI\_WEIGHTS\_EMPTY are objects like MPI\_BOTTOM (not usable for initialization or assignment). See Section 2.5.4.

Advice to users. In the case of an empty weights array argument passed while constructing a weighted graph, one should not pass NULL because the value of MPI\_UNWEIGHTED may be equal to NULL. The value of this argument would then be indistinguishable from MPI\_UNWEIGHTED to the implementation. MPI\_WEIGHTS\_EMPTY should be used instead. (End of advice to users.)

Advice to implementors. It is recommended that MPI\_UNWEIGHTED not be implemented as NULL. (End of advice to implementors.)

Rationale. To ensure backward compatibility, MPI\_UNWEIGHTED may still be implemented as NULL. See Annex B.4. (End of rationale.)

The meaning of the weights argument can be influenced by the info argument. The info argument can be used to guide the mapping of MPI processes to
the hardware; possible options include minimizing the maximum number of edges between processes on different SMP nodes, or minimizing the sum of all such edges. As described in Section 10, an MPI implementation is not obliged to follow specific hints, and it is valid for an MPI implementation not to do any reordering. An MPI implementation may specify more info (key, value) pairs. All MPI processes must specify the same set of (key, value) info pairs.

**Advice to implementors.** MPI implementations must document any additionally supported (key, value) info pairs. MPI_INFO_NULL is always valid, and may indicate the default creation of the distributed graph topology to the MPI library.

An implementation does not explicitly need to construct the topology from its distributed parts. However, all MPI processes can construct the full topology from the distributed specification and use this in a call to MPI_GRAPH_CREATE to create the topology. This may serve as a reference implementation of the functionality, and may be acceptable for small communicators. However, a scalable high-quality implementation would save the topology graph in a distributed way. *(End of advice to implementors.)*

**Example 8.3.** Several ways to specify the adjacency matrix for MPI_DIST_GRAPH_CREATE and MPI_DIST_GRAPH_CREATE_ADJACENT. As for Example 8.2, assume there are four MPI processes with ranks 0, 1, 2, 3 in the input communicator with the following adjacency matrix and unit edge weights:

<table>
<thead>
<tr>
<th>MPI process</th>
<th>neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1, 3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0, 2</td>
</tr>
</tbody>
</table>

With MPI_DIST_GRAPH_CREATE, this graph could be constructed in many different ways. One way would be that each MPI process specifies its outgoing edges. The arguments per MPI process would be:

<table>
<thead>
<tr>
<th>MPI process</th>
<th>n</th>
<th>sources</th>
<th>degrees</th>
<th>destinations</th>
<th>weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1,3</td>
<td>1,1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0,2</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Another way would be to pass the whole graph on MPI process with rank 0 in the input communicator, which could be done with the following arguments per MPI process:

<table>
<thead>
<tr>
<th>MPI process</th>
<th>n</th>
<th>sources</th>
<th>degrees</th>
<th>destinations</th>
<th>weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0,1,2,3</td>
<td>2,1,1,2</td>
<td>1,3,0,3,0,2</td>
<td>1,1,1,1,1,1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
In both cases above, the application could supply MPI_UNWEIGHTED instead of explicitly providing identical weights. MPI_DIST_GRAPH_CREATE_ADJACENT could be used to specify this graph using the following arguments:

<table>
<thead>
<tr>
<th>MPI process</th>
<th>indegree</th>
<th>sources</th>
<th>sourceweights</th>
<th>outdegree</th>
<th>destinations</th>
<th>destweights</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>1,3</td>
<td>1,1</td>
<td>2</td>
<td>1,3</td>
<td>1,1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0,2</td>
<td>1,1</td>
<td>2</td>
<td>0,2</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Example 8.4. Cartesian grid plus diagonals specified with MPI_DIST_GRAPH_CREATE.
A two-dimensional $P \times Q$ torus where all MPI processes communicate along the dimensions and along the diagonal edges cannot be modeled with Cartesian topologies, but can easily be captured with MPI_DIST_GRAPH_CREATE as shown in the following code. In this example, the communication along the dimensions is twice as heavy as the communication along the diagonals:

```c
/*
 Input: dimensions P, Q
 Condition: number of MPI processes equal to P*Q
 */
int rank, x, y;
int sources[1], degrees[1];
int destinations[8], weights[8];
MPI_Comm comm_dist_graph;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* get x and y dimension */
y=rank/P; x=rank%P;

/* get my communication partners along x dimension */
destinations[0] = P*y+(x+1)%P; weights[0] = 2;
destinations[1] = P*y+(P+x-1)%P; weights[1] = 2;

/* get my communication partners along y dimension */
destinations[2] = P*((y+1)%Q)+x; weights[2] = 2;
destinations[3] = P*((Q+y-1)%Q)+x; weights[3] = 2;

/* get my communication partners along diagonals */
destinations[5] = P*((Q+y-1)%Q)+(x+1)%P; weights[5] = 1;

sources[0] = rank;
degrees[0] = 8;
MPI_Dist_graph_create(MPI_COMM_WORLD, 1, sources, degrees, destinations, weights, MPI_INFO_NULL, 1, &comm_dist_graph);
```
8.5.5 Topology Inquiry Functions

If a virtual topology has been defined with one of the above functions, then the topology information can be looked up using inquiry functions. They all are local calls.

**MPI_TOPO_TEST**(comm, status)

<table>
<thead>
<tr>
<th>IN</th>
<th>comm</th>
<th>communicator (handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>status</td>
<td>topology type of communicator comm (state)</td>
</tr>
</tbody>
</table>

**C binding**

```c
int MPI_Topo_test(MPI_Comm comm, int *status)
```

**Fortran 2008 binding**

```fortran
MPI_Topo_test(comm, status, ierror)
```

```fortran
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPI_TOPO_TEST(COMM, STATUS, IERROR)
```

```fortran
INTEGER COMM, STATUS, IERROR
```

The function **MPI_TOPO_TEST** returns the type of topology that is associated with a communicator.

The output value status is one of the following:

- **MPI_GRAPH** graph topology
- **MPI_CART** Cartesian topology
- **MPI_DIST_GRAPH** distributed graph topology
- **MPI_UNDEFINED** no topology

**MPI_GRAPHDIMS_GET**(comm, nnodes, nedges)

<table>
<thead>
<tr>
<th>IN</th>
<th>comm</th>
<th>communicator with associated graph topology (handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>nnodes</td>
<td>number of nodes in graph (same as number of MPI processes in the group of comm) (integer)</td>
</tr>
<tr>
<td>OUT</td>
<td>nedges</td>
<td>number of edges in graph (integer)</td>
</tr>
</tbody>
</table>

**C binding**

```c
int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)
```

**Fortran 2008 binding**

```fortran
MPI_Graphdims_get(comm, nnodes, nedges, ierror)
```

```fortran
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: nnodes, nedges
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)
```
The functions MPI_GRAPH_DIMS_GET and MPI_GRAPH_GET retrieve the graph topology information that is associated with the communicator. The information provided by MPI_GRAPH_DIMS_GET can be used to dimension the vectors index and edges correctly for the following call to MPI_GRAPH_GET.

\[
\text{MPI_GRAPH_GET}(\text{comm}, \text{maxindex}, \text{maxedges}, \text{index}, \text{edges})
\]

\begin{itemize}
  \item **IN** comm \hspace{.5cm} \text{communicator with associated graph topology (handle)}
  \item **IN** maxindex \hspace{.5cm} \text{length of vector index in the calling program (integer)}
  \item **IN** maxedges \hspace{.5cm} \text{length of vector edges in the calling program (integer)}
  \item **OUT** index \hspace{.5cm} \text{array of integers containing the graph structure (for details see the definition of MPI_GRAPH_CREATE)}
  \item **OUT** edges \hspace{.5cm} \text{array of integers containing the graph structure}
\end{itemize}

**C binding**

\begin{verbatim}
int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int index[],
                 int edges[])
\end{verbatim}

**Fortran 2008 binding**

\begin{verbatim}
MPI_Graph_get(comm, maxindex, maxedges, index, edges, ierror)
\end{verbatim}

\begin{verbatim}
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, INTENT(IN) :: maxindex, maxedges
  INTEGER, INTENT(OUT) :: index(maxindex), edges(maxedges)
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

**Fortran binding**

\begin{verbatim}
MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)
\end{verbatim}

\begin{verbatim}
  INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR
\end{verbatim}

**MPI_CARTDIM_GET**

\[
\text{MPI_CARTDIM_GET}(\text{comm}, \text{ndims})
\]

\begin{itemize}
  \item **IN** comm \hspace{.5cm} \text{communicator with associated Cartesian topology (handle)}
  \item **OUT** ndims \hspace{.5cm} \text{number of dimensions of the Cartesian structure (integer)}
\end{itemize}

**C binding**

\begin{verbatim}
int MPI_Cartdim_get(MPI_Comm comm, int *ndims)
\end{verbatim}

**Fortran 2008 binding**

\begin{verbatim}
MPI_Cartdim_get(comm, ndims, ierror)
\end{verbatim}

\begin{verbatim}
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, INTENT(IN) :: ndims
  INTEGER, OPTIONAL, INTENT(IN) :: ierror
\end{verbatim}
8.5 Topology Constructors

Fortran binding

MPI_CARTDIM_GET(COMM, NDIMS, IERROR)
INTEGER COMM, NDIMS, IERROR

The functions MPI_CARTDIM_GET and MPI_CART_GET return the Cartesian topology information that is associated with the communicator. If comm is associated with a zero-dimensional Cartesian topology, MPI_CARTDIM_GET returns ndims = 0 and MPI_CART_GET will keep all output arguments unchanged.

MPI_CART_GET(comm, maxdims, dims, periods, coords)
IN comm communicator with associated Cartesian topology (handle)
IN maxdims length of vectors dims, periods, and coords in the calling program (integer)
OUT dims number of MPI processes for each Cartesian dimension (array of integers)
OUT periods periodicity (true/false) for each Cartesian dimension (array of logicals)
OUT coords coordinates of calling MPI process in Cartesian structure (array of integers)

C binding

int MPI_Cart_get(MPI_Comm comm, int maxdims, int dims[], int periods[], int coords[])

Fortran 2008 binding

MPI_Cart_get(comm, maxdims, dims, periods, coords, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(IN) :: maxdims
INTEGER, INTENT(IN) :: dims(maxdims), coords(maxdims)
LOGICAL, INTENT(IN) :: periods(maxdims)
INTEGER, OPTIONAL, INTENT(IN) :: ierror

Fortran binding

MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)
INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR
LOGICAL PERIODS(*)

If maxdims in a call to MPI_CART_GET is less than the number of dimensions of the Cartesian topology associated with the communicator comm, the outcome is unspecified.

MPI_CART_RANK(comm, coords, rank)
IN comm communicator with associated Cartesian topology (handle)
IN coords integer array (of size ndims) specifying the Cartesian coordinates of an MPI process
OUT rank

rank of specified MPI process within group of comm
(integer)

C binding
int MPI_Cart_rank(MPI_Comm comm, const int coords[], int *rank)

Fortran 2008 binding
MPI_Cart_rank(comm, coords, rank, ierror)
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, INTENT(IN) :: coords(*)
  INTEGER, INTENT(OUT) :: rank
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_CART_RANK(COMM, COORDS, RANK, IERROR)
  INTEGER COMM, COORDS(*), RANK, IERROR

For a communicator with an associated Cartesian topology, the function
MPI_CART_RANK translates the logical coordinates of an MPI process to the corresponding
rank in the group of the communicator. For dimension i with periods(i) = true, if the
coordinate, coords(i), is out of range, that is, coords(i) < 0 or coords(i) ≥ dims(i), it is
shifted back to the interval 0 ≤ coords(i) < dims(i) automatically. Out-of-range coordinates
are erroneous for nonperiodic dimensions.

If comm is associated with a zero-dimensional Cartesian topology, coords is not signif-
icant and 0 is returned in rank.

MPI_CART_COORDS(comm, rank, maxdims, coords)

IN comm
  communicator with associated Cartesian topology
  (handle)

IN rank
  rank of an MPI process within group of comm
  (integer)

IN maxdims
  length of vector coords in the calling program
  (integer)

OUT coords
  coordinates of the MPI process with the rank rank in
  Cartesian structure (array of integers)

C binding
int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int coords[])

Fortran 2008 binding
MPI_Cart_coords(comm, rank, maxdims, coords, ierror)
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, INTENT(IN) :: rank, maxdims
  INTEGER, INTENT(OUT) :: coords(maxdims)
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)
The inverse mapping, rank-to-coordinates translation is provided by `MPI_CART_COORDS`. If `comm` is associated with a zero-dimensional Cartesian topology, `coords` will be unchanged. If `maxdims` is less than the number of dimensions of the Cartesian topology associated with the communicator `comm`, the outcome is unspecified.

**MPI_GRAPH_NEIGHBORS_COUNT**(comm, rank, nneighbors)

<table>
<thead>
<tr>
<th>IN</th>
<th>comm</th>
<th>communicator with associated graph topology (handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>rank</td>
<td>rank of MPI process in group of <code>comm</code> (integer)</td>
</tr>
<tr>
<td>OUT</td>
<td>nneighbors</td>
<td>number of neighbors of specified MPI process (integer)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)
```

Fortran 2008 binding

```fortran
MPI_Graph_neighbors_count(comm, rank, nneighbors, ierror)
```

```fortran
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: rank
 INTEGER, INTENT(OUT) :: nneighbors
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)
```

**MPI_GRAPH_NEIGHBORS**(comm, rank, maxneighbors, neighbors)

<table>
<thead>
<tr>
<th>IN</th>
<th>comm</th>
<th>communicator with associated graph topology (handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>rank</td>
<td>rank of MPI process in group of <code>comm</code> (integer)</td>
</tr>
<tr>
<td>IN</td>
<td>maxneighbors</td>
<td>size of array neighbors (integer)</td>
</tr>
<tr>
<td>OUT</td>
<td>neighbors</td>
<td>ranks of MPI processes that are neighbors to specified MPI process (array of integers)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,
 int neighbors[])
```

Fortran 2008 binding

```fortran
MPI_Graph_neighbors(comm, rank, maxneighbors, neighbors, ierror)
```

```fortran
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: rank, maxneighbors
 INTEGER, INTENT(OUT) :: neighbors(maxneighbors)
```
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)
INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS provide adjacency information for a graph topology. The returned count and array of neighbors for the queried rank will both include all neighbors and reflect the same edge ordering as was specified by the original call to MPI_GRAPH_CREATE. Specifically, MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS will return values based on the original index and edges array passed to MPI_GRAPH_CREATE (for the purpose of this example, we assume that index[-1] is zero):

- The number of neighbors (nneighbors) returned from MPI_GRAPH_NEIGHBORS_COUNT will be (index[rank] - index[rank-1]).
- The neighbors array returned from MPI_GRAPH_NEIGHBORS will be edges[index[rank-1]] through edges[index[rank]-1].

Example 8.5. Inquiry of graph topology information.
Assume there are four MPI processes with ranks 0, 1, 2, 3 in the input communicator with the following adjacency matrix (note that some neighbors are listed multiple times):

<table>
<thead>
<tr>
<th>MPI process</th>
<th>neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1, 1, 3</td>
</tr>
<tr>
<td>1</td>
<td>0, 0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0, 2, 2</td>
</tr>
</tbody>
</table>

Thus, the input arguments to MPI_GRAPH_CREATE are:

\[
\text{nnodes} = 4 \\
\text{index} = 3, 5, 6, 9 \\
\text{edges} = 1, 1, 3, 0, 0, 3, 0, 2, 2
\]

Therefore, calling MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS for each of the four MPI processes will return:

<table>
<thead>
<tr>
<th>Input rank</th>
<th>Count</th>
<th>Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 1, 3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0, 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0, 2, 2</td>
</tr>
</tbody>
</table>

Example 8.6. Using a communicator with an associated graph topology that represents a shuffle-exchange network.
Suppose that comm is a communicator with a shuffle-exchange topology. The group has \(2^n\) members. Each MPI process is labeled by \(a_1, \ldots, a_n\) with \(a_i \in \{0, 1\}\), and has three neigh-
bors: exchange\((a_1, \ldots, a_n) = a_1, \ldots, a_{n-1}, \bar{a}_n (\bar{a} = 1 - a)\), shuffle\((a_1, \ldots, a_n) = a_2, \ldots, a_n, a_1\), and unshuffle\((a_1, \ldots, a_n) = a_n, a_1, \ldots, a_{n-1}\). The graph adjacency list is illustrated below for \(n = 3\).

<table>
<thead>
<tr>
<th>node</th>
<th>exchange</th>
<th>shuffle</th>
<th>unshuffle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>neighbors(1)</td>
<td>neighbors(2)</td>
<td>neighbors(3)</td>
</tr>
<tr>
<td>0 (000)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 (001)</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2 (010)</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3 (011)</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>4 (100)</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5 (101)</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>6 (110)</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>7 (111)</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Suppose that the communicator \(\text{comm}\) has this topology associated with it. The following code fragment cycles through the three types of neighbors and performs an appropriate permutation for each.

```fortran
! assume: each MPI process has stored a real number \(A\).
! extract neighborhood information
CALL MPI_COMM_RANK(comm, myrank, ierr)
CALL MPI_GRAPH_NEIGHBORS(comm, myrank, 3, neighbors, ierr)
! perform exchange permutation
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(1), 0, &
neighbors(1), 0, comm, status, ierr)
! perform shuffle permutation
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(2), 0, &
neighbors(3), 0, comm, status, ierr)
! perform unshuffle permutation
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(3), 0, &
neighbors(2), 0, comm, status, ierr)
```

\(\text{MPI\_DIST\_GRAPH\_NEIGHBORS\_COUNT}\) and \(\text{MPI\_DIST\_GRAPH\_NEIGHBORS}\) provide adjacency information for a distributed graph topology.

\(\text{MPI\_DIST\_GRAPH\_NEIGHBORS\_COUNT}(\text{comm}, \text{indegree}, \text{outdegree}, \text{weighted})\)

**IN** \(\text{comm}\) communicator with associated distributed graph topology (handle)

**OUT** \(\text{indegree}\) number of edges into this MPI process (non-negative integer)

**OUT** \(\text{outdegree}\) number of edges out of this MPI process (non-negative integer)

**OUT** \(\text{weighted}\) false if \(\text{MPI\_UNWEIGHTED}\) was supplied during creation, true otherwise (logical)

C binding

```c
int MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree,
```
int *outdegree, int *weighted)

Fortran 2008 binding
MPI_Dist_graph_neighbors_count(comm, indegree, outdegree, weighted, ierror)
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, INTENT(IN) :: comm
  INTEGER, INTENT(IN) :: indegree, outdegree
  LOGICAL, INTENT(IN) :: weighted
  INTEGER, OPTIONAL, INTENT(IN) :: ierror

Fortran binding
MPI_DIST_GRAPH_NEIGHBORS_COUNT(COMM, INDEGREE, OUTDEGREE, WEIGHTED, IERROR)
  INTEGER COMM, INDEGREE, OUTDEGREE, IERROR
  LOGICAL WEIGHTED

MPI_DIST_GRAPH_NEIGHBORS(comm, maxindegree, sources, sourceweights, maxoutdegree, destinations, destweights)
  IN comm communicator with associated distributed graph
topology (handle)
  IN maxindegree size of sources and sourceweights arrays
  IN non-negative integer
  OUT sources ranks of MPI processes for which the calling MPI
  process is a destination (array of non-negative integers)
  OUT sourceweights weights of the edges into the calling MPI
  process (array of non-negative integers)
  IN maxoutdegree size of destinations and destweights arrays
  IN non-negative integer
  OUT destinations ranks of MPI processes for which the calling MPI
  process is a source (array of non-negative integers)
  OUT destweights weights of the edges out of the calling MPI
  process (array of non-negative integers)

C binding
int MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree, int sources[],
  int sourceweights[], int maxoutdegree, int destinations[],
  int destweights[])

Fortran 2008 binding
MPI_Dist_graph_neighbors(comm, maxindegree, sources, sourceweights,
  maxoutdegree, destinations, destweights, ierror)
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, INTENT(IN) :: comm
  INTEGER, INTENT(IN) :: maxindegree, maxoutdegree
  INTEGER, INTENT(IN) :: sources(maxindegree), destinations(maxoutdegree)
  INTEGER :: sourceweights(*), destweights(*)
  INTEGER, OPTIONAL, INTENT(IN) :: ierror
Fortran binding

MPI_DIST_GRAPH_NEIGHBORS(COMM, MAXINDEGREE, SOURCES, SOURCEWEIGHTS, MAXOUTDEGREE, DESTINATIONS, DESTWEIGHTS, IERROR)

INTEGER COMM, MAXINDEGREE, SOURCES(*), SOURCEWEIGHTS(*), MAXOUTDEGREE, DESTINATIONS(*), DESTWEIGHTS(*), IERROR

These calls are local. The number of edges into and out of the MPI process returned by MPI_DIST_GRAPH_NEIGHBORS_COUNT are the total number of such edges given in the call to MPI_DIST_GRAPH_CREATE_ADJACENT or MPI_DIST_GRAPH_CREATE (potentially by MPI processes other than the calling MPI process in the case of MPI_DIST_GRAPH_CREATE). Multiply-defined edges are all counted and returned by MPI_DIST_GRAPH_NEIGHBORS in some order. If MPI_UNWEIGHTED is supplied for sourceweights or destweights or both, or if MPI_UNWEIGHTED was supplied during the construction of the graph then no weight information is returned in that array or those arrays. If the communicator was created with MPI_DIST_GRAPH_CREATE_ADJACENT then for each MPI process in comm, the order of the values in sources and destinations is identical to the input that was used by the MPI process with the same rank in comm_old in the creation call. If the communicator was created with MPI_DIST_GRAPH_CREATE then the only requirement on the order of values in sources and destinations is that two calls to the routine with same input argument comm will return the same sequence of edges. If maxindegree or maxoutdegree is smaller than the numbers returned by MPI_DIST_GRAPH_NEIGHBORS_COUNT, then only the first part of the full list is returned.

Advice to implementors. Since the query calls are defined to be local, each MPI process needs to store the list of its neighbors with incoming and outgoing edges. Communication is required at the collective MPI_DIST_GRAPH_CREATE call in order to compute the neighbor lists for each MPI process from the distributed graph specification. (End of advice to implementors.)

8.5.6 Cartesian Shift Coordinates

If the MPI process topology is a Cartesian structure, an MPI_SENDRECV operation may be used along a coordinate direction to perform a shift of data. As input, MPI_SENDRECV takes the rank of a source MPI process for the receive, and the rank of a destination MPI process for the send. If the function MPI_CART_SHIFT is called for a communicator with an associated Cartesian topology, it provides the calling MPI process with the above identifiers, which then can be passed to MPI_SENDRECV. The user specifies the coordinate direction and the size of the step (positive or negative, but not zero). The function is local.

MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)

IN comm communicator with associated Cartesian topology (handle)

IN direction coordinate dimension of shift (integer)

IN disp displacement (> 0: upwards shift, < 0: downwards shift) (integer)

OUT rank_source rank of source MPI process (integer)

OUT rank_dest rank of destination MPI process (integer)
Chapter 8 Virtual Topologies for MPI Processes

C binding

```c
int MPI_Cart_shift(MPI_Comm comm, int direction, int disp, int *rank_source,
 int *rank_dest)
```

Fortran 2008 binding

```fortran
MPI_Cart_shift(comm, direction, disp, rank_source, rank_dest, ierror)
```

```fortran
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: direction, disp
 INTEGER, INTENT(OUT) :: rank_source, rank_dest
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)
```

```fortran
INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR
```

The `direction` argument indicates the coordinate dimension to be traversed by the shift. The dimensions are numbered from 0 to \( ndims-1 \), where \( ndims \) is the number of dimensions.

Depending on the periodicity of the Cartesian topology in the specified coordinate direction, `MPI_CART_SHIFT` provides the identifiers for a circular or an end-off shift. In the case of an end-off shift, the value `MPI_PROC_NULL` is returned in `rank_source` or `rank_dest`, indicating that the source or the destination for the shift is out of range.

It is erroneous to call `MPI_CART_SHIFT` with a direction that is either negative or greater than or equal to the number of dimensions in the Cartesian communicator. This implies that it is erroneous to call `MPI_CART_SHIFT` with a `comm` that is associated with a zero-dimensional Cartesian topology.

**Example 8.7.** Using `MPI_CART_SHIFT` for a Cartesian topology.

The communicator, `comm`, has a two-dimensional, periodic, Cartesian topology associated with it. A two-dimensional array of `REAL`s is stored one element per `MPI` process, in variable `A`. One wishes to skew this array, by shifting column \( i \) (vertically, i.e., along the column) by \( i \) steps.

```fortran
! find MPI process rank
CALL MPI_COMM_RANK(comm, rank, ierr)
!
```

```fortran
! find Cartesian coordinates
CALL MPI_CART_COORDS(comm, rank, maxdims, coords, ierr)
!
```

```fortran
! compute shift source and destination
CALL MPI_CART_SHIFT(comm, 0, coords(2), source, dest, ierr)
!
```

```fortran
! skew array
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, dest, 0, source, 0, comm, &
status, ierr)
```

**Advice to users.** In Fortran, the dimension indicated by `DIRECTION = i` has \( DIMS(i+1) \) nodes, where \( DIMS \) is the array that was used to create the grid. In C, the dimension indicated by `direction = i` is the dimension specified by `dims[i]`. (*End of advice to users.*)
8.5.7 Partitioning of Cartesian Structures

\textbf{MPI\_CART\_SUB}(\textit{comm, remain\_dims, newcomm})

\begin{verbatim}
IN    \textit{comm} \hspace{1cm} \text{communicator with associated Cartesian topology (handle)}

IN    \textit{remain\_dims} \hspace{1cm} \text{the i-th entry of remain\_dims specifies whether the i-th dimension is kept in the subgrid (true) or is dropped (false) (array of logicals)}

OUT    \textit{newcomm} \hspace{1cm} \text{new communicator with associated Cartesian topology containing the subgrid that includes the calling MPI process (handle)}
\end{verbatim}

\textbf{C binding}

\begin{verbatim}
int MPI_Cart_sub(MPI_Comm \textit{comm}, const int \textit{remain\_dims}[], MPI_Comm *\textit{newcomm})
\end{verbatim}

\textbf{Fortran 2008 binding}

\begin{verbatim}
MPI_Cart_sub\(\text{(comm, remain\_dims, newcomm, ierror)}\)
\end{verbatim}

\begin{verbatim}
  \text{TYPE(MPI\_Comm), INTENT(IN) :: comm}
  \text{LOGICAL, INTENT(IN) :: remain\_dims(*)}
  \text{TYPE(MPI\_Comm), INTENT(OUT) :: newcomm}
  \text{INTEGER, OPTIONAL, INTENT(OUT) :: ierror}
\end{verbatim}

\textbf{Fortran binding}

\begin{verbatim}
MPI\_CART\_SUB\(\text{(COMM, REMAIN\_DIMS, NEWCOMM, IERROR)}\)
\end{verbatim}

\begin{verbatim}
  \text{INTEGER COMM, NEWCOMM, IERROR}
  \text{LOGICAL REMAIN\_DIMS(*)}
\end{verbatim}

\text{MPI\_CART\_SUB} can be used to partition the group associated with a communicator that has an associated Cartesian topology into subgroups that form lower-dimensional Cartesian subgrids, and to create for each subgroup a communicator with the associated subgrid Cartesian topology. The topologies of the new communicators describe the subgrids. The number of dimensions of the subgrids is the number of remaining dimensions, i.e., the number of \text{true} values in \textit{remain\_dims}. The numbers of MPI processes in each coordinate direction of the subgrids are the remaining numbers of MPI processes in each coordinate direction of the grid associated with the original communicator, i.e., the values of the original grid dimensions for which the corresponding entry in \textit{remain\_dims} is \text{true}. The periodicity for the remaining dimensions in the new communicator is preserved from the original communicator. If all entries in \textit{remain\_dims} are \text{false} or \text{comm} is already associated with a zero-dimensional Cartesian topology then \textit{newcomm} is associated with a zero-dimensional Cartesian topology. (This function is closely related to \text{MPI\_COMM\_SPLIT}.)

\begin{example}
\textbf{Example 8.8.} Creation of nonoverlapping Cartesian subcommunicators with \text{MPI\_CART\_SUB}.
Assume that MPI\_Cart\_create(\ldots, comm) has defined a \((2 \times 3 \times 4)\) grid. Let \textit{remain\_dims} = (\text{true, false, true}). Then a call to

\begin{verbatim}
MPI\_Cart\_sub\(\text{comm, remain\_dims, &newcomm)}\)
\end{verbatim}

\end{example}
will create three communicators each with eight MPI processes in a $2 \times 4$ Cartesian topology. If remain_dims = (false, false, true) then the call to

\[
\text{MPI\_Cart\_sub}(\text{comm, remain\_dims, \&newcomm});
\]

will create six nonoverlapping communicators, each with four MPI processes, in a one-dimensional Cartesian topology.

### 8.5.8 Low-Level Topology Functions

The two additional functions introduced in this section can be used to implement all other topology functions. In general they will not be called by the user directly, except when creating additional virtual topology capabilities other than those provided by MPI. The two calls are both local.

**MPI\_CART\_MAP** (comm, ndims, dims, periods, newrank)

- **IN** comm input communicator (handle)
- **IN** ndims number of dimensions of Cartesian structure (integer)
- **IN** dims integer array of size ndims specifying the number of processes in each coordinate direction
- **IN** periods logical array of size ndims specifying the periodicity specification in each coordinate direction
- **OUT** newrank reordered rank of the calling MPI process; MPI\_UNDEFINED if calling MPI process does not belong to grid (integer)

**C binding**

```c
int MPI_Cart_map(MPI_Comm comm, int ndims, const int dims[],
 const int periods[], int *newrank)
```

**Fortran 2008 binding**

```fortran
MPI_Cart_map(comm, ndims, dims, periods, newrank, ierror)
```

```fortran
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: ndims, dims(ndims)
 LOGICAL, INTENT(IN) :: periods(ndims)
 INTEGER, INTENT(OUT) :: newrank
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)
```

```fortran
 INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR
 LOGICAL PERIODS(*)

MPI_CART_MAP computes an “optimal” placement for the calling MPI process on the physical machine. A possible implementation of this function is to always return the rank of the calling MPI process, that is, not to perform any reordering.
Advice to implementors. The function `MPI_CART_CREATE(comm, ndims, dims, periods, reorder, comm_cart)`, with `reorder = true` can be implemented by calling `MPI_CART_MAP(comm, ndims, dims, periods, newrank)`, then calling `MPI_COMM_SPLIT(comm, color, key, comm_cart)`, with `color = 0` if `newrank ≠ MPI_UNDEFINED`, `color = MPI_UNDEFINED` otherwise, and `key = newrank`. If `ndims` is zero then a zero-dimensional Cartesian topology is created.

The function `MPI_CART_SUB(comm, remain_dims, comm_new)` can be implemented by a call to `MPI_COMM_SPLIT(comm, color, key, comm_new)`, using a single number encoding of the lost dimensions as `color` and a single number encoding of the preserved dimensions as `key`.

All other Cartesian topology functions can be implemented locally, using the topology information that is cached with the communicator. (End of advice to implementors.)

The corresponding function for graph structures is as follows.

```c
int MPI_Graph_map(MPI_Comm comm, int nnodes, const int index[], const int edges[], int *newrank)
```

Fortran 2008 binding

```fortran
MPI_Graph_map(comm, nnodes, index, edges, newrank, ierror)
```

Fortran binding

```fortran
MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)
```

Advice to implementors. The function `MPI_GRAPH_CREATE(comm, nnodes, index, edges, reorder, comm_graph)`, with `reorder = true` can be implemented by calling `MPI_GRAPH_MAP(comm, nnodes, index, edges, newrank)`, then calling `MPI_COMM_SPLIT(comm, color, key, comm_graph)`, with `color = 0` if `newrank ≠ MPI_UNDEFINED`, `color = MPI_UNDEFINED` otherwise, and `key = newrank`.

All other graph topology functions can be implemented locally, using the topology information that is cached with the communicator. (End of advice to implementors.)
8.6 Neighborhood Collective Communication on Virtual Topologies

Virtual topologies specify a communication graph, but they implement no communication function themselves. Many applications require sparse nearest neighbor communications that can be expressed as graph topologies. We now describe several collective operations that perform communication along the edges of a graph representing a virtual topology. All of these functions are collective; i.e., they must be called by all MPI processes in the specified communicator. See Section 6 for an overview of other dense (global) collective communication operations and the semantics of collective operations.

If the graph was created with MPI_DIST_GRAPH_CREATE_ADJACENT with sources and destinations containing 0, ..., n-1, where n is the number of MPI processes in the group of comm_old (i.e., the graph is fully connected and also includes an edge from each node to itself), then the sparse neighborhood communication routine performs the same data exchange as the corresponding dense (fully-connected) collective operation. In the case of a Cartesian communicator, only nearest neighbor communication is provided, corresponding to rank_source and rank_dest in MPI_CART_SHIFT with input disp = 1.

Rationale. Neighborhood collective communications enable communication on a virtual topology. This high-level specification of data exchange among neighboring MPI processes enables optimizations in the MPI library because the communication pattern is known statically (the topology). Thus, the implementation can compute optimized message schedules during creation of the topology [40]. This functionality can significantly simplify the implementation of neighbor exchanges [36]. (End of rationale.)

For a distributed graph topology, created with MPI_DIST_GRAPH_CREATE, the sequence of neighbors in the send and receive buffers at each MPI process is defined as the sequence returned by MPI_DIST_GRAPH_NEIGHBORS for destinations and sources, respectively. For a general graph topology, created with MPI_GRAPH_CREATE, the use of neighborhood collective communication is restricted to adjacency matrices, where the number of edges between any two MPI processes is defined to be the same for both MPI processes (i.e., with a symmetric adjacency matrix). In this case, the order of neighbors in the send and receive buffers is defined as the sequence of neighbors as returned by MPI_GRAPH_NEIGHBORS. Note that graph topologies should generally be replaced by the distributed graph topologies.

For a Cartesian topology, created with MPI_CART_CREATE, the sequence of neighbors in the send and receive buffers at each MPI process is defined by the order of the dimensions, first the neighbor in the negative direction and then in the positive direction with displacement 1. The numbers of sources and destinations in the communication routines are 2*ndims with ndims defined in MPI_CART_CREATE. If a neighbor does not exist, i.e., at the border of a Cartesian topology in the case of a nonperiodic virtual grid dimension (i.e., periods[...]=false), then this neighbor is defined to be MPI_PROC_NULL.

If a neighbor in any of the functions is MPI_PROC_NULL, then the neighborhood collective communication behaves like a point-to-point communication with MPI_PROC_NULL in this direction. That is, the buffer is still part of the sequence of neighbors but it is neither communicated nor updated.
8.6.1 Neighborhood Gather

In the neighborhood gather operation, each MPI process i gathers data items from each MPI process j if an edge (j,i) exists in the topology graph, and each MPI process i sends the same data items to all MPI processes j where an edge (i,j) exists. The send buffer is sent to each neighboring MPI process and the l-th block in the receive buffer is received from the l-th neighbor.

\begin{verbatim}
MPI_NEIGHBOR_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)
IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements sent to each neighbor (non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf starting address of receive buffer (choice)
IN recvcount number of elements received from each neighbor (non-negative integer)
IN recvtype datatype of receive buffer elements (handle)
IN comm communicator with associated virtual topology (handle)
\end{verbatim}

C binding

```c
int MPI_Neighbor_allgather(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Neighbor_allgather_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
MPI_Datatype recvtype, MPI_Comm comm)
```

Fortran 2008 binding

```fortran
MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER, INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
```
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_NEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
 RECVTYPE, COMM, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

The MPI_NEIGHBOR_ALLGATHER procedure supports Cartesian communicators, graph communicators, and distributed graph communicators as described in Section 8.6. If comm is a distributed graph communicator, the outcome is as if each MPI process executed sends to each of its outgoing neighbors and receives from each of its incoming neighbors:

On a Cartesian virtual topology, the buffer usage in a given direction d with dims[d]=3 and 1, respectively during creation of the communicator is described in Figure 8.2. The figure may apply to any (or multiple) directions in the Cartesian topology. The grey buffers are required in all cases but are only accessed if during creation of the communicator,
The vector variant of MPI_NEIGHBOR_ALLGATHER allows one to gather different numbers of elements from each neighbor.

\[
\text{MPI_NEIGHBOR_ALLGATHERV}(\text{sendbuf}, \text{sendcount}, \text{sendtype}, \text{recvbuf}, \text{recvcounts}, \text{displs}, \text{recvtype}, \text{comm})
\]

- \text{IN} \, \text{sendbuf} \quad \text{starting address of send buffer (choice)}
- \text{IN} \, \text{sendcount} \quad \text{number of elements sent to each neighbor (non-negative integer)}
- \text{IN} \, \text{sendtype} \quad \text{datatype of send buffer elements (handle)}
- \text{OUT} \, \text{recvbuf} \quad \text{starting address of receive buffer (choice)}
- \text{IN} \, \text{recvcounts} \quad \text{nonnegative integer array (of length indegree) containing the number of elements that are received from each neighbor}
- \text{IN} \, \text{displs} \quad \text{integer array (of length indegree). Entry } i \text{ specifies the displacement (relative to } \text{recvbuf} \text{) at which to place the incoming data from neighbor } i
- \text{IN} \, \text{recvtype} \quad \text{datatype of receive buffer elements (handle)}

\text{periods}[d] \text{ was defined as nonzero (in C) or .TRUE. (in Fortran).}

Figure 8.1: Neighborhood gather communication example

Figure 8.2: Cartesian neighborhood allgather example for 3 and 1 processes in a dimension
Chapter 8 Virtual Topologies for MPI Processes

communicator with associated virtual topology (handle)

C binding

```c
int MPI_Neighbor_allgatherv(const void *sendbuf, int sendcount,
              MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],
              const int displs[], MPI_Datatype recvtype, MPI_Comm comm)
int MPI_Neighbor_allgatherv_c(const void *sendbuf, MPI_Count sendcount,
              MPI_Datatype sendtype, void *recvbuf,
              const MPI_Count recvcounts[], const MPI_Aint displs[],
              MPI_Datatype recvtype, MPI_Comm comm)
```

Fortran 2008 binding

```fortran
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
                          displs, recvtype, comm, ierror)
```

```fortran
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
                          displs, recvtype, comm, ierror) !(_c)
```

Fortran binding

```fortran
MPI_NEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECEBVUF, RECEVCOUNTS,
                          DISPLS, RECEVTYPE, COMM, IERROR)
```

The MPI NEIGHBOR_ALLGATHERV procedure supports Cartesian communicators,
graph communicators, and distributed graph communicators as described in Section 8.6. If comm is a distributed graph communicator, the outcome is as if each MPI process executed sends to each of its outgoing neighbors and receives from each of its incoming neighbors:

```c
MPI_Dist_graph_neighbors_count(comm, &indegree, &outdegree, &weighted);
int *srcs=(int*)malloc(indegree*sizeof(int));
int *dsts=(int*)malloc(outdegree*sizeof(int));
MPI_Dist_graph_neighbors(comm, indegree, srcs, MPI_UNWEIGHTED,
                          outdegree, dsts, MPI_UNWEIGHTED);
int k;
```
8.6 Neighborhood Collective Communication

/* assume sendbuf and recvbuf are of type (char*) */
for (k=0; k<outdegree; ++k)
 MPI_Isend(sendbuf, sendcount, sendtype, dsts[k], ...);
for (k=0; k<indegree; ++k)
 MPI_Irecv(recvbuf+displs[k]*extent(recvtype), recvcounts[k], recvtype,
 srcs[k], ...);
MPI_Waitall(...);

The type signature associated with sendcount, sendtype at MPI process j must be equal to the type signature associated with recvcounts[], recvtype at any other MPI process with srcs[[]] = j. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of communicating MPI processes. Distinct type maps between sender and receiver are still allowed. The data received from the l-th neighbor is placed into recvbuf beginning at offset displs[[]] elements (in terms of the recvtype).

The “in place” option is not meaningful for this operation.

All arguments are significant on all MPI processes and the argument comm must have identical values on all MPI processes.

8.6.2 Neighborhood Alltoall

In the neighborhood alltoall operation, each MPI process i receives data items from each MPI process j if an edge (j, i) exists in the topology graph or Cartesian topology. Similarly, each MPI process i sends data items to all MPI processes j where an edge (i, j) exists. This call is more general than MPI_NEIGHBOR_ALLGATHER in that different data items can be sent to each neighbor. The k-th block in send buffer is sent to the k-th neighboring MPI process and the l-th block in the receive buffer is received from the l-th neighbor.

MPI_NEIGHBOR_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
 comm)

IN	sendbuf	starting address of send buffer (choice)
IN	sendcount	number of elements sent to each neighbor (non-negative integer)
IN	sendtype	datatype of send buffer elements (handle)
OUT	recvbuf	starting address of receive buffer (choice)
IN	recvcount	number of elements received from each neighbor (non-negative integer)
IN	recvtype	datatype of receive buffer elements (handle)
IN	comm	communicator with associated virtual topology (handle)

C binding

```c
int MPI_Neighbor_alltoall(const void *sendbuf, int sendcount, 
                           MPI_Datatype sendtype, void *recvbuf, int recvcount, 
                           MPI_Datatype recvtype, MPI_Comm comm)
```
int MPI_Neighbor_alltoall_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm)

Fortran 2008 binding
MPI_Neighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,
 recvtype, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,
 recvtype, comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_NEIGHBOR_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
 RECVTYPE, COMM, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

The MPI_NEIGHBOR_ALLTOALL procedure supports Cartesian communicators, graph
 communicators, and distributed graph communicators as described in Section 8.6. If comm
 is a distributed graph communicator, the outcome is as if each MPI process executed sends
to each of its outgoing neighbors and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm , & indegree , & outdegree , & weighted);
int *srcs=(int*)malloc(indegree*sizeof(int));
int *dsts=(int*)malloc(outdegree*sizeof(int));
MPI_Dist_graph_neighbors(comm, indegree, srcs, MPI_UNWEIGHTED,
 outdegree, dsts, MPI_UNWEIGHTED);
int k;
/* assume sendbuf and recvbuf are of type (char*) */
for(k=0; k<outdegree; ++k)
 MPI_Isend(sendbuf+k*sendcount*extent(sendtype), sendcount, sendtype,
 dsts[k],...);
for(k=0; k<indegree; ++k)
 MPI_Irecv(recvbuf+k*recvcount*extent(recvtype), recvcount, recvtype,
 srcs[k],...);
MPI_Waitall(...);
The type signature associated with sendcount, sendtype at an MPI process must be equal to the type signature associated with recvcount, recvtype at any other MPI process. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of communicating MPI processes. Distinct type maps between sender and receiver are still allowed.

The “in place” option is not meaningful for this operation.

All arguments are significant on all MPI processes and the argument comm must have identical values on all MPI processes.

Example 8.10. Buffer usage of MPI_NEIGHBOR_ALLTOALL in the case of a Cartesian virtual topology.

For a halo communication on a Cartesian grid, the buffer usage in a given direction d with dims[d]=3 and 1, respectively during creation of the communicator is described in Figure 8.3. The figure may apply to any (or multiple) directions in the Cartesian topology. The grey buffers are required in all cases but are only accessed if during creation of the communicator, periods[d] was defined as nonzero (in C) or .TRUE. (in Fortran).

If sendbuf and recvbuf are declared as (char *) and contain a sequence of buffers each described by sendcount,sendtype and recvbuf,recvtype, then after MPI_NEIGHBOR_ALLTOALL on a Cartesian communicator returned, the content of the recvbuf is as if the following code is executed:

```c
MPI_Cartdim_get(comm, &ndims);
MPI_Type_get_extent(sendtype, &send_lb, &send_extent);
MPI_Type_get_extent(recvtype, &recv_lb, &recv_extent);
for ( /*direction*/ d=0; d < ndims; d++) {
    MPI_Cart_shift(comm, /*direction*/ d, /*disp*/ 1, &rank_source, &rank_dest);
    MPI_Sendrecv(sendbuf+(d*2+0)*sendcount*send_extent,
                 sendcount, sendtype, rank_source, /*sendtag*/d*2,
                 recvbuf+(d*2+1)*recvcount*recv_extent,
                 recvcount, recvtype, rank_dest, /*recvtag*/ d*2,
                 comm,&status); /*communication in direction of displacement -1*/
    MPI_Sendrecv(sendbuf+(d*2+1)*sendcount*send_extent,
                 sendcount, sendtype, rank_dest, /*sendtag*/ d*2+1,
                 recvbuf+(d*2+0)*recvcount*recv_extent,
                 recvcount, recvtype, rank_source, /*recvtag*/ d*2+1,
                 comm,&status); /*communication in direction of displacement +1*/
}
```

The first call to MPI_Sendrecv implements the solid arrows’ communication pattern in each diagram of Figure 8.3, whereas the second call is for the dashed arrows’ pattern.

Advice to implementors. For a Cartesian topology, if the grid in a direction d is periodic and dims[d] is equal to 1 or 2, then rank_source and rank_dest are identical, but still all ndims send and ndims receive operations use different buffers. If in this case, the two send and receive operations per direction or of all directions are internally parallelized, then the several send and receive operations for the same sender-receiver MPI process pair shall be initiated in the same sequence on sender and receiver side or they shall be distinguished by different tags. The code above shows a valid sequence of operations and tags. (End of advice to implementors.)

The vector variant of MPI_NEIGHBOR_ALLTOALL allows sending/receiving different numbers of elements to and from each neighbor.
Figure 8.3: Cartesian neighborhood alltoall example for 3 and 1 MPI processes in a dimension

MPI_NEIGHBOR_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
 rdispls, recvtype, comm)

IN sendbuf starting address of send buffer (choice)
IN sendcounts nonnegative integer array (of length outdegree) specifying the number of elements to send to each neighbor
IN sdispls integer array (of length outdegree). Entry j specifies the displacement (relative to sendbuf) from which to send the outgoing data to neighbor j
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf starting address of receive buffer (choice)
IN recvcounts nonnegative integer array (of length indegree) specifying the number of elements that are received from each neighbor
IN rdispls integer array (of length indegree). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from neighbor i
IN recvtype datatype of receive buffer elements (handle)
IN comm communicator with associated virtual topology (handle)

C binding
int MPI_Neighbor_alltoallv(const void *sendbuf, const int sendcounts[],
 const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const int recvcounts[], const int rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm)
int MPI_Neighbor_alltoallv_c(const void *sendbuf, const MPI_Count sendcounts[],
 const MPI_Aint sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm)

Fortran 2008 binding

MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
 recvcounts, rdispls, recvtype, comm, ierr)

Fortran binding

MPI_NEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,
 RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)

The MPI_NEIGHBOR_ALLTOALLV procedure supports Cartesian communicators, graph
communicators, and distributed graph communicators as described in Section 8.6. If comm
is a distributed graph communicator, the outcome is as if each MPI process executed sends
to each of its outgoing neighbors and receives from each of its incoming neighbors:

```
int *srcs=(int*)malloc(indegree*sizeof(int));
int *dsts=(int*)malloc(outdegree*sizeof(int));
MPI_Dist_graph_neighbors(comm, indegree, srcs, MPI_UNWEIGHTED,
   outdegree, dsts, MPI_UNWEIGHTED);

int k;

/* assume sendbuf and recvbuf are of type (char*) */
for(k=0; k<outdegree; ++k)
   MPI_Isend(sendbuf+sdispls[k]*extent(sendtype), sendcounts[k],
      sendtype, dsts[k],...);

for(k=0; k<indegree; ++k)
   MPI_Irecv(recvbuf+rdispls[k]*extent(recvtype), recvcounts[k],
      recvtype, srcs[k],...);
```
MPI_Waitall(...);

The type signature associated with sendcounts[k], sendtype with dsts[k]=j at MPI process i must be equal to the type signature associated with recvcounts[l], recvtype with srcs[l]=i at MPI process j. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of communicating MPI processes. Distinct type maps between sender and receiver are still allowed. The data in the sendbuf beginning at offset sdispls[k] elements (in terms of the sendtype) is sent to the k-th outgoing neighbor. The data received from the l-th incoming neighbor is placed into recvbuf beginning at offset rdispls[l] elements (in terms of the recvtype).

The “in place” option is not meaningful for this operation.

All arguments are significant on all MPI processes and the argument comm must have identical values on all MPI processes.

MPI_NEIGHBOR_ALLTOALLW allows one to send and receive with different datatypes to and from each neighbor.

MPI_NEIGHBOR_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN sendbuf</td>
<td>starting address of send buffer (choice)</td>
</tr>
<tr>
<td>IN sendcounts</td>
<td>nonnegative integer array (of length outdegree) specifying the number of elements to send to each neighbor</td>
</tr>
<tr>
<td>IN sdispls</td>
<td>integer array (of length outdegree). Entry j specifies the displacement in bytes (relative to sendbuf) from which to take the outgoing data destined for neighbor j (array of integers)</td>
</tr>
<tr>
<td>IN sendtypes</td>
<td>array of datatypes (of length outdegree). Entry j specifies the type of data to send to neighbor j (array of handles)</td>
</tr>
<tr>
<td>OUT recvbuf</td>
<td>starting address of receive buffer (choice)</td>
</tr>
<tr>
<td>IN recvcounts</td>
<td>nonnegative integer array (of length indegree) specifying the number of elements that are received from each neighbor</td>
</tr>
<tr>
<td>IN rdispls</td>
<td>integer array (of length indegree). Entry i specifies the displacement in bytes (relative to recvbuf) at which to place the incoming data from neighbor i (array of integers)</td>
</tr>
<tr>
<td>IN recvtypes</td>
<td>array of datatypes (of length indegree). Entry i specifies the type of data received from neighbor i (array of handles)</td>
</tr>
<tr>
<td>IN comm</td>
<td>communicator with associated virtual topology (handle)</td>
</tr>
</tbody>
</table>
C binding

```c
int MPI_Neighbor_alltoallw(const void *sendbuf, const int sendcounts[],
    const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
    void *recvbuf, const int recvcounts[], const MPI_Aint rdispls[],
    const MPI_Datatype recvtypes[], MPI_Comm comm)
```

```c
int MPI_Neighbor_alltoallw_c(const void *sendbuf, const MPI_Count sendcounts[],
    const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
    void *recvbuf, const MPI_Count recvcounts[],
    const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],
    MPI_Comm comm)
```

Fortran 2008 binding

```fortran
MPI_Neighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
    recvcounts, rdispls, recvtypes, comm, ierror)
    TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
    INTEGER, INTENT(IN) :: sendcounts(*), recvcounts(*)
    INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: sdispls(*), rdispls(*)
    TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)
    TYPE(*), DIMENSION(..) :: recvbuf
    TYPE(MPI_Comm), INTENT(IN) :: comm
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_Neighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
    recvcounts, rdispls, recvtypes, comm, ierror) !(_c)
    TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcounts(*), recvcounts(*)
    INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: sdispls(*), rdispls(*)
    TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)
    TYPE(*), DIMENSION(..) :: recvbuf
    TYPE(MPI_Comm), INTENT(IN) :: comm
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_NEIGHBOR_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,
    RECVCOUNTS, RDISPLS, RECVTYPES, COMM, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM,
    IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)
```

The MPI_NEIGHBOR_ALLTOALLW procedure supports Cartesian communicators, graph communicators, and distributed graph communicators as described in Section 8.6. If `comm` is a distributed graph communicator, the outcome is as if each MPI process executed sends to each of its outgoing neighbors and receives from each of its incoming neighbors:

```c
MPI_Dist_graph_neighbors_count(comm, &indegree, &outdegree, &weighted);
int *srcs=(int*)malloc(indegree*sizeof(int));
int *dsts=(int*)malloc(outdegree*sizeof(int));
MPI_Dist_graph_neighbors(comm, indegree, srcs, MPI_UNWEIGHTED,
    outdegree, dsts, MPI_UNWEIGHTED);
int k;
```
/* assume sendbuf and recvbuf are of type (char*) */
for(k=0; k<outdegree; ++k)
 MPI_Isend(sendbuf+sdispls[k], sendcounts[k], sendtypes[k],
 dsts[k],...);
for(k=0; k<indegree; ++k)
 MPI_Irecv(recvbuf+rdispls[k], recvcounts[k], recvtypes[k],
 srcs[k],...);
MPI_Waitall(...);

The type signature associated with sendcounts[k], sendtypes[k] with dsts[k]=j at MPI process i must be equal to the type signature associated with recvcounts[l], recvtypes[l] with srcs[l]=i at MPI process j. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of communicating MPI processes. Distinct type maps between sender and receiver are still allowed.

The “in place” option is not meaningful for this operation.

All arguments are significant on all MPI processes and the argument comm must have identical values on all MPI processes.

8.7 Nonblocking Neighborhood Communication on Process Topologies

Nonblocking variants of the neighborhood collective operations allow relaxed synchronization and overlapping of computation and communication. The semantics are similar to nonblocking collective operations as described in Section 6.12.

8.7.1 Nonblocking Neighborhood Gather

MPI_INEIGHBOR_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, request)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements sent to each neighbor (non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf starting address of receive buffer (choice)
IN recvcount number of elements received from each neighbor (non-negative integer)
IN recvtype datatype of receive buffer elements (handle)
IN comm communicator with associated virtual topology (handle)
OUT request communication request (handle)

C binding
int MPI_Ineighbor_allgather(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ineighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
recvtype, comm, request)

Fortran 2008 binding
MPI_Ineighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, request, ierror)

Fortran binding
MPI_INEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECEVBUFF, RECEVCOUNT,
RECVTYPE, COMM, REQUEST, IERROR)

MPI_INEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECEVBUFF, RECEVCOUNT,
RECVTYPE, COMM, REQUEST)

MPI_INEIGHBOR_ALLGATHERV starts a nonblocking variant of
MPI_NEIGHBOR_ALLGATHER.

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements sent to each neighbor
(non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf starting address of receive buffer (choice)
IN recvcounts nonnegative integer array (of length indegree)
containing the number of elements that are received from each neighbor
IN displs integer array (of length indegree). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from neighbor i.

IN recvtype datatype of receive buffer elements (handle)

IN comm communicator with associated virtual topology (handle)

OUT request communication request (handle)

C binding

int MPI_Ineighbor_allgatherv(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],
 const int displs[], MPI_Datatype recvtype, MPI_Comm comm,
 MPI_Request *request)

int MPI_Ineighbor_allgatherv_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint displs[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding

MPI_Ineighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
 displs, recvtype, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
 displs, recvtype, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_INEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,
 DISPLS, RECIVTYPE, COMM, REQUEST, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECIVTYPE, COMM,
 REQUEST, IERROR
MPI_INEIGHBOR_ALLGATHERV starts a nonblocking variant of MPI_INEIGHBOR_ALLGATHERV.

8.7.2 Nonblocking Neighborhood Alltoall

MPI_INEIGHBOR_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, request)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements sent to each neighbor (non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf starting address of receive buffer (choice)
IN recvcount number of elements received from each neighbor (non-negative integer)
IN recvtype datatype of receive buffer elements (handle)
IN comm communicator with associated virtual topology (handle)
OUT request communication request (handle)

C binding
int MPI_Ineighbor_alltoall(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)
int MPI_Ineighbor_alltoall_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

Fortran 2008 binding
MPI_Ineighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ineighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, request, ierror) !(c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_INEIGHBOR_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
 RECVTYPE, COMM, REQUEST, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI_INEIGHBOR_ALLTOALL starts a nonblocking variant of
MPI_NEIGHBOR_ALLTOALL.

MPI_INEIGHBOR_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
 rdispls, recvtype, comm, request)
 IN sendbuf starting address of send buffer (choice)
 IN sendcounts nonnegative integer array (of length outdegree)
 specifying the number of elements to send to each
 neighbor
 IN sdispls integer array (of length outdegree). Entry j specifies
 the displacement (relative to sendbuf) from which
 send the outgoing data to neighbor j
 IN sendtype datatype of send buffer elements (handle)
 OUT recvbuf starting address of receive buffer (choice)
 IN recvcounts nonnegative integer array (of length indegree)
 specifying the number of elements that are received
 from each neighbor
 IN rdispls integer array (of length indegree). Entry i specifies
 the displacement (relative to recvbuf) at which to
 place the incoming data from neighbor i
 IN recvtype datatype of receive buffer elements (handle)
 IN comm communicator with associated virtual topology
 (handle)
 OUT request communication request (handle)

C binding

int MPI_Ineighbor_alltoallv(const void *sendbuf, const int sendcounts[],
 const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const int recvcounts[], const int rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)
int MPI_Ineighbor_alltoallv_c(const void *sendbuf,
 const MPI_Count sendcounts[], const MPI_Aint sdispls[],
 MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)
Fortran 2008 binding

```fortran
MPI_Ineighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
   recvcounts, rdispls, recvtype, comm, request, ierror)
```

- `TYPE(*)`, `DIMENSION(..)`, `INTENT(IN)`, `ASYNCHRONOUS :: sendbuf`
- `INTEGER`, `INTENT(IN)`, `ASYNCHRONOUS :: sendcounts(*), sdispls(*)`
- `recvcounts(*), rdispls(*)`
- `TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype`
- `TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf`
- `TYPE(MPI_Comm), INTENT(IN) :: comm`
- `TYPE(MPI_Request), INTENT(OUT) :: request`
- `INTEGER, OPTIONAL, INTENT(OUT) :: ierror`

```fortran
MPI_Ineighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
   recvcounts, rdispls, recvtype, comm, request) !(_c)
```

- `TYPE(*)`, `DIMENSION(..), INTENT(IN)`, `ASYNCHRONOUS :: sendbuf`
- `INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*)`
- `recvcounts(*)`
- `INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*)`
- `type(*)`, `DIMENSION(..), ASYNCHRONOUS :: recvbuf`
- `TYPE(MPI_Comm), INTENT(IN) :: comm`
- `TYPE(MPI_Request), INTENT(OUT) :: request`
- `INTEGER, OPTIONAL, INTENT(OUT) :: ierror`

Fortran binding

```fortran
MPI_INEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,
   RECVCOUNTS, RDISPLS, RECVTYPEN, COMM, REQUEST, IERROR)
```

- `<type> SENDBUF(*), RECVBUF(*)`
- `INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),`
- `RECVTYPEN, COMM, REQUEST, IERROR`

`MPI_INEIGHBOR_ALLTOALLV` starts a nonblocking variant of `MPI_INEIGHBOR_ALLTOALLV`.

- `IN sendbuf` starting address of send buffer (choice)
- `IN sendcounts` nonnegative integer array (of length outdegree) specifying the number of elements to send to each neighbor
- `IN sdispls` integer array (of length outdegree). Entry j specifies the displacement in bytes (relative to sendbuf) from which to take the outgoing data destined for neighbor j (array of integers)
- `IN sendtypes` array of datatypes (of length outdegree). Entry j specifies the type of data to send to neighbor j (array of handles)
```
Chapter 8 Virtual Topologies for MPI Processes

OUT  recvbuf  starting address of receive buffer (choice)

IN   recvcounts  nonnegative integer array (of length indegree)
                  specifying the number of elements that are received
                  from each neighbor

IN   rdispls  integer array (of length indegree). Entry i specifies
               the displacement in bytes (relative to recvbuf) at
               which to place the incoming data from neighbor i
               (array of integers)

IN   recvtypes  array of datatypes (of length indegree). Entry i
                 specifies the type of data received from neighbor i
                 (array of handles)

IN   comm  communicator with associated virtual topology
          (handle)

OUT  request  communication request (handle)

C binding

int MPI_Ineighbor_alltoallw(const void *sendbuf, const int sendcounts[],
                           const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
                           void *recvbuf, const int recvcounts[], const MPI_Aint rdispls[],
                           const MPI_Datatype recvtypes[], MPI_Comm comm,
                           MPI_Request *request)

int MPI_Ineighbor_alltoallw_c(const void *sendbuf, const MPI_Count sendcounts[],
                               const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
                               void *recvbuf, const MPI_Count recvcounts[], const MPI_Aint rdispls[],
                               const MPI_Datatype recvtypes[], MPI_Comm comm,
                               MPI_Request *request)

Fortran 2008 binding

MPI_Ineighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
                         recvcounts, rdispls, recvtypes, comm, request, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
  INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)
  INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),
              rdispls(*)
  TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
                         recvcounts, rdispls, recvtypes, comm, request, ierror) !(_c)
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*),
              recvcounts(*)
```
8.8 Persistent Neighborhood Communication

Fortran binding

```fortran
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

MPI_INEIGHBOR_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)

8.8 Persistent Neighborhood Communication on Process Topologies

Persistent variants of the neighborhood collective operations can offer significant performance benefits for programs with repetitive communication patterns. The semantics are similar to persistent collective operations as described in Section 6.13.

8.8.1 Persistent Neighborhood Gather

```fortran
MPI_INEIGHBOR_ALLGATHER_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, info, request)
```

C binding

```c
int MPI_Neighbor_allgather_init(const void *sendbuf, int sendcount,
                                MPI_Datatype sendtype, void *recvbuf, int recvcount,
```
MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Neighbor_allgather_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

Fortran 2008 binding
MPI_Neighbor_allgather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount,
 recvtype, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_allgather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount,
 recvtype, comm, info, request, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_NEIGHBOR_ALLGATHER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECEVCOUNT,
 RECVTYPE, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECEVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR

Creates a persistent collective communication request for the neighborhood allgather operation.

MPI_NEIGHBOR_ALLGATHERV_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
 displs, recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements sent to each neighbor (non-negative integer)
IN sendtype datatype of send buffer elements (handle)
OUT recvbuf starting address of receive buffer (choice)
8.8 Persistent Neighborhood Communication

IN recvcounts nonnegative integer array (of length indegree) containing the number of elements that are received from each neighbor

IN displs integer array (of length indegree). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from neighbor i

IN recvtype datatype of receive buffer elements (handle)

IN comm communicator with associated virtual topology (handle)

IN info info argument (handle)

OUT request communication request (handle)

C binding

```c
int MPI_Neighbor_allgatherv_init(const void *sendbuf, int sendcount,
       MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],
       const int displs[], MPI_Datatype recvtype, MPI_Comm comm,
       MPI_Info info, MPI_Request *request)
```

```c
int MPI_Neighbor_allgatherv_init_c(const void *sendbuf, MPI_Count sendcount,
       MPI_Datatype sendtype, void *recvbuf,
       const MPI_Count recvcounts[], const MPI_Aint displs[],
       MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
       MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Neighbor_allgatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
       displs, recvtype, comm, info, request, ierror)
```

```fortran
MPI_Neighbor_allgatherv_init_c(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
       displs, recvtype, comm, info, request, ierror) !(_c)
```
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_NEIGHBOR_ALLGATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)

 creates a persistent collective communication request for the neighborhood allgatherv operation.

8.8.2 Persistent Neighborhood Alltoall

MPI_NEIGHBOR_ALLTOALL_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, info, request)

 IN sendbuf starting address of send buffer (choice)
 IN sendcount number of elements sent to each neighbor (non-negative integer)
 IN sendtype datatype of send buffer elements (handle)
 OUT recvbuf starting address of receive buffer (choice)
 IN recvcount number of elements received from each neighbor (non-negative integer)
 IN recvtype datatype of receive buffer elements (handle)
 IN comm communicator with associated virtual topology (handle)
 IN info info argument (handle)
 OUT request communication request (handle)

C binding

int MPI_Neighbor_alltoall_init(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Neighbor_alltoall_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

Fortran 2008 binding

MPI_Neighbor_alltoall_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount
8.8 Persistent Neighborhood Communication

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoall_init(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, info, request, ierror) !(_c)
```

Fortran binding

```fortran
MPI_NEIGHBOR_ALLTOALL_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, COMM, INFO, REQUEST, IERROR)
```

- Creates a persistent collective communication request for the neighborhood alltoall operation.

```fortran
MPI_NEIGHBOR_ALLTOALLV_INIT(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm, info, request)
```

Parameters

- **IN** `sendbuf` starting address of send buffer (choice)
- **IN** `sendcounts` nonnegative integer array (of length outdegree) specifying the number of elements to send to each neighbor
- **IN** `sdispls` integer array (of length outdegree). Entry j specifies the displacement (relative to `sendbuf`) from which send the outgoing data to neighbor j
- **IN** `sendtype` datatype of send buffer elements (handle)
- **OUT** `recvbuf` starting address of receive buffer (choice)
- **IN** `recvcounts` nonnegative integer array (of length indegree) specifying the number of elements that are received from each neighbor
- **IN** `rdispls` integer array (of length indegree). Entry i specifies the displacement (relative to `recvbuf`) at which to place the incoming data from neighbor i
- **IN** `recvtype` datatype of receive buffer elements (handle)
Chapter 8 Virtual Topologies for MPI Processes

IN comm communicator with associated virtual topology (handle)

IN info info argument (handle)

OUT request communication request (handle)

C binding

int MPI_Neighbor_alltoallv_init(const void *sendbuf, const int sendcounts[],
 const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const int recvcounts[], const int rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Neighbor_alltoallv_init_c(const void *sendbuf,
 const MPI_Count sendcounts[], const MPI_Aint sdispls[],
 MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

Fortran 2008 binding

MPI_Neighbor_alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
 recvcounts, rdispls, recvtype, comm, info, request, ierror)

INTEGER, DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
 recvcounts(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
 recvcounts, rdispls, recvtype, comm, info, request, ierror) !(_c)

INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*),
 recvcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),
 rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_NEIGHBOR_ALLTOALLV_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,
 RECVCOUNTS, RDISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
 RECVTYPES, COMM, INFO, REQUEST, IERROR

Creates a persistent collective communication request for the neighborhood alltoallo

MPI_NEIGHBOR_ALLTOALLW_INIT(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
 recvcounds, rdispls, recvtypes, comm, info, request)

IN sendbuf starting address of send buffer (choice)
IN sendcounts nonnegative integer array (of length outdegree)
 specifying the number of elements to send to each neighbor
IN sdispls integer array (of length outdegree). Entry j specifies
 the displacement in bytes (relative to sendbuf) from
 which to take the outgoing data destined for
 neighbor j (array of integers)
IN sendtypes array of datatypes (of length outdegree). Entry j
 specifies the type of data to send to neighbor j (array
 of handles)
OUT recvbuf starting address of receive buffer (choice)
IN recvcounts nonnegative integer array (of length indegree)
 specifying the number of elements that are received
 from each neighbor
IN rdispls integer array (of length indegree). Entry i specifies
 the displacement in bytes (relative to recvbuf) at
 which to place the incoming data from neighbor i
 (array of integers)
IN recvtypes array of datatypes (of length indegree). Entry i
 specifies the type of data received from neighbor i
 (array of handles)
IN comm communicator with associated virtual topology
 (handle)
IN info info argument (handle)
OUT request communication request (handle)

C binding
int MPI_Neighbor_alltoallw_init(const void *sendbuf, const int sendcounts[],
 const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
 void *recvbuf, const int recvcounds[], const MPI_Aint rdispls[],
 const MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Neighbor_alltoallw_init_c(const void *sendbuf,
 const MPI_Count sendcounts[], const MPI_Aint sdispls[],
 ...
const MPI_Datatype sendtypes[], void *recvbuf,
const MPI_Count recvcounts[], const MPI_Aint rdispls[],
const MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Info info,
MPI_Request *request)

Fortran 2008 binding

MPI_Neighbor_alltoallw_init(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
recvcounts, rdispls, recvtypes, comm, info, request, ierror)

Fortran binding

MPI_NEIGHBOR_ALLTOALLW_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,
RECVCOUNTS, RDISPLS, RCVTYPES, COMM, INFO, REQUEST, IERROR)

Creates a persistent collective communication request for the neighborhood alltoallw
operation.

8.9 An Application Example
INTEGER ndims, num_neigh
LOGICAL reorder
PARAMETER (ndims=2, num_neigh=4, reorder=.true.)
INTEGER comm, comm_size, comm_cart, dims(ndims), ierr
INTEGER neigh_rank(num_neigh), own_coords(ndims), i, j, it
LOGICAL periods(ndims)
REAL u(0:101,0:101), f(0:101,0:101)
DATA dims / ndims * 0 /
comm = MPI_COMM_WORLD
CALL MPI_COMM_SIZE(comm, comm_size, ierr)
! Set MPI process grid size and periodicity
CALL MPI_DIMS_CREATE(comm_size, ndims, dims, ierr)
periods(1) = .TRUE.
periods(2) = .TRUE.
! Create a grid structure in WORLD group and inquire about own position
CALL MPI_CART_CREATE(comm, ndims, dims, periods, reorder, &
comm_cart, ierr)
CALL MPI_CART_GET(comm_cart, ndims, dims, periods, own_coords, ierr)
i = own_coords(1)
j = own_coords(2)
! Look up the ranks for the neighbors. Own MPI process coordinates are (i,j).
! Neighbors are ((i-1,j), (i+1,j), (i,j-1), (i,j+1) modulo (dims(1),dims(2))
CALL MPI_CART_SHIFT(comm_cart, 0,1, neigh_rank(1), neigh_rank(2), ierr)
CALL MPI_CART_SHIFT(comm_cart, 1,1, neigh_rank(3), neigh_rank(4), ierr)
! Initialize the grid functions and start the iteration
CALL init(u, f)
DO it=1,100
 CALL relax(u, f)
 ! Exchange data with neighbor processes
 CALL exchange(u, comm_cart, neigh_rank, num_neigh)
END DO
CALL output(u)

Figure 8.4: Set-up of MPI process structure for two-dimensional parallel Poisson solver

Example 8.11. Neighborhood collective communication in a Cartesian virtual topology. The example in Figures 8.4–8.7 shows how the grid definition and inquiry functions can be used in an application program. A partial differential equation, for instance the Poisson equation, is to be solved on a rectangular domain. First, the MPI processes organize themselves in a two-dimensional structure. Each MPI process then inquires about the ranks of its neighbors in the four directions (up, down, right, left). The numerical problem is solved by an iterative method, the details of which are hidden in the subroutine relax.

In each relaxation step each MPI process computes new values for the solution grid function at the points u(1:100,1:100) owned by the MPI process. Then the values at inter-process boundaries have to be exchanged with neighboring MPI processes. For example, the newly calculated values in u(1:100) must be sent into the halo cells u(101,1:100) of the left-hand neighbor with coordinates (own_coord(1)-1,own_coord(2)).
SUBROUTINE exchange(u, comm_cart, neigh_rank, num_neigh)
USE MPI
REAL u(0:101,0:101)
INTEGER comm_cart, num_neigh, neigh_rank(num_neigh)
REAL sndbuf(100,num_neigh), rcvbuf(100,num_neigh)
INTEGER ierr
sndbuf(1:100,1) = u(1,1:100)
sndbuf(1:100,2) = u(100,1:100)
sndbuf(1:100,3) = u(1:100,1)
sndbuf(1:100,4) = u(1:100,100)
CALL MPI_NEIGHBOR_ALLTOALL(sndbuf, 100, MPI_REAL, rcvbuf, 100, MPI_REAL, &
 comm_cart, ierr)
! instead of
! CALL MPI_IRECV(rcvbuf(1,1),100,MPI_REAL, neigh_rank(1),..., rq(1), ierr)
! CALL MPI_ISEND(sndbuf(1,2),100,MPI_REAL, neigh_rank(2),..., rq(2), ierr)
! Always pairing a receive from rank_source with a send to rank_dest
! of the same direction in MPI_CART_SHIFT!
! CALL MPI_IRECV(rcvbuf(1,2),100,MPI_REAL, neigh_rank(2),..., rq(3), ierr)
! CALL MPI_ISEND(sndbuf(1,1),100,MPI_REAL, neigh_rank(1),..., rq(4), ierr)
! CALL MPI_IRECV(rcvbuf(1,3),100,MPI_REAL, neigh_rank(3),..., rq(5), ierr)
! CALL MPI_ISEND(sndbuf(1,4),100,MPI_REAL, neigh_rank(4),..., rq(6), ierr)
! CALL MPI_IRECV(rcvbuf(1,4),100,MPI_REAL, neigh_rank(4),..., rq(7), ierr)
! CALL MPI_ISEND(sndbuf(1,3),100,MPI_REAL, neigh_rank(3),..., rq(8), ierr)
! Of course, one can first start all four IRECV and then all four ISEND,
! Or vice versa, but both in the sequence shown above. Otherwise, the
! matching would be wrong for 2 or only 1 MPI processes in a direction.
! CALL MPI_WAITALL(2*num_neigh, rq, statuses, ierr)
u(0,1:100) = rcvbuf(1:100,1)
u(101,1:100) = rcvbuf(1:100,2)
u(1:100, 0) = rcvbuf(1:100,3)
u(1:100,101) = rcvbuf(1:100,4)
END

Figure 8.5: Communication routine with local data copying and sparse neighborhood alltoall
SUBROUTINE exchange(u, comm_cart, neigh_rank, num_neigh)
USE MPI
IMPLICIT NONE
REAL u(0:101,0:101)
INTEGER comm_cart, num_neigh, neigh_rank(num_neigh)
INTEGER sndcounts(num_neigh), sndtypes(num_neigh)
INTEGER rcvcounts(num_neigh), rcvtypes(num_neigh)
INTEGER(KIND=MPI_ADDRESS_KIND) lb, sizeofreal
INTEGER(KIND=MPI_ADDRESS_KIND) sdispls(num_neigh), rdispls(num_neigh)
INTEGER type_vec, ierr
! The following initialization need to be done only once
! before the first call of exchange.
CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lb, sizeofreal, ierr)
CALL MPI_TYPE_VECTOR(100, 1, 102, MPI_REAL, type_vec, ierr)
CALL MPI_TYPE_COMMIT(type_vec, ierr)
sndtypes(1:2) = type_vec
sndcounts(1:2) = 1
sndtypes(3:4) = MPI_REAL
sndcounts(3:4) = 100
rcvtypes = sndtypes
rcvcounts = sndcounts
sdispls(1) = (1 + 1*102) * sizeofreal ! first element of u(1 , 1:100)
sdispls(2) = (100 + 1*102) * sizeofreal ! first element of u(100 , 1:100)
sdispls(3) = (1 + 1*102) * sizeofreal ! first element of u(1:100, 1)
sdispls(4) = (1 + 100*102) * sizeofreal ! first element of u(1:100,100)
rcdispls(1) = (0 + 1*102) * sizeofreal ! first element of u(0 , 1:100)
rdispls(2) = (101 + 1*102) * sizeofreal ! first element of u(101 , 1:100)
rdispls(3) = (1 + 0*102) * sizeofreal ! first element of u(1:100, 0)
rdispls(4) = (1 + 101*102) * sizeofreal ! first element of u(1:100,101)
! the following communication has to be done in each call of exchange
CALL MPI_NEIGHBOR_ALLTOALLW(u, sndcounts, sdispls, sndtypes, &
 u, rcvcounts, rdispls, rcvtypes, &
 comm_cart, ierr)
! The following finalizing need to be done only once
! after the last call of exchange.
CALL MPI_TYPE_FREE(type_vec, ierr)
END

Figure 8.6: Communication routine with sparse neighborhood alltoallw and without local data copying
INTEGER ndims, num_neigh
LOGICAL reorder
PARAMETER (ndims=2, num_neigh=4, reorder=.true.)
INTEGER comm, comm_size, comm_cart, dims(ndims), it, ierr
LOGICAL periods(ndims)
REAL u(0:101,0:101), f(0:101,0:101)
DATA dims / ndims * 0 /
INTEGER sndcounts(num_neigh), sndtypes(num_neigh)
INTEGER rcvcounts(num_neigh), rcvtypes(num_neigh)
INTEGER(KIND=MPI_ADDRESS_KIND) lb, sizeofreal
INTEGER(KIND=MPI_ADDRESS_KIND) sdispls(num_neigh), rdispls(num_neigh)
INTEGER type_vec, request, info, status(MPI_STATUS_SIZE)
comm = MPI_COMM_WORLD
CALL MPI_COMM_SIZE(comm, comm_size, ierr)
! Set MPI process grid size and periodicity
CALL MPI_DIMS_CREATE(comm_size, ndims, dims, ierr)
periods(1) = .TRUE.
periods(2) = .TRUE.
! Create a grid structure in WORLD group
CALL MPI_CART_CREATE(comm, ndims, dims, periods, reorder, &
comm_cart, ierr)
! Create datatypes for the neighborhood communication
! Insert code from example in Figure 7.4 to create and initialize
! sndcounts, sdispls, sndtypes, rcvcounts, rdispls, and rcvtypes
!
! Initialize the neighborhood alltoallw operation
info = MPI_INFO_NULL
CALL MPI_NEIGHBOR_ALLTOALLW_INIT(u, sndcounts, sdispls, sndtypes, &
u, rcvcounts, rdispls, rcvtypes, &
comm_cart, info, request, ierr)
! Initialize the grid functions and start the iteration
CALL init(u, f)
DO it=1,100
! Start data exchange with neighbor processes
 CALL MPI_START(request, ierr)
! Compute inner cells
 CALL relax_inner (u, f)
! Check on completion of neighbor exchange
 CALL MPI_WAIT(request, status, ierr)
! Compute edge cells
 CALL relax_edges(u, f)
END DO
CALL output(u)
CALL MPI_REQUEST_FREE(request, ierr)
CALL MPI_TYPE_FREE(type_vec, ierr)

Figure 8.7: Two-dimensional parallel Poisson solver with persistent sparse neighborhood
alltoallw and without local data copying
Chapter 9

MPI Environmental Management

This chapter discusses routines for getting and, where appropriate, setting various parameters that relate to the MPI implementation and the execution environment (such as error handling). The procedures for entering and leaving the MPI execution environment are also described here.

9.1 Implementation Information

9.1.1 Version Inquiries

In order to cope with changes to the MPI standard, there are both compile-time and runtime ways to determine which version of the standard is in use in the environment one is using.

The “version” will be represented by two separate integers, for the version and subversion: In C,

```c
#define MPI_VERSION 4
#define MPI_SUBVERSION 1
```

in Fortran,

```fortran
INTEGER :: MPI_VERSION, MPI_SUBVERSION
PARAMETER (MPI_VERSION  = 4)
PARAMETER (MPI_SUBVERSION = 1)
```

For runtime determination,

```fortran
MPI_GET_VERSION(version, subversion)
```

<table>
<thead>
<tr>
<th>OUT</th>
<th>version number (integer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>subversion number (integer)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Get_version(int *version, int *subversion)
```

Fortran 2008 binding

```fortran
MPI_Get_version(version, subversion, ierror)
```

| INTEGER, INTENT(OUT) :: version, subversion |
| INTEGER, OPTIONAL, INTENT(OUT) :: ierror |

Fortran binding

```fortran
MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)
```

| INTEGER VERSION, SUBVERSION, IERROR |
MPI_GET_VERSION can be called at any time in an MPI program. This function must always be thread-safe, as defined in Section 11.6. Valid (MPI_VERSION, MPI_SUBVERSION) pairs in this and previous versions of the MPI standard are (4,1), (4,0), (3,1), (3,0), (2,2), (2,1), (2,0), and (1,2).

\textbf{MPI_GET_LIBRARY_VERSION(version, resultlen)}

\textbf{C binding}

\begin{verbatim}
int MPI_Get_library_version(char *version, int *resultlen)
\end{verbatim}

\textbf{Fortran 2008 binding}

\begin{verbatim}
MPI_Get_library_version(version, resultlen, ierror)
\end{verbatim}

\begin{verbatim}
 CHARACTER(LEN=\texttt{MPI_MAX_LIBRARY_VERSION_STRING}), INTENT(OUT) :: version
 INTEGER, INTENT(OUT) :: resultlen
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}

\begin{verbatim}
MPI_GET_LIBRARY_VERSION(VERSION, RESULTLEN, IERROR)
\end{verbatim}

\begin{verbatim}
 CHARACTER(*) VERSION
 INTEGER RESULTLEN, IERROR
\end{verbatim}

This routine returns a string representing the version of the MPI library. The version argument is a character string for maximum flexibility.

\textit{Advice to implementors.} An implementation of MPI should return a different string for every change to its source code or build that could be visible to the user. (\textit{End of advice to implementors.})

The argument \texttt{version} must represent storage that is \texttt{MPI_MAX_LIBRARY_VERSION_STRING} characters long. \texttt{MPI_GET_LIBRARY_VERSION} may write up to this many characters into \texttt{version}.

The number of characters actually written is returned in the output argument, \texttt{resultlen}. In C, a null character is additionally stored at \texttt{version[resultlen]}. The value of \texttt{resultlen} cannot be larger than \texttt{MPI_MAX_LIBRARY_VERSION_STRING} - 1. In Fortran, \texttt{version} is padded on the right with blank characters. The value of \texttt{resultlen} cannot be larger than \texttt{MPI_MAX_LIBRARY_VERSION_STRING}.

\texttt{MPI_GET_LIBRARY_VERSION} can be called at any time in an MPI program. This function must always be thread-safe, as defined in Section 11.6.

9.1.2 Environmental Inquiries

When using the World Model (Section 11.2), a set of attributes that describe the execution environment is attached to the communicator \texttt{MPI_COMM_WORLD} when MPI is initialized. The values of these attributes can be inquired by using the function \texttt{MPI_COMM_GET_ATTR} described in Section 7.7 and in Section 19.3.7. It is erroneous to delete these attributes, free their keys, or change their values.
The list of predefined attribute keys include

MPI_TAG_UB: Upper bound for tag value.

MPI_IO: Rank of a node that has regular I/O facilities (possibly myrank). Nodes in the same communicator may return different values for this parameter.

MPI_WTIME_IS_GLOBAL: Boolean variable that indicates whether clocks are synchronized.

When using the Sessions Model (Section 11.3), only the MPI_TAG_UB attribute is available. Vendors may add implementation-specific parameters (such as node number, real memory size, virtual memory size, etc.)

These predefined attributes do not change value between MPI initialization (MPI_INIT) and MPI completion (MPI_FINALIZE), and cannot be updated or deleted by users.

Advice to users. Note that in the C binding, the value returned by these attributes is a pointer to an int containing the requested value. (*End of advice to users.*)

The required parameter values are discussed in more detail below:

Tag Values

Tag values range from 0 to the value returned for MPI_TAG_UB, inclusive. These values are guaranteed to be unchanging during the execution of an MPI program. In addition, the tag upper bound value must be at least 32767. An MPI implementation is free to make the value of MPI_TAG_UB larger than this; for example, the value $2^{30} - 1$ is also a valid value for MPI_TAG_UB.

In the Sessions Model, the attribute MPI_TAG_UB is attached to all communicators created by MPI_COMM_CREATE_FROM_GROUP and MPI_INTERCOMM_CREATE_FROM_GROUPS, with the same value on all MPI processes in the communicator. In the World Model, the attribute MPI_TAG_UB has the same value on all processes of MPI_COMM_WORLD.

IO Rank

The value returned for MPI_IO is the rank of a processor that can provide language-standard I/O facilities. For Fortran, this means that all of the Fortran I/O operations are supported (e.g., OPEN, REWIND, WRITE). For C, this means that all of the ISO C I/O operations are supported (e.g., fopen, fprintf, lseek).

If every process can provide language-standard I/O, then the value MPI_ANY_SOURCE will be returned. Otherwise, if the calling process can provide language-standard I/O, then its rank will be returned. Otherwise, if some process can provide language-standard I/O then the rank of one such process will be returned. The same value need not be returned by all processes. If no process can provide language-standard I/O, then the value MPI_PROC_NULL will be returned.

Advice to users. Note that input is not collective, and this attribute does *not* indicate which process can or does provide input. (*End of advice to users.*)
Clock Synchronization

The value returned for MPI_WTIME_IS_GLOBAL is 1 if clocks at all processes in MPI_COMM_WORLD are synchronized, 0 otherwise. A collection of clocks is considered synchronized if explicit effort has been taken to synchronize them. The expectation is that the variation in time, as measured by calls to MPI_WTIME, will be less than one half the round-trip time for an MPI message of length zero. If time is measured at a process just before a send and at another process just after a matching receive, the second time should be always higher than the first one.

The attribute MPI_WTIME_IS_GLOBAL need not be present when the clocks are not synchronized (however, the attribute key MPI_WTIME_IS_GLOBAL is always valid). This attribute may be associated with communicators other than MPI_COMM_WORLD.

The attribute MPI_WTIME_IS_GLOBAL has the same value on all processes of MPI_COMM_WORLD.

Inquire Processor Name

MPI_GET_PROCESSOR_NAME(name, resultlen)

OUT name A unique specifier for the actual (as opposed to virtual) node.

OUT resultlen Length (in printable characters) of the result returned in name

C binding
int MPI_Get_processor_name(char *name, int *resultlen)

Fortran 2008 binding
MPI_Get_processor_name(name, resultlen, ierror)

 CHARACTER(LEN=_MPI_MAX_PROCESSOR_NAME), INTENT(OUT) :: name
 INTEGER, INTENT(OUT) :: resultlen
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_GET_PROCESSOR_NAME(NAME, RESULTLEN, IERROR)

 CHARACTER(*) NAME
 INTEGER RESULTLEN, IERROR

This routine returns the name of the processor on which it was called at the moment of the call. The name is a character string for maximum flexibility. From this value it must be possible to identify a specific piece of hardware; possible values include “processor 9 in rack 4 of mpp.cs.org” and “231” (where 231 is the actual processor number in the running homogeneous system). The argument name must represent storage that is at least MPI_MAX_PROCESSOR_NAME characters long. MPI_GET_PROCESSOR_NAME may write up to this many characters into name.

The number of characters actually written is returned in the output argument, resultlen. In C, a null character is additionally stored at name[resultlen]. The value of resultlen cannot be larger than MPI_MAX_PROCESSOR_NAME-1. In Fortran, name is padded on the right with blank characters. The value of resultlen cannot be larger than MPI_MAX_PROCESSOR_NAME.
Rationale. This function allows MPI implementations that do process migration to return the current processor. Note that nothing in MPI requires or defines process migration; this definition of MPI_GET_PROCESSOR_NAME simply allows such an implementation. (End of rationale.)

Advice to users. The user must provide at least MPI_MAX_PROCESSOR_NAME space to write the processor name—processor names can be this long. The user should examine the output argument, resultlen, to determine the actual length of the name. (End of advice to users.)

Inquire Hardware Resource Information

MPI_GET_HW_RESOURCE_INFO(hw_info)

 OUT hw_info info object created (handle)

C binding

int MPI_Get_hw_resource_info(MPI_Info *hw_info)

Fortran 2008 binding

MPI_Get_hw_resource_info(hw_info, ierror)
 TYPE(MPI_Info), INTENT.OUT :: hw_info
 INTEGER, OPTIONAL, INTENT.OUT :: ierror

Fortran binding

MPI_GET_HW_RESOURCE_INFO(HW_INFO, IERROR)
 INTEGER HW_INFO, IERROR

MPI_GET_HW_RESOURCE_INFO is a local procedure that returns an info object containing information pertaining to the hardware platform on which the calling MPI process is executing at the moment of the call. This information is stored as (key, value) pairs where each key is the name of a hardware resource type and its value is set to "true" if the calling MPI process is restricted to a single instance of a hardware resource of that type and "false" otherwise. The order in which the keys are stored in hw_info is unspecified. This procedure will return different information for MPI processes that are restricted to different hardware resources. Otherwise, info objects with identical (key, value) pairs are returned. The user is responsible for freeing hw_info via MPI_INFO_FREE.

The keys stored in the hw_info object have a Uniform Resource Identifier (URI) format. The first part of the URI indicates the key provider and the second part conforms to the format used by this key provider. The key provider "mpi://" is reserved for exclusive use by the MPI standard.

Advice to implementors. Key provider names could be derived from MPI implementation names (e.g., "mpich://", "openmpi://"), from names of external libraries or pieces of software (e.g., "hwloc://", "pmix://"), from names of programming or execution models (e.g., "openmp://"), from resource manager names (e.g., "slurm://") or from hardware vendor names. (End of advice to implementors.)
Advice to users. Users should be cautious when using such keys as comparisons between different providers may not be always meaningful nor relevant. (End of advice to users.)

Advice to users. The keys stored in the info object returned by this procedure can be used in MPI_COMM_SPLIT_TYPE with the split_type value MPI_COMM_TYPE_HW_GUIDED or MPI_COMM_TYPE_RESOURCE_GUIDED as key values for the info key "mpi_hw_resource_type". (End of advice to users.)

Subsequent calls to MPI_GET_HWRESOURCE_INFO may return different information throughout the execution of the program because an MPI process can be relocated (e.g., migrated or have its hardware restrictions changed).

9.2 Memory Allocation

In some systems, message-passing and remote-memory-access (RMA) operations run faster when accessing specially allocated memory (e.g., memory that is shared by the other processes in the communicating group on an SMP). MPI provides a mechanism for allocating and freeing such special memory. The use of such memory for message-passing or RMA is not mandatory, and this memory can be used without restrictions as any other dynamically allocated memory. However, implementations may restrict the use of some RMA functionality as defined in Section 12.5.3.

MPI_ALLOC_MEM(size, info, baseptr)

IN size size of memory segment in bytes (non-negative integer)

IN info info argument (handle)

OUT baseptr pointer to beginning of memory segment allocated

C binding

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

Fortran 2008 binding

MPI_ALLOC_mem(size, info, baseptr, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(C_PTR), INTENT(OUT) :: baseptr

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

INTEGER INFO, IERROR

If the Fortran compiler provides TYPE(C_PTR), then the following generic interface must be provided in the mpi module and should be provided in the (deprecated) mpif.h include
file through overloading, i.e., with the same routine name as the routine with
INTEGER(KIND=MPI_ADDRESS_KIND) BASEPTR, but with a different specific procedure name:

```fortran
INTERFACE MPI_ALLOC_MEM
  SUBROUTINE MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)
    IMPORT :: MPI_ADDRESS_KIND
    INTEGER :: INFO, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE, BASEPTR
  END SUBROUTINE
  SUBROUTINE MPI_ALLOC_MEM_CPTR(SIZE, INFO, BASEPTR, IERROR)
    USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
    IMPORT :: MPI_ADDRESS_KIND
    INTEGER :: INFO, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE
    TYPE(C_PTR) :: BASEPTR
  END SUBROUTINE
END INTERFACE
```

The base procedure name of this overloaded function is `MPI_ALLOC_MEM_CPTR`. The implied specific procedure names are described in Section 19.1.5.

By default, the allocated memory shall be aligned to at least the alignment required for load/store accesses of any datatype corresponding to a predefined MPI datatype. The info argument may be used to specify a desired alternative minimum alignment in bytes for the allocated memory by setting the value of the key "mpi_minimum_memory_alignment" to an integral number equal to a power of two. An implementation may ignore values smaller than the default required alignment. The info argument can also be used to provide directives that control the desired location of the allocated memory. Such a directive does not affect the semantics of the call. The corresponding info values are implementation-dependent. A null directive value of info = MPI_INFO_NULL is always valid.

The function `MPI_ALLOC_MEM` may raise an error of class MPI_ERR_NO_MEM to indicate it failed because memory is exhausted.

```fortran
MPI_FREE_MEM(base)
IN      base initial address of memory segment allocated by MPI_ALLOC_MEM (choice)
```

C binding
```
int MPI_Free_mem(void *base)
```

Fortran 2008 binding
```
MPI_Free_mem(base, ierr)
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: base
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

Fortran binding
```
MPI_FREE_MEM(BASE, IERROR)
  <type> BASE(*)
  INTEGER IERROR
```
The function `MPI_FREE_MEM` may raise an error of class `MPI_ERR_BASE` to indicate an invalid base argument.

Rationale. The C bindings of `MPI_ALLOC_MEM` and `MPI_FREE_MEM` are similar to the bindings for the `malloc` and `free` C library calls: a call to `MPI_Alloc_mem(..., &base)` should be paired with a call to `MPI_Free_mem(base)` (one less level of indirection). Both arguments are declared to be of same type `void*` so as to facilitate type casting. The Fortran binding is consistent with the C bindings: the Fortran `MPI_ALLOC_MEM` call returns in `baseptr` the `TYPE(C_PTR)` pointer or the (integer valued) address of the allocated memory. The `base` argument of `MPI_FREE_MEM` is a choice argument, which passes (a reference to) the variable stored at that location. (*End of rationale.*)

Advice to implementors. If `MPI_ALLOC_MEM` allocates special memory, then a design similar to the design of C `malloc` and `free` functions has to be used, in order to find out the size of a memory segment, when the segment is freed. If no special memory is used, `MPI_ALLOC_MEM` simply invokes `malloc`, and `MPI_FREE_MEM` invokes `free`.

A call to `MPI_ALLOC_MEM` can be used in shared memory systems to allocate memory in a shared memory segment. (*End of advice to implementors.*)

Example 9.1. Example of use of `MPI_ALLOC_MEM`, in Fortran with `TYPE(C_PTR)` pointers. We assume 4-byte REALs.

```fortran
USE mpi_f08 ! or USE mpi (not guaranteed with INCLUDE 'mpif.h')
USE, INTRINSIC :: ISO_C_BINDING

TYPE(C_PTR) :: p
REAL, DIMENSION(:,,:), POINTER :: a ! no memory is allocated
! shape = (/100 ,100/)!
size = 4 * shape(1) * shape(2) ! assuming 4 bytes per REAL
shape = (/100,100/)
CALL MPI_ALLOC_MEM(size, MPI_INFO_NULL, p, ierr) ! memory is allocated and
CALL C_F_POINTER(p, a, shape) ! intrinsic ! now accessible via a(i,j)
... ! in ISO_C_BINDING
a(3,5) = 2.71
...
CALL MPI_FREE_MEM(a, ierr) ! memory is freed
```

Example 9.2. Example of use of `MPI_ALLOC_MEM`, in Fortran with nonstandard Cray-pointers. We assume 4-byte REALs, and assume that these pointers are address-sized.

```fortran
REAL A
POINTER (P, A(100,100)) ! no memory is allocated
SIZE = 4*100*100
CALL MPI_ALLOC_MEM(SIZE, MPI_INFO_NULL, P, IERR) ! memory is allocated
...!
A(3,5) = 2.71
...!
```
9.3 Error Handling

An MPI implementation may be unable or choose not to handle some failures that occur during MPI calls. These can include failures that generate exceptions or traps, such as floating point errors or access violations. The set of failures that are handled by MPI is implementation-dependent. Each such failure causes an error to be raised.

The above text takes precedence over any text on error handling within this document. Specifically, text that states that errors will be handled should be read as may be handled. More background information about how MPI treats errors can be found in Section 2.8.

A user can associate error handlers to four types of objects: communicators, windows, files, and sessions. The specified error handling routine will be used for any error that occurs during an MPI procedure or an operation that refers to the respective object. Figure 9.1 presents a diagram of the error handler that is invoked in different situations. When the MPI procedure or operation refers to a communicator, window, or file, the error handler for that object will be invoked; otherwise, if the procedure or operation refers to a session, the error handler for the session will be invoked. Some MPI procedures have indirect references to these objects. For example, in a procedure that takes a request handle as a parameter, an error during the corresponding operation is raised on the communicator, window, or file on which the request has been initialized. Similarly, a group contains a reference to the session from which it was derived, and procedures on groups invoke the error handler from that session. The referenced object may have been destroyed before an error is raised (e.g., a procedure on a group derived from a session that has been finalized), in this case, the associated error handler for the object cannot be obtained.

MPI procedures that do not refer to an MPI object from which the associated error handler can be obtained, directly or indirectly, are considered to be attached to the communicator MPI_COMM_SELF when using the World Model (see Section 11.2). When
MPI_COMM_SELF is not initialized (i.e., before MPI_INIT / MPI_INIT_THREAD, after MPI_FINALIZE, or when using the Sessions Model exclusively) the error raises the initial error handler (set during the launch operation, see 11.8.4). The attachment of error handlers to objects is purely local: different processes may attach different error handlers to corresponding objects.

Several predefined error handlers are available in MPI:

MPI_ERRORS_ARE_FATAL: The handler, when called, causes the program to abort all connected MPI processes. This is similar to calling MPI_ABORT using a communicator containing all connected processes with an implementation-specific value as the errorcode argument.

MPI_ERRORS_ABORT: The handler, when called, is invoked on a communicator in a manner similar to calling MPI_ABORT on that communicator. If the error handler is invoked on an window or file, it is similar to calling MPI_ABORT using a communicator containing the group of MPI processes associated with the window or file, respectively. If the error handler is invoked on a session, the operation aborts only the local MPI process. In all cases, the value that would be provided as the errorcode argument to MPI_ABORT is implementation-specific.

MPI_ERRORS_RETURN: The handler has no effect other than returning the error code to the user.

Advice to implementors. The implementation-specific error information resulting from MPI_ERRORS_ARE_FATAL and MPI_ERRORS_ABORT provided to the invoking environment should be meaningful to the end-user, for example a predefined error class. (End of advice to implementors.)
Implementations may provide additional predefined error handlers and programmers can code their own error handlers.

Unless otherwise requested, the error handler **MPI_ERRORS_ARE_FATAL** is set as the default initial error handler and associated with predefined communicators. Thus, if the user chooses not to control error handling, every error that **MPI** handles is treated as fatal. Since (almost) all **MPI** calls return an error code, a user may choose to handle errors in its main code, by testing the return code of **MPI** calls and executing a suitable recovery code when the call was not successful. In this case, the error handler **MPI_ERRORS_RETURN** will be used. Usually it is more convenient and more efficient not to test for errors after each **MPI** call, and have such error handled by a nontrivial **MPI** error handler. Note that unlike predefined communicators, windows and files do not inherit from the initial error handler, as defined in Sections 12.6 and 14.7 respectively.

When an error is raised, **MPI** will provide the user information about that error using an error code. Some errors might prevent **MPI** from completing further API calls successfully and those functions will continue to report errors until the cause of the error is corrected or the user terminates the application. The user can make the determination of whether or not to attempt to continue when handling such an error.

Advice to users. For example, users may be unable to correct errors corresponding to some error classes, such as **MPI(ERR_INTERN**. Such errors may cause subsequent **MPI** calls to complete in error. (*End of advice to users.*)

Advice to implementors. A high-quality implementation will, to the greatest possible extent, circumscribe the impact of an error, so that normal processing can continue after an error handler was invoked. The implementation documentation will provide information on the possible effect of each class of errors and available recovery actions. (*End of advice to implementors.*)

An **MPI** error handler is an opaque object, which is accessed by a handle. **MPI** calls are provided to create new error handlers, to associate error handlers with objects, and to test which error handler is associated with an object. **C** has distinct typedefs for user-defined error handling callback functions that accept communicator, file, window, and session arguments. In Fortran there are four user routines.

An error handler object is created by a call to **MPI_XXX_CREATE_ERRHANDLER**, where **XXX** is, respectively, **COMM**, **WIN**, **FILE**, or **SESSION**.

An error handler is attached to a communicator, window, file, or session by a call to **MPI_XXX_SET_ERRHANDLER**. The error handler must be either a predefined error handler, or an error handler that was created by a call to **MPI_XXX_CREATE_ERRHANDLER**, with matching **XXX**. An error handler can also be attached to a session using the **errorhandler** argument to **MPI_SESSION_INIT**. The predefined error handlers **MPI_ERRORS_RETURN** and **MPI_ERRORS_ARE_FATAL** can be attached to communicators, windows, files, or sessions.

The error handler currently associated with a communicator, window, file, or session can be retrieved by a call to **MPI_XXX_GET_ERRHANDLER**.

The **MPI** function **MPI_ERRHANDLER_FREE** can be used to free an error handler that was created by a call to **MPI_XXX_CREATE_ERRHANDLER**.

MPI_XXX_GET_ERRHANDLER behave as if a new error handler object is created. That is, once the error handler is no longer needed, **MPI_ERRHANDLER_FREE** should be called with the error handler returned from **MPI_XXX_GET_ERRHANDLER** to mark the error handler as no longer needed.
handler for deallocation. This provides behavior similar to that of MPI_COMM_GROUP and MPI_GROUP_FREE.

Advice to implementors. High-quality implementations should raise an error when an error handler that was created by a call to MPI XXX_CREATE_ERRHANDLER is attached to an object of the wrong type with a call to MPI YYYY_SET_ERRHANDLER. To do so, it is necessary to maintain, with each error handler, information on the typedef of the associated user function. (End of advice to implementors.)

The syntax for these calls is given below.

9.3.1 Error Handlers for Communicators

MPI_COMM_CREATE_ERRHANDLER(comm_errhandler_fn, errhandler)

IN comm_errhandler_fn user defined error handling procedure (function)

OUT errhandler MPI error handler (handle)

C binding

int MPI_Comm_create_errhandler(
 MPI_Comm_errhandler_function *comm_errhandler_fn,
 MPI_Errhandler *errhandler)

Fortran 2008 binding

MPI_Comm_create_errhandler(comm_errhandler_fn, errhandler, ierror)

PROCEDURE(MPI_Comm_errhandler_function) :: comm_errhandler_fn

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_COMM_CREATE_ERRHANDLER(COMM_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL COMM_ERRHANDLER_FN

INTEGER ERRHANDLER, IERROR

Creates an error handler that can be attached to communicators.

The user routine should be, in C, a function of type MPI_Comm_errhandler_function, which is defined as

typedef void MPI_Comm_errhandler_function(MPI_Comm *comm, int *error_code,
 ...);

The first argument is the communicator in use. The second is the error code to be returned by the MPI routine that raised the error. If the routine would have returned MPI_ERR_IN_STATUS, it is the error code returned in the status for the request that caused the error handler to be invoked. The remaining arguments are “varargs” arguments whose number and meaning is implementation-dependent. An implementation should clearly document these arguments. Addresses are used so that the handler may be written in Fortran. With the Fortran mpi_f08 module, the user routine comm_errhandler_fn should be of the form:

ABSTRACT INTERFACE
SUBROUTINE MPI_Comm_errhandler_function(comm, error_code)
 TYPE(MPI_Comm) :: comm
 INTEGER :: error_code

With the Fortran mpi module and (deprecated) mpif.h include file, the user routine
COMM_ERRHANDLER_FN should be of the form:
SUBROUTINE COMM_ERRHANDLER_FUNCTION(comm, error_code)
 INTEGER comm, error_code

Rationale. The variable argument list is provided because it provides an ISO-
standard hook for providing additional information to the error handler; without this
hook, ISO C prohibits additional arguments. (End of rationale.)

Advice to users. A newly created communicator inherits the error handler that
is associated with the “parent” communicator. In particular, the user can specify
a “global” error handler for all communicators by associating this handler with the
communicator MPI_COMM_WORLD immediately after initialization. (End of advice to
users.)

MPI_COMM_SET_ERRHANDLER(comm, errhandler)
 INOUT comm communicator (handle)
 IN errhandler new error handler for communicator (handle)

C binding
int MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhandler)

Fortran 2008 binding
MPI_Comm_set_errhandler(comm, errhandler, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_SET_ERRHANDLER(COMM, ERRHANDLER, IERROR)
 INTEGER COMM, ERRHANDLER, IERROR

Attaches a new error handler to a communicator. The error handler must be either
a predefined error handler, or an error handler created by a call to
MPI_COMM_CREATE_ERRHANDLER.

MPI_COMM_GET_ERRHANDLER(comm, errhandler)
 IN comm communicator (handle)
 OUT errhandler error handler currently associated with
 communicator (handle)

C binding
int MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhandler)
Chapter 9 MPI Environmental Management 454

Fortran 2008 binding
MPI_Comm_get_errhandler(comm, errhandler, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_GET_ERRHANDLER(COMM, ERRHANDLER, IERROR)
 INTEGER COMM, ERRHANDLER, IERROR

Retrieves the error handler currently associated with a communicator. For example, a library function may register at its entry point the current error handler for a communicator, set its own private error handler for this communicator, and restore before exiting the previous error handler.

9.3.2 Error Handlers for Windows

MPI_WIN_CREATE_ERRHANDLER(win_errhandler_fn, errhandler)
 IN win_errhandler_fn user defined error handling procedure (function)
 OUT errhandler MPI error handler (handle)

C binding
int MPI_Win_create_errhandler(MPI_Win_errhandler_function *win_errhandler_fn,
 MPI_Errhandler *errhandler)

Fortran 2008 binding
MPI_Win_create_errhandler(win_errhandler_fn, errhandler, ierror)
 PROCEDURE(MPI_Win_errhandler_function) :: win_errhandler_fn
 TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_CREATE_ERRHANDLER(WIN_ERRHANDLER_FN, ERRHANDLER, IERROR)
 EXTERNAL WIN_ERRHANDLER_FN
 INTEGER ERRHANDLER, IERROR

Creates an error handler that can be attached to a window object. The user routine should be, in C, a function of type MPI_Win_errhandler_function, which is defined as:
typedef void MPI_Win_errhandler_function(MPI_Win *win, int *error_code, ...);

The first argument is the window in use, the second is the error code to be returned. The remaining arguments are “varargs” arguments whose number and meaning is implementation-dependent. An implementation should clearly document these arguments. With the Fortran mpi_f08 module, the user routine win_errhandler_fn should be of the form:

ABSTRACT INTERFACE
 SUBROUTINE MPI_Win_errhandler_function(win, error_code)
 TYPE(MPI_Win) :: win
 INTEGER :: error_code
With the Fortran mpi module and (deprecated) mpif.h include file, the user routine
WIN_ERRHANDLER_FN should be of the form:

```fortran
SUBROUTINE WIN_ERRHANDLER_FUNCTION(WIN, ERROR_CODE)
    INTEGER WIN, ERROR_CODE

MPI_WIN_SET_ERRHANDLER(win, errhandler)
    INOUT win             window object (handle)
    IN   errhandler       new error handler for window (handle)

C binding
int MPI_Win_set_errhandler(MPI_Win win, MPI_Errhandler errhandler)

Fortran 2008 binding
MPI_Win_set_errhandler(win, errhandler, ierror)
    TYPE(MPI_Win), INTENT(IN) :: win
    TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_SET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
    INTEGER WIN, ERRHANDLER, IERROR

    Attaches a new error handler to a window. The error handler must be either a pre-
defined error handler, or an error handler created by a call to
MPI_WIN_CREATE_ERRHANDLER.

MPI_WIN_GET_ERRHANDLER(win, errhandler)
    IN   win             window object (handle)
    OUT  errhandler      error handler currently associated with window
                        (handle)

C binding
int MPI_Win_get_errhandler(MPI_Win win, MPI_Errhandler *errhandler)

Fortran 2008 binding
MPI_Win_get_errhandler(win, errhandler, ierror)
    TYPE(MPI_Win), INTENT(IN) :: win
    TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
    INTEGER WIN, ERRHANDLER, IERROR

    Retrieves the error handler currently associated with a window.
9.3.3 Error Handlers for Files

MPI_FILE_CREATE_ERRHANDLER(file_errhandler_fn, errhandler)

IN file_errhandler_fn user defined error handling procedure (function)
OUT errhandler MPI error handler (handle)

C binding
int MPI_File_create_errhandler(
    MPI_File_errhandler_function *file_errhandler_fn,
    MPI_Errhandler *errhandler)

Fortran 2008 binding
MPI_File_create_errhandler(file_errhandler_fn, errhandler, ierror)

PROCEDURE(MPI_File_errhandler_function) :: file_errhandler_fn
TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_CREATE_ERRHANDLER(FILE_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL FILE_ERRHANDLER_FN
INTEGER ERRHANDLER, IERROR

Creates an error handler that can be attached to a file object. The user routine should be, in C, a function of type MPI_File_errhandler_function, which is defined as
typedef void MPI_File_errhandler_function(MPI_File *file, int *error_code, ...

The first argument is the file in use, the second is the error code to be returned. The remaining arguments are “varargs” arguments whose number and meaning is implementation-dependent. An implementation should clearly document these arguments.

With the Fortran mpi_f08 module, the user routine file_errhandler_fn should be of the form:
ABSTRACT INTERFACE
    SUBROUTINE MPI_File_errhandler_function(file, error_code)
    TYPE(MPI_File) :: file
    INTEGER :: error_code

With the Fortran mpi module and (deprecated) mpif.h include file, the user routine
FILE_ERRHANDLER_FN should be of the form:
SUBROUTINE FILE_ERRHANDLER_FUNCTION(FILE, ERROR_CODE)
    INTEGER FILE, ERROR_CODE

MPI_FILE_SET_ERRHANDLER(file, errhandler)

INOUT file file (handle)
IN errhandler new error handler for file (handle)

C binding
int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)
Fortran 2008 binding

MPI_File_set_errhandler(file, errhandler, ierror)
   TYPE(MPI_File), INTENT(IN) :: file
   TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
   INTEGER FILE, ERRHANDLER, IERROR

Attaches a new error handler to a file. The error handler must be either a predefined error handler, or an error handler created by a call to MPI_FILE_CREATE_ERRHANDLER.

MPI_FILE_GET_ERRHANDLER(file, errhandler)
   IN file (handle)
   OUT errhandler (handle)

C binding

int MPI_File_get_errhandler(MPI_File file, MPI_Errhandler *errhandler)

Fortran 2008 binding

MPI_File_get_errhandler(file, errhandler, ierror)
   TYPE(MPI_File), INTENT(IN) :: file
   TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
   INTEGER FILE, ERRHANDLER, IERROR

Retrieves the error handler currently associated with a file.

9.3.4 Error Handlers for Sessions

MPI_SESSION_CREATE_ERRHANDLER(session_errhandler_fn, errhandler)
   IN session_errhandler_fn (function)
   OUT errhandler (handle)

C binding

int MPI_Session_create_errhandler(
   MPI_Session_errhandler_function *session_errhandler_fn,
   MPI_Errhandler *errhandler)

Fortran 2008 binding

MPI_Session_create_errhandler(session_errhandler_fn, errhandler, ierror)
   TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
Fortran binding

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SESSION_CREATE_ERRHANDLER(SESSION_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL SESSION_ERRHANDLER_FN
INTEGER ERRHANDLER, IERROR

Creates an error handler that can be attached to a session object. In C, the session_errhandler_fn argument should be a function of type MPI_Session_errhandler_function, which is defined as

typedef void MPI_Session_errhandler_function(MPI_Session *session,
int *error_code, ...);

The first argument is the session in use, the second is the error code to be returned. The remaining arguments are “varargs” arguments whose number and meaning is implementation-dependent. An implementation should clearly document these arguments.

With the Fortran mpi_f08 module, the session_errhandler_fn argument should be of the form:

ABSTRACT INTERFACE
SUBROUTINE MPI_Session_errhandler_function(session, error_code)
  TYPE(MPI_Session) :: session
  INTEGER :: error_code
END SUBROUTINE

With the Fortran mpi module and (deprecated) mpif.h include file, the SESSION_ERRHANDLER_FN argument should be of the form:

SUBROUTINE SESSION_ERRHANDLER_FUNCTION(SESSION, ERROR_CODE)
  INTEGER SESSION, ERROR_CODE
END SUBROUTINE

MPI_SESSION_SET_ERRHANDLER(session, errhandler)

INOUT session session (handle)
IN errhandler new error handler for session (handle)

C binding

int MPI_Session_set_errhandler(MPI_Session session, MPI_Errhandler errhandler)

Fortran 2008 binding

MPI_Session_set_errhandler(session, errhandler, ierror)

  TYPE(MPI_Session), INTENT(IN) :: session
  TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_SESSION_SET_ERRHANDLER(SESSION, ERRHANDLER, IERROR)

  INTEGER SESSION, ERRHANDLER, IERROR

Attaches a new error handler to a session. The error handler must be either a predefined error handler, or an error handler created by a call to MPI_SESSION_CREATE_ERRHANDLER.
9.3 Error Handling

MPI_SESSION_GET_ERRHANDLER(session, errhandler)

C binding
int MPI_Session_get_errhandler(MPI_Session session, MPI_Errhandler *errhandler)

Fortran 2008 binding
MPI_Session_get_errhandler(session, errhandler, ierror)
   TYPE(MPI_Session), INTENT(IN) :: session
   TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SESSION_GET_ERRHANDLER(SESSION, ERRHANDLER, IERROR)
   INTEGER SESSION, ERRHANDLER, IERROR

Retrieves the error handler currently associated with a session.

9.3.5 Freeing Errorhandlers and Retrieving Error Strings

MPI_ERRHANDLER_FREE(errhandler)

C binding
int MPI_Errhandler_free(MPI_Errhandler *errhandler)

Fortran 2008 binding
MPI_Errhandler_free(errhandler, ierror)
   TYPE(MPI_Errhandler), INTENT(INOUT) :: errhandler
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_ERRHANDLER_FREE(ERRHANDLER, IERROR)
   INTEGER ERRHANDLER, IERROR

Marks the error handler associated with errhandler for deallocation and sets errhandler to MPI_ERRHANDLER_NULL. The error handler will be deallocated after all the objects associated with it (communicator, window, or file) have been deallocated.
MPI_ERROR_STRING(errorcode, string, resultlen)

IN   errorcode               Error code returned by an MPI routine
OUT  string                  Text that corresponds to the errorcode
OUT  resultlen               Length (in printable characters) of the result returned in string

C binding
int MPI_Error_string(int errorcode, char *string, int *resultlen)

Fortran 2008 binding
MPI_Error_string(errorcode, string, resultlen, ierr)
   INTEGER, INTENT(IN) :: errorcode
   CHARACTER(LEN=MPI_MAX_ERROR_STRING), INTENT(OUT) :: string
   INTEGER, INTENT(OUT) :: resultlen
   INTEGER, OPTIONAL, INTENT(OUT) :: ierr

Fortran binding
MPI_ERROR_STRING(ERRORCODE, STRING, RESULTLEN, IERROR)
   INTEGER ERRORCODE, RESULTLEN, IERROR
   CHARACTER*(*) STRING

Returns the error string associated with an error code or class. The argument string must represent storage that is at least MPI_MAX_ERROR_STRING characters long. The number of characters actually written is returned in the output argument, resultlen. This function must always be thread-safe, as defined in Section 11.6. It is one of the few routines that may be called before MPI is initialized or after MPI is finalized.

Rationale. The form of this function was chosen to make the Fortran and C bindings similar. A version that returns a pointer to a string has two difficulties. First, the return string must be statically allocated and different for each error message (allowing the pointers returned by successive calls to MPI_ERROR_STRING to point to the correct message). Second, in Fortran, a function declared as returning CHARACTER*(*) can not be referenced in, for example, a PRINT statement. (End of rationale.)

9.4 Error Codes and Classes

The error codes returned by MPI are left entirely to the implementation (with the exception of MPI_SUCCESS). This is done to allow an implementation to provide as much information as possible in the error code (for use with MPI_ERROR_STRING).

All MPI function calls shall return MPI_SUCCESS if and only if the specification of that function has been fulfilled at the point of return. For multiple completion functions, if the function returns MPI_ERR_IN_STATUS, the error code in each status object shall be set to MPI_SUCCESS if and only if the specification of the operation represented by the corresponding MPI_Request has been fulfilled at the point of return.

When an operation raises an error, it may not satisfy its specification (for example, a synchronizing operation may not have synchronized) and the content of the output buffers, targeted memory, or output parameters is undefined. However, a valid error code shall
always be set when an operation raises an error, whether in the return value, error field in
the status object, or element in an array of error codes.

To make it possible for an application to interpret an error code, the routine
MPI_ERROR_CLASS converts any error code into one of a small set of standard error codes, called error classes. Valid error classes are shown in Table 9.1 and Table 9.2.

The error classes are a subset of the error codes: an MPI function may return an error class number; and the function MPI_ERROR_STRING can be used to compute the error string associated with an error class. The values defined for MPI error classes are valid MPI error codes.

The error codes satisfy,

\[ 0 = \text{MPI\_SUCCESS} < \text{MPI\_ERR\_\ldots} \leq \text{MPI\_ERR\_LASTCODE}. \]

Rationale. The difference between MPI_ERR_UNKNOWN and MPI_ERR_OTHER is that MPI_ERROR_STRING can return useful information about MPI_ERR_OTHER.

Note that MPI_SUCCESS = 0 is necessary to be consistent with C practice; the separation of error classes and error codes allows us to define the error classes this way. Having a known LASTCODE is often a nice sanity check as well. (End of rationale.)

Advice to implementors. Note that all MPI_T_ return codes, which must have the prefix MPI_T_ERR_, are also required to satisfy

\[ 0 = \text{MPI\_SUCCESS} < \text{MPI\_T\_ERR\_XXX} \leq \text{MPI\_ERR\_LASTCODE}. \]

as described in Section 15.3.10. (End of advice to implementors.)

MPI_ERROR_CLASS(errorcode, errorclass)

<table>
<thead>
<tr>
<th>IN</th>
<th>errorcode</th>
<th>Error code returned by an MPI routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>errorclass</td>
<td>Error class associated with errorcode</td>
</tr>
</tbody>
</table>

C binding

int MPI_Error_class(int errorcode, int *errorclass)

Fortran 2008 binding

MPI_Error_class(errorcode, errorclass, ierror)

    INTEGER, INTENT(IN) :: errorcode
    INTEGER, INTENT(OUT) :: errorclass
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_ERROR_CLASS(ERROCODE, ERRORCLASS, IERROR)

    INTEGER ERRROCODE, ERRORCLASS, IERROR

The function MPI_ERROR_CLASS maps each standard error code (error class) onto itself.

This function must always be thread-safe, as defined in Section 11.6. It is one of the few routines that may be called before MPI is initialized or after MPI is finalized.
Table 9.1: Error classes (Part 1)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_SUCCESS</td>
<td>No error</td>
</tr>
<tr>
<td>MPI_ERR_ACCESS</td>
<td>Permission denied</td>
</tr>
<tr>
<td>MPI_ERR_AMODE</td>
<td>Error related to the <code>amode</code> passed to <code>MPI_FILE_OPEN</code></td>
</tr>
<tr>
<td>MPI_ERR_ARG</td>
<td>Invalid argument of some other kind</td>
</tr>
<tr>
<td>MPI_ERR_ASSERT</td>
<td>Invalid assertion argument</td>
</tr>
<tr>
<td>MPI_ERR_BAD_FILE</td>
<td>Invalid file name (e.g., path name too long)</td>
</tr>
<tr>
<td>MPI_ERR_BASE</td>
<td>Invalid base passed to <code>MPI_FREE_MEM</code></td>
</tr>
<tr>
<td>MPI_ERR_BUFFER</td>
<td>Invalid buffer pointer argument</td>
</tr>
<tr>
<td>MPI_ERR_COMM</td>
<td>Invalid communicator argument</td>
</tr>
<tr>
<td>MPI_ERR_CONVERSION</td>
<td>An error occurred in a user supplied data conversion function</td>
</tr>
<tr>
<td>MPI_ERR_COUNT</td>
<td>Invalid count argument</td>
</tr>
<tr>
<td>MPI_ERR_DIMS</td>
<td>Invalid dimension argument</td>
</tr>
<tr>
<td>MPI_ERR_DISP</td>
<td>Invalid displacement argument</td>
</tr>
<tr>
<td>MPI_ERR_DUP_DATAREP</td>
<td>Conversion functions could not be registered because a data representation identifier that was already defined was passed to <code>MPI_REGISTER_DATAREP</code></td>
</tr>
<tr>
<td>MPI_ERR_ERRHANDLER</td>
<td>Invalid error handler argument</td>
</tr>
<tr>
<td>MPI_ERR_FILE</td>
<td>Invalid file handle argument</td>
</tr>
<tr>
<td>MPI_ERR_FILE_EXISTS</td>
<td>File exists</td>
</tr>
<tr>
<td>MPI_ERR_FILE_IN_USE</td>
<td>File operation could not be completed, as the file is currently open by some process</td>
</tr>
<tr>
<td>MPI_ERR_GROUP</td>
<td>Invalid group argument</td>
</tr>
<tr>
<td>MPI_ERR_INFO</td>
<td>Invalid info argument</td>
</tr>
<tr>
<td>MPI_ERR_INFO_KEY</td>
<td>Key longer than <code>MPI_MAX_INFO_KEY</code></td>
</tr>
<tr>
<td>MPI_ERR_INFO_NOKEY</td>
<td>Invalid key passed to <code>MPI_INFO_DELETE</code></td>
</tr>
<tr>
<td>MPI_ERR_INFO_VALUE</td>
<td>Value longer than <code>MPI_MAX_INFO_VAL</code></td>
</tr>
<tr>
<td>MPI_ERR_IN_STATUS</td>
<td>Error code is in status</td>
</tr>
<tr>
<td>MPI_ERR_INTERN</td>
<td>Internal MPI (implementation) error</td>
</tr>
<tr>
<td>MPI_ERR_IO</td>
<td>Other I/O error</td>
</tr>
<tr>
<td>MPI_ERR_KEYVAL</td>
<td>Invalid keyval argument</td>
</tr>
<tr>
<td>MPI_ERR_LOCKTYPE</td>
<td>Invalid locktype argument</td>
</tr>
<tr>
<td>MPI_ERR_NAME</td>
<td>Invalid service name passed to <code>MPI_LOOKUP_NAME</code></td>
</tr>
<tr>
<td>MPI_ERR_NO_MEM</td>
<td><code>MPI_ALLOC_MEM</code> failed because memory is exhausted</td>
</tr>
<tr>
<td>MPI_ERR_NO_SPACE</td>
<td>Not enough space</td>
</tr>
<tr>
<td>MPI_ERR_NO_SUCH_FILE</td>
<td>File does not exist</td>
</tr>
<tr>
<td>MPI_ERR_NOT_SAME</td>
<td>Collective argument not identical on all processes, or collective routines called in a different order by different processes</td>
</tr>
</tbody>
</table>
### Table 9.2: Error classes (Part 2)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_ERR_OP</td>
<td>Invalid operation argument</td>
</tr>
<tr>
<td>MPI_ERR_OTHER</td>
<td>Known error not in this list</td>
</tr>
<tr>
<td>MPI_ERR_PENDING</td>
<td>Pending request</td>
</tr>
<tr>
<td>MPI_ERR_PORT</td>
<td>Invalid port name passed to MPI_COMM_CONNECT</td>
</tr>
<tr>
<td>MPI_ERR_PROC_ABORTED</td>
<td>Operation failed because a peer process has aborted</td>
</tr>
<tr>
<td>MPI_ERR_QUOTA</td>
<td>Quota exceeded</td>
</tr>
<tr>
<td>MPI_ERR_RANK</td>
<td>Invalid rank argument</td>
</tr>
<tr>
<td>MPI_ERR_READ_ONLY</td>
<td>Read-only file or file system</td>
</tr>
<tr>
<td>MPI_ERR_REQUEST</td>
<td>Invalid request argument</td>
</tr>
<tr>
<td>MPI_ERR_RMA_ATTACH</td>
<td>Memory cannot be attached (e.g., because of resource exhaustion)</td>
</tr>
<tr>
<td>MPI_ERR_RMA_CONFLICT</td>
<td>Conflicting accesses to window</td>
</tr>
<tr>
<td>MPI_ERR_RMA_FLAVOR</td>
<td>Passed window has the wrong flavor for the called function</td>
</tr>
<tr>
<td>MPI_ERR_RMA_RANGE</td>
<td>Target memory is not part of the window (in the case of a window created with MPI_WIN_CREATE_DYNAMIC, target memory is not attached)</td>
</tr>
<tr>
<td>MPI_ERR_RMA_SHARED</td>
<td>Memory cannot be shared (e.g., some process in the group of the specified communicator cannot expose shared memory)</td>
</tr>
<tr>
<td>MPI_ERR_RMA_SYNC</td>
<td>Wrong synchronization of RMA calls</td>
</tr>
<tr>
<td>MPI_ERR_ROOT</td>
<td>Invalid root argument</td>
</tr>
<tr>
<td>MPI_ERR_SERVICE</td>
<td>Invalid service name passed to MPI_UNPUBLISH_NAME</td>
</tr>
<tr>
<td>MPI_ERR_SESSION</td>
<td>Invalid session argument</td>
</tr>
<tr>
<td>MPI_ERR_SIZE</td>
<td>Invalid size argument</td>
</tr>
<tr>
<td>MPI_ERR_SPAWN</td>
<td>Error in spawning processes</td>
</tr>
<tr>
<td>MPI_ERR_TAG</td>
<td>Invalid tag argument</td>
</tr>
<tr>
<td>MPI_ERR_TOPOLOGY</td>
<td>Invalid topology argument</td>
</tr>
<tr>
<td>MPI_ERR_TRUNCATE</td>
<td>Message truncated on receive</td>
</tr>
<tr>
<td>MPI_ERR_TYPE</td>
<td>Invalid datatype argument</td>
</tr>
<tr>
<td>MPI_ERR_UNKNOWN</td>
<td>Unknown error</td>
</tr>
<tr>
<td>MPI_ERR_UNSUPPORTED_DATAREP</td>
<td>Unsupported datarep passed to MPI_FILE_SET_VIEW</td>
</tr>
<tr>
<td>MPI_ERR_UNSUPPORTED_OPERATION</td>
<td>Unsupported operation, such as seeking on a file that supports sequential access only</td>
</tr>
<tr>
<td>MPI_ERR_VALUE_TOO_LARGE</td>
<td>Value is too large to store</td>
</tr>
<tr>
<td>MPI_ERR_WIN</td>
<td>Invalid window argument</td>
</tr>
<tr>
<td>MPI_ERR_LASTCODE</td>
<td>Last error code</td>
</tr>
</tbody>
</table>
9.5 Error Classes, Error Codes, and Error Handlers

Users may want to write a layered library on top of an existing MPI implementation, and this library may have its own set of error codes and classes. An example of such a library is an I/O library based on MPI, see Chapter 14. For this purpose, functions are needed to:

1. add a new error class and remove previously added user-defined error classes;
2. associate error codes with this error class, so that MPI_ERROR_CLASS works;
3. associate strings with these error codes, so that MPI_ERROR_STRING works;
4. remove such associations;
5. invoke the error handler associated with a communicator, window, file, or session object.

Several procedures are provided to do this. They are all local.

9.5.1 User-Defined Error Classes and Codes

The procedures that add and remove error classes, codes, or strings are thread-safe, as defined in Section 11.6. They are some of the few MPI procedures that may be called before MPI is initialized or after MPI is finalized, as defined in Section 11.4.1.

Advice to users. Note that despite the procedures being thread-safe, some concurrent calls can result in undefined behavior. Notably, the rules mandating that a call adding an error class/code/string must precede a call that removes that error class/code/string apply even when the procedures are called from different threads. Calling the procedures with different input values for the class/code parameters is always thread-safe. (End of advice to users.)

\[\text{MPI_ADD_ERROR_CLASS(errorclass)}\]
\[\text{OUT errorclass value for the new error class (integer)}\]

C binding

\[
\text{int MPI/Add\_error\_class(int *errorclass)}
\]

Fortran 2008 binding

\[
\text{MPI/Add\_error\_class(errorclass, ierror)}
\]
\[\text{INTEGER, INTENT(OUT) :: errorclass}
\]
\[\text{INTEGER, OPTIONAL, INTENT(OUT) :: ierror}\]

Fortran binding

\[
\text{MPI\_ADD\_ERROR\_CLASS(ERRORCLASS, IERROR)}
\]
\[\text{INTEGER ERRORCLASS, IERROR}\]

Creates a new error class and returns the value for it.

Rationale. To avoid conflicts with existing error codes and classes, the value is set by the implementation and not by the user. (End of rationale.)
Advice to users. Since a call to MPI_ADD_ERROR_CLASS is local, the same errorclass may not be returned on all processes that make this call. Thus, it is not safe to assume that registering a new error on a set of processes at the same time will yield the same errorclass on all of the processes. Getting the “same” error on multiple processes may not cause the same value of error code to be generated. (End of advice to users.)

The value of MPI_ERR_LASTCODE is a constant value and is not affected by new user-defined error codes and classes. Instead, when using the World Model (Section 11.2), a predefined attribute key MPI_LASTUSEDCLASS is associated with MPI_COMM_WORLD. The attribute value corresponding to this key is the current maximum error class including the user-defined ones. This is a local value and may be different on different processes. The value returned by this key is always greater than or equal to MPI_ERR_LASTCODE.

Advice to users. The value returned by the key MPI_LASTUSEDCLASS will not change unless the user calls a procedure to explicitly add or remove an error class/code. In a multithreaded environment, the user must take extra care in assuming this value has not changed. Note that error codes and error classes are not necessarily dense. A user may not assume that each error class below MPI_LASTUSEDCLASS is valid. (End of advice to users.)

MPI_REMOVE_ERROR_CLASS(errorclass)
   IN      errorclass     value for the error class to remove (integer)

C binding
int MPI_Remove_error_class(int errorclass)

Fortran 2008 binding
MPI_Remove_error_class(errorclass, ierror)
   INTEGER, INTENT(IN) :: errorclass
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_REMOVE_ERROR_CLASS(ERRORCLASS, IERROR)
   INTEGER ERRORCLASS, IERROR

   Removes a user-created error class.

   The value of the predefined attribute key MPI_LASTUSEDCLASS associated with
   MPI_COMM_WORLD is updated to reflect the maximum error class value. Note that there
   may be unused error classes that have a smaller value than MPI_LASTUSEDCLASS.

   It is erroneous to call MPI_REMOVE_ERROR_CLASS with a value for errorclass that was
   not added by a call to MPI_ADD_ERROR_CLASS. Once an errorclass is removed by calling
   MPI_REMOVE_ERROR_CLASS, it is erroneous to remove it again without first obtaining
   the value from another call to MPI_ADD_ERROR_CLASS. It is erroneous to remove an error
   class when its associated error codes have not been removed before.
MPI\textunderscore ADD\textunderscore ERROR\textunderscore CODE(errorclass, errorcode)

\textbf{C binding}

\begin{verbatim}
int MPI\_Add\_error\_code(int errorclass, int \*errorcode)
\end{verbatim}

\textbf{Fortran 2008 binding}

\begin{verbatim}
MPI\_Add\_error\_code(errorclass, errorcode, ierror)
\end{verbatim}

\begin{verbatim}
INTEGER, INTENT(IN) :: errorclass
INTEGER, INTENT(OUT) :: errorcode
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}

\begin{verbatim}
MPI\_ADD\_ERROR\_CODE(ERRORCLASS, ERRORCODE, IERROR)
\end{verbatim}

\begin{verbatim}
INTEGER ERRORCLASS, ERRORCODE, IERROR
\end{verbatim}

Creates new error code associated with \texttt{errorclass} and returns its value in \texttt{errorcode}.

\textit{Rationale}. To avoid conflicts with existing error codes and classes, the value of the new error code is set by the implementation and not by the user. \textit{(End of rationale.)}

MPI\textunderscore REMOVE\textunderscore ERROR\textunderscore CODE(errorcode)

\textbf{C binding}

\begin{verbatim}
int MPI\_Remove\_error\_code(int errorcode)
\end{verbatim}

\textbf{Fortran 2008 binding}

\begin{verbatim}
MPI\_Remove\_error\_code(errorcode, ierror)
\end{verbatim}

\begin{verbatim}
INTEGER, INTENT(IN) :: errorcode
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}

\begin{verbatim}
MPI\_REMOVE\_ERROR\_CODE(ERRORCODE, IERROR)
\end{verbatim}

\begin{verbatim}
INTEGER ERRORCODE, IERROR
\end{verbatim}

Removes a user-created error code and all its associations with any error class.

It is erroneous to call MPI\textunderscore REMOVE\textunderscore ERROR\textunderscore CODE with a value for \texttt{errorcode} that was not added by a call to MPI\textunderscore ADD\textunderscore ERROR\textunderscore CODE. Once an \texttt{errorcode} is removed by calling MPI\textunderscore REMOVE\textunderscore ERROR\textunderscore CODE, it is erroneous to remove it again without first obtaining the value from another call to MPI\textunderscore ADD\textunderscore ERROR\textunderscore CODE. It is erroneous to remove an error code when its associated error string has not been removed before.
9.5 Error Classes, Error Codes, and Error Handlers

MPI_ADD_ERROR_STRING(errorcode, string)

IN  errorcode  error code or class (integer)
IN  string    text corresponding to errorcode (string)

C binding
int MPI_Add_error_string(int errorcode, const char *string)

Fortran 2008 binding
MPI_Add_error_string(errorcode, string, ierror)
    INTEGER, INTENT(IN) :: errorcode
    CHARACTER(LEN=*) , INTENT(IN) :: string
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR)
    INTEGER ERRORCODE, IERROR
    CHARACTER(*) STRING

Associates a user-defined error string with an error code or class. The string must be no more than MPI_MAX_ERROR_STRING characters long. The length of the string is as defined in the calling language. The length of the string does not include the null terminator in C. Trailing blanks will be stripped in Fortran. Calling MPI_ADD_ERROR_STRING for an errorcode that already has a string will replace the old string with the new string. It is erroneous to call MPI_ADD_ERROR_STRING for an error code or class with a value \leq MPI_ERR_LASTCODE.

If MPI_ERROR_STRING is called when no string has been set, it will return an empty string (all spaces in Fortran, "" in C).

MPI_REMOVE_ERROR_STRING(errorcode)

IN  errorcode  error code or class (integer)

C binding
int MPI_Remove_error_string(int errorcode)

Fortran 2008 binding
MPI_Remove_error_string(errorcode, ierror)
    INTEGER, INTENT(IN) :: errorcode
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_REMOVE_ERROR_STRING(ERRORCODE, IERROR)
    INTEGER ERRORCODE, IERROR

Removes a user-defined association of an error string with an error code or class.
It is erroneous to call MPI_REMOVE_ERROR_STRING with a value for errorcode that does not have an error string added by a call to MPI_ADD_ERROR_STRING.
9.5.2 Calling Error Handlers

Section 9.3 describes the methods for creating and associating error handlers with communicators, files, windows, and sessions. Error handlers can be invoked implicitly when errors are raised during MPI operations, but can also be called by the user.

\[
\text{MPI\_COMM\_CALL\_ERRHANDLER}(\text{comm, errorcode})
\]

\[
\begin{align*}
\text{IN} & \quad \text{comm} \quad \text{communicator with error handler (handle)} \\
\text{IN} & \quad \text{errorcode} \quad \text{error code (integer)}
\end{align*}
\]

C binding

\[
\text{int MPI\_Comm\_call\_errhandler(MPI\_Comm comm, int errorcode)}
\]

Fortran 2008 binding

\[
\text{MPI\_Comm\_call\_errhandler(comm, errorcode, ierror)}
\]

\[
\begin{align*}
\text{TYPE(MPI\_Comm), INTENT(IN)} & :: \text{comm} \\
\text{INTEGER, INTENT(IN)} & :: \text{errorcode} \\
\text{INTEGER, OPTIONAL, INTENT(OUT)} & :: \text{ierror}
\end{align*}
\]

Fortran binding

\[
\text{MPI\_COMM\_CALL\_ERRHANDLER(COMM, ERRORCODE, IERROR)}
\]

\[
\begin{align*}
\text{INTEGER COMM, ERRORCODE, IERROR}
\end{align*}
\]

This function invokes the error handler assigned to the communicator with the error code supplied. This function returns \text{MPI\_SUCCESS} in C and the same value in \text{IERROR} if the error handler was successfully called (assuming the process is not aborted and the error handler returns).

\[
\text{MPI\_WIN\_CALL\_ERRHANDLER}(\text{win, errorcode})
\]

\[
\begin{align*}
\text{IN} & \quad \text{win} \quad \text{window with error handler (handle)} \\
\text{IN} & \quad \text{errorcode} \quad \text{error code (integer)}
\end{align*}
\]

C binding

\[
\text{int MPI\_Win\_call\_errhandler(MPI\_Win win, int errorcode)}
\]

Fortran 2008 binding

\[
\text{MPI\_Win\_call\_errhandler(win, errorcode, ierror)}
\]

\[
\begin{align*}
\text{TYPE(MPI\_Win), INTENT(IN)} & :: \text{win} \\
\text{INTEGER, INTENT(IN)} & :: \text{errorcode} \\
\text{INTEGER, OPTIONAL, INTENT(OUT)} & :: \text{ierror}
\end{align*}
\]

Fortran binding

\[
\text{MPI\_WIN\_CALL\_ERRHANDLER(WIN, ERRORCODE, IERROR)}
\]

\[
\begin{align*}
\text{INTEGER WIN, ERRORCODE, IERROR}
\end{align*}
\]

This function invokes the error handler assigned to the window with the error code supplied. This function returns \text{MPI\_SUCCESS} in C and the same value in \text{IERROR} if the error handler was successfully called (assuming the process is not aborted and the error handler returns).
Advice to users. In contrast to communicators, the error handler

MPI_ERRORS_ARE_FATAL is associated with a window when it is created. (End of
advice to users.)

MPI_FILE_CALL_ERRHANDLER(fh, errorcode)

IN fh file with error handler (handle)
IN errorcode error code (integer)

C binding

int MPI_File_call_errhandler(MPI_File fh, int errorcode)

Fortran binding

MPI_File_call_errhandler(fh, errorcode, ierror)
    TYPE(MPI_File), INTENT(IN) :: fh
    INTEGER, INTENT(IN) :: errorcode
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)
    INTEGER FH, ERRORCODE, IERROR

This function invokes the error handler assigned to the file with the error code supplied. This function returns MPI_SUCCESS in C and the same value in IERROR if the error handler was successfully called (assuming the process is not aborted and the error handler returns).

Advice to users. The default error handler for files is MPI_ERRORS_RETURN. (End of
advice to users.)

MPI_SESSION_CALL_ERRHANDLER(session, errorcode)

IN session session with error handler (handle)
IN errorcode error code (integer)

C binding

int MPI_Session_call_errhandler(MPI_Session session, int errorcode)

Fortran binding

MPI_Session_call_errhandler(session, errorcode, ierror)
    TYPE(MPI_Session), INTENT(IN) :: session
    INTEGER, INTENT(IN) :: errorcode
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_SESSION_CALL_ERRHANDLER(SESSION, ERRORCODE, IERROR)
    INTEGER SESSION, ERRORCODE, IERROR

This function invokes the error handler assigned to the session with the error code supplied. This function returns MPI_SUCCESS in C and the same value in IERROR if the
error handler was successfully called (assuming the process is not aborted and the error
handler returns).

Advice to users. Users are warned that handlers should not be called recursively
with MPI_COMM_CALL_ERRHANDLER, MPI_FILE_CALL_ERRHANDLER,
MPI_WIN_CALL_ERRHANDLER, or MPI_SESSION_CALL_ERRHANDLER. Doing this
can create a situation where an infinite recursion is created. This can occur if
MPI_COMM_CALL_ERRHANDLER, MPI_FILE_CALL_ERRHANDLER,
MPI_WIN_CALL_ERRHANDLER, or MPI_SESSION_CALL_ERRHANDLER is called in-
side an error handler.

Error codes and classes are associated with a process. As a result, they may be used
in any error handler. Error handlers should be prepared to deal with any error code
they are given. Furthermore, it is good practice to only call an error handler with the
appropriate error codes. For example, file errors would normally be sent to the file
error handler. (End of advice to users.)

9.6 Timers and Synchronization

MPI defines a timer. A timer is specified even though it is not “message-passing,” because
timing parallel programs is important in “performance debugging” and because existing
timers (both in POSIX 1003.1-1988 and 1003.4D 14.1 and in Fortran 90) are either incon-
venient or do not provide adequate access to high resolution timers.

MPI_WTIME()

C binding
double MPI_Wtime(void)

Fortran 2008 binding
DOUBLE PRECISION MPI_Wtime()

Fortran binding
DOUBLE PRECISION MPI_WTIME()

MPI_WTIME returns a floating-point number of seconds, representing elapsed wall-
clock time since some time in the past. The “time in the past” is guaranteed not to change
during the life of the process. The user is responsible for converting large numbers of
seconds to other units if they are preferred. This function is portable (it returns seconds,
not “ticks”), and it allows high-resolution. One would use it like this:

Example 9.4.

```c
{
 double starttime, endtime;
 starttime = MPI_Wtime();
 ... stuff to be timed ...
 endtime = MPI_Wtime();
 printf("That took %f seconds\n", endtime-starttime);
}
```
The times returned are local to the node that called them. There is no requirement that different nodes return “the same time.” (But see also the discussion of MPI_WTIME_IS_GLOBAL in Section 9.1.2).

MPI_WTICK()

C binding
double MPI_Wtick(void)

Fortran 2008 binding
DOUBLE PRECISION MPI_Wtick()

Fortran binding
DOUBLE PRECISION MPI_WTICK()

MPI_WTICK returns the resolution of MPI_WTIME in seconds. That is, it returns, as a double precision value, the number of seconds between successive clock ticks. For example, if the clock is implemented by the hardware as a counter that is incremented every millisecond, the value returned by MPI_WTICK should be \((10^{-3})\).
Chapter 10

The Info Object

Many of the procedures in MPI take an argument info. info is an opaque object with a handle of type MPI_Info in C and Fortran with the mpi_f08 module, and INTEGER in Fortran with the mpi module or the (deprecated) mpif.h include file. It stores an unordered set of (key,value) pairs (both key and value are strings). A key can have only one value. MPI reserves several keys and requires that if an implementation uses a reserved key, it must provide the specified functionality. An implementation is not required to support these keys and may support any others not reserved by MPI.

Some info hints allow the MPI library to restrict its support for certain operations in order to improve performance or resource utilization. If an application provides such an info hint, it must be compatible with any changes in the behavior of the MPI library that are allowed by the info hint.

An implementation must support info objects as caches for arbitrary (key,value) pairs, regardless of whether it recognizes the key. Each procedure that takes hints in the form of an MPI_Info must be prepared to ignore any key it does not recognize. This description of info objects does not attempt to define how a particular procedure should react if it recognizes a key but not the associated value. MPI_INFO_GET_NKEYS, MPI_INFO_GET_NTHKEY, and MPI_INFO_GET_STRING must retain all (key,value) pairs so that layered functionality can also use the Info object.

Keys have an implementation-defined maximum length of MPI_MAX_INFO_KEY, which is at least 32 and at most 255. Values have an implementation-defined maximum length of MPI_MAX_INFO_VAL. In Fortran, leading and trailing spaces are stripped from both. Returned values will never be larger than these maximum lengths. Both key and value are case sensitive.

Rationale. Keys have a maximum length because the set of known keys will always be finite and known to the implementation and because there is no reason for keys to be complex. The small maximum size allows applications to declare keys of size MPI_MAX_INFO_KEY. The limitation on value sizes is so that an implementation is not forced to deal with arbitrarily long strings. (End of rationale.)

Advice to users. MPI_MAX_INFO_VAL might be very large, so it might not be wise to declare a string of that size. (End of advice to users.)

When info is used as an argument to any MPI procedure, it is interpreted before that procedure returns, so that it may be read, modified, or freed immediately after return. Changes to an info object after return from a procedure do not affect that interpretation.

Rationale. Prior to MPI-4.0, the above statement was restricted to nonblocking MPI procedures. For simplicity this restriction was removed, as it currently applies to
all MPI procedures that use info arguments. Note, this has to be revisited for new
procedures added in the future, e.g., for future procedures that could return an info
argument to be filled in after the return from the procedure. (*End of rationale.*)

When the descriptions refer to a key or value as being a boolean, an integer, or a list,
they mean the string representation of these types. An implementation may define its own
rules for how info value strings are converted to other types, but to ensure portability, every
implementation must support the following representations. Valid values for a boolean must
include the strings "true" and "false" (all lowercase). For integers, valid values must include
string representations of decimal values of integers that are within the range of a standard
integer type in the program. (However it is possible that not every integer is a valid value
for a given key.) On positive numbers, + signs are optional. No space may appear between
a + or − sign and the leading digit of a number. For comma separated lists, the string
must contain valid elements separated by commas. Leading and trailing spaces are stripped
automatically from the types of info values described above and for each element of a comma
separated list. These rules apply to all info values of these types. Implementations are free
to specify a different interpretation for values of other info keys.

```
MPI_INFO_CREATE(info)
OUT info info object created (handle)
```

C binding

```
int MPI_Info_create(MPI_Info *info)
```

Fortran 2008 binding

```
MPI_Info_create(info, ierror)
 TYPE(MPI_Info), INTENT(OUT) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```
MPI_INFO_CREATE(INFO, IERROR)
 INTEGER INFO, IERROR
```

MPI_INFO_CREATE creates a new info object. The newly created object contains no
key/value pairs.

```
MPI_INFO_SET(info, key, value)
INOUT info info object (handle)
IN key key (string)
IN value value (string)
```

C binding

```
int MPI_Info_set(MPI_Info info, const char *key, const char *value)
```

Fortran 2008 binding

```
MPI_Info_set(info, key, value, ierror)
 TYPE(MPI_Info), INTENT(IN) :: info
```
CHARACTER(LEN=*) , INTENT(IN) :: key, value
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_INFO_SET(INFO, KEY, VALUE, IERROR)
  INTEGER INFO, IERROR
  CHARACTER*(*) KEY, VALUE

  MPI_INFO_SET adds the (key,value) pair to info, and overrides the value if a value for
the same key was previously set. key and value are null-terminated strings in C. In Fortran,
leading and trailing spaces in key and value are stripped. If either key or value are longer
than the respective maximum length, the call raises an error of class MPI_ERR_INFO_KEY
or MPI_ERR_INFO_VALUE, respectively.

MPI_INFO_DELETE(info, key)
  INOUT info info object (handle)
  IN key key (string)

C binding
int MPI_Info_delete(MPI_Info info, const char *key)

Fortran 2008 binding
MPI_Info_delete(info, key, ierror)
  TYPE(MPI_Info), INTENT(IN) :: info
  CHARACTER(LEN=*) , INTENT(IN) :: key
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_INFO_DELETE(INFO, KEY, IERROR)
  INTEGER INFO, IERROR
  CHARACTER*(*) KEY

  MPI_INFO_DELETE deletes a (key,value) pair from info. If key is not defined in info,
the call raises an error of class MPI_ERR_INFO_NOKEY.

MPI_INFO_GET_STRING(info, key, buflen, value, flag)
  IN info info object (handle)
  IN key key (string)
  INOUT buflen length of buffer (integer)
  OUT value value (string)
  OUT flag true if key defined, false if not (logical)

C binding
int MPI_Info_get_string(MPI_Info info, const char *key, int *buflen,
  char *value, int *flag)
Chapter 10 The Info Object

Fortran 2008 binding

MPI_Info_get_string(info, key, buflen, value, flag, ierror)

Fortran binding

MPI_INFO_GET_STRING(INFO, KEY, BUFLEN, VALUE, FLAG, IERROR)

This procedure retrieves the value associated with key from info, if any. If such a key exists in info, it sets flag to true and returns the value in value, otherwise it sets flag to false and leaves value unchanged. buflen on input is the size of the provided buffer, value, for the output of buflen it is the size of the buffer needed to store the value string. If the buflen passed into the procedure is less than the actual size needed to store the value string (including null terminator in C), the value is truncated. On return, the value of buflen will be set to the required buffer size to hold the value string. If buflen is set to 0, value is not changed. In C, buflen includes the required space for the null terminator. In C, this procedure returns a null terminated string in all cases where the buflen input value is greater than 0.

If key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

Advice to users. The MPI_INFO_GET_STRING procedure can be used to obtain the size of the required buffer for a value string by setting the buflen to 0. The returned buflen can then be used to allocate memory before calling MPI_INFO_GET_STRING again to obtain the value string. (End of advice to users.)

C binding

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

Fortran 2008 binding

MPI_Info_get_nkeys(info, nkeys, ierror)

Fortran binding

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)
MPI_INFO_GET_NKEYS returns the number of currently defined keys in info.

MPI_INFO_GET_NTHKEY(info, n, key)
IN info info object (handle)
IN n key number (integer)
OUT key key (string)

C binding
int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

Fortran 2008 binding
MPI_Info_get_nthkey(info, n, key, ierror)
   TYPE(MPI_Info), INTENT(IN) :: info
   INTEGER, INTENT(IN) :: n
   CHARACTER(LEN=*) , INTENT(OUT) :: key
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)
   INTEGER INFO, N, IERROR
   CHARACTER*(*) KEY

This procedure returns the nth defined key in info. Keys are numbered 0...N-1 where N is the value returned by MPI_INFO_GET_NKEYS. All keys between 0 and N-1 are guaranteed to be defined. The number of a given key does not change as long as info is not modified with MPI_INFO_SET or MPI_INFO_DELETE.

MPI_INFO_DUP(info, newinfo)
IN info info object (handle)
OUT newinfo info object created (handle)

C binding
int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)

Fortran 2008 binding
MPI_Info_dup(info, newinfo, ierror)
   TYPE(MPI_Info), INTENT(IN) :: info
   TYPE(MPI_Info), INTENT(OUT) :: newinfo
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_INFO_DUP(INFO, NEWINFO, IERROR)
   INTEGER INFO, NEWINFO, IERROR

MPI_INFO_DUP duplicates an existing info object, creating a new object, with the same (key, value) pairs and the same ordering of keys.
Chapter 10 The Info Object

MPI_INFO_FREE(info)

    INOUT  info  info object (handle)

C binding
int MPI_Info_free(MPI_Info *info)

Fortran 2008 binding
MPI_Info_free(info, ierror)
    TYPE(MPI_Info), INTENT(INOUT) :: info
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_INFO_FREE(INFO, IERROR)
    INTEGER INFO, IERROR

    This procedure frees info and sets it to MPI_INFO_NULL.

MPI_INFO_CREATE_ENV(info)

    OUT  info  info object (handle)

C binding
int MPI_Info_create_env(int argc, char *argv[], MPI_Info *info)

Fortran 2008 binding
MPI_Info_create_env(info, ierror)
    TYPE(MPI_Info), INTENT(OUT) :: info
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_INFO_CREATE_ENV(INFO, IERROR)
    INTEGER INFO, IERROR

    This procedure creates an output object info with the same construction as
    MPI_INFO_ENV as created during MPI_INIT or MPI_INIT_THREAD when the same
    arguments are used. This construction is described in Section 11.2.1; however, this procedure
    can be called when not using the World Model, e.g., when using the Sessions Model. This
    object is not a direct copy or alias of the MPI_INFO_ENV object and could contain different
    values based on the input arguments and other sources. Multiple calls to this procedure
    that are given the same input arguments will produce info objects consistent with the defi-
    nition of MPI_INFO_ENV. The version for ISO C accepts the argc and argv that are provided
    by the arguments to main or 0 for argc and NULL for argv. The user is responsible for freeing
    the info object via MPI_INFO_FREE. This procedure is local.

    This procedure must always be thread-safe, as defined in Section 11.6. It is one of the
    few procedures that may be called before MPI is initialized or after MPI is finalized.

Advice to users.

In some circumstances (e.g., when passing 0 to argc and NULL to argv in C or in Fortran
where such arguments do not exist), the info object may not be populated or may be
populated incompletely because this procedure is local and the implementation may
not be able to determine the correct values. Note that this could result in different values in the resulting info object at different MPI processes.

(End of advice to users.)
Chapter 11
Process Initialization, Creation, and Management

11.1 Introduction

MPI is primarily concerned with communication rather than process or resource management. However, it is necessary to address these issues to some degree in order to define a useful framework for communication. This chapter presents a set of MPI interfaces that allows for several approaches to MPI initialization and process management while placing minimal restrictions on the execution environment.

One goal of MPI is to achieve source code portability. By this we mean that a program written using MPI and complying with the relevant language standards is portable as written, and must not require any source code changes when moved from one system to another. This explicitly does not say anything about how an MPI program is started or launched from the command line, nor what the user must do to set up the environment in which an MPI program will run. However, an implementation may require some setup or initialization procedure to be performed before the complete set of MPI routines may be called.

To this end, MPI presents two models for MPI process initialization. In the World Model, an initial set of processes is created that are related by their membership in a common MPI_COMM_WORLD (see Section 11.2) communicator. In the Sessions Model (Section 11.3), an initial set of processes is also created, but the application must explicitly manage the creation of MPI groups, and hence MPI communicators. MPI_COMM_WORLD is only valid for use as a communicator in the World Model, i.e., after a successful call to MPI_INIT or MPI_INIT_THREAD and before a call to MPI_FINALIZE. An application can employ both of these Process Models concurrently. In multi-component MPI applications, for example, a component such as a library can make use of the Sessions Model to instantiate MPI resources without impacting the rest of the application.

The Dynamic Process Model (see Section 11.7), provides for the creation and management of additional processes after an MPI application has been started. A major impetus for the Dynamic Process Model comes from the PVM [26] research effort. This work has provided a wealth of experience with process management and resource control that illustrates their benefits and potential pitfalls.

In developing the Dynamic Process Model, the MPI Forum decided not to address resource control because it was not able to design a portable interface that would be appropriate for the broad spectrum of existing and potential resource and process controllers. MPI assumes that resource control is provided externally.

Process management functionality is included in MPI to enable its use in classes of message-passing applications requiring process control. These include task farms, serial
applications with parallel modules, and problems that require a run-time assessment of the number and type of processes that should be started.

The following goals are central to the design of MPI process management:

- The MPI process model must apply to the vast majority of current parallel environments.
- MPI must not take over operating system responsibilities. It should instead provide a clean interface between an application and system software.
- MPI must guarantee communication determinism in the presence of dynamic processes, i.e., dynamic process management must not introduce unavoidable race conditions.
- MPI must not contain features that compromise performance.

The Dynamic Process Model addresses these issues in two ways. First, MPI remains primarily a communication library. It does not manage the parallel environment in which a parallel program executes, though it provides a minimal interface between an application and external resource and process managers.

Second, MPI maintains a consistent concept of a communicator, regardless of how its members came into existence. A communicator is never changed once created, and it is always created using deterministic collective operations.

11.2 The World Model

11.2.1 Starting MPI Processes

When using the World Model, MPI is initialized by calling either MPI_INIT or MPI_INIT_THREAD.

**MPI_INIT()**

C binding

```c
int MPI_Init(int *argc, char ***argv)
```

Fortran 2008 binding

```fortran
MPI_Init(ierr)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

Fortran binding

```fortran
MPI_INIT(IERROR)
 INTEGER IERROR
```

In the World Model, an MPI program must contain exactly one call to an MPI initialization routine: MPI_INIT or MPI_INIT_THREAD. MPI_COMM_WORLD and MPI_COMM_SELF are not valid for use as communicators prior to invocation of MPI_INIT or MPI_INIT_THREAD. Subsequent calls to either of these initialization routines are erroneous. A subset of MPI functions may be invoked before MPI initialization routines are called, see Section 11.4.1. The procedures MPI_INIT and MPI_INIT_THREAD accept either the argc and argv that are provided by the arguments to main or NULL.
Example 11.1. Initializing MPI using MPI\_INIT

```c
int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 /* parse arguments */
 /* main program */
 MPI_Finalize(); /* see below */
 return 0;
}
```

The Fortran version takes only IERROR.

Conforming implementations of MPI are required to allow applications to pass NULL for both the argc and argv arguments of main in C.

Failures may disrupt the execution of the program before or during MPI initialization. A high-quality implementation shall not deadlock during MPI initialization, even in the presence of failures. Except for functions with the MPI\_T\_ prefix, failures in MPI operations prior to or during MPI initialization are reported by invoking the initial error handler. Users can use the "mpi\_initial\_errhandler" info key during the launch of MPI processes (e.g., MPI\_COMM\_SPAWN / MPI\_COMM\_SPAWN\_MULTIPLE, or mpiexec) to set a nonfatal initial error handler before MPI initialization. When the initial error handler is set to MPI\_ERRORS\_ABORT, raising an error before or during initialization aborts the local MPI process (i.e., it is similar to calling MPI\_ABORT on MPI\_COMM\_SELF). An implementation may not always be capable of determining, before MPI initialization, what constitutes the local MPI process, or the set of connected processes. In this case, errors before initialization may cause a different set of MPI processes to abort than specified. During MPI initialization, the initial error handler is associated with MPI\_COMM\_WORLD, MPI\_COMM\_SELF, and the communicator returned by MPI\_COMM\_GET\_PARENT (if any).

Advice to implementors. Some failures may leave MPI in an undefined state, or raise an error before the error handling capabilities are fully operational, in which cases the implementation may be incapable of providing the desired error handling behavior. Of note, in some implementations, the notion of an MPI process is not clearly established in the early stages of MPI initialization (for example, when the implementation considers threads that called MPI\_INIT as independent MPI processes); in this case, before MPI is initialized, the MPI\_ERRORS\_ABORT error handler may abort what would have become multiple MPI processes.

When a failure occurs during MPI initialization, the implementation may decide to return MPI\_SUCCESS from the MPI initialization function instead of raising an error. It is recommended that an implementation masks an initialization error only when it expects that later MPI calls will result in well-specified behavior (i.e., barring additional failures, either the outcome of any call will be correct, or the call will raise an appropriate error). For example, it may be difficult for an implementation to avoid unspecified behavior when the group of MPI\_COMM\_WORLD does not contain the same set of MPI processes at all members of the communicator, or if the communicator returned from MPI\_COMM\_GET\_PARENT was not initialized correctly. (End of advice to implementors.)
After MPI is initialized, the application can access information about the execution environment by querying the predefined info object MPI_INFO_ENV. The following keys are predefined for this object, corresponding to the arguments of MPI_COMM_SPAWN or of mpiexec:

"command": Name of program executed.

"argv": Space separated arguments to command.

"maxprocs": Maximum number of MPI processes to start.

"mpi_initial_errhandler": Name of the initial errhandler.

"mpi_memory_alloc_kinds": Memory allocation kinds supported by the MPI library (see Section 11.4.3).

"soft": Allowed values for number of processors.

"host": Hostname.

"arch": Architecture name.

"wdir": Working directory of the MPI process.

"file": Value is the name of a file in which additional information is specified.

"thread_level": Requested level of thread support, if requested before the program started execution.

Note that all values are strings. Thus, the maximum number of processes is represented by a string such as "1024" and the requested level is represented by a string such as "MPI_THREAD_SINGLE".

Advice to users. If one of the "argv" arguments contains a space, there is no way to tell from the value of the "argv" info key whether a space is part of the argument or is separating different arguments. (End of advice to users.)

The info object MPI_INFO_ENV need not contain a (key,value) pair for each of these predefined keys; the set of (key,value) pairs provided is implementation-dependent. Implementations may provide additional, implementation specific, (key,value) pairs.

In cases where the MPI processes were started with MPI_COMM_SPAWN_MULTIPLE or, equivalently, with a startup mechanism that supports multiple process specifications, then the values stored in the info object MPI_INFO_ENV at a process are those values that affect the local MPI process.

Example 11.2. If MPI is started with a call to

```
mpiexec -n 5 -arch x86_64 ocean : -n 10 -arch power9 atmos
```

Then the first 5 processes will have in their MPI_INFO_ENV object the pairs (command, ocean), (maxprocs, 5), and (arch, x86_64). The next 10 processes will have in MPI_INFO_ENV (command, atmos), (maxprocs, 10), and (arch, power9)
Advice to users. The values passed in MPI_INFO_ENV are the values of the arguments passed to the mechanism that started the MPI execution—not the actual value provided. Thus, the value associated with "maxprocs" is the number of MPI processes requested; it can be larger than the actual number of processes obtained, if the soft option was used. (End of advice to users.)

Advice to implementors. High-quality implementations will provide a (key,value) pair for each parameter that can be passed to the command that starts an MPI program. (End of advice to implementors.)

The following function may be used to initialize MPI, and to initialize the MPI thread environment, instead of MPI_INIT.

MPI_INIT_THREAD(required, provided)

IN required desired level of thread support (integer)
OUT provided provided level of thread support (integer)

C binding

int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

Fortran 2008 binding

MPI_Init_thread(required, provided, ierror)

INTEGER, INTENT(IN) :: required
INTEGER, INTENT(OUT) :: provided
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

This call initializes MPI in the same way that a call to MPI_INIT would. In addition, it initializes the thread environment. The argument required is used to specify the desired level of thread support. The possible values are listed in increasing order of thread support.

MPI_THREAD_SINGLE: Only one thread will execute.

MPI_THREAD_FUNNELED: The process may be multithreaded, but the application must ensure that only the main thread makes MPI calls (for the definition of main thread, see MPI_IS_THREAD_MAIN on page 487).

MPI_THREAD_SERIALIZED: The process may be multithreaded, and multiple threads may make MPI calls, but only one at a time: MPI calls are not made concurrently from two distinct threads (all MPI calls are “serialized”).

MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with no restrictions.

These values are monotonic; i.e., MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE.

Different processes in MPI_COMM_WORLD may require different levels of thread support.
The call returns in `provided` information about the actual level of thread support that will be provided by MPI. It can be one of the four values listed above.

The level(s) of thread support that can be provided by `MPI_INIT_THREAD` will depend on the implementation, and may depend on information provided by the user before the program started to execute (e.g., with arguments to `mpiexec`). If possible, the call will return `provided = required`. Failing this, the call will return the least supported level such that `provided > required` (thus providing a stronger level of support than required by the user). Finally, if the user requirement cannot be satisfied, then the call will return in `provided` the highest supported level.

A thread compliant MPI implementation will be able to return `provided = MPI_THREAD_MULTIPLE`. Such an implementation may always return `provided = MPI_THREAD_MULTIPLE`, irrespective of the value of `required`.

An MPI library that is not thread compliant must always return `provided = MPI_THREAD_SINGLE`, even if `MPI_INIT_THREAD` is called on a multithreaded process. The library should also return correct values for the MPI calls that can be executed before initialization, even if multiple threads have been spawned.

**Rationale.** Such code is erroneous, but if the MPI initialization is performed by a library, the error cannot be detected until `MPI_INIT_THREAD` is called. The requirements in the previous paragraph ensure that the error can be properly detected. (*End of rationale.*)

A call to `MPI_INIT` has the same effect as a call to `MPI_INIT_THREAD` with a `required = MPI_THREAD_SINGLE`.

Vendors may provide (implementation dependent) means to specify the level(s) of thread support available when the MPI program is started, e.g., with arguments to `mpiexec`. This will affect the outcome of calls to `MPI_INIT` and `MPI_INIT_THREAD`. Suppose, for example, that an MPI program has been started so that only `MPI_THREAD_MULTIPLE` is available. Then `MPI_INIT_THREAD` will return `provided = MPI_THREAD_MULTIPLE`, irrespective of the value of `required`; a call to `MPI_INIT` will also initialize the MPI thread support level to `MPI_THREAD_MULTIPLE`. Suppose, instead, that an MPI program has been started so that all four levels of thread support are available. Then, a call to `MPI_INIT_THREAD` will return `provided = required`; alternatively, a call to `MPI_INIT` will initialize the MPI thread support level to `MPI_THREAD_SINGLE`.

**Rationale.** Various optimizations are possible when MPI code is executed single-threaded, or is executed on multiple threads, but not concurrently: mutual exclusion code may be omitted. Furthermore, if only one thread executes, then the MPI library can use library functions that are not thread safe, without risking conflicts with user threads. Also, the model of one communication thread, multiple computation threads fits many applications well, e.g., if the process code is a sequential Fortran/C program with MPI calls that has been parallelized by a compiler for execution on an SMP node, in a cluster of SMPs, then the process computation is multithreaded, but MPI calls will likely execute on a single thread.

The design accommodates a static specification of the thread support level, for environments that require static binding of libraries, and for compatibility for current multithreaded MPI codes. (*End of rationale.*)
Advice to implementors. If provided is not MPI_THREAD_SINGLE then the MPI library should not invoke C or Fortran library calls that are not thread safe, e.g., in an environment where malloc is not thread safe, then malloc should not be used by the MPI library.

Some implementors may want to use different MPI libraries for different levels of thread support. They can do so using dynamic linking and selecting which library will be linked when MPI_INIT_THREAD is invoked. If this is not possible, then optimizations for lower levels of thread support will occur only when the level of thread support required is specified at link time.

Note that required need not be the same value on all processes of MPI_COMM_WORLD.

(End of advice to implementors.)

As with MPI_INIT, discussed in Section 11.2.1, the version for ISO C accepts the argc and argv that are provided by the arguments to main or NULL for both arguments.

The following function can be used to query the current level of thread support.

\[
\text{MPI_QUERY_THREAD}(\text{provided})
\]

\[\quad \text{OUT} \quad \text{provided} \quad \text{provided level of thread support (integer)}\]

C binding

C binding

\[
\text{int MPI_Query_thread(int *provided)}
\]

Fortran 2008 binding

\[
\text{MPI_Query_thread(provided, ierror)}
\]

\[
\text{INTEGER, INTENT(OUT)} :: \text{provided}
\]

\[
\text{INTEGER, OPTIONAL, INTENT(OUT)} :: \text{ierror}
\]

Fortran binding

\[
\text{MPI_QUERY_THREAD(PROVIDED, IERROR)}
\]

\[
\text{INTEGER PROVIDED, IERROR}
\]

The call returns in provided the current level of thread support, which will be the value returned in provided by MPI_INIT_THREAD, if MPI was initialized by a call to MPI_INIT_THREAD. This function is only applicable when using the World Model to initialize MPI. In the case of applications using both the World Model and the Sessions Model, this function only returns the thread support level returned in provided by MPI_INIT_THREAD.

\[
\text{MPI_IS_THREAD_MAIN}(\text{flag})
\]

\[\quad \text{OUT} \quad \text{flag} \quad \text{true if calling thread is main thread, false otherwise (logical)}\]

C binding

C binding

\[
\text{int MPI_Is_thread_main(int *flag)}
\]

Fortran 2008 binding

\[
\text{MPI_Is_thread_main(flag, ierror)}
\]

\[
\text{LOGICAL, INTENT(OUT)} :: \text{flag}
\]
Chapter 11 Process Initialization, Creation, and Management

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_IS_THREAD_MAIN(FLAG, IERROR)

LOGICAL FLAG
INTEGER IERROR

This function can be called by a thread to determine if it is the main thread (the thread that called MPI_INIT or MPI_INIT_THREAD). This function is only applicable when using the World Model to initialize MPI. In the case of applications using both the World Model and the Sessions Model, the behavior of this procedure is the same as if the application were only using the World Model.

All routines listed in this section must be supported by all MPI implementations.

Rationale. MPI libraries are required to provide these calls even if they do not support threads, so that portable code that contains invocations to these functions can link correctly. MPI_INIT continues to be supported so as to provide compatibility with current MPI codes. (End of rationale.)

Advice to users. It is possible to spawn threads before MPI is initialized, but MPI_COMM_WORLD and MPI_COMM_SELF cannot be used until the World Model is active, i.e., until MPI_INIT_THREAD is invoked by one thread (which, thereby, becomes the main thread). In particular, it is possible to enter the MPI execution with a multithreaded process.

In the World Model, the level of thread support provided is a global property of the MPI process that can be specified only once, when MPI is initialized on that process (or before). Portable third party libraries have to be written so as to accommodate any provided level of thread support. Otherwise, their usage will be restricted to specific level(s) of thread support. If such a library can run only with specific level(s) of thread support, e.g., only with MPI_THREAD_MULTIPLE, then MPI_QUERY_THREAD can be used to check whether the user initialized MPI to the correct level of thread support. (End of advice to users.)

11.2.2 Finalizing MPI

MPI_FINALIZE()

C binding

int MPI_Finalize(void)

Fortran 2008 binding

MPI_Finalize(ierr)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FINALIZE(IERROR)

INTEGER IERROR

This routine cleans up all MPI state associated with the World Model. If an MPI program that initializes the World Model terminates normally (i.e., not due to a call to
MPI_ABORT or an unrecoverable error) then each process must call MPI_FINALIZE before it exits.

Before an MPI process invokes MPI_FINALIZE, the process must perform all MPI calls needed to complete its involvement in MPI communications associated with the World Model. It must locally complete all MPI operations that it initiated and must execute matching calls needed to complete MPI communications initiated by other processes. For example, if the process executed a nonblocking send, it must eventually call MPI_WAIT, MPI_TEST, MPI_REQUEST_FREE, or any derived function; if the process is the target of a send, then it must post the matching receive; if it is part of a group executing a collective operation, then it must have completed its participation in the operation. This means that before calling MPI_FINALIZE, all message handles associated with the World Model must be received (with MPI_MRECV or derived procedures) and all request handles associated with the World Model must be freed in the case of nonblocking operations, and must be inactive or freed in the case of persistent operations (i.e., by calling one of the procedures MPI_{TEST|WAIT}|{ANY|SOME|ALL} or MPI_REQUEST_FREE).

The call to MPI_FINALIZE does not clean up MPI state associated with objects created using MPI_SESSION_INIT and other Sessions Model methods, nor objects created using the communicator returned by MPI_COMM_GET_PARENT. See Sections 11.3 and 11.8.

The call to MPI_FINALIZE does not free objects created by MPI calls; these objects are freed using MPI_XXX_FREE, MPI_COMM_DISCONNECT, or MPI_FILE_CLOSE calls.

Once MPI_FINALIZE returns, no MPI procedure may be called in the World Model (not even MPI_INIT, or freeing objects created within the World Model), except for those listed in Section 11.4.1.

MPI_FINALIZE is collective over all connected processes. If no processes were spawned, accepted or connected then this means over MPI_COMM_WORLD; otherwise it is collective over the union of all processes that have been and continue to be connected, as explained in Section 11.10.4.

The following examples illustrate these rules.

**Example 11.3.** The following code is correct

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_Init();</td>
<td>MPI_Init();</td>
</tr>
<tr>
<td>MPI_Send(dest=1);</td>
<td>MPI_Recv(src=0);</td>
</tr>
<tr>
<td>MPI_Finalize();</td>
<td>MPI_Finalize();</td>
</tr>
</tbody>
</table>

**Example 11.4.** Without a matching receive, the program is erroneous

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_Init();</td>
<td>MPI_Init();</td>
</tr>
<tr>
<td>MPI_Send(dest=1);</td>
<td></td>
</tr>
<tr>
<td>MPI_Finalize();</td>
<td>MPI_Finalize();</td>
</tr>
</tbody>
</table>

**Example 11.5.** This program is correct: Process 0 calls MPI_Finalize after it has executed the MPI calls that complete the send operation. Likewise, process 1 executes the MPI call that completes the matching receive operation before it calls MPI_Finalize.

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 11.6. This program is correct. The attached buffer is a resource allocated by the user, not by MPI; it is available to the user after MPI is finalized.

Example 11.7. This program is correct. The cancel operation must succeed, since the send cannot complete normally. The wait operation, after the call to MPI_Cancel, is local—no matching MPI call is required on process 1. Cancelling a send request by calling MPI_CANCEL is deprecated.

Advice to implementors. Even though a process has executed all MPI calls needed to complete the communications it is involved with, such communication may not yet be completed from the viewpoint of the underlying MPI system. For example, a blocking send may have returned, even though the data is still buffered at the sender in an MPI buffer; an MPI process may receive a cancel request for a message it has completed receiving. The MPI implementation must ensure that a process has completed any involvement in MPI communication before MPI_FINALIZE returns. Thus, if a process exits after the call to MPI_FINALIZE, this will not cause an ongoing communication to fail. The MPI implementation should also complete freeing all objects marked for deletion by MPI calls that freed them. See also Section 2.9 on progress. (End of advice to implementors.)

Failures may disrupt MPI operations during and after MPI finalization. A high quality implementation shall not deadlock in MPI finalization, even in the presence of failures. The normal rules for MPI error handling continue to apply. After MPI_COMM_SELF has been “freed” (see Section 11.2.4), errors that are not associated with a communicator, window, or file raise the initial error handler (set during the launch operation, see 11.8.4).

Although it is not required that all processes return from MPI_FINALIZE, it is required that, when it has not failed or aborted, at least the MPI process that was assigned rank 0 in MPI_COMM_WORLD returns, so that users can know that the MPI portion of the computation
is over. In addition, in a POSIX environment, users may desire to supply an exit code for each process that returns from MPI_FINALIZE.

Note that a failure may terminate the MPI process that was assigned rank 0 in MPI_COMM_WORLD, in which case it is possible that no MPI process returns from MPI_FINALIZE.

Advice to users. Applications that handle errors are encouraged to implement all rank-specific code before the call to MPI_FINALIZE. In Example 11.8, the process with rank 0 in MPI_COMM_WORLD may have been terminated before, during, or after the call to MPI_FINALIZE, possibly leading to the code after MPI_FINALIZE never being executed. 

(End of advice to users.)

**Example 11.8.** The following illustrates the use of requiring that at least one process return and that it be known that process 0 is one of the processes that return. One wants code like the following to work no matter how many processes return.

```c
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
...
MPI_Finalize();
if (myrank == 0) {
 resultfile = fopen("outfile", "w");
 dump_results(resultfile);
 fclose(resultfile);
}
exit(0);
```

11.2.3 Determining Whether MPI Has Been Initialized When Using the World Model

One of the goals of MPI is to allow for layered libraries. A library using the World Model needs to know if MPI has been initialized using either of MPI_INIT or MPI_INIT_THREAD. In MPI the function MPI_INITIALIZED is provided to tell if MPI had been initialized using the World Model. In the World Model, once MPI has been finalized it cannot be restarted. A library needs to be able to determine this to act accordingly. To achieve this, the function MPI_FINALIZED is needed.

**MPI_INITIALIZED(flag)**

`OUT  flag` Flag is true if MPI_INIT or MPI_INIT_THREAD has been called and false otherwise (logical)

**C binding**

`int MPI_Initilized(int *flag)`

**Fortran 2008 binding**

`MPI_INITIALIZED(flag, ierror)`

`LOGICAL, INTENT(OUT) :: flag`  
`INTEGER, OPTIONAL, INTENT(OUT) :: ierror`
Fortran binding

MPI_INITIALIZED(FLAG, IERROR)
  LOGICAL FLAG
  INTEGER IERROR

This routine may be used to determine whether MPIINIT or MPI_INIT_THREAD has been called. MPI_INITIALIZED returns true if the calling process has called either of these MPI procedures. Whether MPI_FINALIZE has been called does not affect the behavior of MPI_INITIALIZED. This function must always be thread-safe, as defined in Section 11.6. This function returns false for applications using the Sessions Model exclusively.

MPI_FINALIZED(flag)
  OUT flag true if MPI_FINALIZE has been called and false otherwise. (logical)

C binding

int MPI_Finalized(int *flag)

Fortran 2008 binding

MPI_Finalized(flag, ierror)
  LOGICAL, INTENT(OUT) :: flag
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FINALIZED(FLAG, IERROR)
  LOGICAL FLAG
  INTEGER IERROR

This routine returns true if MPI_FINALIZE has completed. It is valid to call MPI_FINALIZED before MPI_INIT and after MPI_FINALIZE. This function must always be thread-safe, as defined in Section 11.6.

11.2.4 Allowing User Functions at MPI Finalization

In the context of the World Model, there are times in which it would be convenient to have actions happen when an MPI process finalizes MPI. For example, a routine may do initializations that are useful until the MPI job (or that part of the job that is being terminated in the case of dynamically created processes) finalizes MPI. This can be accomplished in MPI by attaching an attribute to MPI_COMM_SELF with a callback function. When MPI_FINALIZE is called, it will first execute the equivalent of an MPI_COMM_FREE on MPI_COMM_SELF. This will cause the delete callback function to be executed on all keys associated with MPI_COMM_SELF, in the reverse order that they were set on MPI_COMM_SELF. If no key has been attached to MPI_COMM_SELF, then no callback is invoked. The “freeing” of MPI_COMM_SELF occurs before any other parts of MPI are affected. Thus, for example, calling MPI_FINALIZED will return false in any of these callback functions. Once done with MPI_COMM_SELF, the order and rest of the actions taken by MPI_FINALIZE is not specified.

Advice to implementors. Since attributes can be added from any supported language, the MPI implementation needs to remember the creating language so the correct
callback is made. Implementations that use the attribute delete callback on
MPI_COMM_SELF internally should register their internal callbacks before returning
from MPI_INIT / MPI_INIT_THREAD, so that libraries or applications will not have
portions of the MPI implementation shut down before the application-level callbacks
are made. (*End of advice to implementors.*)

11.3 The Sessions Model

There are a number of limitations with the World Model described in the preceding section.
Among these are the following: MPI cannot be initialized from different application com-
ponents without *a priori* knowledge or coordination; MPI cannot be initialized more than
once; and MPI cannot be reinitialized after MPI_FINALIZE has been called. This section
describes an alternative approach to MPI initialization—the Sessions Model. With this ap-
proach, an MPI application, or components of the application, can instantiate MPI resources
for the specific communication needs of this component. MPI_COMM_WORLD is not valid
for use as a communicator. MPI_INFO_ENV is not valid for use as an info object when only
using the Sessions Model. As described in Section 11.2.1, MPI must be initialized using
the World Model to use this info object. Note that an application may employ both the
Sessions Model and World Model concurrently (see Section 11.1).

In the Sessions Model, MPI resources can be allocated and freed multiple times in an
MPI process.

As shown in Figure 11.1, when using the Sessions Model, an MPI process instantiates
an MPI Session handle, which can be used to query the runtime system about character-
istics of the job within which the process is running, as well as other system resources.
Using this information, the MPI process can then create an MPI Group based on appli-
cation requirements and available resources, which in turn can be used to create an MPI
Communicator, Window, or File. By judicious creation of communicators, an application
only needs to allocate MPI resources based on its communication requirements. Although
there are existing MPI interfaces for creating communicators that can, in principle, allow
for resource optimizations within an MPI implementation, this can only be done following
initialization of MPI.

For multithreaded applications, the Sessions Model provides fine-grain control of the
thread support level for MPI objects. It is possible to specify different thread support levels
when creating different MPI Session handles. Thus different components of an application
can use different thread support levels.

The Sessions Model introduces a concept of isolation. MPI objects derived from differ-
ent MPI Session handles shall not be intermixed with each other in a single MPI procedure
call. MPI objects derived from the Sessions Model shall not be intermixed in a single MPI
procedure call with MPI objects derived from the World Model. MPI objects derived from
the Sessions Model shall not be intermixed in a single MPI procedure call with MPI ob-
jects derived from the communicator obtained from a call to MPI_COMM_GET_PARENT
or MPI_COMM_JOIN.

This restriction does not apply to generalized requests (Section 13.2) as such requests
are not associated directly with communicators or other MPI objects. Note however, the
Sessions Model does not otherwise change the semantics or behavior of MPI objects.
11.3.1 Session Creation and Destruction Methods

**MPI_SESSION_INIT**(info, errhandler, session)

- **IN** info: info object to specify thread support level and MPI implementation specific resources (handle)
- **IN** errhandler: error handler to invoke in the event that an error is encountered during this function call (handle)
- **OUT** session: new session (handle)

**C binding**

```c
int MPI_Session_init(MPI_Info info, MPI_Errhandler errhandler,
 MPI_Session *session)
```

**Fortran 2008 binding**

```fortran
MPI_Session_init(info, errhandler, session, ierror)
```

  TYPE(MPI_Info), INTENT(IN) :: info
  TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
  TYPE(MPI_Session), INTENT(OUT) :: session

Figure 11.1: Steps to creating an MPI Communicator from a MPI Session handle.
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SESSION_Init(INFO, ERRHANDLER, SESSION, IERROR)
  INTEGER INFO, ERRHANDLER, SESSION, IERROR

The info argument is used to request MPI functionality requirements and possible MPI implementation specific capabilities. The following info keys are predefined:

"thread_level" used to request the thread support level required for MPI objects derived from the Session. Allowed values are "MPI_THREAD_SINGLE", "MPI_THREAD_FUNNELED", "MPI_THREAD_SERIALIZED", and "MPI_THREAD_MULTIPLE". Note that the thread support value is specified by a string rather than the integer values supplied to MPI_INIT_THREAD. The thread support level actually provided by the MPI implementation can be determined via a subsequent call to MPI_SESSION_GET_INFO to return the info object associated with the Session. The default thread support level is MPI implementation dependent.

"mpi_memory_alloc_kinds" used to request support for memory allocation kinds to be used by the calling MPI process on MPI objects derived from the Session. See Section 11.4.3. A value for this info key can also be supplied as an argument to an MPI startup mechanism as described in Section 11.5.

The errhandler argument specifies an error handler to invoke in the event that the Session instantiation call encounters an error. The error handler shall be either a pre-defined error handler (see 9.3) or one created using MPI_SESSION_CREATE_ERRHANDLER. Session instantiation is intended to be a lightweight operation. An MPI process may instantiate multiple Sessions. MPI_SESSION_INIT is always thread safe; multiple threads within an application may invoke it concurrently.

Advice to users. Requesting "MPI_THREAD_SINGLE" thread support level is generally not recommended, because this will conflict with other components of an application requesting higher levels of thread support. (End of advice to users.)

Advice to implementors. Owing to the restrictions of the MPI_THREAD_SINGLE thread support level, implementors are discouraged from making this the default thread support level for Sessions. (End of advice to implementors.)

MPI_SESSION_Finalize(session)
  INOUT   session               session to be finalized (handle)

C binding
int MPI_Session_finalize(MPI_Session *session)

Fortran 2008 binding
MPI_Session_finalize(session, ierror)
  TYPE(MPI_Session), INTENT(INOUT) :: session
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
Fortran binding

\begin{verbatim}
MPI_SESSION_FINALIZE(SESSION, IERROR)
  INTEGER SESSION, IERROR
\end{verbatim}

This routine cleans up all MPI state associated with the supplied session. Every instantiated Session must be finalized using \texttt{MPI_SESSION_FINALIZE}. The handle \texttt{session} is set to \texttt{MPI_SESSION_NULL} by the call.

Before an MPI process invokes \texttt{MPI_SESSION_FINALIZE}, the process must perform all MPI calls needed to complete its involvement in MPI communications: it must locally complete all MPI operations that it initiated and it must execute matching calls needed to complete MPI communications initiated by other processes. This means that before calling \texttt{MPI_SESSION_FINALIZE}, all message handles associated with this session must be received (with \texttt{MPI_MRECV} or derived procedures) and all request handles associated with this session must be freed in the case of nonblocking operations, and must be inactive or freed in the case of persistent operations (i.e., by calling one of the procedures \texttt{MPI_{TEST\mid WAIT\}{\{\{ANY\mid SOME\mid ALL\}}} or \texttt{MPI_REQUEST_FREE}).

The call to \texttt{MPI_SESSION_FINALIZE} does not free objects created by MPI calls; these objects are freed using \texttt{MPI_{XXX\_FREE}}, \texttt{MPI_COMM\_DISCONNECT}, or \texttt{MPI\_FILE\_CLOSE} calls.

Once \texttt{MPI_SESSION_FINALIZE} returns, no MPI procedure may be called in the Sessions Model that are related to this session (not even freeing objects that are derived from this session), except for those listed in Section 11.4.1.

Advice to users. Opaque objects and their handles may bind internal resources. Therefore, it is highly recommended to explicitly free the handles associated with this session before finalizing it. Such associated handles can be group, communicator, window, file, message, and request handles, whereas datatype, operation (e.g., for reductions), error handler, and info handles exist independently of the World Model or a session in the Sessions Model. In addition, if attributes are cached on such an opaque object (see Section 7.7), then the delete callback functions are only invoked when the object is explicitly freed (or disconnected). (End of advice to users.)

Most handles that exist independently from the World Model or a session in the Sessions Model, e.g., datatype handles, can be created only while MPI is initialized. For example, a datatype handle that was created when one particular session existed can be used in any other session (or in the World Model), even if the second session was initialized after the first session had already been finalized and no other session existed in between. See Section 11.4.1 for handle creation procedures that do not require that MPI is initialized.

\texttt{MPI_SESSION_FINALIZE} may be synchronizing on any or all of the groups associated with communicators, windows, or files derived from the session and not disconnected, freed, or closed, respectively, before the call to the \texttt{MPI_SESSION_FINALIZE} procedure.

\texttt{MPI_SESSION_FINALIZE} behaves as if all such synchronizations occur concurrently. As \texttt{MPI_COMM\_FREE} may mark a communicator for freeing later, \texttt{MPI_SESSION_FINALIZE} may be synchronizing on the group associated with a communicator that is only freed (with \texttt{MPI_COMM\_FREE}) rather than disconnected (with \texttt{MPI_COMM\_DISCONNECT}).

Rationale. This rule is similar to the rule that \texttt{MPI\_FINALIZE} is collective (see 11.2.2), but does not require that \texttt{MPI_SESSION_FINALIZE} be collective over all connected MPI processes. It also allows for cases where some MPI processes may have derived a
set of communicators using a different number of session handles. See Example 11.9. (End of rationale.)

Advice to implementors. This rule also allows for the completion of communications the MPI process is involved with that may not yet be completed from the viewpoint of the underlying MPI system. See Section 2.9 on progress and the advice to implementors at the end of Section 11.2.2. (End of advice to implementors.)

Advice to implementors. An MPI implementation should be able to implement the semantics of MPI_SESSION_FINALIZE as a local procedure, provided an application frees all MPI windows, closes all MPI files, and uses MPI_COMM_DISCONNECT to free all MPI communicators associated with a session prior to invoking MPI_SESSION_FINALIZE on the corresponding session handle. (End of advice to implementors.)

**Example 11.9.** Three MPI processes are connected with 2 communicators (indicated by the = symbols), derived from one session handle in process X but from two separate session handles in both process Y and Z.

<table>
<thead>
<tr>
<th>process-X</th>
<th>process-Y</th>
<th>process-Z</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sesX)=====(sesYA)=====(sesZA)</td>
<td>sesX, sesYA, ses YB, sesZA and sesZB are session handles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(sesX)=====(sesYB)=====(sesZB)</td>
<td>communicator_1 and communicator_2 are derived from them.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF(sesX) SF(sesYA) SF(sesZA)</td>
<td>SF = MPI_SESSION_FINALIZE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF(sesYB) SF(sesZB)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Process X has only to finalize its one session handle, whereas the other two MPI processes have to call MPI_SESSION_FINALIZE twice in the same sequence with respect to the communicators derived from the session handles. Specifically, both process Y and process Z shall call MPI_SESSION_FINALIZE for the session from which communicator_1 was derived before calling the MPI_SESSION_FINALIZE for the session from which communicator_2 was derived, or vice versa (i.e., both shall finalize the session for communicator_2 first then finalize the session for communicator_1). The call SF(ses) in process X may not return until both SF(ses*A) and SF(ses*B) are called in processes Y and Z.

11.3.2 Processes Sets

Process sets are the mechanism for MPI applications to query the runtime. Process sets are identified by process set names. Process set names have a Uniform Resource Identifier (URI) format. Two process set names are mandated: "mpi://WORLD" and "mpi://SELF". Additional process set names may be defined, for example, "mpix://UNIVERSE" and "hwloc://L3Cache" may be defined by the MPI implementation. The "mpi://" namespace is reserved for exclusive use by the MPI standard. Figure 11.2 depicts process sets that the runtime could associate with an instance of an MPI job. In this example, the two mandated process sets are defined, in addition to optional, implementation specific ones.

Mechanisms for defining process sets and how system resources are assigned to these sets is considered to be implementation dependent.
Figure 11.2: Examples of process sets. Illustrated are the two mandated process sets—"mpi://WORLD" and "mpi://SELF"—along with several optional ones that a runtime could define. In this example, MPI_SESSION_GET_NUM_PSETS would return five at each MPI process.

A process set caches key/value tuples that are accessible to the application via an MPI_Info object. The "mpi_size" key is mandatory for all process sets.

11.3.3 Runtime Query Functions

**MPI_SESSION_GET_NUM_PSETS**

```c
IN session session (handle)
IN info info object (handle)
OUT npset_names number of available process sets (non-negative integer)
```

C binding

```c
int MPI_Session_get_num_psets(MPI_Session session, MPI_Info info, int *npset_names)
```

Fortran 2008 binding

```fortran
MPI_Session_get_num_psets(session, info, npset_names, ierror)
```

```fortran
 TYPE(MPI_Session), INTENT(IN) :: session
 TYPE(MPI_Info), INTENT(IN) :: info
 INTEGER, INTENT(OUT) :: npset_names
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
Fortran binding

MPI_SESSION_GET_NUM_PSETS(SESSION, INFO, NPSET_NAMES, IERROR)
  INTEGER SESSION, INFO, NPSET_NAMES, IERROR

This function is used to query the runtime for the number of available process sets in which the calling MPI process is a member. An MPI implementation is allowed to increase the number of available process sets during the execution of an MPI application when new process sets become available. However, MPI implementations are not allowed to change the index of a particular process set name, or to change the name of the process set at a particular index, or to delete a process set name once it has been added. When a process set becomes invalid, for example, when some processes become unreachable due to failures in the communication system, subsequent usage of the process set name should raise an error. For example, creating an MPI_Group from such a process set might succeed because it is a local operation, but creating an MPI_Comm from that group and attempting collective communication should raise an error.

Advice to implementors. It is anticipated that an MPI implementation may be relying on an external runtime system to provide process sets. Such runtime systems may have the ability to dynamically create process sets during the course of application execution. Requiring the number of process sets returned by MPI_SESSION_GET_NUM_PSETS to be constant over the course of application execution would prevent an application from taking advantage of such capabilities. (End of advice to implementors.)

MPI_SESSION_GET_NTH_PSET(session, info, n, pset_len, pset_name)
  IN  session               session (handle)
  IN  info                  info object (handle)
  IN  n                     index of the desired process set name (integer)
  INOUT pset_len            length of the pset_name argument (integer)
  OUT pset_name             name of the nth process set (string)

C binding

int MPI_Session_get_nth_pset(MPI_Session session, MPI_Info info, int n,
                           int *pset_len, char *pset_name)

Fortran 2008 binding

MPI_Session_get_nth_pset(session, info, n, pset_len, pset_name, ierror)
  TYPE(MPI_Session), INTENT(IN) :: session
  TYPE(MPI_Info), INTENT(IN) :: info
  INTEGER, INTENT(IN) :: n
  INTEGER, INTENT(INOUT) :: pset_len
  CHARACTER(LEN=*) , INTENT(OUT) :: pset_name
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_SESSION_GET_NTH_PSET(SESSION, INFO, N, PSET_LEN, PSET_NAME, IERROR)
INTEGER SESSION, INFO, N, PSET_LEN, IERROR
CHARACTER(*) PSET_NAME

This function returns the name of the nth process set in the supplied pset_name buffer. pset_len is the size of the buffer needed to store the nth process set name. If the pset_len passed into the function is less than the actual buffer size needed for the process set name, then the string value returned in pset_name is truncated. If pset_len is set to 0, pset_name is not changed. On return, the value of pset_len will be set to the required buffer size to hold the process set name. In C, pset_len includes the required space for the null terminator. In C, this function returns a null terminated string in all cases where the pset_len input value is greater than 0.

If two MPI processes get the same process set name, then the intersection of the two process sets shall either be the empty set or identical to the union of the two process sets.

After a successful call to MPI_SESSION_GET_NTH_PSET, subsequent calls to routines that query information about the same process set name and same session handle must return the same information. An MPI implementation is not allowed to alter any of the returned process set names.

Process set names have an implementation-defined maximum length of MPI_MAX_PSET_NAME_LEN characters. MPI_MAX_PSET_NAME_LEN shall have a value of at least 63.

Advice to users. MPI_MAX_PSET_NAME_LEN might be very large, so it might not be wise to declare a string of that size. Users are encouraged to use MPI_SESSION_GET_NTH_PSET both for obtaining the length of a pset_name and the process set name. (End of advice to users.)

MPI_SESSION_GET_INFO(session, info_used)
IN session session (handle)
OUT info_used see explanation below (handle)

C binding
int MPI_Session_get_info(MPI_Session session, MPI_Info *info_used)

Fortran 2008 binding
MPI_Session_get_info(session, info_used, ierror)
    TYPE(MPI_Session), INTENT(IN) :: session
    TYPE(MPI_Info), INTENT(OUT) :: info_used
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SESSION_GET_INFO(SESSION, INFO_USED, IERROR)
    INTEGER SESSION, INFO_USED, IERROR

MPI_SESSION_GET_INFO returns a new info object containing the hints of the MPI Session associated with session. The current setting of all hints related to this MPI Session is returned in info_used. An MPI implementation is required to return all hints that are supported by the implementation and have default values specified; any user-supplied hints that were not ignored by the implementation; and any additional hints that were set by
the implementation. If no such hints exist, a handle to a newly created info object is returned that contains no key/value pair. The user is responsible for freeing info_used via MPI_INFO_FREE.

MPI_SESSION_GET_PSET_INFO(session, pset_name, info)

IN session session (handle)
IN pset_name name of process set (string)
OUT info info object containing information about the given process set (handle)

C binding
int MPI_Session_get_pset_info(MPI_Session session, const char *pset_name,
                               MPI_Info *info)

Fortran 2008 binding
MPI_Session_get_pset_info(session, pset_name, info, ierror)
    TYPE(MPI_Session), INTENT(IN) :: session
    CHARACTER(LEN=*), INTENT(IN) :: pset_name
    TYPE(MPI_Info), INTENT(OUT) :: info
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_SESSION_GET_PSET_INFO(SESSION, PSET_NAME, INFO, IERROR)
    INTEGER SESSION, INFO, IERROR
    CHARACTER(*), PSET_NAME

This function is used to query properties of a specific process set. The returned info object can be queried with existing MPI info object query functions. One key/value pair must be defined, "mpi_size". The value of the "mpi_size" key specifies the number of MPI processes in the process set. The user is responsible for freeing the returned MPI_Info object.

11.3.4 Sessions Model Examples

This section presents several examples of how to use MPI Sessions to create MPI Groups and MPI Communicators.

Example 11.10. Simple example illustrating creation of an MPI communicator using the Sessions Model.

```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mpi.h"

static MPI_Session lib_shandle = MPI_SESSION_NULL;
static MPI_Comm lib_comm = MPI_COMM_NULL;

int library_foo_init(void)
{
 int rc, flag, valuelen;
```
int ret = 0;
const char pset_name[] = "mpi://WORLD";
const char mt_key[] = "thread_level";
const char mt_value[] = "MPI_THREAD_MULTIPLE";
char out_value[100]; /* large enough */
MPI_Group wgroup = MPI_GROUP_NULL;
MPI_Info sinfo = MPI_INFO_NULL;
MPI_Info tinfo = MPI_INFO_NULL;

MPI_Info_create(&sinfo);
MPI_Info_set(sinfo, mt_key, mt_value);
rc = MPI_Session_init(sinfo, MPI_ERRORS_RETURN, &lib_shandle);
if (rc != MPI_SUCCESS) {
    ret = -1;
    goto fn_exit;
}

/*
* check we got thread support level foo library needs
*/
rc = MPI_Session_get_info(lib_shandle, &tinfo);
if (rc != MPI_SUCCESS) {
    ret = -1;
    goto fn_exit;
}

valuelen = sizeof(out_value);
MPI_Info_get_string(tinfo, mt_key, &valuelen, &flag, out_value);
if (0 == flag) {
    printf("Could not find key %s\n", mt_key);
    ret = -1;
    goto fn_exit;
}

if (strcmp(out_value, mt_value)) {
    printf("Did not get thread multiple support, got %s\n", out_value);
    ret = -1;
    goto fn_exit;
}

/*
* create a group from the WORLD process set
*/
rc = MPI_Group_from_session_pset(lib_shandle, pset_name, &wgroup);
if (rc != MPI_SUCCESS) {
    ret = -1;
    goto fn_exit;
}
Example 11.10 shows how the predefined "mpi://WORLD" process set can be used to first create a local MPI group and then subsequently to create an MPI communicator from this group.

Example 11.11. This example illustrates the use of Process Set query functions to select a Process Set to use for MPI Group creation.

```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mpi.h"

int main(int argc, char *argv[])
{
 int i, n_psets, psetlen, rc, ret;
 int value_len;
 int flag = 0;
 char *pset_name = NULL;
```
```c
char *info_val = NULL;
MPI_Session shandle = MPI_SESSION_NULL;
MPI_Info sinfo = MPI_INFO_NULL;
MPI_Group pgroup = MPI_GROUP_NULL;

if (argc < 2) {
 fprintf(stderr, "A process set name fragment is required\n")
 return EXIT_FAILURE;
}

rc = MPI_Session_init(MPI_INFO_NULL, MPI_ERRORS_RETURN, &shandle);
if (rc != MPI_SUCCESS) {
 fprintf(stderr, "Could not initialize session, bailing out\n")
 return EXIT_FAILURE;
}

MPI_Session_get_num_psets(shandle, MPI_INFO_NULL, &n_psets);

for (i=0, pset_name=NULL; i<n_psets; i++) {
 psetlen = 0;
 MPI_Session_get_nth_pset(shandle, MPI_INFO_NULL, i, &psetlen, NULL);
 pset_name = (char *)malloc(sizeof(char) * psetlen);
 MPI_Session_get_nth_pset(shandle, MPI_INFO_NULL, i, &psetlen, pset_name);
 if (strstr(pset_name, argv[1]) != NULL) break;

 free(pset_name);
 pset_name = NULL;
}

/*
 * get instance of an info object for this Session
 */
MPI_Session_get_pset_info(shandle, pset_name, &sinfo);

valuelen = 0;
MPI_Info_get_string(sinfo, "mpi_size", &valuelen, NULL, &flag);
if (flag) {
 info_val = (char *)malloc(valuelen);
 MPI_Info_get_string(sinfo, "mpi_size", &valuelen, info_val, &flag);
 free(info_val);
}

/*
 * create a group from the process set
 */
rc = MPI_Group_from_session_pset(shandle, pset_name, &pgroup);
ret = (rc == MPI_SUCCESS) ? 0 : EXIT_FAILURE;
free(pset_name);
MPI_Group_free(&pgroup);
MPI_Info_free(&sinfo);
MPI_Session_finalize(&shandle);
```
Example 11.11 illustrates several aspects of the Sessions Model. First, the default error handler can be specified when instantiating a Session instance. Second, there must be at least two process sets associated with a Session. Third, the example illustrates use of the Sessions info object and the one required key: "mpi_size".

Example 11.12. A Fortran 2008 example illustrating how to obtain information about available process sets, create an MPI Group from a process set, and subsequently create an MPI Communicator.

```fortran
PROGRAM MAIN
 USE mpi_f08
 IMPLICIT NONE
 INTEGER :: pset_len, ierror, n_psets
 CHARACTER(LEN=:) , ALLOCATABLE :: pset_name
 TYPE(MPI_Session) :: shandle
 TYPE(MPI_Group) :: pgroup
 TYPE(MPI_Comm) :: pcomm

 CALL MPI_Session_init(MPI_INFO_NULL, MPI_ERRORS_RETURN, &
 shandle, ierror)
 IF (ierror .NE. MPI_SUCCESS) THEN
 WRITE(*,*) "MPI_Session_init failed"
 ERROR STOP
 END IF

 CALL MPI_Session_get_num_psets(shandle, MPI_INFO_NULL, n_psets)
 IF (n_psets .LT. 2) THEN
 WRITE(*,*) "MPI_Session_get_num_psets didn't return at least 2 psets"
 ERROR STOP
 END IF

 ! Just get the second pset's length and name
 ! Note that index values are zero-based, even in Fortran
 !
 pset_len = 0
 CALL MPI_Session_get_nth_pset(shandle, MPI_INFO_NULL, 1, &
 pset_len, pset_name)
 ALLOCATE(CHARACTER(LEN=pset_len):pset_name)
 CALL MPI_Session_get_nth_pset(shandle, MPI_INFO_NULL, 1, &
 pset_len, pset_name)

 ! create a group from the pset
 !
 CALL MPI_Group_from_session_pset(shandle, pset_name, pgroup)
 !
 ! free the buffer used for the pset name
 !
 DEALLOCATE(pset_name)
```

```c
#endif
```
!! create a MPI communicator from the group
!!
CALL MPI_Comm_create_from_group(pgroup, "session_example", &
   MPI_INFO_NULL, &
   MPI_ERRORS_RETURN, &
   pcomm)

CALL MPI_Barrier(pcomm, ierror)
IF (ierror .NE. MPI_SUCCESS) THEN
   WRITE(*,*) "Barrier call on communicator failed"
   ERROR STOP
END IF

CALL MPI_Comm_free(pcomm)
CALL MPI_Group_free(pgroup)
CALL MPI_Session_finalize(shandle, ierror)
END PROGRAM MAIN

Note in this example that the call to MPI_SESSION_FINALIZE may block in order
to ensure that the calling MPI process has completed its involvement in the preceding
MPI_BARRIER operation. If MPI_COMM_DISCONNECT had been used instead of
MPI_COMM_FREE, the example would have blocked in MPI_COMM_DISCONNECT rather
than MPI_SESSION_FINALIZE.

11.4 Common Elements of Both Process Models

11.4.1 MPI Functionality that is Always Available

Some MPI functions may be invoked at any time, including prior to calling MPI_INIT or
MPI_SESSION_INIT, and following MPI finalization, independent of whether the World
Model, Sessions Model, or both are used. These functions can be called concurrently by
multiple threads within an MPI Process. Table 11.1 lists the applicable MPI functions.

In addition to the functions listed in Table 11.1, any function with the prefix MPI_T_
(within the constraints for functions with this prefix listed in Section 15.3.4) may also be
called prior to MPI initialization and after MPI finalization.

11.4.2 Aborting MPI Processes

MPI_ABORT(comm, errorcode)
    comm communicator of MPI processes to abort (handle)
    errorcode error code to return to invoking environment
               (integer)

C binding
int MPI_Abort(MPI_Comm comm, int errorcode)
Table 11.1: List of MPI Functions that can be called at any time within an MPI program, including prior to MPI initialization and following MPI finalization

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_INITIALIZED</td>
<td></td>
</tr>
<tr>
<td>MPI_FINALIZED</td>
<td></td>
</tr>
<tr>
<td>MPI_GET_VERSION</td>
<td></td>
</tr>
<tr>
<td>MPI_GET_LIBRARY_VERSION</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_CREATE</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_CREATE_ENV</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_SET</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_DELETE</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_GET_STRING</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_GET_NKEYS</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_GET_NTHKEY</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_DUP</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_FREE</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_F2C</td>
<td></td>
</tr>
<tr>
<td>MPI_INFO_C2F</td>
<td></td>
</tr>
<tr>
<td>MPI_SESSION_CREATE_ERRHANDLER</td>
<td></td>
</tr>
<tr>
<td>MPI_SESSION_CALL_ERRHANDLER</td>
<td></td>
</tr>
<tr>
<td>MPI_ERRHANDLER_FREE</td>
<td></td>
</tr>
<tr>
<td>MPI_ERRHANDLER_F2C</td>
<td></td>
</tr>
<tr>
<td>MPI_ERRHANDLER_C2F</td>
<td></td>
</tr>
<tr>
<td>MPI_ERROR_STRING</td>
<td></td>
</tr>
<tr>
<td>MPI_ERROR_CLASS</td>
<td></td>
</tr>
<tr>
<td>MPI_ADD_ERROR_CLASS</td>
<td></td>
</tr>
<tr>
<td>MPI_REMOVE_ERROR_CLASS</td>
<td></td>
</tr>
<tr>
<td>MPI_ADD_ERROR_CODE</td>
<td></td>
</tr>
<tr>
<td>MPI_REMOVE_ERROR_CODE</td>
<td></td>
</tr>
<tr>
<td>MPI_ADD_ERROR_STRING</td>
<td></td>
</tr>
<tr>
<td>MPI_REMOVE_ERROR_STRING</td>
<td></td>
</tr>
</tbody>
</table>

**Fortran 2008 binding**

```fortran
MPI_Abort(comm, errorcode, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: errorcode
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPI_ABORT(COMM, ERRORCODE, IERROR)
 INTEGER COMM, ERRORCODE, IERROR
```

This routine makes a “best attempt” to abort all MPI processes in the group of `comm`. This function does not require that the invoking environment take any action with the error code. However, a Unix or POSIX environment should handle this as a return `errorcode` from the main program.
It may not be possible for an MPI implementation to abort only the processes represented by comm if this is a subset of the processes. In this case, the MPI implementation should attempt to abort all the connected processes but should not abort any unconnected processes. When using the World Model, and if no processes were spawned, accepted, or connected then this has the effect of aborting all the processes associated with MPI_COMM_WORLD. In the case of the Sessions Model, if an MPI process has instantiated multiple sessions, the union of the process sets in these sessions are considered connected processes. Thus invoking MPI_ABORT on a communicator derived from one of these sessions will result in all MPI processes in this union being aborted.

Advice to implementors. After aborting a subset of processes, a high quality implementation should be able to provide error handling for communicators, windows, and files involving both aborted and nonaborted processes. As an example, if the user changes the error handler for MPI_COMM_WORLD to MPI_ERRORS_RETURN or a custom error handler, when a subset of MPI_COMM_WORLD is aborted, the remaining processes in MPI_COMM_WORLD should be able to continue communicating with each other and receive an appropriate error code when attempting communication with an aborted process (e.g., an error of class MPI_ERR_PROC_ABORTED). A high quality implementation should support equivalent behavior for communicators derived from sessions. (End of advice to implementors.)

Advice to users. Whether the errorcode is returned from the executable or from the MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the MPI library but not mandatory. (End of advice to users.)

Advice to implementors. Where possible, a high-quality implementation will try to return the errorcode from the MPI process startup mechanism (e.g. mpiexec or singleton init). (End of advice to implementors.)

11.4.3 Memory Allocation Info

Computing systems contain memory with different properties, including differences in performance, persistence, access permissions, or access mode. These distinct memories are generally allocated using distinct mechanisms and are referred to as memory allocation kinds that are named according to the method of allocation. The following info keys can be used to request or query the memory allocation kinds supported by the MPI library and to assert application usage of memory allocation kinds with respect to specific MPI objects, as shown in Example 11.13.

"mpi_memory_alloc_kinds" (string, default: "mpi,system"): A comma separated list of memory allocation kinds. When set on the input info object in a call to MPI_SESSION_INIT, MPI_COMM_SPAWN, or MPI_COMM_SPAWN_MULTIPLE, or when supplied as an argument to an MPI startup mechanism, this info key requests support for the specified memory allocation kinds.

When returned by MPI, this info key indicates the memory allocation kinds supported by the MPI library on the given session, MPI object, or objects derived from the World Model. This info key does not affect the kind of memory allocated by MPI, e.g., in a call to MPI_ALLOC_MEM or MPI_WIN_ALLOCATE. A value corresponding to the empty string represents no memory allocation kinds.
"mpi_assert_memory_alloc_kinds" (string, not set by default): A comma separated list of memory allocation kinds that the calling MPI process will use with the given MPI object. A value corresponding to the empty string represents no memory allocation kinds.

The "mpi_memory_alloc_kinds" info key is used both for requesting and querying support for memory allocation kinds from the MPI library.

When supplied to MPI_SESSION_INIT, this info key requests support for memory allocation kinds for all objects that will be derived from the new session. This info hint can also be supplied through an argument to an MPI startup mechanism. In the Sessions Model, this behaves as though the "mpi_memory_alloc_kinds" info key with the given value was supplied in the info argument in calls to MPI_SESSION_INIT. A value of "mpi_memory_alloc_kinds" supplied in the info argument to MPI_SESSION_INIT takes precedence over a value supplied as an argument to an MPI startup mechanism.

In the World Model, an info hint passed to an MPI startup mechanism requests support for memory allocation kinds for all objects derived from the World Model. This info hint can also be supplied to MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE in the World Model. This requests support for memory allocation kinds for all objects derived from the World Model in the spawned MPI process or MPI processes.

When returned by MPI_SESSION_GET_INFO, this info key indicates the memory allocation kinds supported by the MPI library on the given session. When returned in MPI_INFO_ENV, this info key indicates the memory allocation kinds supported by the MPI library for all objects derived from the World Model.

If "mpi_memory_alloc_kinds" was supplied during session creation, then the value of the corresponding key in the info object returned by MPI_SESSION_GET_INFO must include all requested memory allocation kinds that are supported. The substrings that indicate support for these memory allocation kinds must be identical to those supplied by the user. MPI may also return additional memory allocation kinds that were not requested by the user. The order of the memory allocation kinds returned through this info key is undefined.

Rationale. MPI libraries may have implementation-specific mechanisms (e.g., environment variables) that control the supported memory allocation kinds. Allowing implementations to return additional memory allocation kinds provides for compatibility with such mechanisms. (End of rationale.)

The "mpi_memory_alloc_kinds" info key must also be contained in the info object returned by MPI_COMM_GET_INFO, MPI_WIN_GET_INFO, and MPI_FILE_GET_INFO. If the communicator, window, or file is derived from the World Model, the value of this info key must be identical to the value of this info key in MPI_INFO_ENV unless the user has asserted that support for memory allocation kinds can be restricted by setting "mpi_assert_memory_alloc_kinds" on that communicator, window, or file. If the communicator, window, or file is derived from the Sessions Model, the value of this info key must be identical to the value of this info key in the info object returned by MPI_SESSION_GET_INFO for that session unless the user has asserted that support for memory allocation kinds can be restricted by setting "mpi_assert_memory_alloc_kinds" on that communicator, window, or file.

When the user sets the "mpi_assert_memory_alloc_kinds" info key on the input info object for communicator creation, including via MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE, window creation, or file creation the implementation may
assume that the memory for all communication buffers passed to MPI operations performed by the calling MPI process on the newly created MPI object will use only the memory allocation kinds listed in the value string. If the MPI library does not support one or more of the allocation kinds associated with the "mpi_assert_memory_alloc_kinds" info key, it will ignore this info key. When an MPI library recognizes this info key, the value returned when querying this info key (e.g., through a call to MPI_COMM_GET_INFO) must be identical to the value supplied by the user. It is erroneous to pass a communication buffer with an unsupported memory allocation kind to an MPI routine.

Memory allocation kind strings are comma separated lists that follow the rules specified in Section 10. Each element in the list is a memory allocation kind that is formatted as the name of the kind, followed by an optional colon separated list of restrictors. Whitespace is not permitted within the list of restrictors. For example, "kind_a:restrictor_1,kind_b:restrictor_1:restrictor_2,...".

Within a memory allocation kind string, a given kind may be listed more than once with different restrictors, e.g., "kind_a:restrictor_1,kind_a:restrictor_2". A given kind may also be listed more than once with fewer restrictors, e.g., "kind_a,kind_a:restrictor_1". A memory allocation kind with no restrictors indicates an unrestricted memory allocation kind. Each instance of a kind in the memory allocation kind string indicates a separate and potentially overlapping memory allocation kind. The following memory allocation kinds and restrictors are defined by MPI. This list may be extended by MPI side documents and implementations.

- "system": Memory allocated by standard operating system allocators. When support for the "system" memory allocation kind is requested by the user, it must be provided by the MPI library.
- "mpi": Memory allocated by the MPI library. When support for the "mpi" memory allocation kind is requested by the user, it must be provided by the MPI library.

Restrictors for the "mpi" memory allocation kind:
- "alloc_mem": Memory allocated by a call to MPI_ALLOC_MEM
- "win_allocate": Memory allocated by a call to MPI_WIN_ALLOCATE
- "win_allocate_shared": Memory allocated by a call to MPI_WIN_ALLOCATE_SHARED

Example 11.13. This example demonstrates the usage of memory allocation kinds info keys with the Sessions Model. It shows how support for additional memory allocation kinds can be requested, how supported memory allocation kinds can be queried, how to parse the list of supported memory allocation kinds, and how to assert that a subset of supported memory allocation kinds are used with operations on a specific communicator.

```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mpi.h>

int main(int argc, char *argv[]) {
 int gpu_aware = 0, len = 0, flag = 0;
 MPI_Info info;
```
11.4 Common Elements of Both Process Models

MPI_Session session;
MPI_Group wgroup;
MPI_Comm system_comm, gpu_comm = MPI_COMM_NULL;

MPI_Info_create(&info);
MPI_Info_set(info, "mpi_memory Alloc_kinds", "system, gpu:device");
MPI_Session_init(info, MPI_ERRORS_ARE_FATAL, &session);
MPI_Info_free(&info);

MPI_Info_get_info(session, &info);
MPI_Info_get_string(info, "mpi_memory Alloc_kinds", &len, NULL, &flag);

if (flag) {
  char *val, *valptr, *kind;
  val = valptr = (char *) malloc(len);
  if (NULL == val) return 1;

  MPI_Info_get_string(info, "mpi_memory Alloc_kinds", &len, val, &flag);
  while (((kind = strsep(&val, ",")) != NULL) {
    if (strcasecmp(kind, "gpu:device") == 0) {
      gpu_aware = 1;
      break;
    }
  }
  free(valptr);
}

MPI_Info_free(&info);

MPI_Group_from_session_pset(session, "mpi://WORLD", &wgroup);

// Create a communicator for operations on system memory
MPI_Info_create(&info);
MPI_Info_set(info, "mpi_assert_memory Alloc_kinds", "system");
MPI_Comm_create_from_group(wgroup,
  "org.mpi-forum.example.mem-alloc-kind-usage.system", info, MPI_ERRORS_ABORT, &system_comm);

MPI_Info_free(&info);

// Check if all processes have GPU support
MPI_Allreduce(MPI_IN_PLACE, &gpu_aware, 1, MPI_INT, MPI_LAND, system_comm);

// Create a communicator for operations that use GPU buffers.
// Note, the "gpu" memory allocation kind is provided as an example
// and is not one of the memory allocation kinds defined by the MPI
// standard.
if (gpu_aware) {

MPI_Info_create(&info);
MPI_Info_set(info, "mpi_assert_memory_alloc_kinds",
              "gpu:device");
MPI_Comm_create_from_group(wgroup,
                          "org.mpi-forum.example.mem-alloc-kind-usage.gpu",
                          info, MPI_ERRORS_ABORT, &gpu_comm);
MPI_Info_free(&info);
}
else {
   printf("Warning: GPU alloc kind not supported\n");
}

MPI_Group_free(&wgroup);

// Perform communication using gpu_comm if it's available.
// Otherwise, copy data to a system buffer and use system_comm.
if (gpu_comm != MPI_COMM_NULL) MPI_Comm_disconnect(&gpu_comm);
MPI_Comm_disconnect(&system_comm);
MPI_Session_finalize(&session);
return 0;
}

11.5 Portable MPI Process Startup

A number of implementations of MPI provide a startup command for MPI programs that
is of the form

   mpirun <mpirun arguments> <program> <program arguments>

Separating the command to start the program from the program itself provides flexibility,
particularly for network and heterogeneous implementations. For example, the startup
script need not run on one of the machines that will be executing the MPI program itself.

Having a standard startup mechanism also extends the portability of MPI programs one
step further, to the command lines and scripts that manage them. For example, a validation
suite script that runs hundreds of programs can be a portable script if it is written using such
a standard startup mechanism. In order that the “standard” command not be confused
with existing practice, which is not standard and not portable among implementations,
instead of mpirun MPI specifies mpiexec.

While a standardized startup mechanism improves the usability of MPI, the range of
environments is so diverse (e.g., there may not even be a command line interface) that MPI
cannot mandate such a mechanism. Instead, MPI specifies an mpiexec startup command
and recommends, but does not require it, as advice to implementors. However, if an im-
plementation does provide a command called mpiexec, it must be of the form described
below:

   mpiexec -n <numprocs> <program>
be at least one way to start `<program>` with an initial set of `<numprocs>` processes, which will be accessible as the process set named "mpi://WORLD" in the Sessions Model and/or used to form the group associated with the built-in communicator, `MPI_COMM_WORLD` in the World Model. Other arguments to `mpiexec` may be implementation-dependent.

**Advice to implementors.** Implementors, if they do provide a special startup command for MPI programs, are advised to give it the following form. The syntax is chosen in order that `mpiexec` be able to be viewed as a command-line version of `MPI_COMM_SPAWN` (See Section 11.8.4).

Analogous to `MPI_COMM_SPAWN`, we have

```
mpiexec -n <maxprocs>
 -soft < >
 -host < >
 -arch < >
 -wdir < >
 -path < >
 -file < >
 -initial-errhandler < >
 -memory-alloc-kinds < >
 ...
 <command line>
```

for the case where a single command line for the application program and its arguments will suffice. See Section 11.8.4 for the meanings of these arguments. For the case corresponding to `MPI_COMM_SPAWN_MULTIPLE` there are two possible formats:

Form A:

```
mpiexec { <above arguments> } : { ... } : { ... } : ... : { ... }
```

As with `MPI_COMM_SPAWN`, all the arguments are optional. (Even the `-n x` argument is optional; the default is implementation dependent. It might be 1, it might be taken from an environment variable, or it might be specified at compile time.) The names and meanings of the arguments are taken from the keys in the `info` argument to `MPI_COMM_SPAWN`. There may be other, implementation-dependent arguments as well.

Note that Form A, though convenient to type, prevents colons from being program arguments. Therefore an alternate, file-based form is allowed:

Form B:

```
mpiexec -configfile <filename>
```

where the lines of `<filename>` are of the form separated by the colons in Form A. Lines beginning with `#` are comments, and lines may be continued by terminating the partial line with `\`.

**Example 11.14.** Start 16 instances of `myprog` on the current or default machine:

```
mpiexec -n 16 myprog
```
Example 11.15. Start 10 instances of myprog on the machine called ferrari:

\[
\text{mpiexec -n 10 -host ferrari myprog}
\]

Example 11.16. Start 3 instances of the same program myprog with different command-line arguments:

\[
\text{mpiexec myprog infile1 : myprog infile2 : myprog infile3}
\]

Example 11.17. Start 5 instances of the ocean program on x86_64 hosts and 10 instances of the atmos program on Power9 hosts (Form B):

\[
\text{mpiexec -n 5 -arch x86_64 ocean : -n 10 -arch power9 atmos}
\]

It is assumed that the implementation in this case has a method for choosing hosts of the appropriate type. Their ranks in MPI_COMM_WORLD are in the order specified.

Example 11.18. Start the ocean program on five Suns and the atmos program on 10 RS/6000’s (Form B):

\[
\text{mpiexec -configfile myfile}
\]

where myfile contains

\[
\text{-n 5 -arch sun ocean}
\text{-n 10 -arch rs6000 atmos}
\]

(End of advice to implementors.)

11.6 MPI and Threads

This section specifies the interaction between MPI calls and threads. Although thread compliance is not required, the standard specifies how threads are to work if they are provided. The section lists minimal requirements for thread compliant MPI implementations and defines functions that can be used for initializing the thread environment. MPI may be implemented in environments where threads are not supported or perform poorly. Therefore, MPI implementations are not required to be thread compliant as defined in this section. Regardless of whether or not the MPI implementation is thread compliant, a subset of MPI functions must always be thread safe. A complete list of such MPI functions is given in Table 11.1. When a thread is executing one of these routines, if another concurrently running thread also makes an MPI call, the outcome will be as if the calls executed in some order.

This section generally assumes a thread package similar to POSIX threads [45], but the syntax and semantics of thread calls are not specified here—these are beyond the scope of this document.
11.6.1 General

In a thread-compliant implementation, an MPI process is a process that may be multi-threaded. Each thread can issue MPI calls; however, threads are not separately addressable: the rank argument in a send or receive call identifies an MPI process, not a thread. A message sent to an MPI process can be received by any thread in this MPI process.

Rationale. This model corresponds to the POSIX model of interprocess communication: the fact that a process is multithreaded, rather than single-threaded, does not affect the external interface of this process. MPI implementations in which MPI ‘processes’ are POSIX threads inside a single POSIX process are not thread-compliant by this definition (indeed, their “processes” are single-threaded). (End of rationale.)

Advice to users. It is the user’s responsibility to prevent races when threads within the same application post conflicting communication calls. The user can make sure that two threads in the same process will not issue conflicting communication calls by using distinct communicators at each thread. (End of advice to users.)

The two main requirements for a thread-compliant implementation are listed below.

1. All MPI calls are thread-safe, i.e., two concurrently running threads may make MPI calls and the outcome will be as if the calls executed in some order, even if their execution is interleaved.

2. Blocking MPI calls will block the calling thread only, allowing another thread to execute, if available. The calling thread will be blocked until the event on which it is waiting occurs. Once the blocked communication is enabled and can proceed, then the call will complete and the thread will be marked runnable, within a finite time. A blocked thread will not prevent progress of other runnable threads on the same process, and will not prevent them from executing MPI calls.

Example 11.19. Process 0 consists of two threads. The first thread executes a blocking send call MPI_Send(buf1, count, type, 0, 0, comm), whereas the second thread executes a blocking receive call MPI_Recv(buf2, count, type, 0, 0, comm, &status), i.e., the first thread sends a message that is received by the second thread. This communication should always succeed. According to the first requirement, the execution will correspond to some interleaving of the two calls. According to the second requirement, a call can only block the calling thread and cannot prevent progress of the other thread. If the send call went ahead of the receive call, then the sending thread may block, but this will not prevent the receiving thread from executing. Thus, the receive call will occur. Once both calls occur, the communication is enabled and both calls will complete. On the other hand, a single-threaded process that posts a send, followed by a matching receive, may deadlock. The progress requirement for multithreaded implementations is stronger, as a blocked call cannot prevent progress in other threads.

Advice to implementors. MPI calls can be made thread-safe by executing only one at a time, e.g., by protecting MPI code with one process-global lock. However, blocked operations cannot hold the lock, as this would prevent progress of other threads in the process. The lock is held only for the duration of an atomic, locally-completing
suboperation such as posting a send or completing a send, and is released in between.
Finer locks can provide more concurrency, at the expense of higher locking overheads. Concurrency can also be achieved by having some of the MPI protocol executed by separate server threads. (*End of advice to implementors.*)

11.6.2 Clarifications

**Initialization and Completion.** When using the World Model, the call to `MPI_FINALIZE` should occur on the same thread that initialized MPI. We call this thread the **main thread**. The call should occur only after all process threads have completed their MPI calls, and have no pending communication or I/O operations.

*Rationale.* This constraint simplifies implementation. (*End of rationale.*)

**Threads and the Sessions Model.** The Sessions Model provides a finer-grain approach to controlling the interaction between MPI calls and threads. When using this model, the desired level of thread support is specified at Session initialization time. See Section 11.3. Thus it is possible for communicators and other MPI objects derived from one Session to provide a different level of thread support than those created from another Session for which a different level of thread support was requested. Depending on the level of thread support requested at Session initialization time, different threads in a MPI process can make concurrent calls to MPI when using MPI objects derived from different **session handles**. Note that the requested and provided level of thread support when creating a Session may influence the granted level of thread support in a subsequent invocation of `MPI_SESSION_INIT`. Likewise, if the application at some point calls `MPI_INIT_THREAD`, the requested and granted level of thread support may influence the granted level of thread support for subsequent calls to `MPI_SESSION_INIT`. Similarly, if the application calls `MPI_INIT_THREAD` after a call to `MPI_SESSION_INIT`, the level of thread support returned from `MPI_INIT_THREAD` may be similarly influenced by the requested level of thread support in the prior call to `MPI_SESSION_INIT`.

In addition, if an MPI application is only using the Sessions Model, the provided thread support level returned by `MPI_QUERY_THREAD` is the same as that returned prior to invocation of `MPI_INIT_THREAD` or `MPI_INIT`. If the application also used the World Model in some component of the application, `MPI_QUERY_THREAD` will return the level of thread support returned by the original call to `MPI_INIT_THREAD`.

**Multiple threads completing the same request.** A program in which two threads block, waiting on the same request, is erroneous. Similarly, the same request cannot appear in the array of requests of two concurrent `MPI_{WAIT|TEST}{ANY|SOME|ALL}` calls. In MPI, a request can only be completed once. Any combination of wait or test that violates this rule is erroneous.

*Rationale.* This restriction is consistent with the view that a multithreaded execution corresponds to an interleaving of the MPI calls. In a single threaded implementation, once a wait is posted on a request the request handle will be nullified before it is possible to post a second wait on the same handle. With threads, an `MPI_WAIT{ANY|SOME|ALL}` may be blocked without having nullified its request(s)
so it becomes the user’s responsibility to avoid using the same request in an MPI\_WAIT on another thread. This constraint also simplifies implementation, as only one thread will be blocked on any communication or I/O event. (*End of rationale.*)

**Probe.** A receive call that uses source and tag values returned by a preceding call to MPI\_PROBE or MPI\_IPROBE will receive the message matched by the probe call only if there was no other matching receive after the probe and before that receive. In a multi-threaded environment, it is up to the user to enforce this condition using suitable mutual exclusion logic. This can be enforced by making sure that each communicator is used by only one thread on each process. Alternatively, MPI\_MPROBE or MPI\_IMPROBE can be used.

**Collective calls.** Matching of collective calls on a communicator, window, or file handle is done according to the order in which the calls are issued at each process. If concurrent threads issue such calls on the same communicator, window or file handle, it is up to the user to make sure the calls are correctly ordered, using interthread synchronization.

*Advice to users.* With three concurrent threads in each MPI process of a communicator `comm`, it is allowed that thread A in each MPI process calls a collective operation on `comm`, thread B calls a file operation on an existing file handle that was formerly opened on `comm`, and thread C invokes one-sided operations on an existing window handle that was also formerly created on `comm`. (*End of advice to users.*)

*Rationale.* As specified in MPI\_FILE\_OPEN and MPI\_WIN\_CREATE, a file handle and a window handle inherit only the group of processes of the underlying communicator, but not the communicator itself. Accesses to communicators, window handles and file handles cannot affect one another. (*End of rationale.*)

*Advice to implementors.* If the implementation of file or window operations internally uses MPI communication then a duplicated communicator may be cached on the file or window object. (*End of advice to implementors.*)

**Error handlers.** An error handler does not necessarily execute in the context of the thread that made the error-raising MPI call; the error handler may be executed by a thread that is distinct from the thread that will return the error code.

*Rationale.* The MPI implementation may be multithreaded, so that part of the communication protocol may execute on a thread that is distinct from the thread that made the MPI call. The design allows the error handler to be executed on the thread where the error is raised. (*End of rationale.*)

**Interaction with signals and cancellations.** The outcome is undefined if a thread that executes an MPI call is cancelled (by another thread), or if a thread catches a signal while executing an MPI call. However, a thread of an MPI process may terminate, and may catch signals or be cancelled by another thread when not executing MPI calls.
Rationale. Few C library functions are signal safe, and many have cancellation points—points at which the thread executing them may be cancelled. The above restriction simplifies implementation (no need for the MPI library to be “async-cancel-safe” or “async-signal-safe”). (End of rationale.)

Advice to users. Users can catch signals in separate, non-MPI threads (e.g., by masking signals on MPI calling threads, and unmasking them in one or more non-MPI threads). A good programming practice is to have a distinct thread blocked in a call to `sigwait` for each user expected signal that may occur. Users must not catch signals used by the MPI implementation; as each MPI implementation is required to document the signals used internally, users can avoid these signals. (End of advice to users.)

Advice to implementors. The MPI library should not invoke library calls that are not thread safe, if multiple threads execute. (End of advice to implementors.)

11.7 The Dynamic Process Model

The dynamic process model allows for the creation and cooperative termination of processes after an MPI application has started. It provides a mechanism to establish communication between the newly created processes and the existing MPI application. It also provides a mechanism to establish communication between two existing MPI applications, even when one did not “start” the other.

The MPI procedures described in this section require the World Model, meaning that `MPI_INIT` or `MPI_INIT_THREAD` has been used to initialize MPI.

11.7.1 Starting Processes

MPI applications may start new processes through an interface to an external process manager.

`MPI_COMM_SPAWN` starts MPI processes and establishes communication with them, returning an inter-communicator. `MPI_COMM_SPAWN_MULTIPLE` starts several different binaries (or the same binary with different arguments), placing them in the same `MPI_COMM_WORLD` and returning an inter-communicator.

MPI uses the group abstraction to represent processes. A process is identified by a (group, rank) pair.

11.7.2 The Runtime Environment

The `MPI_COMM_SPAWN` and `MPI_COMM_SPAWN_MULTIPLE` routines provide an interface between MPI and the runtime environment of an MPI application. The difficulty is that there is an enormous range of runtime environments and application requirements, and MPI must not be tailored to any particular one.

MPI assumes, implicitly, the existence of an environment in which an application runs. It does not provide “operating system” services, such as a general ability to query what processes are running, to kill arbitrary processes, to find out properties of the runtime environment (how many processors, how much memory, etc.). Complex interaction of an MPI application with its runtime environment should be done through an environment-specific API.
At some low level, MPI must be able to interact with the runtime system, but the interaction is not visible at the application level and the details of the interaction are not specified by the MPI standard.

In many cases, it is impossible to keep environment-specific information out of the MPI interface without seriously compromising MPI functionality. To permit applications to take advantage of environment-specific functionality, many MPI routines take an info argument that allows an application to specify environment-specific information. There is a tradeoff between functionality and portability: applications that make use of environment-specific info are not portable.

MPI does not require the existence of an underlying “virtual machine” model, in which there is a consistent global view of an MPI application and an implicit “operating system” managing resources and processes. For instance, MPI processes spawned by one MPI process may not be visible to another; additional hosts added to the runtime environment by one MPI process may not be visible in another MPI process; MPI processes spawned by different processes may not be automatically distributed over available resources.

Interaction between MPI and the runtime environment is limited to the following areas:

- A process may start new processes with MPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE.
- When a process spawns a child process, it may optionally use an info argument to tell the runtime environment where or how to start the process. This extra information may be opaque to MPI.
- An attribute MPI_UNIVERSE_SIZE (See Section 11.10.1) on MPI_COMM_WORLD tells a program how “large” the initial runtime environment is, namely how many processes can usefully be started in all. One can subtract the size of MPI_COMM_WORLD from this value to find out how many processes might usefully be started in addition to those already running.

11.8 Process Manager Interface

11.8.1 Processes in MPI

A process is represented in MPI by a (group, rank) pair. A (group, rank) pair specifies a unique process but a process does not determine a unique (group, rank) pair, since a process may belong to several groups.

11.8.2 Starting Processes and Establishing Communication

The following routine starts a number of MPI processes and establishes communication with them, returning an inter-communicator.

*Advice to users.* It is possible in MPI to start an SPMD or MPMD application with a fixed number of processes after initialization by first starting one process and having that process start its siblings with MPI_COMM_SPAWN. This practice is discouraged primarily for reasons of performance. If possible, it is preferable to start all processes at once, as a single MPI application. (*End of advice to users.*)
MPI_COMM_SPAWN(command, argv, maxprocs, info, root, comm, intercomm, array_of_errcodes)

IN command name of program to be spawned (string, significant only at root)

IN argv arguments to command (array of strings, significant only at root)

IN maxprocs maximum number of processes to start (integer, significant only at root)

IN info a set of key-value pairs telling the runtime system where and how to start the processes (handle, significant only at root)

IN root rank of process in which previous arguments are examined (integer)

IN comm intra-communicator containing group of spawning processes (handle)

OUT intercomm inter-communicator between original group and the newly spawned group (handle)

OUT array_of_errcodes one code per process (array of integers)

C binding
int MPI_Comm_spawn(const char *command, char *argv[], int maxprocs,
                   MPI_Info info, int root, MPI_Comm comm, MPI_Comm *intercomm,
                   int array_of_errcodes[])}

Fortran 2008 binding
MPI_Comm_spawn(command, argv, maxprocs, info, root, comm, intercomm, array_of_errcodes, ierror)

CHARACTER(LEN=*) :: command, argv(*)
INTEGER :: maxprocs, root
TYPE(MPI_Info) :: info
TYPE(MPI_Comm) :: comm
TYPE(MPI_Comm) :: intercomm
INTEGER :: array_of_errcodes(*)
INTEGER, OPTIONAL :: ierror

Fortran binding
MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,
                ARRAY_OF_ERRCODES, IERROR)

CHARACTER(*) :: COMMAND, ARGV(*)
INTEGER :: MAXPROCS, INFO, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR

MPI_COMM_SPAWN tries to start maxprocs identical copies of the MPI program specified by command, establishing communication with them and returning an inter-communicator. The spawned processes are referred to as children. The children have their own MPI_COMM_WORLD, which is separate from that of the parents. MPI_COMM_SPAWN is collective over comm, and also may not return until MPI_INIT has been called in the children. Similarly, MPI_INIT in the children may not return until all parents have called
MPI\_COMM\_SPAWN. In this sense, MPI\_COMM\_SPAWN in the parents and MPI\_INIT in
the children form a collective operation over the union of parent and child processes. The
inter-communicator returned by MPI\_COMM\_SPAWN contains the parent processes in the
local group and the child processes in the remote group. The ordering of processes in the
local and remote groups is the same as the ordering of the group of the comm in the parents
and of MPI\_COMM\_WORLD of the children, respectively. This inter-communicator can be
obtained in the children through the function MPI\_COMM\_GET\_PARENT.

Advice to users. An implementation may automatically establish communication
before MPI\_INIT is called by the children. Thus, completion of MPI\_COMM\_SPAWN
in the parent does not necessarily mean that MPI\_INIT has been called in the children
(although the returned inter-communicator can be used immediately). (End of advice
to users.)

The arguments are:

command: The command argument is a string containing the name of a program to be
spawned. The string is null-terminated in C. In Fortran, leading and trailing spaces
are stripped. MPI does not specify how to find the executable or how the working
directory is determined. These rules are implementation-dependent and should be
appropriate for the runtime environment.

Advice to implementors. The implementation should use a natural rule for
finding executables and determining working directories. For instance, a homo-
geneous system with a global file system might look first in the working directory
of the spawning process, or might search the directories in a PATH environment
variable as do Unix shells. An implementation should document its rules for
finding executables and determining working directories, and a high-quality im-
plementation should give the user some control over these rules. (End of advice
to implementors.)

If the program named in command does not call MPI\_INIT, but instead forks a process
that calls MPI\_INIT, the results are undefined. Implementations may allow this case
to work but are not required to.

Advice to users. MPI does not say what happens if the program you start is a
shell script and that shell script starts a program that calls MPI\_INIT. Though
some implementations may allow you to do this, they may also have restrictions,
such as requiring that arguments supplied to the shell script be supplied to the
program, or requiring that certain parts of the environment not be changed.
(End of advice to users.)

argv: argv is an array of strings containing arguments that are passed to the program. The
first element of argv is the first argument passed to command, not, as is conventional in
some contexts, the command itself. The argument list is terminated by NULL in C and
an empty string in Fortran. In Fortran, leading and trailing spaces are always stripped,
so that a string consisting of all spaces is considered an empty string. The constant
MPI\_ARGV\_NULL may be used in C and Fortran to indicate an empty argument list.
In C this constant is the same as NULL.
Example 11.20. Examples of argv in C and Fortran

To run the program “ocean” with arguments “-gridfile” and “ocean1.grd” in C:

```c
char command[] = "ocean";
char *argv[] = {"-gridfile", "ocean1.grd", NULL};
MPI_Comm_spawn(command, argv, ...);
```

or, if not everything is known at compile time:

```c
char command;
char **argv;
command = "ocean";
argv = (char **)malloc(3 * sizeof(char *));
argv[0] = "-gridfile";
argv[1] = "ocean1.grd";
argv[2] = NULL;
MPI_Comm_spawn(command, argv, ...);
```

In Fortran:

```fortran
CHARACTER*25 command, argv(3)
command = 'ocean'
argv(1) = '-gridfile'
argv(2) = 'ocean1.grd'
argv(3) = '',
call MPI_COMM_SPAWN(command, argv, ...)
```

Arguments are supplied to the program if this is allowed by the operating system. In C, the MPI_COMM_SPAWN argument argv differs from the argv argument of main in two respects. First, it is shifted by one element. Specifically, argv[0] of main is provided by the implementation and conventionally contains the name of the program (given by command). argv[1] of main corresponds to argv[0] in MPI_COMM_SPAWN, argv[2] of main to argv[1] of MPI_COMM_SPAWN, etc. Passing an argv of MPI_ARGV_NULL to MPI_COMM_SPAWN results in main receiving argc of 1 and an argv whose element 0 is (conventionally) the name of the program. Second, argv of MPI_COMM_SPAWN must be null-terminated, so that its length can be determined.

If a Fortran implementation supplies routines that allow a program to obtain its arguments, the arguments may be available through that mechanism. In C, if the operating system does not support arguments appearing in argv of main(), the MPI implementation may add the arguments to the argv that is passed to MPI_INIT.

maxprocs: MPI tries to spawn maxprocs processes. If it is unable to spawn maxprocs processes, it raises an error of class MPI_ERR_SPAWN.

An implementation may allow the info argument to change the default behavior, such that if the implementation is unable to spawn all maxprocs processes, it may spawn a smaller number of processes instead of raising an error. In principle, the info argument may specify an arbitrary set \{\text{m}_i : 0 \leq \text{m}_i \leq \text{maxprocs}\} of allowed values for the number of processes spawned. The set \{\text{m}_i\} does not necessarily include the value maxprocs. If an implementation is able to spawn one of these allowed numbers of processes, MPI_COMM_SPAWN returns successfully and the number of spawned processes, \text{m}, is given by the size of the remote group of intercomm. If \text{m} is less than maxproc, reasons why the other processes were not spawned are given in
array of errcodes as described below. If it is not possible to spawn one of the allowed numbers of processes, MPI_COMM_SPAWN raises an error of class MPI_ERR_SPAWN.

A spawn call with the default behavior is called hard. A spawn call for which fewer than maxprocs processes may be returned is called "soft". See Section 11.8.4 for more information on the "soft" key for info.

Advice to users. By default, requests are hard and MPI errors are fatal. This means that by default there will be a fatal error if MPI cannot spawn all the requested processes. If you want the behavior “spawn as many processes as possible, up to N,” you should do a soft spawn, where the set of allowed values \( \{m_i\} = \{0, \ldots, N\} \). However, this is not completely portable, as implementations are not required to support soft spawning. (End of advice to users.)

info: The info argument to all of the routines in this chapter is an opaque handle of type MPI_Info in C and Fortran with the mpi_f08 module and INTEGER in Fortran with the mpi module or the include file mpif.h (deprecated). It is a container for a number of user-specified (key,value) pairs. key and value are strings (null-terminated char* in C, character*(*) in Fortran). Routines to create and manipulate the info argument are described in Chapter 10.

For the SPAWN calls, info provides additional (and possibly implementation-dependent) instructions to MPI and the runtime system on how to start processes. An application may pass MPI_INFO_NULL in C or Fortran. Portable programs not requiring detailed control over process locations should use MPI_INFO_NULL.

MPI does not specify the content of the info argument, except to reserve a number of special key values (see Section 11.8.4). The info argument is quite flexible and could even be used, for example, to specify the executable and its command-line arguments. In this case the command argument to MPI_COMM_SPAWN could be empty. The ability to do this follows from the fact that MPI does not specify how an executable is found, and the info argument can tell the runtime system where to “find” the executable "" (empty string). Of course, a program that does this will not be portable across MPI implementations.

root: All arguments before the root argument are examined only on the process whose rank in comm is equal to root. The value of these arguments on other processes is ignored.

array of errcodes: The array of errcodes is an array of length maxprocs in which MPI reports the status of each process that MPI was requested to start. If all maxprocs processes were spawned, array of errcodes is filled in with the value MPI_SUCCESS. If only \( m \) \( (0 \leq m < \text{maxprocs}) \) processes are spawned, \( m \) of the entries will contain MPI_SUCCESS and the rest will contain an implementation-specific error code indicating the reason MPI could not start the process. MPI does not specify which entries correspond to failed processes. An implementation may, for instance, fill in error codes in one-to-one correspondence with a detailed specification in the info argument. These error codes all belong to the error class MPI_ERR_SPAWN if there was no error in the argument list. In C or Fortran, an application may pass MPI_ERRCODES_IGNORE if it is not interested in the error codes.

Advice to implementors. MPI_ERRCODES_IGNORE in Fortran is a special type of constant, like MPI_BOTTOM. See the discussion in Section 2.5.4. (End of advice to implementors.)
Chapter 11 Process Initialization, Creation, and Management

MPI_COMM_GET_PARENT(parent)

   OUT parent the parent communicator (handle)

C binding
int MPI_Comm_get_parent(MPI_Comm *parent)

Fortran 2008 binding
MPI_Comm_get_parent(parent, ierror)
   TYPE(MPI_Comm), INTENT(OUT) :: parent
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_GET_PARENT(PARENT, IERROR)
   INTEGER PARENT, IERROR

If a process was started with MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE,
MPI_COMM_GET_PARENT returns the “parent” inter-communicator of the current pro-
cess. This parent inter-communicator is created implicitly inside of MPI_INIT and is the
same inter-communicator returned by SPAWN in the parents.

If the process was not spawned, MPI_COMM_GET_PARENT returns MPI_COMM_NULL.

After the parent communicator is freed or disconnected, MPI_COMM_GET_PARENT
returns MPI_COMM_NULL.

Advice to users.  MPI_COMM_GET_PARENT returns a handle to a single inter-
communicator. Calling MPI_COMM_GET_PARENT a second time returns a handle
to the same inter-communicator. Freeing the handle with MPI_COMM_DISCONNECT
or MPI_COMM_FREE will cause other references to the inter-communicator to become
invalid (dangling). Note that calling MPI_COMM_FREE on the parent communicator
is not useful.  (End of advice to users.)

Rationale.  The desire of the Forum was to create a constant
MPI_COMM_PARENT similar to MPI_COMM_WORLD. Unfortunately such a constant
cannot be used (syntactically) as an argument to MPI_COMM_DISCONNECT, which
is explicitly allowed.  (End of rationale.)

11.8.3 Starting Multiple Executables and Establishing Communication

While MPI_COMM_SPAWN is sufficient for most cases, it does not allow the spawning of
multiple binaries, or of the same binary with multiple sets of arguments. The following
routine spawns multiple binaries or the same binary with multiple sets of arguments, estab-
lishing communication with them and placing them in the same MPI_COMM_WORLD.

MPI_COMM_SPAWN_MULTIPLE(count, array_of_commands, array_of_argv,
   array_of_maxprocs, array_of_info, root, comm, intercomm,
   array_of_errcodes)

   IN count number of commands (positive integer, significant
      only at root)

   IN array_of_commands programs to be executed (array of strings, significant
      only at root)
11.8 Process Manager Interface

**IN** array_of_argv arguments for commands (array of array of strings, significant only at root)

**IN** array_of_maxprocs maximum number of processes to start for each command (array of integers, significant only at root)

**IN** array_of_info info objects telling the runtime system where and how to start processes (array of handles, significant only at root)

**IN** root rank of process in which previous arguments are examined (integer)

**IN** comm intra-communicator containing group of spawning processes (handle)

**OUT** intercomm inter-communicator between original group and the newly spawned group (handle)

**OUT** array_of_errcodes one error code per process (array of integers)

**C binding**

```c
int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],
 char **array_of_argv[], const int array_of_maxprocs[],
 const MPI_Info array_of_info[], int root, MPI_Comm comm,
 MPI_Comm *intercomm, int array_of_errcodes[])
```

**Fortran 2008 binding**

```fortran
MPI_Comm_spawn_multiple(count, array_of_commands, array_of_argv,
 array_of_maxprocs, array_of_info, root, comm, intercomm,
 array_of_errcodes, ierror)
```

**INTEGER, INTENT(IN) ::** count, array_of_maxprocs(*), root

**CHARACTER*(LEN=*)*, INTENT(IN) ::** array_of_commands(*),

**array_of_argv(count, *)**

**TYPE(MPI_Info), INTENT(IN) ::** array_of_info(*)

**TYPE(MPI_Comm), INTENT(IN) ::** comm

**TYPE(MPI_Comm), INTENT(OUT) ::** intercomm

**INTEGER ::** array_of_errcodes(*)

**INTEGER, OPTIONAL, INTENT(OUT) ::** ierror

**Fortran binding**

```fortran
MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,
 ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,
 ARRAY_OF_ERRCODES, IERROR)
```

**INTEGER COUNT, ARRAY_OF_MAXPROCS(*), ARRAY_OF_INFO(*), ROOT, COMM,**

**INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR**

**CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)**

**MPI_COMM_SPAWN_MULTIPLE** is identical to **MPI_COMM_SPAWN** except that there are multiple executable specifications. The first argument, **count**, gives the number of specifications. Each of the next four arguments are simply arrays of the corresponding arguments in **MPI_COMM_SPAWN**. For the Fortran version of **array_of_argv**, the element **array_of_argv(i,j)** is the j-th argument to command number i.
Rationale. This may seem backwards to Fortran programmers who are familiar with Fortran’s column-major ordering. However, it is necessary to do it this way to allow MPI_COMM_SPAWN to sort out arguments. Note that the leading dimension of array_of_argv must be the same as count. Also note that Fortran rules for sequence association allow a different value in the first dimension; in this case, the sequence of array elements is interpreted by MPI_COMM_SPAWN_MULTIPLE as if the sequence is stored in an array defined with the first dimension set to count. This Fortran feature allows an implementor to define MPI_ARGVS_NULL (see below) with fixed dimensions, e.g., (1,1), or only with one dimension, e.g., (1). (End of rationale.)

Advice to users. The argument count is interpreted by MPI only at the root, as is array_of_argv. Since the leading dimension of array_of_argv is count, a nonpositive value of count at a nonroot node could theoretically cause a runtime bounds check error, even though array_of_argv should be ignored by the subroutine. If this happens, you should explicitly supply a reasonable value of count on the nonroot nodes. (End of advice to users.)

In any language, an application may use the constant MPI_ARGVS_NULL (which is likely to be (char ***0 in C) to specify that no arguments should be passed to any commands. The effect of setting individual elements of array_of_argv to MPI_ARGV_NULL is not defined. To specify arguments for some commands but not others, the commands without arguments should have a corresponding argv whose first element is null ((char *)0 in C and empty string in Fortran). In Fortran at nonroot processes, the count argument must be set to a value that is consistent with the provided array_of_argv although the content of these arguments has no meaning for this operation.

All of the spawned processes have the same MPI_COMM_WORLD. Their ranks in MPI_COMM_WORLD correspond directly to the order in which the commands are specified in MPI_COMM_SPAWN_MULTIPLE. Assume that $m_1$ MPI processes are generated by the first command, $m_2$ by the second, etc. The MPI processes corresponding to the first command have ranks 0, 1, …, $m_1 - 1$ in MPI_COMM_WORLD. The MPI processes in the second command have ranks $m_1, m_1 + 1, \ldots, m_1 + m_2 - 1$ in MPI_COMM_WORLD. The MPI processes in the third have ranks $m_1 + m_2, m_1 + m_2 + 1, \ldots, m_1 + m_2 + m_3 - 1$ in MPI_COMM_WORLD, etc.

Advice to users. Calling MPI_COMM_SPAWN multiple times would create many sets of children with different MPI_COMM_WORLDs whereas MPI_COMM_SPAWN_MULTIPLE creates children with a single MPI_COMM_WORLD, so the two methods are not completely equivalent. There are also two performance-related reasons why, if you need to spawn multiple executables, you may want to use MPI_COMM_SPAWN_MULTIPLE instead of calling MPI_COMM_SPAWN several times. First, spawning several things at once may be faster than spawning them sequentially. Second, in some implementations, communication between processes spawned at the same time may be faster than communication between processes spawned separately. (End of advice to users.)

The array_of_errcodes argument is a 1-dimensional array of size $\sum_{i=1}^{\text{count}} n_i$, where $n_i$ is the $i$-th element of array_of_maxprocs. Command number $i$ corresponds to the $n_i$ contiguous slots in this array from element $\sum_{j=1}^{i-1} n_j$ to $\left[\sum_{j=1}^{i} n_j\right] - 1$. Error codes are treated the same as with MPI_COMM_SPAWN.
Example 11.21. Examples of array_of_argv in C and Fortran
To run the program “ocean” with arguments “-gridfile” and “ocean1.grd” and the program “atmos” with argument “atmos.grd” in C:

```c
char *array_of_commands[2] = {"ocean", "atmos"};
char **array_of_argv[2];
char *argv0[] = {"-gridfile", "ocean1.grd", (char *)0};
char *argv1[] = {"atmos.grd", (char *)0};
array_of_argv[0] = argv0;
array_of_argv[1] = argv1;
MPI_Comm_spawn_multiple(2, array_of_commands, array_of_argv, ...);
```

Here is how you do it in Fortran:

```fortran
CHARACTER*25 commands(2), array_of_argv(2, 3)
commands(1) = 'ocean'
array_of_argv(1, 1) = '-gridfile'
array_of_argv(1, 2) = 'ocean1.grd'
array_of_argv(1, 3) = ''
commands(2) = 'atmos'
array_of_argv(2, 1) = 'atmos.grd'
array_of_argv(2, 2) = ''
call MPI_COMM_SPAWN_MULTIPLE(2, commands, array_of_argv, ...)
```

11.8.4 Reserved Keys

The following keys are reserved. An implementation is not required to interpret these keys, but if it does interpret the key, it must provide the functionality described.

"host": Value is a hostname. The format of the hostname is determined by the implementation.

"arch": Value is an architecture name. Valid architecture names and what they mean are determined by the implementation.

"wdir": Value is the name of a directory on a machine on which the spawned process(es) execute(s). This directory is made the working directory of the executing process(es). The format of the directory name is determined by the implementation.

"path": Value is a directory or set of directories where the implementation should look for the executable. The format of "path" is determined by the implementation.

"file": Value is the name of a file in which additional information is specified. The format of the filename and internal format of the file are determined by the implementation.

"mpi_initial_errhandler": Value is the name of an errhandler that will be set as the initial error handler. The "mpi_initial_errhandler" key can take the case insensitive values "mpi_errors_are_fatal", "mpi_errors_abort", and "mpi_errors_return" representing the predefined MPI error handlers (MPI_ERRORS_ARE_FATAL—the default, MPI_ERRORS_ABORT, and MPI_ERRORS_RETURN, respectively). Other, nonstandard
values may be supported by the implementation, which should document the resultant behavior.

"mpi_memory_alloc_kinds" (string, default: "mpi,system"): Value is a comma separated list of memory allocation kinds. Support for these memory allocation kinds is requested from the MPI library (see Section 11.4.3).

"soft": Value specifies a set of numbers that are allowed values for the number of processes that MPI_COMM_SPAWN (et al.) may create. The format of the value is a comma-separated list of Fortran-90 triplets each of which specifies a set of integers and that together specify the set formed by the union of these sets. Negative values in this set and values greater than maxprocs are ignored. MPI will spawn the largest number of processes it can, consistent with some number in the set. The order in which triplets are given is not significant.

By Fortran-90 triplets, we mean:

1. a means a
2. a:b means a, a + 1, a + 2, ..., b
3. a:b:c means a, a + c, a + 2c, ..., a + ck, where for c > 0, k is the largest integer for which a + ck ≤ b and for c < 0, k is the largest integer for which a + ck ≥ b. If b > a then c must be positive. If b < a then c must be negative.

Examples:
1. a:b gives a range between a and b
2. 0:N gives full “soft” functionality
3. 1,2,4,8,16,32,64,128,256,512,1024,2048,4096 allows a power-of-two number of processes.
4. 2:10000:2 allows an even number of processes up to a maximum of 10,000 processes.
5. 2:10:2,7 allows 2, 4, 6, 7, 8, or 10 processes.

11.8.5 Spawn Example

```c
Example 11.22. Manager-worker Example Using MPI_COMM_SPAWN

/* manager */
#include <stdio.h>
#include "mpi.h"
int main(int argc, char *argv[])
{
 int world_size, universe_size, *universe_sizep, flag;
 MPI_Comm everyone; /* inter-communicator */
 char worker_program[100];

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);
 if (world_size != 1) error("Top heavy with management");
```
MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,
    &universe_sizep, &flag);
    if (!flag) {
        printf("This MPI does not support UNIVERSE_SIZE. How many
        processes total?");
        scanf("%d", &universe_size);
    } else universe_size = *universe_sizep;
    if (universe_size == 1) error("No room to start workers");

    /*
     * Now spawn the workers. Note that there is a run-time determination
     * of what type of worker to spawn, and presumably this calculation
     * must be done at run time and cannot be calculated before starting
     * the program. If everything is known when the application is
     * first started, it is generally better to start them all at once
     * in a single MPI_COMM_WORLD.
     */

    choose_worker_program(worker_program);
    MPI_Comm_spawn(worker_program, MPI_ARGV_NULL, universe_size-1,
        MPI_INFO_NULL, 0, MPI_COMM_SELF, &everyone,
        MPI_ERRCODES_IGNORE);

    /* Parallel code here. The communicator "everyone" can be used
     * to communicate with the spawned processes, which have ranks 0,...
     * MPI_UNIVERSE_SIZE-1 in the remote group of the inter-communicator
     * "everyone".
     */

    MPI_Finalize();
    return 0;
}

/* worker */

#include "mpi.h"
int main(int argc, char *argv[])
{
    int size;
    MPI_Comm parent;
    MPI_Init(&argc, &argv);
    MPI_Comm_get_parent(&parent);
    if (parent == MPI_COMM_NULL) error("No parent!");
    MPI_Comm_remote_size(parent, &size);
    if (size != 1) error("Something's wrong with the parent");

    /*
     * Parallel code here.
     * The manager is represented as the process with rank 0 in (the
     * remote group of) the parent communicator. If the workers need
     * to communicate among themselves, they can use MPI_COMM_WORLD.
     */
11.9 Establishing Communication

This section provides functions that establish communication between two sets of MPI processes that do not share a communicator.

Some situations in which these functions are useful are:

1. Two parts of an application that are started independently need to communicate.
2. A visualization tool wants to attach to a running process.
3. A server wants to accept connections from multiple clients. Both clients and server may be parallel programs.

In each of these situations, MPI must establish communication channels where none existed before, and there is no parent/child relationship. The routines described in this section establish communication between the two sets of processes by creating an MPI inter-communicator, where the two groups of the inter-communicator are the original sets of processes.

Establishing contact between two groups of processes that do not share an existing communicator is a collective but asymmetric process. One group of processes indicates its willingness to accept connections from other groups of processes. We will call this group the (parallel) server, even if this is not a client/server type of application. The other group connects to the server; we will call it the (parallel) client.

Advice to users. While the names client and server are used throughout this section, MPI does not guarantee the traditional robustness of client/server systems. The functionality described in this section is intended to allow two cooperating parts of the same application to communicate with one another. For instance, a client that gets a segmentation fault and dies, or one that does not participate in a collective operation may cause a server to crash or hang. (End of advice to users.)

11.9.1 Names, Addresses, Ports, and All That

Almost all of the complexity in MPI client/server routines addresses the question “how does the client find out how to contact the server?” The difficulty, of course, is that there is no existing communication channel between them, yet they must somehow agree on a rendezvous point where they will establish communication.

Agreeing on a rendezvous point always involves a third party. The third party may itself provide the rendezvous point or may communicate rendezvous information from server to client. Complicating matters might be the fact that it is not important to the client which particular server it contacts, only that it be able to get in touch with one that can handle its request.

Ideally, MPI can accommodate a wide variety of run-time systems while retaining the ability to write simple, portable code. The following should be compatible with MPI:

```c
MPI_Finalize();
return 0;
}
```
11.9 Establishing Communication

- The server resides at a well-known internet address host:port.
- The server prints out an address to the terminal; the user gives this address to the client program.
- The server places the address information on a nameserver, where it can be retrieved with an agreed-upon name.
- The server to which the client connects is actually a broker, acting as a middleman between the client and the real server.

MPI does not require a nameserver, so not all implementations will be able to support all of the above scenarios. However, MPI provides an optional nameserver interface, and is compatible with external name servers.

A **port_name** is a *system-supplied* string that encodes a low-level network address at which a server can be contacted. Typically this is an IP address and a port number, but an implementation is free to use any protocol. The server establishes a **port_name** with the **MPI_OPEN_PORT** routine. It accepts a connection to a given port with **MPI_COMM_ACCEPT**. A client uses **port_name** to connect to the server.

By itself, the **port_name** mechanism is completely portable, but it may be clumsy to use because of the necessity to communicate **port_name** to the client. It would be more convenient if a server could specify that it be known by an *application-supplied service_name* so that the client could connect to that **service_name** without knowing the **port_name**.

An MPI implementation may allow the server to publish a (**port_name**, **service_name**) pair with **MPI_PUBLISH_NAME** and the client to retrieve the port name from the service name with **MPI_LOOKUP_NAME**. This allows three levels of portability, with increasing levels of functionality.

1. Applications that do not rely on the ability to publish names are the most portable. Typically the **port_name** must be transferred “by hand” from server to client.
2. Applications that use the **MPI_PUBLISH_NAME** mechanism are completely portable among implementations that provide this service. To be portable among all implementations, these applications should have a fall-back mechanism that can be used when names are not published.
3. Applications may ignore MPI’s name publishing functionality and use their own mechanism (possibly system-supplied) to publish names. This allows arbitrary flexibility but is not portable.

11.9.2 Server Routines

A server makes itself available with two routines. First it must call **MPI_OPEN_PORT** to establish a **port** at which it may be contacted. Secondly it must call **MPI_COMM_ACCEPT** to accept connections from clients.
MPI_OPEN_PORT(info, port_name)

IN info implementation-specific information on how to establish an address (handle)

OUT port_name newly established port (string)

C binding
int MPI_Open_port(MPI_Info info, char *port_name)

Fortran 2008 binding
MPI_Open_port(info, port_name, ierr)
    TYPE(MPI_Info), INTENT(IN) :: info
    CHARACTER(LEN=MPI_MAX_PORT_NAME), INTENT(OUT) :: port_name
    INTEGER, OPTIONAL, INTENT(OUT) :: ierr

Fortran binding
MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)
    INTEGER INFO, IERROR
    CHARACTER*(*) PORT_NAME

This function establishes a network address, encoded in the port_name string, at which the server will be able to accept connections from clients. port_name is supplied by the system, possibly using information in the info argument.

MPI copies a system-supplied port name into port_name. port_name identifies the newly opened port and can be used by a client to contact the server. The maximum size of the string that may be supplied by the system is MPI_MAX_PORT_NAME.

Advice to users. The system copies the port name into port_name. The application must pass a buffer of sufficient size to hold this value. (End of advice to users.)

port_name is essentially a network address. It is unique within the communication universe to which it belongs (determined by the implementation), and may be used by any client within that communication universe. For instance, if it is an internet (host:port) address, it will be unique on the internet. If it is a low level switch address on an IBM SP, it will be unique to that SP.

Advice to implementors. These examples are not meant to constrain implementations. A port_name could, for instance, contain a user name or the name of a batch job, as long as it is unique within some well-defined communication domain. The larger the communication domain, the more useful MPI’s client/server functionality will be. (End of advice to implementors.)

The precise form of the address is implementation-defined. For instance, an internet address may be a host name or IP address, or anything that the implementation can decode into an IP address. A port name may be reused after it is freed with MPI_CLOSE_PORT and released by the system.

Advice to implementors. Since the user may type in port_name by hand, it is useful to choose a form that is easily readable and does not have embedded spaces. (End of advice to implementors.)
info may be used to tell the implementation how to establish the address. It may, and
usually will, be MPI_INFO_NULL in order to get the implementation defaults.

\texttt{MPI\_CLOSE\_PORT(port\_name)}

\texttt{\hspace{2em} IN port\_name \hspace{2em} a port (string)}

\textbf{C binding}

\texttt{int MPI\_Close\_port(const char *port\_name)}

\textbf{Fortran 2008 binding}

\texttt{MPI\_Close\_port(port\_name, ierror)}

\begin{verbatim}
   CHARACTER(LEN=*) , INTENT(IN) :: port_name
   INTEGER , OPTIONAL , INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}

\texttt{MPI\_CLOSE\_PORT(PORT\_NAME, IERROR)}

\begin{verbatim}
   CHARACTER(*), INTENT(IN) :: PORT\_NAME
   INTEGER IERROR
\end{verbatim}

This function releases the network address represented by \texttt{port\_name}.

\texttt{MPI\_COMM\_ACCEPT(port\_name, info, root, comm, newcomm)}

\begin{verbatim}
IN port\_name \hspace{2em} port \_name (string, significant only at root)
IN info \hspace{2em} implementation-dependent information (handle, significant only at root)
IN root \hspace{2em} rank of root in comm (integer)
IN comm \hspace{2em} intra-communicator over which call is collective (handle)
OUT newcomm \hspace{2em} inter-communicator with client as remote group (handle)
\end{verbatim}

\textbf{C binding}

\texttt{int MPI\_Comm\_accept(const char *port\_name, MPI\_Info info, int root, MPI\_Comm comm, MPI\_Comm *newcomm)}

\textbf{Fortran 2008 binding}

\texttt{MPI\_Comm\_accept(port\_name, info, root, comm, newcomm, ierror)}

\begin{verbatim}
   CHARACTER(LEN=*) , INTENT(IN) :: port\_name
   TYPE(MPI\_Info) , INTENT(IN) :: info
   INTEGER , INTENT(IN) :: root
   TYPE(MPI\_Comm) , INTENT(IN) :: comm
   TYPE(MPI\_Comm) , INTENT(OUT) :: newcomm
   INTEGER , OPTIONAL , INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}

\texttt{MPI\_COMM\_ACCEPT(PORT\_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)}

\begin{verbatim}
   CHARACTER(*) PORT\_NAME
\end{verbatim}
INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_ACCEPT establishes communication with a client. It is collective over the
calling communicator. It returns an inter-communicator that allows communication with
the client.

The port_name must have been established through a call to MPI_OPEN_PORT.
info can be used to provide directives that may influence the behavior of the ACCEPT
call.

11.9.3 Client Routines

There is only one routine on the client side.

MPI_COMM_CONNECT(port_name, info, root, comm, newcomm)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port_name</td>
<td>network address (string, significant only at root)</td>
</tr>
<tr>
<td>info</td>
<td>implementation-dependent information (handle, significant only at root)</td>
</tr>
<tr>
<td>root</td>
<td>rank of root in comm (integer)</td>
</tr>
<tr>
<td>comm</td>
<td>intra-communicator over which call is collective (handle)</td>
</tr>
<tr>
<td>newcomm</td>
<td>inter-communicator with server as remote group (handle)</td>
</tr>
</tbody>
</table>

C binding
int MPI_Comm_connect(const char *port_name, MPI_Info info, int root,
                      MPI_Comm comm, MPI_Comm *newcomm)

Fortran 2008 binding
MPI_Comm_connect(port_name, info, root, comm, newcomm, ierror)
  CHARACTER(LEN=*) PORT_NAME
  TYPE(MPI_Info), INTENT(IN) :: info
  INTEGER, INTENT(IN) :: root
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Comm), INTENT(OUT) :: newcomm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
  CHARACTER(*) PORT_NAME
  INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

This routine establishes communication with a server specified by port_name. It is
collective over the calling communicator and returns an inter-communicator in which the
remote group participated in an MPI_COMM_ACCEPT.

If the named port does not exist (or has been closed), MPI_COMM_CONNECT raises
an error of class MPI_ERR_PORT.

If the port exists, but does not have a pending MPI_COMM_ACCEPT, the connection
attempt will eventually time out after an implementation-defined time, or succeed when
the server calls MPI_COMM_ACCEPT. In the case of a time out, MPI_COMM_CONNECT raises an error of class MPI_ERR_PORT.

Advice to implementors. The time out period may be arbitrarily short or long. However, a high-quality implementation will try to queue connection attempts so that a server can handle simultaneous requests from several clients. A high-quality implementation may also provide a mechanism, through the info arguments to MPI_OPEN_PORT, MPI_COMM_ACCEPT, and/or MPI_COMM_CONNECT, for the user to control timeout and queuing behavior. (End of advice to implementors.)

MPI provides no guarantee of fairness in servicing connection attempts. That is, connection attempts are not necessarily satisfied in the order they were initiated and competition from other connection attempts may prevent a particular connection attempt from being satisfied.

port_name is the address of the server. It must be the same as the name returned by MPI_OPEN_PORT on the server. Some freedom is allowed here. If there are equivalent forms of port_name, an implementation may accept them as well. For instance, if port_name is (hostname:port), an implementation may accept (ip_address:port) as well.

11.9.4 Name Publishing

The routines in this section provide a mechanism for publishing names. A (service_name, port_name) pair is published by the server, and may be retrieved by a client using the service_name only. An MPI implementation defines the scope of the service_name, that is, the domain over which the service_name can be retrieved. If the domain is the empty set, that is, if no client can retrieve the information, then we say that name publishing is not supported. Implementations should document how the scope is determined. High-quality implementations will give some control to users through the info arguments to name publishing functions. Examples are given in the descriptions of individual functions.

MPICOMM_PUBLISH_NAME(service_name, info, port_name)

IN service_name a service name to associate with the port (string)
IN info implementation-specific information (handle)
IN port_name a port name (string)

C binding

int MPI_Publish_name(const char *service_name, MPI_Info info, const char *port_name)

Fortran 2008 binding

MPI_Publish_name(service_name, info, port_name, ierror)
   CHARACTER(LEN=*), INTENT(IN) :: service_name, port_name
   TYPE(MPI_Info), INTENT(IN) :: info
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
   CHARACTER(*) SERVICE_NAME, PORT_NAME
INTEGER INFO, IERROR

This routine publishes the pair (port_name, service_name) so that an application may retrieve a system-supplied port_name using a well-known service_name.

The implementation must define the scope of a published service name, that is, the domain over which the service name is unique, and conversely, the domain over which the (port_name, service_name) pair may be retrieved. For instance, a service name may be unique to a job (where job is defined by a distributed operating system or batch scheduler), unique to a machine, or unique to a Kerberos realm. The scope may depend on the info argument to MPI_PUBLISH_NAME.

MPI permits publishing more than one service_name for a single port_name. On the other hand, if service_name has already been published within the scope determined by info, the behavior of MPI_PUBLISH_NAME is undefined. An MPI implementation may, through a mechanism in the info argument to MPI_PUBLISH_NAME, provide a way to allow multiple servers with the same service in the same scope. In this case, an implementation-defined policy will determine which of several port names is returned by MPI_LOOKUP_NAME.

Note that while service_name has a limited scope, determined by the implementation, port_name always has global scope within the communication universe used by the implementation (i.e., it is globally unique).

port_name should be the name of a port established by MPI_OPEN_PORT and not yet released by MPI_CLOSE_PORT. If it is not, the result is undefined.

Advice to implementors. In some cases, an MPI implementation may use a name service that a user can also access directly. In this case, a name published by MPI could easily conflict with a name published by a user. In order to avoid such conflicts, MPI implementations should mangle service names so that they are unlikely to conflict with user code that makes use of the same service. Such name mangling will of course be completely transparent to the user.

The following situation is problematic but unavoidable, if we want to allow implementations to use nameservers. Suppose there are multiple instances of “ocean” running on a machine. If the scope of a service name is confined to a job, then multiple oceans can coexist. If an implementation provides site-wide scope, however, multiple instances are not possible as all calls to MPI_PUBLISH_NAME after the first may fail. There is no universal solution to this.

To handle these situations, a high-quality implementation should make it possible to limit the domain over which names are published. (End of advice to implementors.)

MPI_UNPUBLISH_NAME(service_name, info, port_name)

IN service_name a service name (string)
IN info implementation-specific information (handle)
IN port_name a port name (string)

C binding
int MPI_Unpublish_name(const char *service_name, MPI_Info info, 
const char *port_name)
Fortran 2008 binding

MPI_Unpublish_name(service_name, info, port_name, ierror)
  CHARACTER(LEN=*), INTENT(IN) :: service_name, port_name
  TYPE(MPI_Info), INTENT(IN) :: info
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_UNPUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
  CHARACTER*(*) SERVICE_NAME, PORT_NAME
  INTEGER INFO, IERROR

This routine unpublishes a service name that has been previously published. Attempting to unpublish a name that has not been published or has already been unpublished is erroneous and is indicated by the error class MPI_ERR_SERVICE.

All published names must be unpublished before the corresponding port is closed and before the publishing process exits. The behavior of MPI_UNPUBLISH_NAME is implementation-dependent when a process tries to unpublish a name that it did not publish.

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation how to publish names, the implementation may require that info passed to MPI_UNPUBLISH_NAME contain information to tell the implementation how to unpublish a name.

MPI_LOOKUP_NAME(service_name, info, port_name)

IN    service_name     a service name (string)
IN    info             implementation-specific information (handle)
OUT   port_name        a port name (string)

C binding

int MPI_Lookup_name(const char *service_name, MPI_Info info, char *port_name)

Fortran 2008 binding

MPI_Lookup_name(service_name, info, port_name, ierror)
  CHARACTER(LEN=*) , INTENT(IN) :: service_name
  TYPE(MPI_Info) , INTENT(IN) :: info
  CHARACTER(LEN=MPI_MAX_PORT_NAME) , INTENT(OUT) :: port_name
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
  CHARACTER*(*) SERVICE_NAME, PORT_NAME
  INTEGER INFO, IERROR

This function retrieves a port_name published by MPI_PUBLISH_NAME with service_name. If service_name has not been published, it raises an error in the error class MPI_ERR_NAME. The application must supply a port_name buffer large enough to hold the largest possible port name (see discussion above under MPI_OPEN_PORT).

If an implementation allows multiple entries with the same service_name within the same scope, a particular port_name is chosen in a way determined by the implementation.
If the info argument was used with MPI_PUBLISH_NAME to tell the implementation how to publish names, a similar info argument may be required for MPI_LOOKUP_NAME.

11.9.5 Reserved Key Values

The following key values are reserved. An implementation is not required to interpret these key values, but if it does interpret the key value, it must provide the functionality described.

"ip_port": Value contains IP port number at which to establish a port. (Reserved for MPI_OPEN_PORT only).

"ip_address": Value contains IP address at which to establish a port. If the address is not a valid IP address of the host on which the MPI_OPEN_PORT call is made, the results are undefined. (Reserved for MPI_OPEN_PORT only).

11.9.6 Client/Server Examples

Example 11.23. Simplest Example—Completely Portable.
The following example shows the simplest way to use the client/server interface. It does not use service names at all.

On the server side:

```c
char myport[MPI_MAX_PORT_NAME];
MPI_Comm intercomm;
/* ... */
MPI_Open_port(MPI_INFO_NULL, myport);
printf("port name is: %s\n", myport);
MPI_Comm_accept(myport, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);
/* do something with intercomm */
```

The server prints out the port name to the terminal and the user must type it in when starting up the client (assuming the MPI implementation supports stdin such that this works). On the client side:

```c
MPI_Comm intercomm;
char name[MPI_MAX_PORT_NAME];
printf("enter port name: ");
gets(name);
MPI_Comm_connect(name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);
```

Example 11.24. Ocean/Atmosphere—Relies on Name Publishing

In this example, the “ocean” application is the “server” side of a coupled ocean-atmosphere climate model. It assumes that the MPI implementation publishes names.

```c
char port_name[MPI_MAX_PORT_NAME];
MPI_Comm intercomm;
/* ... */
MPI_Open_port(MPI_INFO_NULL, port_name);
MPI_Publish_name("ocean", MPI_INFO_NULL, port_name);
MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF,
```
Example 11.25. Simple Client-Server Example

This is a simple example; the server accepts only a single connection at a time and serves
that connection until the client requests to be disconnected. The server is a single process.
Here is the server. It accepts a single connection and then processes data until it receives a
message with tag 1. A message with tag 0 tells the server to exit.

```c
#include "mpi.h"
int main(int argc, char *argv[])
{
 MPI_Comm client;
 MPI_Status status;
 char port_name[MPI_MAX_PORT_NAME];
 double buf[MAX_DATA];
 int size, again;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 if (size != 1) error(FATAL, "Server too big");
 MPI_Open_port(MPI_INFO_NULL, port_name);
 printf("server available at %s\n", port_name);
 while (1) {
 MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,
 &client);
 again = 1;
 while (again) {
 MPI_Recv(buf, MAX_DATA, MPI_DOUBLE,
 MPI_ANY_SOURCE, MPI_ANY_TAG, client, &status);
 switch (status.MPI_TAG) {
 case 0: MPI_Comm_free(&client);
 MPI_Close_port(port_name);
 MPI_Finalize();
 return 0;
 case 1: MPI_Comm_disconnect(&client);
 again = 0;
 break;
 case 2: /* do something */
 ...
 /* do something */
 default:
 /* Unexpected message type */
 MPI_Abort(MPI_COMM_WORLD, 1);
 }
 }
 }
```
Here is the client.

```c
#include "mpi.h"
int main(int argc, char *argv[])
{
 MPI_Comm server;
 int done = 0;
 double buf[MAX_DATA];
 char port_name[MPI_MAX_PORT_NAME];

 MPI_Init(&argc, &argv);
 strcpy(port_name, argv[1]); /* assume server's name is cmd-line arg */

 MPI_Comm_connect(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD, &server);

 while (!done) {
 tag = 2; /* Action to perform */
 MPI_Send(buf, n, MPI_DOUBLE, 0, tag, server);
 /* etc */
 }
 MPI_Send(buf, 0, MPI_DOUBLE, 0, 1, server);
 MPI_Comm_disconnect(&server);
 MPI_Finalize();
 return 0;
}
```

### 11.10 Other Functionality

#### 11.10.1 Universe Size

Many “dynamic” MPI applications are expected to exist in a static runtime environment, in which resources have been allocated before the application is run. When running one of these quasi-static applications, the user (or possibly a batch system) will usually specify a number of processes to start and a total number of processes that are expected. An application simply needs to know how many slots there are, i.e., how many processes it should spawn.

MPI provides an attribute on `MPI_COMM_WORLD`, `MPI_UNIVERSE_SIZE`, that allows the application to obtain this information in a portable manner. This attribute indicates the total number of processes that are expected. In Fortran, the attribute is the integer value. In C, the attribute is a pointer to the integer value. An application typically subtracts the size of `MPI_COMM_WORLD` from `MPI_UNIVERSE_SIZE` to find out how many processes it should spawn. `MPI_UNIVERSE_SIZE` is initialized in `MPI_INIT` and is not changed by MPI. If defined, it has the same value on all processes of `MPI_COMM_WORLD`. `MPI_UNIVERSE_SIZE` is determined by the application startup mechanism in a way not specified by MPI. (The size of `MPI_COMM_WORLD` is another example of such a parameter.)

Possibilities for how `MPI_UNIVERSE_SIZE` might be set include:

- A `-universe_size` argument to a program that starts MPI processes.
• Automatic interaction with a batch scheduler to figure out how many processors have been allocated to an application.

• An environment variable set by the user.

• Extra information passed to MPI_COMM_SPAWN through the info argument.

An implementation must document how MPI_UNIVERSE_SIZE is set. An implementation may not support the ability to set MPI_UNIVERSE_SIZE, in which case the attribute MPI_UNIVERSE_SIZE is not set.

MPI_UNIVERSE_SIZE is a recommendation, not necessarily a hard limit. For instance, some implementations may allow an application to spawn 50 processes per processor, if they are requested. However, it is likely that the user only wants to spawn one process per processor.

MPI_UNIVERSE_SIZE is assumed to have been specified when an application was started, and is in essence a portable mechanism to allow the user to pass to the application (through the MPI process startup mechanism, such as mpiexec) a piece of critical runtime information. Note that no interaction with the runtime environment is required. If the runtime environment changes size while an application is running, MPI_UNIVERSE_SIZE is not updated, and the application must find out about the change through direct communication with the runtime system.

11.10.2 Singleton MPI Initialization

A high-quality implementation will allow any process (including those not started with a “parallel application” mechanism) to become an MPI process by calling MPI_INIT, MPI_INIT_THREAD, or MPI_SESSION_INIT. Such a process can then connect to other MPI processes using the MPI_COMM_ACCEPT and MPI_COMM_CONNECT routines, or spawn other MPI processes. MPI does not mandate this behavior, but strongly encourages it where technically feasible.

Advice to implementors. Special coordination is required to start MPI processes belonging to the same MPI_COMM_WORLD in the case of the World Model, or the same “mpi://WORLD” process set in the Sessions Model. The processes must be started at the “same” time, they must have a mechanism to establish communication, etc. Either the user or the operating system must take special steps beyond simply starting processes.

Considering the World Model, when an application enters MPI_INIT, clearly it must be able to determine if these special steps were taken. If a process enters MPI_INIT and determines that no special steps were taken (i.e., it has not been given the information to form an MPI_COMM_WORLD with other processes) it succeeds and forms a singleton MPI program, that is, one in which MPI_COMM_WORLD has size 1.

In some implementations, MPI may not be able to function without an “MPI environment.” For example, MPI may require that daemons be running or MPI may not be able to work at all on the front-end of an MPP. In this case, an MPI implementation may either

1. Create the environment (e.g., start a daemon) or

2. Raise an error if it cannot create the environment and the environment has not been started independently.
A high-quality implementation will try to create a singleton MPI process and not raise an error. (*End of advice to implementors.*)

11.10.3 MPI_APPNUM

There is a predefined attribute MPI_APPNUM of MPI_COMM_WORLD. In Fortran, the attribute is an integer value. In C, the attribute is a pointer to an integer value. If a process was spawned with MPI_COMM_SPAWN_MULTIPLE, MPI_APPNUM is the command number that generated the current process. Numbering starts from zero. If a process was spawned with MPI_COMM_SPAWN, it will have MPI_APPNUM equal to zero.

Additionally, if the process was not started by a spawn call, but by an implementation-specific startup mechanism that can handle multiple process specifications, MPI_APPNUM should be set to the number of the corresponding process specification. In particular, if it is started with

```
mpiexec spec0 [: spec1 : spec2 : ...]
```

MPI_APPNUM should be set to the number of the corresponding specification.

If an application was not spawned with MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE, and MPI_APPNUM does not make sense in the context of the implementation-specific startup mechanism, MPI_APPNUM is not set.

MPI implementations may optionally provide a mechanism to override the value of MPI_APPNUM through the info argument. MPI reserves the following key for all SPAWN calls.

"appnum": Value contains an integer that overrides the default value for MPI_APPNUM in the child.

*Rationale.* When a single application is started, it is able to figure out how many processes there are by looking at the size of MPI_COMM_WORLD. An application consisting of multiple SPMD sub-applications has no way to find out how many sub-applications there are and to which sub-application the process belongs. While there are ways to figure it out in special cases, there is no general mechanism. MPI_APPNUM provides such a general mechanism. (*End of rationale.*)

11.10.4 Releasing Connections

Before a client and a server connect, they are independent MPI applications. An error in one does not affect the other. After establishing a connection with MPI_COMM_CONNECT and MPI_COMM_ACCEPT, an error in one may affect the other. It is desirable for a client and a server to be able to disconnect, so that an error in one will not affect the other. Similarly, it might be desirable for a parent and child to disconnect, so that errors in the child do not affect the parent, or vice-versa.

- Two processes are **connected** if there is a communication path (direct or indirect) between them. More precisely:
  1. Two processes are connected if
     a) they both belong to the same communicator (inter- or intra-, including MPI_COMM_WORLD) or
b) they have previously belonged to a communicator that was freed with 
   MPI_COMM_FREE instead of MPI_COMM_DISCONNECT or 
   c) they both belong to the group of the same window or file handle.

2. If A is connected to B and B to C, then A is connected to C.

- Two processes are disconnected (also independent) if they are not connected.
- By the above definitions, connectivity is a transitive property, and divides the universe of MPI processes into disconnected (independent) sets (equivalence classes) of processes.
- Processes that are connected, but do not share the same MPI_COMM_WORLD, may become disconnected (independent) if the communication path between them is broken by using MPI_COMM_DISCONNECT.

The following additional rules apply to MPI routines in other chapters:

- MPI_FINALIZE is collective over a set of connected processes.
- MPI_ABORT does not abort independent processes. It may abort all processes in the caller’s MPI_COMM_WORLD (ignoring its comm argument). Additionally, it may abort connected processes as well, though it makes a “best attempt” to abort only the processes in comm.
- If a process terminates without calling MPI_FINALIZE, independent processes are not affected but the effect on connected processes is not defined.

Advice to implementors. In practice, it may be difficult to distinguish between an MPI process failure and an erroneous program that terminates without calling an MPI finalization function: an implementation that defines semantics for process failure management may have to exhibit the behavior defined for MPI process failures with such erroneous programs. A high quality implementation should exhibit a different behavior for erroneous programs and MPI process failures. (End of advice to implementors.)

MPI_COMM_DISCONNECT(comm)

INOUT comm communicator (handle)

C binding
int MPI_Comm_disconnect(MPI_Comm *comm)

Fortran 2008 binding
MPI_Comm_disconnect(comm, ierror)
   TYPE(MPI_Comm), INTENT(INOUT) :: comm
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_DISCONNECT(COMM, IERROR)
   INTEGER COMM, IERROR
This function waits for all decoupled MPI activities on comm to complete internally, deallocates the communicator object, and sets the handle to MPI_COMM_NULL. It is a collective operation.

It may not be called with the communicator MPI_COMM_WORLD or MPI_COMM_SELF.

MPI_COMM_DISCONNECT may be called only if all communication is complete and matched, so that buffered data can be delivered to its destination. This requirement is the same as for MPI_FINALIZE. This means that before calling MPI_COMM_DISCONNECT, all request handles associated with comm must be freed in the case of nonblocking operations, and must be inactive or freed in the case of persistent operations (i.e., by calling one of the procedures MPI_{TEST|WAIT}|{ANY|SOME|ALL} or MPI_REQUEST_FREE).

MPI_COMM_DISCONNECT has the same effect as MPI_COMM_FREE, except that it waits for decoupled MPI activities on comm to finish internally, disallows any further use of derived inactive persistent requests, and enables the guarantee about the behavior of disconnected processes. The decoupled MPI activities also include any communication that is needed to complete a nonblocking or persistent operation on comm that was freed with MPI_REQUEST_FREE. After calling MPI_COMM_DISCONNECT, freeing or starting an inactive persistent request handle for a communication operation on comm is erroneous.

Advice to users. To disconnect two processes you may need to call MPI_COMM_DISCONNECT, MPI_WIN_FREE, and MPI_FILE_CLOSE to remove all communication paths between the two processes. Note that it may be necessary to disconnect several communicators (or to free several windows or files) before two processes are completely independent. (End of advice to users.)

Rationale. It would be nice to be able to use MPI_COMM_FREE instead, but that procedure explicitly does not wait for decoupled MPI activities to complete, and it does not disallow freeing or starting of related inactive (but not yet freed) persistent request handles. (End of rationale.)

11.10.5 Another Way to Establish MPI Communication

MPI_COMM_JOIN(fd, intercomm)

IN fd socket file descriptor

OUT intercomm new inter-communicator (handle)

C binding

int MPI_Comm_join(int fd, MPI_Comm *intercomm)

Fortran 2008 binding

MPI_Comm_join(fd, intercomm, ierror)

INTEGER, INTENT(IN) :: fd

TYPE(MPI_Comm), INTENT(OUT) :: intercomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)

INTEGER FD, INTERCOMM, IERROR
MPI_COMM_JOIN is intended for MPI implementations that exist in an environment supporting the Berkeley Socket interface [52, 57]. Implementations that exist in an environment not supporting Berkeley Sockets should provide the entry point for MPI_COMM_JOIN and should return MPI_COMM_NULL.

This call creates an inter-communicator from the union of two MPI processes that are connected by a socket. MPI_COMM_JOIN should normally succeed if the local and remote processes have access to the same implementation-defined MPI communication universe.

Advice to users. An MPI implementation may require a specific communication medium for MPI communication, such as a shared memory segment or a special switch. In this case, it may not be possible for two processes to successfully join even if there is a socket connecting them and they are using the same MPI implementation. (End of advice to users.)

Advice to implementors. A high-quality implementation will attempt to establish communication over a slow medium if its preferred one is not available. If implementations do not do this, they must document why they cannot do MPI communication over the medium used by the socket (especially if the socket is a TCP connection). (End of advice to implementors.)

fd is a file descriptor representing a socket of type SOCK_STREAM (a two-way reliable byte-stream connection). Nonblocking I/O and asynchronous notification via SIGIO must not be enabled for the socket. The socket must be in a connected state. The socket must be quiescent when MPI_COMM_JOIN is called (see below). It is the responsibility of the application to create the socket using standard socket API calls.

MPI_COMM_JOIN must be called by the process at each end of the socket. It does not return until both processes have called MPI_COMM_JOIN. The two processes are referred to as the local and remote processes.

MPI only uses the socket to bootstrap the creation of the inter-communicator. Upon return from MPI_COMM_JOIN, the file descriptor will be open and quiescent (see below).

If MPI is unable to create an inter-communicator, but is able to leave the socket in its original state, with no pending communication, it succeeds and sets intercomm to MPI_COMM_NULL.

The socket must be quiescent before MPI_COMM_JOIN is called and after MPI_COMM_JOIN returns. More specifically, on entry to MPI_COMM_JOIN, a read on the socket will not read any data that was written to the socket before the remote process called MPI_COMM_JOIN. On exit from MPI_COMM_JOIN, a read will not read any data that was written to the socket before the remote process returned from MPI_COMM_JOIN. It is the responsibility of the application to ensure the first condition, and the responsibility of the MPI implementation to ensure the second. In a multithreaded application, the application must ensure that one thread does not access the socket while another is calling MPI_COMM_JOIN, or call MPI_COMM_JOIN concurrently.

Advice to implementors. MPI is free to use any available communication path(s) for MPI messages in the new communicator; the socket is only used for the initial handshaking. (End of advice to implementors.)

MPI_COMM_JOIN uses non-MPI communication to do its work. The interaction of non-MPI communication with pending MPI communication is not defined. Therefore, the
result of calling MPI_COMM_JOIN on two connected processes (see Section 11.10.4 for the definition of connected) is undefined.

The returned communicator may be used to establish MPI communication with additional processes, through the usual MPI communicator creation mechanisms.
Chapter 12
One-Sided Communications

12.1 Introduction

Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing one MPI process to specify all communication parameters, both for the sending side and for the receiving side. This mode of communication facilitates the coding of some applications with dynamically changing data access patterns where the data distribution is fixed or slowly changing. In such a case, each MPI process can compute what data it needs to access or to update at other MPI processes. However, the programmer may not be able to easily determine which data in an MPI process may need to be accessed or to be updated by operations initiated by a different MPI process, and may not even know which MPI processes may perform such updates. Thus, the transfer parameters are all available only on one side. Regular send/receive communication requires matching operations by sender and receiver. In order to issue the matching operations, an application needs to distribute the transfer parameters. This distribution may require all MPI processes to participate in a time-consuming global computation, or to poll for potential communication requests to receive and upon which to act periodically. The use of RMA communication operations avoids the need for global computations or explicit polling. A generic example of this nature is the execution of an assignment of the form $A = B(map)$, where $map$ is a permutation vector, and $A$, $B$, and $map$ are distributed in the same manner.

Message-passing communication achieves two effects: communication of data from sender to receiver and synchronization of sender with receiver. The RMA design separates these two functions. The following communication calls are provided:

- Remote write: MPI_PUT, MPI_RPUT
- Remote read: MPI_GET, MPI_RGET
- Remote update: MPI_ACCUMULATE, MPI_RACCUMULATE
- Remote read and update: MPI_GET_ACCUMULATE, MPI_RGET_ACCUMULATE, and MPI_FETCH_AND_OP
- Remote atomic swap: MPI_COMPARE_AND_SWAP

This chapter refers to an operations set that includes all remote update, remote read and update, and remote atomic swap operations as “accumulate” operations.

MPI supports two fundamentally different memory models: separate and unified. The separate model makes no assumption about memory consistency and is highly portable. The separate model makes no assumption about memory consistency and is highly portable. The unified model can
exploit cache-coherent hardware and hardware-accelerated, one-sided operations that are commonly available in high-performance systems. The two different models are discussed in detail in Section 12.4. Both models support several synchronization calls to support different synchronization styles.

The design of the RMA functions allows implementors to take advantage of fast or asynchronous communication mechanisms provided by various platforms, such as coherent or noncoherent shared memory, DMA engines, hardware-supported put/get operations, and communication coprocessors. The most frequently used RMA communication mechanisms can be layered on top of message-passing. However, certain RMA functions might need support for asynchronous communication agents in software (handlers, threads, etc.) in a distributed memory environment.

We shall denote by origin or origin process the MPI process that calls an RMA procedure, and by target or target process the MPI process whose memory is accessed. Thus, in a put operation, source = origin and destination = target; in a get operation, source = target and destination = origin.

12.2 Initialization

MPI provides the following window initialization functions: MPI_WIN_CREATE, MPI_WIN_ALLOCATE, MPI_WIN_ALLOCATE_SHARED, and MPI_WIN_CREATE_DYNAMIC, which are collective over the group of an intra-communicator. MPI_WIN_CREATE allows each MPI process to specify a “window” in its memory that is made available for accesses by other MPI processes. The call returns an opaque object that represents the group of MPI processes that own and access the set of windows, and the attributes of each window, as specified by the initialization call. MPI_WIN_ALLOCATE and MPI_WIN_ALLOCATE_SHARED differ from MPI_WIN_CREATE in that the user does not pass allocated memory; instead MPI_WIN_ALLOCATE and MPI_WIN_ALLOCATE_SHARED return a pointer to memory allocated by the MPI implementation. MPI_WIN_ALLOCATE_SHARED differs from MPI_WIN_ALLOCATE in that the allocated memory is guaranteed to be accessible from all MPI processes in the window’s group with direct load/store accesses. Some restrictions may apply to the specified communicator. MPI_WIN_CREATE_DYNAMIC creates a window that allows the user to dynamically control which memory is exposed by the window.

12.2.1 Window Creation

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win)

IN	base	initial address of window (choice)
IN	size	size of window in bytes (non-negative integer)
IN	disp_unit	local unit size for displacements, in bytes (positive integer)
IN	info	info argument (handle)
IN	comm	intra-communicator (handle)
OUT	win	window object (handle)
C binding

```c
int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,
 MPI_Comm comm, MPI_Win *win)
int MPI_Win_create_c(void *base, MPI_Aint size, MPI_Aint disp_unit,
 MPI_Info info, MPI_Comm comm, MPI_Win *win)
```

Fortran 2008 binding

```fortran
MPI_Win_create(base, size, disp_unit, info, comm, win, ierror)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size
 INTEGER, INTENT(IN) :: disp_unit
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Win), INTENT(OUT) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Win_create(base, size, disp_unit, info, comm, win, ierror) !(_c)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size, disp_unit
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Win), INTENT(OUT) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)
 <type> BASE(*)
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
 INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR
```

This procedure is collective over the group of `comm`. It returns a handle to a window that can be used by the MPI processes in this group to perform RMA operations. Each MPI process specifies a window of existing memory that it exposes to RMA accesses by any MPI processes in the group of `comm`. The window consists of `size` bytes, starting at address `base`. In C, `base` is the starting address of a memory region. In Fortran, one can pass the first element of a memory region or a whole array, which must be ‘simply contiguous’ (for ‘simply contiguous,’ see also Section 19.1.12). An MPI process may elect to expose no memory by specifying `size = 0`.

The displacement unit argument is provided to facilitate address arithmetic in RMA operations: the target displacement argument of an RMA operation is scaled by the factor `disp_unit` specified by the target process, at window creation.

**Rationale.** The window size is specified using an address-sized integer, rather than a basic integer type, to allow windows that span more memory than can be described with a basic integer type. (*End of rationale.*)

**Advice to users.** Common choices for `disp_unit` are 1 (no scaling), and (in C syntax) `sizeof(type)`, for a window that consists of an array of elements of type `type`. The latter choice will allow one to use array indices in RMA calls, and have those scaled correctly to byte displacements, even in a heterogeneous environment. (*End of advice to users.*)
The info argument provides optimization hints to the runtime about the expected usage pattern of the window. The following info keys are predefined:

"no_locks" (boolean, default: "false"): if set to true, then the implementation may assume that passive target synchronization (i.e., MPI_WIN_LOCK, MPI_WIN_LOCK_ALL) will not be used on the given window. This implies that this window is not used for 3-party communication, and RMA can be implemented with no (less) asynchronous agent activity at this process.

"accumulate_ordering" (string, default: "rar,raw,war,waw"): controls the ordering of accumulate operations at the target. See Section 12.7.2 for details.

"accumulate.ops" (string, default: "same_op_no_op"): if set to "same_op", the implementation will assume that all concurrent accumulate calls to the same target address will use the same operator. If set to "same_op_no_op", then the implementation will assume that all concurrent accumulate calls to the same target address will use the same operator or MPI_NO_OP. This can eliminate the need to protect access for certain operators where the hardware can guarantee atomicity.

"mpi_accumulate_granularity" (integer, default 0): provides a hint to implementations about the desired synchronization granularity for accumulate operations, i.e., the size of memory ranges in bytes for which the implementation should acquire a synchronization primitive to ensure atomicity of updates. If the specified granularity is not divisible by the size of the type used in an accumulate operation, it should be treated as if it was the next multiple of the element size. For example, a granularity of 1 byte should be treated as 8 in an accumulate operation using MPI_UINT64_T. By default, this info key is set to 0, which leaves the choice of synchronization granularity to the implementation. If specified, all MPI processes in the group of a window must supply the same value.

Advice to users. Small synchronization granularities may provide improved latencies for accumulate operations with few elements and potentially increase concurrency of updates, at the cost of lower throughput. For example, a value matching the size of a type involved in an accumulate operation may enable implementations to use atomic memory operations instead of mutual exclusion devices. Larger synchronization granularities may yield higher throughput of accumulate operation with large numbers of elements due to lower synchronization costs, potentially at the expense of higher latency for accumulate operations with few elements, e.g., if atomic memory operations are not employed. By dividing larger accumulate operations into smaller segments, concurrent accumulate operations to the same window memory may update different segments in parallel. (End of advice to users.)

Advice to implementors. Implementations are encouraged to avoid mutual exclusion devices in cases where the granularity is small enough to warrant the use of atomic memory operations. For larger granularities, implementations should use this info value as a hint to partition the window memory into zones of mutual exclusion to enable segmentation of large accumulate operations. (End of advice to implementors.)
"same_size" (boolean, default: "false"): if set to true, then the implementation may assume that the argument size is identical on all MPI processes, and that all MPI processes have provided this info key with the same value.

"same_disp_unit" (boolean, default: "false"): if set to true, then the implementation may assume that the argument disp_unit is identical on all MPI processes, and that all MPI processes have provided this info key with the same value.

"mpi_assert_memory_alloc_kinds" (string, not set by default): If set, the implementation may assume that the memory for all communication buffers passed to MPI operations performed by the calling MPI process on the given window will use only the memory allocation kinds listed in the value string. See Section 11.4.3. This info hint also applies to the window buffer provided in a call to MPI_WIN_CREATE or MPI_WIN_ATTACH. It does not apply to the memory allocated in a call to MPI_WIN_ALLOCATE or MPI_WIN_ALLOCATE_SHARED.

Advice to users. The info query mechanism described in Section 12.2.7 can be used to query the specified info arguments for windows that have been passed to a library. It is recommended that libraries check attached info keys for each passed window.

Advice to users. The various MPI processes in the group of comm may specify completely different target windows, in location, size, displacement units, and info arguments. As long as all the get, put and accumulate accesses to a particular MPI process fit their specific target window this should pose no problem. The same area in memory may appear in multiple windows, each associated with a different window object. However, concurrent communications to distinct, overlapping windows may lead to undefined results.

Implementations may make the memory provided by the user available for load/store accesses by MPI processes in the same shared memory domain. A communicator of such processes can be constructed as described in Section 7.4.2 using MPI_COMM_SPLIT_TYPE. Pointers to access a shared memory segment can be queried using MPI_WIN_SHARED_QUERY.

Rationale. The reason for specifying the memory that may be accessed from another MPI process in an RMA operation is to permit the programmer to specify what memory can be a target of RMA operations and for the implementation to enforce that specification. For example, with this definition, a server MPI process can safely allow a client MPI process to use RMA operations, knowing that (under the assumption that the MPI implementation does enforce the specified limits on the exposed memory) an error in the client cannot affect any memory other than what was explicitly exposed.

Advice to users. A window can be created in any part of the MPI process memory. However, on some systems, the performance of windows in memory allocated by MPI_ALLOC_MEM (Section 9.2) will be better. Also, on some systems, performance is improved when window boundaries are aligned at “natural” boundaries (word, double-word, cache line, page frame, etc.).

Advice to implementors. In cases where RMA operations use different mechanisms in different memory areas (e.g., load/store accesses in a shared memory segment, and
an asynchronous handler in private memory), the MPI_WIN_CREATE call needs to figure out which type of memory is used for the window. To do so, MPI maintains, internally, the list of memory segments allocated by MPI_ALLOC_MEM, or by other, implementation-specific, mechanisms, together with information on the type of memory segment allocated. When a call to MPI_WIN_CREATE occurs, then MPI checks which segment contains each window, and decides, accordingly, which mechanism to use for RMA operations.

Vendors may provide additional, implementation-specific mechanisms to allocate or to specify memory regions that are preferable for use in one-sided communication. In particular, such mechanisms can be used to place static variables into such preferred regions.

Implementors should document any performance impact of window alignment. (*End of advice to implementors.*)

### 12.2.2 Window That Allocates Memory

**MPI_WIN_ALLOCATE(size, disp_unit, info, comm, baseptr, win)**

IN	size	size of window in bytes (non-negative integer)
IN	disp_unit	local unit size for displacements, in bytes (positive integer)
IN	info	info argument (handle)
IN	comm	intra-communicator (handle)
OUT	baseptr	initial address of window (choice)
OUT	win	window object (handle)

**C binding**

```c
int MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,
 MPI_Comm comm, void *baseptr, MPI_Win *win)

int MPI_Win_allocate_c(MPI_Aint size, MPI_Aint disp_unit, MPI_Info info,
 MPI_Comm comm, void *baseptr, MPI_Win *win)
```

**Fortran 2008 binding**

```fortran
MPI_Win_allocate(size, disp_unit, info, comm, baseptr, win, ierror)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size
INTEGER, INTENT(IN) :: disp_unit
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(C_PTR), INTENT(OUT) :: baseptr
TYPE(MPI_Win), INTENT(OUT) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Win_allocate(size, disp_unit, info, comm, baseptr, win, ierror) !(_c)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
```
FORTRAN binding

MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR)
  INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR
  INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

This procedure is collective over the group of comm. On each MPI process, it allocates memory of at least size bytes and returns a pointer to it along with a handle to a new window that can be used by all MPI processes in the group of comm to perform RMA operations. The returned memory consists of size bytes local to each MPI process, starting at address baseptr and is associated with the window as if the user called MPI_WIN_CREATE on existing memory. The size argument may be different at each MPI process and size = 0 is valid; however, a library might allocate and expose more memory in order to create a fast, globally symmetric allocation. The discussion of and rationales for MPI_ALLOC_MEM and MPI_FREE_MEM in Section 9.2 also apply to MPI_WIN_ALLOCATE; in particular, see the rationale in Section 9.2 for an explanation of the type used for baseptr.

Implementations may make allocated memory available for load/store accesses by MPI processes in the same shared memory domain. A communicator of such processes can be constructed as described in Section 7.4.2 using MPI_COMM_SPLIT_TYPE. Pointers to access a shared memory segment can be queried using MPI_WIN_SHARED_QUERY. If shared memory is available it is not guaranteed to be contiguous (see Section 12.2.3).

If the Fortran compiler provides TYPE(C_PTR), then the following generic interface must be provided in the mpi module and should be provided in the (deprecated) mpif.h include file through overloading, i.e., with the same routine name as the routine with INTEGER(KIND=MPI_ADDRESS_KIND) BASEPTR, but with a different specific procedure name:

INTERFACE MPI_WIN_ALLOCATE
  SUBROUTINE MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &
                               WIN, IERROR)
    IMPORT :: MPI_ADDRESS_KIND
    INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE, BASEPTR
  END SUBROUTINE
  SUBROUTINE MPI_WIN_ALLOCATE_CPTR(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &
                                   WIN, IERROR)
    USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
    IMPORT :: MPI_ADDRESS_KIND
    INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE
    TYPE(C_PTR) :: BASEPTR
  END SUBROUTINE
END INTERFACE
The base procedure name of this overloaded function is \texttt{MPI\_WIN\_ALLOCATE\_CPTR}.
The implied specific procedure names are described in Section 19.1.5.

\textit{Rationale.} By allocating (potentially aligned) memory instead of allowing the user to pass in an arbitrary buffer, this call can improve the performance for systems with remote direct memory access. This also permits the collective allocation of memory and supports what is sometimes called the “symmetric allocation” model that can be more scalable (for example, the implementation can arrange to return an address for the allocated memory that is the same on all \texttt{MPI} processes). (\textit{End of rationale.})

The \texttt{info} argument can be used to specify hints similar to the \texttt{info} argument for \texttt{MPI\_WIN\_CREATE} and \texttt{MPI\_ALLOC\_MEM}.
The default memory alignment requirements and the "\texttt{mpi\_minimum\_memory\_alignment}" \texttt{info} key described for \texttt{MPI\_ALLOC\_MEM} in Section 9.2 apply to all \texttt{MPI} processes with nonzero \texttt{size} argument.

12.2.3 \textbf{Window That Allocates Shared Memory}

\begin{verbatim}
MPI\_WIN\_ALLOCATE\_SHARED(size, disp\_unit, info, comm, baseptr, win)
  IN    size       size of local window in bytes (non-negative integer)
  IN    disp\_unit local unit size for displacements, in bytes (positive integer)
  IN    info       info argument (handle)
  IN    comm       intra-communicator (handle)
  OUT   baseptr   address of local allocated window segment (choice)
  OUT   win        window object (handle)
\end{verbatim}

\textbf{C binding}

\begin{verbatim}
int MPI\_Win\_allocate\_shared(MPI\_Aint size, int disp\_unit, MPI\_Info info,
       MPI\_Comm comm, void *baseptr, MPI\_Win *win)
int MPI\_Win\_allocate\_shared\_c(MPI\_Aint size, MPI\_Aint disp\_unit, MPI\_Info info,
       MPI\_Comm comm, void *baseptr, MPI\_Win *win)
\end{verbatim}

\textbf{Fortran 2008 binding}

\begin{verbatim}
MPI\_Win\_allocate\_shared(size, disp\_unit, info, comm, baseptr, win, ierror)
  USE, INTRINSIC :: ISO\_C\_BINDING, ONLY : C\_PTR
  INTEGER(KIND=MPI\_ADDRESS\_KIND), INTENT(IN) :: size
  INTEGER, INTENT(IN) :: disp\_unit
  TYPE(MPI\_Info), INTENT(IN) :: info
  TYPE(MPI\_Comm), INTENT(IN) :: comm
  TYPE(C\_PTR), INTENT(OUT) :: baseptr
  TYPE(MPI\_Win), INTENT(OUT) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI\_Win\_allocate\_shared\_c(size, disp\_unit, info, comm, baseptr, win, ierror)
!(_c)
\end{verbatim}
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size, disp_unit
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(C_PTR), INTENT(OUT) :: baseptr
TYPE(MPI_Win), INTENT(OUT) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_ALLOCATE_SHARED(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR)
INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR
INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

This procedure is collective over the group of comm. On each MPI process, it allocates memory of at least size bytes that is shared among all MPI processes in comm, and returns a pointer to the locally allocated segment in baseptr that can be used for load/store accesses on the calling MPI process. The locally allocated memory can be the target of load/store accesses by remote MPI processes; the base pointers for other MPI processes can be queried using the function MPI_WIN_SHARED_QUERY. The call also returns a handle to a new window that can be used by all MPI processes in comm to perform RMA operations. The size argument may be different at each MPI process and size = 0 is valid. It is the user’s responsibility to ensure that the communicator comm represents a group of MPI processes that are in the same shared memory domain, i.e., that they can create a shared memory segment that can be accessed by all processes in the group. The discussions of rationales for MPI_ALLOC_MEM and MPI_FREE_MEM in Section 9.2 also apply to MPI_WIN_ALLOCATE_SHARED; in particular, see the rationale in Section 9.2 for an explanation of the type used for baseptr. The allocated memory is contiguous across processes in rank order unless the info key "alloc_shared_noncontig" is specified. Contiguous across processes in rank order means that the first address in the memory segment of MPI process i is consecutive with the last address in the memory segment of MPI process i - 1. This may enable the user to calculate remote address offsets with local information only.

If the Fortran compiler provides TYPE(C_PTR), then the following generic interface must be provided in the mpi module and should be provided in the (deprecated) mpif.h include file through overloading, i.e., with the same routine name as the routine with INTEGER(KIND=MPI_ADDRESS_KIND) BASEPTR, but with a different specific procedure name:

INTERFACE MPI_WIN_ALLOCATE_SHARED
  SUBROUTINE MPI_WIN_ALLOCATE_SHARED_SHARED(SIZE, DISP_UNIT, INFO, COMM, &
       BASEPTR, WIN, IERROR)
    IMPORT :: MPI_ADDRESS_KIND
    INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE, BASEPTR
  END SUBROUTINE
  SUBROUTINE MPI_WIN_ALLOCATE_SHARED_CPTR(SIZE, DISP_UNIT, INFO, COMM, &
       BASEPTR, WIN, IERROR)
    USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
    IMPORT :: MPI_ADDRESS_KIND
    INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE
  END SUBROUTINE
END INTERFACE

The base procedure name of this overloaded function is 
MPI_WIN_ALLOCATE_SHARED_CPTR. The implied specific procedure names are described 
in Section 19.1.5.

The info argument can be used to specify hints similar to the info argument for 
MPI_WIN_CREATE, MPI_WIN_ALLOCATE, and MPI_ALLOC_MEM. The additional info 
key "alloc_shared_noncontig" allows the library to optimize the layout of the shared memory 
segments in memory.

Advice to users. If the info key "alloc_shared_noncontig" is not set to true, the allocation 
strategy is to allocate contiguous memory across MPI process ranks. This may limit 
the performance on some architectures because it does not allow the implementation 
to modify the data layout (e.g., padding to reduce access latency). (End of advice to 
users.)

Advice to implementors. If the user sets the info key "alloc_shared_noncontig" to true, 
the implementation can allocate the memory requested by each MPI process in a location that is close to this MPI process. This can be achieved by padding or allocating memory in special memory segments. Both techniques may make the address space across consecutive ranks noncontiguous. (End of advice to implementors.)

For contiguous shared memory allocations, the default alignment requirements outlined 
for MPI_ALLOC_MEM in Section 9.2 and the "mpi_minimum_memory_alignment" info key apply to the start of the contiguous memory that is returned in baseptr to the first MPI process with nonzero size argument. For noncontiguous memory allocations, the default alignment 
requirements and the "mpi_minimum_memory_alignment" info key apply to all MPI processes with nonzero size argument.

Advice to users. If the info key "alloc_shared_noncontig" is not set to true (or ignored 
by the MPI implementation), the alignment of the memory returned in baseptr to all 
but the first MPI process with nonzero size argument depends on the value of the size 
argument provided by other MPI processes. It is thus the user’s responsibility to control the alignment of contiguous memory allocated for these MPI processes by ensuring that each MPI process provides a size argument that is an integral multiple of the alignment required for the application. (End of advice to users.)

The consistency of load/store accesses from/to the shared memory as observed by the 
user program depends on the architecture. For details on how to create a consistent view see the description of MPI_WIN_SHARED_QUERY.
### 12.2 Initialization

**MPI**

- **WIN**
- **SHARED**
- **QUERY**

```plaintext
MPI_WIN_SHARED_QUERY(win, rank, size, disp_unit, baseptr)
```

<table>
<thead>
<tr>
<th>IN</th>
<th>win</th>
<th>shared memory window (handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>rank</td>
<td>rank in the group of window win or</td>
</tr>
<tr>
<td></td>
<td>MPI_PROC_NULL (non-negative integer)</td>
<td></td>
</tr>
<tr>
<td>OUT</td>
<td>size</td>
<td>size of the window segment (non-negative integer)</td>
</tr>
<tr>
<td>OUT</td>
<td>disp_unit</td>
<td>local unit size for displacements, in bytes (positive integer)</td>
</tr>
<tr>
<td>OUT</td>
<td>baseptr</td>
<td>address for load/store access to window segment (choice)</td>
</tr>
</tbody>
</table>

**C binding**

```plaintext
int MPI_Win_shared_query(MPI_Win win, int rank, MPI_Aint *size, int *disp_unit,
 void *baseptr)
```

```plaintext
int MPI_Win_shared_query_c(MPI_Win win, int rank, MPI_Aint *size,
 MPI_Aint *disp_unit, void *baseptr)
```

**Fortran 2008 binding**

```plaintext
MPI_Win_shared_query(win, rank, size, disp_unit, baseptr, ierr)
```

```plaintext
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, INTENT(IN) :: rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size
INTEGER, INTENT(OUT) :: disp_unit
TYPE(C_PTR), INTENT(OUT) :: baseptr
INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

```plaintext
MPI_Win_shared_query(win, rank, size, disp_unit, baseptr, ierr) !(_c)
```

```plaintext
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, INTENT(IN) :: rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size, disp_unit
TYPE(C_PTR), INTENT(OUT) :: baseptr
INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

**Fortran binding**

```plaintext
MPI_WIN_SHARED_QUERY(WIN, RANK, SIZE, DISP_UNIT, BASEPTR, IERROR)
```

```plaintext
INTEGER WIN, RANK, DISP_UNIT, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR
```

This function queries the MPI process-local address for remote memory segments created with **MPI_WIN_ALLOCATE_SHARED**, **MPI_WIN_ALLOCATE**, and **MPI_WIN_CREATE**. This function can return different MPI process-local addresses for the same physical memory when called by different MPI processes. The returned memory can be used for load/store accesses subject to the constraints defined in Section 12.7. When `rank` is **MPI_PROC_NULL**, the `baseptr`, `disp_unit`, and `size` returned are the base, displacement unit, and size of the memory segment belonging to the MPI process with the lowest rank in the *shared memory domain* that specified `size ≥ 0`. If all MPI processes in the group
attached to the window specified size = 0, then the call returns size = 0 and a baseptr as if MPI_ALLOC_MEM was called with size = 0.

Only MPI_WIN_ALLOCATE_SHARED is guaranteed to allocate shared memory. Implementations are permitted, where possible, to provide shared memory for windows created with MPI_WIN_CREATE and MPI_WIN_ALLOCATE. However, availability of shared memory is not guaranteed. When the remote memory segment corresponding to a particular process cannot be accessed directly, this call returns size = 0 and a baseptr as if MPI_ALLOC_MEM was called with size = 0.

**Rationale.** MPI_WIN_SHARED_QUERY may only be called on windows created by a call to MPI_WIN_ALLOCATE_SHARED, MPI_WIN_ALLOCATE, or MPI_WIN_CREATE. The potential for multiple memory regions in windows created through MPI_WIN_CREATE_DYNAMIC means that these windows cannot be used as input for MPI_WIN_SHARED_QUERY. (End of rationale.)

**Advice to users.** For windows allocated using MPI_WIN_ALLOCATE or MPI_WIN_CREATE, the group of MPI processes for which the implementation may provide shared memory can be determined using MPI_COMM_SPLIT_TYPE described in Section 7.4.2. (End of advice to users.)

The consistency of load/store accesses from/to the shared memory as observed by the user program depends on the architecture. A consistent view can be created in the unified memory model (see Section 12.4) by utilizing the window synchronization functions (see Section 12.5) or explicitly completing outstanding store accesses (e.g., by calling MPI_WIN_FLUSH). MPI does not define the semantics for accessing shared window memory in the separate memory model.

If the Fortran compiler provides TYPE(C_PTR), then the following generic interface must be provided in the mpi module and should be provided in the (deprecated) mpif.h include file through overloading, i.e., with the same routine name as the routine with INTEGER(KIND=MPI_ADDRESS_KIND) BASEPTR, but with a different specific procedure name:

```fortran
INTERFACE MPI_WIN_SHARED_QUERY

SUBROUTINE MPI_WIN_SHARED_QUERY(WIN, RANK, SIZE, DISP_UNIT, &
 BASEPTR, IERROR)
 IMPORT :: MPI_ADDRESS_KIND
 INTEGER :: WIN, RANK, DISP_UNIT, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE, BASEPTR
END SUBROUTINE
SUBROUTINE MPI_WIN_SHARED_QUERY_CPTR(WIN, RANK, SIZE, DISP_UNIT, &
 BASEPTR, IERROR)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 IMPORT :: MPI_ADDRESS_KIND
 INTEGER :: WIN, RANK, DISP_UNIT, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE
 TYPE(C_PTR) :: BASEPTR
END SUBROUTINE
END INTERFACE
```
The base procedure name of this overloaded function is

\texttt{MPI\_WIN\_SHARED\_QUERY\_CPTR}. The implied specific procedure names are described in Section 19.1.5.

12.2.4 Window of Dynamically Attached Memory

The previously described window creation procedures require the user to identify the local memory that may be a target of \texttt{RMA} calls at the time the window is created. This has advantages for both the programmer (only this memory can be updated by one-sided operations and provides greater safety) and the \texttt{MPI} implementation (special steps may be taken to make one-sided access to such memory more efficient). However, consider implementing a modifiable linked list using \texttt{RMA} operations; as new items are added to the list, memory must be allocated. In a C or C++ program, this memory is typically allocated using \texttt{malloc} or \texttt{new} respectively. With the previously described window creation procedures, the programmer must create a window with a predefined amount of memory and then implement routines for allocating memory from within the window's memory. In addition, there is no easy way to handle the situation where the predefined amount of memory turns out to be inadequate. To support this model, the routine \texttt{MPI\_WIN\_CREATE\_DYNAMIC} creates a window that makes it possible to expose memory without remote synchronization. It must be used in combination with the local routines \texttt{MPI\_WIN\_ATTACH} and \texttt{MPI\_WIN\_DETACH}.

\texttt{MPI\_WIN\_CREATE\_DYNAMIC(info, comm, win)}

\begin{verbatim}
IN     info info argument (handle)
IN     comm intra-communicator (handle)
OUT    win window object (handle)
\end{verbatim}

\texttt{C binding}

\begin{verbatim}
int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, MPI_Win *win)
\end{verbatim}

\texttt{Fortran 2008 binding}

\begin{verbatim}
MPI_Win_create_dynamic(info, comm, win, ierror)
  TYPE(MPI_Info), INTENT(IN) :: info
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Win), INTENT(OUT) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\texttt{Fortran binding}

\begin{verbatim}
MPI\_WIN\_CREATE\_DYNAMIC(INFO, COMM, WIN, IERROR)
  INTEGER INFO, COMM, WIN, IERROR
\end{verbatim}

This procedure is collective over the group of \texttt{comm}. It returns a window \texttt{win} without memory attached. Existing \texttt{MPI} process memory can be attached as described below. This procedure returns a handle to a new window that can be used by \texttt{MPI} processes in the group of \texttt{comm} to perform \texttt{RMA} operations on attached memory. Because this window has special properties, it will sometimes be referred to as a \texttt{dynamic} window.

The \texttt{info} argument can be used to specify hints similar to the \texttt{info} argument for \texttt{MPI\_WIN\_CREATE}. 
In the case of a window created with `MPI_WIN_CREATE_DYNAMIC`, the target_disp for all RMA functions is the address at the target; i.e., the effective window_base is `MPI_BOTTOM` and the disp_unit is one. For dynamic windows, the target_disp argument to RMA communication operations is not restricted to nonnegative values. Users should use `MPI_GET_ADDRESS` at the target process to determine the address of a target memory location and communicate this address to the origin process.

Advice to users. Users are cautioned that displacement arithmetic can overflow in variables of type `MPI_Aint` and result in unexpected values on some platforms. The `MPI_AINT_ADD` and `MPI_AINT_DIFF` functions can be used to safely perform address arithmetic with `MPI_Aint` displacements. (End of advice to users.)

Advice to implementors. In environments with heterogeneous data representations, care must be exercised in communicating addresses between MPI processes. For example, it is possible that an address valid at the target MPI process (for example, a 64-bit pointer) cannot be expressed as an address at the origin (for example, the origin uses 32-bit pointers). For this reason, a portable MPI implementation should ensure that the type `MPI_AINT` (see Table 3.3) is able to store addresses from any MPI process. (End of advice to implementors.)

Memory at the target cannot be accessed with this window until that memory has been attached using the function `MPI_WIN_ATTACH`. That is, in addition to using `MPI_WIN_CREATE_DYNAMIC` to create an MPI window, the user must use `MPI_WIN_ATTACH` before any local memory may be the target of an MPI RMA operation. Only memory that is currently accessible may be attached.

```c
MPI_WIN_ATTACH(win, base, size)
```

- **IN win** window object (handle)
- **IN base** initial address of memory to be attached (choice)
- **IN size** size of memory to be attached in bytes (non-negative integer)

C binding

```
int MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size)
```

Fortran 2008 binding

```
MPI_Win_attach(win, base, size, ierr)
```

```
 TYPE(MPI_Win), INTENT(IN) :: win
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

Fortran binding

```
MPI_WIN_ATTACH(WIN, BASE, SIZE, IERROR)
```

```
 INTEGER WIN, IERROR
 <type> BASE(*)
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
```
Attaches a local memory region beginning at base for remote access within the given window. The memory region specified must not contain any part that is already attached to the window win, that is, attaching overlapping memory concurrently within the same window is erroneous. The argument win must be a window that was created with MPI_WIN_CREATE_DYNAMIC. The local memory region attached to the window consists of size bytes, starting at address base. In C, base is the starting address of a memory region. In Fortran, one can pass the first element of a memory region or a whole array, which must be ‘simply contiguous’ (for ‘simply contiguous,’ see Section 19.1.12). Multiple (but nonoverlapping) memory regions may be attached to the same window.

**Rationale.** Requiring that memory be explicitly attached before it is exposed to one-sided access by other MPI processes can simplify implementations and improve performance. The ability to make memory available for RMA operations without requiring a collective MPI_WIN_CREATE call is needed for some one-sided programming models. (End of rationale.)

**Advice to users.** Attaching memory to a window may require the use of scarce resources; thus, attaching large regions of memory is not recommended in portable programs. Attaching memory to a window may fail if sufficient resources are not available; this is similar to the behavior of MPI_ALLOC_MEM.

The user is also responsible for ensuring that MPI_WIN_ATTACH at the target has returned before an MPI process attempts to target that memory with an MPI RMA operation.

Performing an RMA operation on memory that has not been attached to a window created with MPI_WIN_CREATE_DYNAMIC is erroneous. (End of advice to users.)

**Advice to implementors.** A high-quality implementation will attempt to make as much memory available for attaching as possible. Any limitations should be documented by the implementor. (End of advice to implementors.)

MPI_WIN_ATTACH is a local procedure that is not collective. Memory may be detached with the procedure MPI_WIN_DETACH. After memory has been detached, it may not be the target of an MPI RMA operation on that window (unless the memory is re-attached with MPI_WIN_ATTACH).

**C binding**

```c
int MPI_Win_detach(MPI_Win win, const void *base)
```

**Fortran 2008 binding**

```fortran
MPI_Win_detach(win, base, ierror)
```

C binding

```c
int MPI_Win_detach(MPI_Win win, const void *base)
```

Fortran 2008 binding

```fortran
MPI_Win_detach(win, base, ierror)
```
Chapter 12 One-Sided Communications

Fortran binding

MPI_WIN_DETACH(WIN, BASE, IERROR)

INTEGER WIN, IERROR
<type> BASE(*)

Detaches a previously attached memory region beginning at base. The arguments base and win must match the arguments passed to a previous call to MPI_WIN_ATTACH. MPI_WIN_DETACH is a local procedure that is not collective.

Advice to users. Detaching memory may permit the implementation to make more efficient use of special memory or provide memory that may be needed by a subsequent MPI_WIN_ATTACH. Users are encouraged to detach memory that is no longer needed. Memory should be detached before it is freed by the user. (End of advice to users.)

Memory becomes detached when the associated dynamic memory window is freed, see Section 12.2.5.

12.2.5 Window Destruction

MPI_WIN_FREE(win)

INOUT win window object (handle)

C binding

int MPI_Win_free(MPI_Win *win)

Fortran 2008 binding

MPI_Win_free(win, ierror)

TYPE(MPI_Win), INTENT(INOUT) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_WIN_FREE(WIN, IERROR)

INTEGER WIN, IERROR

Frees the window object win and returns a null handle (equal to MPI_WIN_NULL). This procedure is collective over the group associated with win. MPI_WIN_FREE can be invoked by an MPI process only after it has completed its involvement in RMA communications on window win: e.g., the MPI process has called MPI_WIN_FENCE, or called MPI_WIN_WAIT to match a previous call to MPI_WIN_POST, called MPI_WIN_COMPLETE to match a previous call to MPI_WIN_START, or called MPI_WIN_UNLOCK to match a previous call to MPI_WIN_LOCK. The memory associated with windows created by a call to MPI_WIN_CREATE may be freed after the call returns. If the window was created with MPI_WIN_ALLOCATE, MPI_WIN_FREE will free the window memory that was allocated in MPI_WIN_ALLOCATE. If the window was created with MPI_WIN_ALLOCATE_SHARED, MPI_WIN_FREE will free the window memory that was allocated in MPI_WIN_ALLOCATE_SHARED.
12.2 Initialization

Table 12.1: C types of attribute value argument to MPI_WIN_GET_ATTR and MPI_WIN_SET_ATTR

<table>
<thead>
<tr>
<th>Attribute</th>
<th>C Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_WIN_BASE</td>
<td>void *</td>
</tr>
<tr>
<td>MPI_WIN_SIZE</td>
<td>MPI_Aint *</td>
</tr>
<tr>
<td>MPI_WIN_DISP_UNIT</td>
<td>int *</td>
</tr>
<tr>
<td>MPI_WIN_CREATE_FLAVOR</td>
<td>int *</td>
</tr>
<tr>
<td>MPI_WIN_MODEL</td>
<td>int *</td>
</tr>
</tbody>
</table>

Freeing a window that was created with a call to MPI_WIN_CREATE_DYNAMIC detaches all associated memory; i.e., it has the same effect as if all attached memory was detached by calls to MPI_WIN_DETACH.

MPI_WIN_FREE is required to delay its return until all accesses to the local window using passive target synchronization have completed. Therefore, it is synchronizing unless the window was created with the "no_locks" info key set to "true".

12.2.6 Window Attributes

The following attributes are cached with a window when the window is created.

- **MPI_WIN_BASE**: window base address.
- **MPI_WIN_SIZE**: window size, in bytes.
- **MPI_WIN_DISP_UNIT**: displacement unit associated with the window.
- **MPI_WIN_CREATE_FLAVOR**: how the window was created.
- **MPI_WIN_MODEL**: memory model for window.

In C, calls such as

```c
MPI_Win_get_attr(win, MPI_WIN_BASE, &base, &flag),
MPI_Win_get_attr(win, MPI_WIN_SIZE, &size, &flag),
MPI_Win_get_attr(win, MPI_WIN_DISP_UNIT, &disp_unit, &flag),
MPI_Win_get_attr(win, MPI_WIN_CREATE_FLAVOR, &create_flavor, &flag), and
MPI_Win_get_attr(win, MPI_WIN_MODEL, &memory_model, &flag)
```

will return in `base`, `size`, `disp_unit`, `create_flavor`, and `memory_model` pointers to the size of the window, the displacement unit of the window, the flavor of the window, and the memory model of the window, respectively. A detailed listing of the type of the pointer in the attribute value argument to MPI_WIN_GET_ATTR and MPI_WIN_SET_ATTR is shown in Table 12.1.

In Fortran, calls such as

```fortran
MPI_WIN_GETATTR(win, MPI_WIN_BASE, base, flag, ierror),
MPI_WIN_GETATTR(win, MPI_WIN_SIZE, size, flag, ierror),
MPI_WIN_GETATTR(win, MPI_WIN_DISP_UNIT, disp_unit, flag, ierror),
MPI_WIN_GETATTR(win, MPI_WIN_CREATE_FLAVOR, create_flavor, flag, ierror), and
MPI_WIN_GETATTR(win, MPI_WIN_MODEL, memory_model, flag, ierror)
```

will return in `base`, `size`, `disp_unit`, `create_flavor`, and `memory_model` the (integer representation of) the base address of the window, the size of the window, the displacement unit of the window, the flavor of the window, and the memory model of the window, respectively.

The values of `create_flavor` are

- **MPI_WIN_FLAVOR_CREATE**: Window was created with MPI_WIN_CREATE.
- **MPI_WIN_FLAVOR_ALLOCATE**: Window was created with MPI_WINALLOCATE.
MPI_WIN_FLAVOR_DYNAMIC  Window was created with
MPI_WIN_CREATE_DYNAMIC.

MPI_WIN_FLAVOR_SHARED   Window was created with
MPI_WIN_ALLOCATE_SHARED.

The values of memory_model are MPI_WIN_SEPARATE and MPI_WIN_UNIFIED. The meaning
of these is described in Section 12.4.

In the case of windows created with MPI_WIN_CREATE_DYNAMIC, the base address is
MPI_BOTTOM and the size is 0. In C, pointers are returned, and in Fortran, the values are
returned, for the respective attributes. (The window attribute access functions are defined
in Section 7.7.3.) The value returned for an attribute on a window is constant over the
lifetime of the window.

The other “window attribute,” namely the group of MPI processes attached to the
window, can be retrieved using the call below.

MPI_WIN_GET_GROUP(win, group)

| IN     | win          | window object (handle) |
| OUT    | group        | group of MPI processes that share access to the window (handle) |

C binding
int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

Fortran 2008 binding
MPI_Win_get_group(win, group, ierror)

    TYPE(MPI_Win), INTENT(IN) :: win
    TYPE(MPI_Group), INTENT(OUT) :: group
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)

    INTEGER WIN, GROUP, IERROR

    MPI_WIN_GET_GROUP returns in group a duplicate of the group of the communicator
used to create the window associated with win.

12.2.7 Window Info

Hints specified via info (see Section 10) allow a user to provide information to direct opti-
mization. Providing hints may enable an implementation to deliver increased perfor-
mance or use system resources more efficiently. As described in Section 10, an imple-
mentation is free to ignore all hints; however, applications must comply with any info
hints they provide that are used by the MPI implementation (i.e., are returned by a call to
MPI_WIN_GET_INFO) and that place a restriction on the behavior of the application. Hints
are specified on a per window basis, in window creation functions and MPI_WIN_SET_INFO,
via the opaque info object. When an info object that specifies a subset of valid hints is passed
to MPI_WIN_SET_INFO there will be no effect on previously set or default hints that the
info does not specify.
**Advice to implementors.** It may happen that a program is coded with hints for one system, and later executes on another system that does not support these hints. In general, unsupported hints should simply be ignored. Needless to say, no hint can be mandatory. However, for each hint used by a specific implementation, a default value must be provided when the user does not specify a value for the hint. (*End of advice to implementors.*)

```plaintext
MPI_WIN_SET_INFO(win, info)

INOUT win window object (handle)
IN info info argument (handle)
```

**C binding**

```c
int MPI_Win_set_info(MPI_Win win, MPI_Info info)
```

**Fortran 2008 binding**

```fortran
MPI_Win_set_info(win, info, ierror)
```

```fortran
 TYPE(MPI_Win), INTENT(IN) :: win
 TYPE(MPI_Info), INTENT(IN) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPI_WIN_SET_INFO(WIN, INFO, IERROR)
```

```fortran
 INTEGER WIN, INFO, IERROR
```

MPI_WIN_SET_INFO updates the hints of the window associated with win using the hints provided in info. This operation has no effect on previously set or defaulted hints that are not specified by info. It also has no effect on previously set or defaulted hints that are specified by info, but are ignored by the MPI implementation in this call to MPI_WIN_SET_INFO. The procedure is collective over the group of win. The entries in the info object may be different on each MPI process, but any info entries that an implementation requires to be the same on all MPI processes must appear with the same value in each MPI process’s info object.

**Advice to users.** Some info items that an implementation can use when it creates a window cannot easily be changed once the window has been created. Thus, an implementation may ignore hints issued in this call that it would have accepted in a creation call. An implementation may also be unable to update certain info hints in a call to MPI_WIN_SET_INFO. MPI_WIN_GET_INFO can be used to determine whether info changes were ignored by the implementation. (*End of advice to users.*)

```plaintext
MPI_WIN_GET_INFO(win, info_used)

IN win window object (handle)
OUT info_used new info object (handle)
```

**C binding**

```c
int MPI_Win_get_info(MPI_Win win, MPI_Info *info_used)
```
Chapter 12 One-Sided Communications

Fortran 2008 binding

```fortran
MPI_Win_get_info(win, info_used, ierror)
 TYPE(MPI_Win), INTENT(IN) :: win
 TYPE(MPI_Info), INTENT(OUT) :: info_used
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_WIN_GET_INFO(WIN, INFO_USED, IERROR)
 INTEGER WIN, INFO_USED, IERROR
```

`MPI_WIN_GET_INFO` returns a new info object containing the hints of the window associated with `win`. The current setting of all hints related to this window is returned in `info_used`. An MPI implementation is required to return all hints that are supported by the implementation and have default values specified; any user-supplied hints that were not ignored by the implementation; and any additional hints that were set by the implementation. If no such hints exist, a handle to a newly created info object is returned that contains no key/value pair. The user is responsible for freeing `info_used` via `MPI_INFO_FREE`.

12.3 Communication Calls

MPI supports the following RMA communication calls: `MPI_PUT` and `MPI_RPUT` transfer data from the caller memory (origin) to the target memory; `MPI_GET` and `MPI_RGET` transfer data from the target memory to the caller memory; `MPI_ACCUMULATE` and `MPI_RACCUMULATE` perform element-wise atomic updates of locations in the target memory, e.g., by adding to these locations values sent from the caller memory; `MPI_GET_ACCUMULATE`, `MPI_RGET_ACCUMULATE`, and `MPI_FETCH_AND_OP` perform element-wise atomic read-modify-write updates and return each value before the update; and `MPI_COMPARE_AND_SWAP` performs a remote atomic compare and swap operation. These procedures are nonblocking. The operation is completed, at the origin or both the origin and the target, when a subsequent synchronization procedure is called by the origin on the involved window object. These synchronization procedures are described in Section 12.5. RMA communication operations can also be completed with calls to flush procedures; see Section 12.5.4 for details. Request-based operations `MPI_RPUT`, `MPI_RGET`, `MPI_RACCUMULATE`, and `MPI_RGET_ACCUMULATE` can be completed at the origin by using the MPI test or wait procedures described in Section 3.7.3.

The local communication buffer of an RMA operation should not be updated after the operation started and until the operation completes at the origin. The local communication buffer of a get operation should not be accessed after the operation started and until the operation completes at the origin.

Two concurrent accesses are called conflicting if one of the two is a put operation, exactly one of them is an accumulate operation, or one of them is a get operation and the other is a local store access. The outcome of conflicting accesses to the same memory location is undefined; if a location is updated by a put or accumulate operation, then the outcome of loads or other RMA operations is undefined until the updating operation has completed at the target. There is one exception to this rule; namely, the same location can be updated by several concurrent accumulate operations, the outcome being as if these updates occurred in some order. In addition, the outcome of concurrent load/store accesses and RMA updates
to the same memory location is undefined. These restrictions are described in more detail in Section 12.7.

The calls use general datatype arguments to specify communication buffers at the origin and at the target. Thus, a transfer operation may also gather data at the source and scatter it at the destination. However, all arguments specifying both communication buffers are provided by the caller.

For all RMA communication operations, the target process may be identical with the origin process; i.e., an MPI process may use an RMA operation to move data in its memory.

Rationale. The choice of supporting “self-communication” is the same as for message-passing. It simplifies some coding, and is very useful with accumulate operations, to allow atomic updates of local variables. (End of rationale.)

MPI_PROC_NULL is a valid target rank in all MPI RMA communication calls. The effect is the same as for MPI_PROC_NULL in MPI point-to-point communication. After any RMA operation with rank MPI_PROC_NULL, it is still necessary to close the RMA epoch with the synchronization method that opened the epoch.

12.3.1 Put

The execution of a put operation is similar to the execution of a send by the origin process and a matching receive by the target process. The obvious difference is that all arguments are provided by one call—the call executed by the origin process.

MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, win)

IN origin_addr initial address of origin buffer (choice)
IN origin_count number of entries in origin buffer (non-negative integer)
IN origin_datatype datatype of each entry in origin buffer (handle)
IN target_rank rank of target (non-negative integer)
IN target_disp displacement from start of window to target buffer (non-negative integer)
IN target_count number of entries in target buffer (non-negative integer)
IN target_datatype datatype of each entry in target buffer (handle)
IN win window used for communication (handle)

C binding

int MPI_Put(const void *origin_addr, int origin_count, 
MPI_Datatype origin_datatype, int target_rank, 
MPI_Aint target_disp, int target_count, 
MPI_Datatype target_datatype, MPI_Win win)

int MPI_Put_c(const void *origin_addr, MPI_Count origin_count, 
MPI_Datatype origin_datatype, int target_rank, 


Fortran 2008 binding

MPI_Put(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, win, ierror)

Fortran binding

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

Transfers origin_count successive entries of the type specified by the origin_datatype, starting at address origin_addr on the origin process, to the target process specified by the win, target_rank pair. The data are written in the target buffer at address target_addr = window_base + target_disp \( \times \) disp_unit, where window_base and disp_unit are the base address and window displacement unit specified at window initialization, by the target process.

The target buffer is specified by the arguments target_count and target_datatype.

The data transfer is the same as that which would occur if the origin process executed a send operation with arguments origin_addr, origin_count, origin_datatype, target_addr, target_count, target_datatype, source, tag, comm, and the target process executed a receive operation with arguments target_addr, target_count, target_datatype, source, tag, comm, where target_addr is the target buffer address computed as explained above, the values of tag are arbitrary valid matching tag values, and comm is a communicator for the group of win.

The communication must satisfy the same constraints as for a similar message-passing communication. The target_datatype may not specify overlapping entries in the target buffer. The message sent must fit, without truncation, in the target buffer. Furthermore, the target buffer must fit in the target window or in attached memory in a dynamic window.

The target_datatype argument is a handle to a datatype object defined at the origin process. However, this object is interpreted at the target process: the outcome is as if the target datatype object was defined at the target process by the same sequence of calls
used to define it at the origin process. The target datatype must contain only relative
displacements, not absolute addresses. The same holds for get and accumulate operations.

Advice to users. The target datatype argument is a handle to a datatype object that
is defined at the origin process, even though it defines a data layout in the target
process memory. This causes no problems in a homogeneous environment, or in a
heterogeneous environment if only portable datatypes are used (portable datatypes
are defined in Section 2.4).

The performance of a put transfer can be significantly affected, on some systems, by
the choice of window location and the shape and location of the origin and target
buffer: transfers to a target window in memory allocated by MPI_ALLOC_MEM or
MPI_WIN_ALLOCATE may be much faster on shared memory systems; transfers from
contiguous buffers will be faster on most, if not all, systems; the alignment of the
communication buffers may also impact performance. (End of advice to users.)

Advice to implementors. A high-quality implementation will attempt to prevent
remote accesses to memory outside the window that was exposed by the MPI process.
This is important both for debugging purposes and for protection with client-server
codes that use RMA. That is, a high-quality implementation will check, if possible,
window bounds on each RMA call, and raise an error at the origin call if an out-of-
bound situation occurs. Note that the condition can be checked at the origin. Of
course, the added safety achieved by such checks has to be weighed against the added
cost of such checks. (End of advice to implementors.)

12.3.2 Get

MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
         target_datatype, win)

OUT     origin_addr       initial address of origin buffer (choice)
IN      origin_count      number of entries in origin buffer (non-negative
                          integer)
IN      origin_datatype   datatype of each entry in origin buffer (handle)
IN      target_rank       rank of target (non-negative integer)
IN      target_disp       displacement from window start to the beginning of
                          the target buffer (non-negative integer)
IN      target_count      number of entries in target buffer (non-negative
                          integer)
IN      target_datatype   datatype of each entry in target buffer (handle)
IN      win               window used for communication (handle)

C binding

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
            int target_rank, MPI_Aint target_disp, int target_count,
            MPI_Datatype target_datatype, MPI_Win win)
Chapter 12 One-Sided Communications

```c
int MPI_Get_c(void *origin_addr, MPI_Count origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Win win)
```

**Fortran 2008 binding**

```fortran
MPI_Get(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
 target_count, target_datatype, win, ierror)
```

```fortran
INTEGER(KIND=MPI_ADDRESS_KIND), Intent(IN) :: target_disp
```

**Fortran binding**

```fortran
MPI_GET/ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_DISP,
 TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)
```

Similar to MPI_PUT, except that the direction of data transfer is reversed. Data are copied from the target memory to the origin. The origin_datatype may not specify overlapping entries in the origin buffer. The target buffer must be contained within the target window or within attached memory in a dynamic window, and the copied data must fit, without truncation, in the origin buffer.

### 12.3.3 Examples for Communication Calls

These examples show the use of the MPI_GET procedure. As all MPI RMA communication procedures are nonblocking, the associated operations must be completed by subsequent calls to synchronization procedures. In the following example, completion is accomplished with the routine MPI_WIN_FENCE, introduced in Section 12.5.

#### Example 12.1.

We show how to implement the generic indirect assignment $A = B(map)$, where $A$, $B$, and $map$ have the same distribution, and $map$ is a permutation. To simplify, we assume a block distribution with equal size blocks.

```fortran
SUBROUTINE MAPVALS(A, B, map, m, comm, p)
```
USE MPI

INTEGER m, map(m), comm, p
REAL A(m), B(m)

INTEGER otype(p), oindex(m), & ! used to construct origin datatypes
type(p), tindex(m), & ! used to construct target datatypes
count(p), total(p), &
disp_int, win, ierr, i, j, k
INTEGER(KIND=MPI_ADDRESS_KIND) lowerbound, size, realextent, disp_aint

! This part does the work that depends on the locations of B.
! Can be reused while this does not change

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, realextent, ierr)
disp_int = realextent
size = m * realextent
CALL MPI_WIN_CREATE(B, size, disp_int, MPI_INFO_NULL, &
comm, win, ierr)

! This part does the work that depends on the value of map and
! the locations of the arrays.
! Can be reused while these do not change

! Compute number of entries to be received from each process

DO i=1,p
  count(i) = 0
END DO

DO i=1,m
  j = map(i)/m+1
  count(j) = count(j)+1
END DO

total(1) = 0
DO i=2,p
  total(i) = total(i-1) + count(i-1)
END DO

DO i=1,p
  count(i) = 0
END DO

! compute origin and target indices of entries.
! entry i at current process is received from location
! k at process (j-1), where map(i) = (j-1)*m + (k-1),
! j = 1..p and k = 1..m

DO i=1,m
  j = map(i)/m+1
  k = MOD(map(i),m)+1
  count(j) = count(j)+1
  oindex(total(j) + count(j)) = i
  tindex(total(j) + count(j)) = k
END DO

! create origin and target datatypes for each get operation
DO i=1,p
Example 12.2. A simpler version can be written that does not require that a datatype be built for the target buffer. One then needs a separate get operation for each entry, as illustrated below. This code is much simpler, but usually much less efficient, for large arrays.

```
SUBROUTINE MAPVALS(A, B, map, m, comm, p)
USE MPI
INTEGER m, map(m), comm, p
REAL A(m), B(m)
INTEGER disp_int, i, j, win, ierr
INTEGER(KIND=MPI_ADDRESS_KIND) lowerbound, size, realextent, disp_aint
CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, realextent, ierr)
disp_int = realextent
size = m * realextent
CALL MPI_WIN_CREATE(B, size, disp_int, MPI_INFO_NULL, &
 comm, win, ierr)
CALL MPI_WIN_FENCE(0, win, ierr)
DO i=1,m
 j = map(i)/m
 disp_aint = MOD(map(i),m)
 CALL MPI_GET(A(i), 1, MPI_REAL, j, disp_aint, 1, MPI_REAL, win, ierr)
END DO
CALL MPI_WIN_FENCE(0, win, ierr)
CALL MPI_WIN_FREE(win, ierr)
RETURN
END
```
12.3.4 Accumulate Functions

It is often useful in a put operation to combine the data moved to the target process with the data that resides at that MPI process, rather than replacing it. This will allow, for example, the accumulation of a sum by having all involved MPI processes add their contributions to the sum variable in the memory of one MPI process. The accumulate functions have slightly different semantics with respect to overlapping data accesses than the put and get functions; see Section 12.7 for details.

Accumulate

**MPI_ACCUMULATE** (origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, op, win)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN origin_addr</td>
<td>initial address of buffer (choice)</td>
</tr>
<tr>
<td>IN origin_count</td>
<td>number of entries in buffer (non-negative integer)</td>
</tr>
<tr>
<td>IN origin_datatype</td>
<td>datatype of each entry (handle)</td>
</tr>
<tr>
<td>IN target_rank</td>
<td>rank of target (non-negative integer)</td>
</tr>
<tr>
<td>IN target_disp</td>
<td>displacement from start of window to beginning of target buffer (non-negative integer)</td>
</tr>
<tr>
<td>IN target_count</td>
<td>number of entries in target buffer (non-negative integer)</td>
</tr>
<tr>
<td>IN target_datatype</td>
<td>datatype of each entry in target buffer (handle)</td>
</tr>
<tr>
<td>IN op</td>
<td>accumulate operator (handle)</td>
</tr>
<tr>
<td>IN win</td>
<td>window object (handle)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_Accumulate(const void *origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)
int MPI_Accumulate_c(const void *origin_addr, MPI_Count origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)
```

Fortran 2008 binding

```fortran
MPI_Accumulate(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, op, win, ierr)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE(*)</td>
<td>DIMENSION(.,), INTENT(IN), ASYNCHRONOUS :: origin_addr</td>
</tr>
<tr>
<td>INTEGER</td>
<td>origin_count, target_rank, target_count</td>
</tr>
<tr>
<td>TYPE(MPI_Datatype)</td>
<td>origin_datatype, target_datatype</td>
</tr>
<tr>
<td>INTEGER(KIND=MPI_ADDRESS_KIND)</td>
<td>target_disp</td>
</tr>
<tr>
<td>TYPE(MPI_Op)</td>
<td>op</td>
</tr>
<tr>
<td>TYPE(MPI_Win)</td>
<td>win</td>
</tr>
</tbody>
</table>
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Accumulate(origin_addr, origin_count, origin_datatype, target_rank,
                target_disp, target_count, target_datatype, op, win, ierror)

Fortran binding
MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
                TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

Accumulate the contents of the origin buffer (as defined by origin_addr, origin_count, and origin_datatype) to the buffer specified by arguments target_count and target_datatype, at offset target_disp, in the target window specified by target_rank and win, using the operator op. This is like MPI_PUT except that data is combined into the target area instead of overwriting it.

Any of the predefined operators for MPI_REDUCE can be used. User-defined operators cannot be used. For example, if op is MPI_SUM, each element of the origin buffer is added to the corresponding element in the target, replacing the former value in the target.

Each datatype argument must be a predefined datatype or a derived datatype, where all basic components are of the same predefined datatype. Both datatype arguments must be constructed from the same predefined datatype. The operator op applies to elements of that predefined type. The parameter target_datatype must not specify overlapping entries, and the target buffer must fit in the target window.

An additional predefined operator, MPI_REPLACE, is defined. It corresponds to the associative function \( f(a, b) = b \); i.e., the current value in the target memory is replaced by the value supplied by the origin.

MPI_REPLACE can be used only in MPI_ACCUMULATE, MPI_RACCUMULATE, MPI_GET_ACCUMULATE, MPI_FETCH_AND_OP, and MPI_RGET_ACCUMULATE, but not in collective reduction operations such as MPI_REDUCE.

Advice to users. MPI_PUT can be considered a special case of MPI_ACCUMULATE with the operator MPI_REPLACE. Note, however, that MPI_PUT and MPI_ACCUMULATE have different constraints on concurrent updates. (End of advice to users.)

Example 12.3. We want to compute \( B(j) = \sum_{\text{map}(i)=j} A(i) \). The arrays A, B, and map are distributed in the same manner. We write the simple version.
SUBROUTINE  SUM(A, B, map, m, comm, p)
USE MPI
INTEGER  m, map(m), comm, p, win, ierr, disp_int, i, j
REAL A(m), B(m)
INTEGER(KIND=MPI_ADDRESS_KIND) lowerbound, size, realextent, disp_aint
CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, realextent, ierr)
size = m * realextent
disp_int = realextent
CALL MPI_WIN_CREATE(B, size, disp_int, MPI_INFO_NULL, &
    comm, win, ierr)
CALL MPI_WIN_FENCE(0, win, ierr)
DO  i=1, m
    j = map(i)/m
    disp_aint = MOD(map(i),m)
    CALL MPI_ACCUMULATE(A(i), 1, MPI_REAL, j, disp_aint, 1, MPI_REAL, &
        MPI_SUM, win, ierr)
END DO
CALL MPI_WIN_FENCE(0, win, ierr)
CALL MPI_WIN_FREE(win, ierr)
RETURN
END

This code is identical to the code in Example 12.2, except that a call to MPI_GET has been replaced by a call to MPI_ACCUMULATE. (Note that, if map is one-to-one, the code computes \(B = A(map^{-1})\), which is the reverse assignment to the one computed in that previous example.) In a similar manner, we can replace in Example 12.1, the call to get by a call to accumulate, thus performing the computation with only one communication between any two MPI processes.

Get Accumulate

It is often useful to have fetch-and-accumulate semantics such that the remote data is returned to the caller before the sent data is accumulated into the remote data. The get and accumulate steps are executed atomically for each basic element in the datatype (see Section 12.7 for details). The predefined operator MPI_REPLACE provides fetch-and-set behavior.

MPI_GET_ACCUMULATE(origin_addr, origin_count, origin_datatype, result_addr,
    result_count, result_datatype, target_rank, target_disp, target_count,
    target_datatype, op, win)
IN  origin_addr initial address of buffer (choice)
IN  origin_count number of entries in origin buffer (non-negative integer)
IN  origin_datatype datatype of each entry in origin buffer (handle)
OUT result_addr initial address of result buffer (choice)
IN result_count
number of entries in result buffer (non-negative integer)

IN result_datatype
datatype of each entry in result buffer (handle)

IN target_rank
rank of target (non-negative integer)

IN target_disp
displacement from start of window to beginning of target buffer (non-negative integer)

IN target_count
number of entries in target buffer (non-negative integer)

IN target_datatype
datatype of each entry in target buffer (handle)

IN op
accumulate operator (handle)

IN win
window object (handle)

C binding
int MPI_Get_accumulate(const void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, void *result_addr,
int result_count, MPI_Datatype result_datatype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Get_accumulate_c(const void *origin_addr, MPI_Count origin_count,
MPI_Datatype origin_datatype, void *result_addr,
MPI_Count result_count, MPI_Datatype result_datatype,
int target_rank, MPI_Aint target_disp, MPI_Count target_count,
MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

Fortran 2008 binding
MPI_Get_accumulate(origin_addr, origin_count, origin_datatype, result_addr,
result_count, result_datatype, target_rank, target_count, target_disp,
target_count, target_datatype, op, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
INTEGER, INTENT(IN) :: origin_count, result_count, target_rank,
target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, result_datatype,
target_datatype

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_accumulate(origin_addr, origin_count, origin_datatype, result_addr,
result_count, result_datatype, target_rank, target_count, target_disp,
target_count, target_datatype, op, win, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: origin_count, result_count,
target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, result_datatype, target_datatype

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr

INTEGER, INTENT(IN) :: target_rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_GET_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_ADDR, RESULT_COUNT, RESULT_DATATYPE, TARGET_RANK, TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

.setType ORIGIN_ADDR(*), RESULT_ADDR(*)

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_COUNT, RESULT_DATATYPE, TARGET_RANK, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

Accumulate origin_count elements of type origin_datatype from the origin buffer (origin_addr) to the buffer at offset target_disp, in the target window specified by target_rank and win, using the operator op and return in the result buffer result_addr the content of the target buffer before the accumulation, specified by target_disp, target_count, and target_datatype. The data transferred from origin to target must fit, without truncation, in the target buffer. Likewise, the data copied from target to origin must fit, without truncation, in the result buffer.

The origin and result buffers (origin_addr and result_addr) must be disjoint. Each datatype argument must be a predefined datatype or a derived datatype where all basic components are of the same predefined datatype. All datatype arguments must be constructed from the same predefined datatype. The operator op applies to elements of that predefined type. target_datatype must not specify overlapping entries, and the target buffer must fit in the target window or in attached memory in a dynamic window. The operation is executed atomically for each basic datatype; see Section 12.7 for details.

Any of the predefined operators for MPI_REDUCE, as well as MPI_NO_OP or MPI_REPLACE can be specified as op. User-defined functions cannot be used. An additional predefined operator, MPI_NO_OP, is defined. It corresponds to the associative function \( f(a, b) = a \); i.e., the current value in the target memory is returned in the result buffer at the origin and the target buffer is not updated. If MPI_NO_OP is specified as the operator, the origin_addr, origin_count, and origin_datatype arguments are ignored. MPI_NO_OP can be used only in MPI_GET_ACCUMULATE, MPI_RGET_ACCUMULATE, and MPI_FETCH_AND_OP. MPI_NO_OP cannot be used in MPI_ACCUMULATE, MPI_RACCUMULATE, or collective reduction operations, such as MPI_REDUCE and others.

Advice to users. MPI_GET is similar to MPI_GET_ACCUMULATE, with the operator MPI_NO_OP. Note, however, that MPI_GET and MPI_GET_ACCUMULATE have different constraints on concurrent updates. (End of advice to users.)

Fetch and Op

The generic functionality of MPI_GET_ACCUMULATE might limit the performance of fetch-and-increment or fetch-and-add calls that might be supported by special hardware oper-
MPI_FETCH_AND_OP thus allows for a fast implementation of a commonly used subset of the functionality of MPI_GET_ACCUMULATE.

```
MPI_FETCH_AND_OP(origin_addr, result_addr, datatype, target_rank, target Disp, op, win)
```

- **IN** origin_addr: initial address of buffer (choice)
- **OUT** result_addr: initial address of result buffer (choice)
- **IN** datatype: datatype of the entry in origin, result, and target buffers (handle)
- **IN** target_rank: rank of target (non-negative integer)
- **IN** target Disp: displacement from start of window to beginning of target buffer (non-negative integer)
- **IN** op: accumulate operator (handle)
- **IN** win: window object (handle)

**C binding**
```
int MPI_Fetch_and_op(const void *origin_addr, void *result_addr,
 MPI_Datatype datatype, int target_rank, MPI_Aint target_disp,
 MPI_Op op, MPI_Win win)
```

**Fortran 2008 binding**
```
MPI_Fetch_and_op(origin_addr, result_addr, datatype, target_rank, target DISP,
 op, win, ierror)
```

- TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
- TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr
- TYPE(MPI_Datatype), INTENT(IN) :: datatype
- INTEGER, INTENT(IN) :: target_rank
- INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target Disp
- TYPE(MPI_Op), INTENT(IN) :: op
- TYPE(MPI_Win), INTENT(IN) :: win
- INTEGER, OPTIONAL, INTENT(OUT) :: ierror

**Fortran binding**
```
MPI_FETCH_AND_OP(ORIGIN_ADDR, RESULT_ADDR, DATATYPE, TARGET_RANK, TARGET_DISP,
 OP, WIN, IERROR)
```

- <type> ORIGIN_ADDR(*), RESULT_ADDR(*)
- INTEGER DATATYPE, TARGET_RANK, OP, WIN, IERROR
- INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

Accumulate one element of type datatype from the origin buffer origin_addr to the buffer at offset targetDisp, in the target window specified by target_rank and win, using the operator op and return in the result buffer result_addr the content of the target buffer before the accumulation.

The origin and result buffers (origin_addr and result_addr) must be disjoint. Any of the predefined operators for MPI_REDUCE, as well as MPI_NO_OP or MPI_REPLACE, can be specified as op; user-defined functions cannot be used. The datatype argument must be a predefined datatype. The operation is executed atomically.
Another useful operation is an atomic compare and swap where the value at the origin is compared to the value at the target, which is atomically replaced by a third value only if the values at origin and target are equal.

**MPI_COMPARE_AND_SWAP(origin_addr, compare_addr, result_addr, datatype, target_rank, target_disp, win)**

- **IN** origin_addr: initial address of buffer (choice)
- **IN** compare_addr: initial address of compare buffer (choice)
- **OUT** result_addr: initial address of result buffer (choice)
- **IN** datatype: datatype of the element in all buffers (handle)
- **IN** target_rank: rank of target (non-negative integer)
- **IN** target_disp: displacement from start of window to beginning of target buffer (non-negative integer)
- **IN** win: window object (handle)

**C binding**

```c
int MPI_Compare_and_swap(const void *origin_addr, const void *compare_addr,
 void *result_addr, MPI_Datatype datatype, int target_rank,
 MPI_Aint target_disp, MPI_Win win)
```

**Fortran 2008 binding**

```fortran
MPI_Compare_and_swap(origin_addr, compare_addr, result_addr, datatype,
 target_rank, target_disp, win, ierror)
```

```fortran
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr,
 compare_addr
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: target_rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPICOMPARE_AND_SWAP(ORIGIN_ADDR, COMPARE_ADDR, RESULT_ADDR, DATATYPE,
 TARGET_RANK, TARGET_DISP, WIN, IERROR)
```

```fortran
<type> ORIGIN_ADDR(*), COMPARE_ADDR(*), RESULT_ADDR(*)
 INTEGER DATATYPE, TARGET_RANK, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP
```

This function compares one element of type `datatype` in the compare buffer `compare_addr` with the buffer at offset `target_disp` in the target window specified by `target_rank` and `win` and replaces the value at the target with the value in the origin buffer `origin_addr` if the compare buffer and the target buffer are identical. The original value at the target is returned in the buffer `result_addr`. The parameter `datatype` must belong to one of the following categories of predefined datatypes: C integer, Fortran integer, Logical,
Multi-language types, or Byte as specified in Section 6.9.2. The origin and result buffers (origin_addr and result_addr) must be disjoint.

12.3.5 Request-based RMA Communication Operations

Request-based RMA communication operations allow the user to associate a request handle with the RMA operations and test or wait for the completion of these requests using the functions described in Section 3.7.3. Request-based RMA operations are only valid within a passive target epoch (see Section 12.5).

Upon returning from a completion call in which an RMA operation completes, all fields of the status object, if any, and the results of status query functions (e.g., MPI_GET_COUNT) are undefined with the exception of MPI_ERROR if appropriate (see Section 3.2.5). It is valid to mix different request types (e.g., any combination of RMA requests, collective requests, I/O requests, generalized requests, or point-to-point requests) in functions that enable multiple completions (e.g., MPI_WAITALL). It is erroneous to call MPI_REQUEST_FREE or MPI.Cancel for a request associated with an RMA operation. RMA requests are not persistent.

The closing of the epoch, or explicit bulk synchronization using MPI.Win_FLUSH, MPI.Win_FLUSH_ALL, MPI.Win_FLUSH_LOCAL, or MPI.Win_FLUSH_LOCAL_ALL, also indicates completion of request-based RMA operations on the specified window. However, users must still free the request by testing, waiting, or calling MPI.REQUEST_FREE on the request handle to allow the MPI implementation to release any resources associated with these requests.

MPI_RPUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, win, request)

IN origin_addr initial address of origin buffer (choice)
IN origin_count number of entries in origin buffer (non-negative integer)
IN origin_datatype datatype of each entry in origin buffer (handle)
IN target_rank rank of target (non-negative integer)
IN target_disp displacement from start of window to target buffer (non-negative integer)
IN target_count number of entries in target buffer (non-negative integer)
IN target_datatype datatype of each entry in target buffer (handle)
IN win window used for communication (handle)
OUT request RMA request (handle)

C binding
int MPI_Rput(const void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Win win, MPI_Request *request)
int MPI_Rput_c(const void *origin_addr, MPI_Count origin_count,
               MPI_Datatype origin_datatype, int target_rank,
               MPI_Aint target_disp, MPI_Count target_count,
               MPI_Datatype target_datatype, MPI_Win win, MPI_Request *request)

Fortran 2008 binding
MPI_Rput(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
         target_count, target_datatype, win, request, ierror)

Fortran binding
MPI_RPUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_DISP,
         TARGET_COUNT, TARGET_DATATYPE, WIN, REQUEST, IERROR)

MPI_RPUT is similar to MPI_PUT (Section 12.3.1), except that it allocates a communication request object and associates it with the request handle (the argument request). The completion of the operation at the origin (i.e., after the corresponding test or wait) indicates that the sender is now free to update the locations in the origin buffer. It does not indicate that the data is available at the target window. If remote completion is required, MPI_WIN_FLUSH, MPI_WIN_FLUSH_ALL, MPI_WIN_UNLOCK, or MPI_WIN_UNLOCK_ALL can be used.

MPI_RGET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
         target_datatype, win, request)

OUT origin_addr initial address of origin buffer (choice)
IN origin_count number of entries in origin buffer (non-negative integer)
IN origin_datatype  datatype of each entry in origin buffer (handle)
IN target_rank  rank of target (non-negative integer)
IN target_disp  displacement from window start to the beginning of the target buffer (non-negative integer)
IN target_count  number of entries in target buffer (non-negative integer)
IN target_datatype  datatype of each entry in target buffer (handle)
IN win  window used for communication (handle)
OUT request  RMA request (handle)

C binding

```c
int MPI_Rget(void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
 int target_rank, MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Win win, MPI_Request *request)
int MPI_Rget_c(void *origin_addr, MPI_Count origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target Disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Win win, MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Rget(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
 target_count, target_datatype, win, request, ierror)
MPI_Rget(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
 target_count, target_datatype, win, request, ierror) !(_c)
```

Fortran binding

```fortran
MPI_RGET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_DISP,
 TARGET_COUNT, TARGET_DATATYPE, WIN, REQUEST, IERROR)
```

<int type> ORIGIN_ADDR(*)
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
       TARGET_DATATYPE, WIN, REQUEST, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

MPI_RGET is similar to MPI_GET (Section 12.3.2), except that it allocates a communication request object and associates it with the request handle (the argument request) that can be used to wait or test for completion of the operation at the origin, which indicates that the data is available in the origin buffer. If origin_addr points to memory attached to a window, then the data becomes available in the private copy of this window.

MPI_RACCUMULATE(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, op, win, request)

IN origin_addr initial address of buffer (choice)
IN origin_count number of entries in buffer (non-negative integer)
IN origin_datatype datatype of each entry in origin buffer (handle)
IN target_rank rank of target (non-negative integer)
IN target_disp displacement from start of window to beginning of target buffer (non-negative integer)
IN target_count number of entries in target buffer (non-negative integer)
IN target_datatype datatype of each entry in target buffer (handle)
IN op accumulate operator (handle)
IN win window object (handle)
OUT request RMA request (handle)

C binding
int MPI_Raccumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Op op, MPI_Win win, MPI_Request *request)

int MPI_Raccumulate_c(const void *origin_addr, MPI_Count origin_count, MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp, MPI_Count target_count, MPI_Datatype target_datatype, MPI_Op op, MPI_Win win, MPI_Request *request)

Fortran 2008 binding
MPI_Raccumulate(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, op, win, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
INTEGER, INTENT(IN) :: origin_count, target_rank, target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Op), INTENT(IN) :: op
Chapter 12 One-Sided Communications

584

TYPE(MPI_Win), INTENT(IN) :: win
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Raccumulate(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, op, win, request, ierror) !(_c)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: origin_count, target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
INTEGER, INTENT(IN) :: target_rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Win), INTENT(IN) :: win
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_RACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST, IERROR)

<br />&lt;type&gt; ORIGIN_ADDR(*)
INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

MPI_RACCUMULATE is similar to MPI_ACCUMULATE (Section 12.3.4), except that it allocates a communication request object and associates it with the request handle (the argument request) that can be used to wait or test for completion. The completion of the operation at the origin (i.e., after the corresponding test or wait) indicates that the origin buffer is free to be updated. It does not indicate that the operation has completed at the target window.

MPI_RGET_ACCUMULATE(origin_addr, origin_count, origin_datatype, result_addr, result_count, result_datatype, target_rank, target_disp, target_count, target_datatype, op, win, request)

IN origin_addr initial address of buffer (choice)
IN origin_count number of entries in origin buffer (non-negative integer)
IN origin_datatype datatype of each entry in origin buffer (handle)
OUT result_addr initial address of result buffer (choice)
IN result_count number of entries in result buffer (non-negative integer)
IN result_datatype datatype of entries in result buffer (handle)
IN target_rank rank of target (non-negative integer)
### 12.3 Communication Calls

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN target_disp</td>
<td>displacement from start of window to beginning of target buffer (non-negative integer)</td>
</tr>
<tr>
<td>IN target_count</td>
<td>number of entries in target buffer (non-negative integer)</td>
</tr>
<tr>
<td>IN target_datatype</td>
<td>datatype of each entry in target buffer (handle)</td>
</tr>
<tr>
<td>IN op</td>
<td>accumulate operator (handle)</td>
</tr>
<tr>
<td>IN win</td>
<td>window object (handle)</td>
</tr>
<tr>
<td>OUT request</td>
<td>RMA request (handle)</td>
</tr>
</tbody>
</table>

**C binding**

```c
#include <mpi.h>

int MPI_Rget_accumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype, void *result_addr, int result_count, MPI_Datatype result_datatype, int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Op op, MPI_Win win, MPI_Request *request)
```

**Fortran 2008 binding**

```fortran
MPI_Rget_accumulate(origin_addr, origin_count, origin_datatype, result_addr, result_count, result_datatype, target_rank, target_disp, target_datatype, target_count, request, ierror)
```

**Type declarations**

```fortran
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
INTEGER, INTENT(IN) :: origin_count, result_count, target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, result_datatype, target_datatype
```

**Type declarations (continued)**

```fortran
integer(kind=mip_address_kind), intent(in) :: target_disp
TYPE(MPI_Op), intent(in) :: op
TYPE(MPI_Win), intent(in) :: win
TYPE(MPI_Request), intent(out) :: request
integer, optional, intent(out) :: ierror
```
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr
INTEGER, INTENT(IN) :: target_rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Win), INTENT(IN) :: win
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_RGET_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_ADDR,
RESULT_COUNT, RESULT_DATATYPE, TARGET_ADDR, TARGET_COUNT, TARGET_DISP,
TARGET_RANK, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST, IERROR)

MPI_RGET_ACCUMULATE is similar to MPI_GET_ACCUMULATE (Section 12.3.4), except that it allocates a communication request object and associates it with the request handle (the argument request) that can be used to wait or test for completion. The completion of the operation at the origin (i.e., after the corresponding test or wait) indicates that the data is available in the result buffer and the origin buffer is free to be updated. It does not indicate that the operation has been completed at the target window.

12.4 Memory Model

The memory semantics of RMA are best understood by using the concept of public and private window copies. We assume that systems have a public memory region that is addressable by all MPI processes (e.g., the shared memory in shared memory machines or the exposed main memory in distributed memory machines). In addition, most machines have fast private buffers (e.g., transparent caches or explicit communication buffers) local to each MPI process where copies of data elements from the main memory can be stored for faster access. Such buffers are either coherent, i.e., all updates to main memory are reflected in all private copies consistently, or noncoherent, i.e., conflicting accesses to main memory need to be synchronized and updated in all private copies explicitly. Coherent systems allow direct updates to remote memory without any participation of the remote side. Noncoherent systems, however, need to call RMA functions in order to reflect updates to the public window in their private memory. Thus, in coherent memory, the public and the private window are identical while they remain logically separate in the noncoherent case. MPI thus differentiates between two memory models called RMA unified, if public and private window are logically identical, and RMA separate, otherwise.

In the RMA separate model, there is only one instance of each variable in MPI process memory, but a distinct public copy of the variable for each window that contains it. A load accesses the instance in MPI process memory (this includes MPI sends). A local store accesses and updates the instance in MPI process memory (this includes MPI receives), but the update may affect other public copies of the same locations. A get on a window accesses the public copy of that window. A put or accumulate on a window accesses and updates
the public copy of that window, but the update may affect the private copy of the same locations in MPI process memory, and public copies of other overlapping windows. This is illustrated in Figure 12.1.

In the RMA unified model, public and private copies are identical and updates via put or accumulate operations are eventually observed by load accesses without additional RMA procedure calls. A store access to a window is eventually visible to remote get or accumulate operations without additional RMA procedure calls. These stronger semantics of the RMA unified model allow the user to omit some synchronization calls and potentially improve performance.

Advice to users. If accesses in the RMA unified model are not synchronized (with locks or flushes, see Section 12.5.3), load/store accesses might observe changes to the memory while they are in progress. The order in which data is written is not specified unless further synchronization is used. This might lead to inconsistent views on memory and programs that assume that a transfer is complete by only checking parts of the message are erroneous. (End of advice to users.)

The memory model for a particular RMA window can be determined by accessing the attribute MPI_WIN_MODEL. If the memory model is the unified model, the value of this attribute is MPI_WIN_UNIFIED; otherwise, the value is MPI_WIN_SEPARATE.

12.5 Synchronization Calls

RMA communications fall in two categories:

active target communication, where data is moved from the memory of one MPI process to the memory of another, and both are explicitly involved in the communication. This communication pattern is similar to message passing, except that all the data transfer
arguments are provided by the origin process, and the target process only participates in the synchronization.

**passive target communication,** where data is moved from the memory of one MPI process to the memory of another, and only the origin process is explicitly involved in the transfer. Thus, two origin processes may communicate by accessing the same location in a target window. The MPI process that owns the target window may be distinct from the two communicating MPI processes, in which case it does not participate explicitly in the communication. This communication paradigm is closest to a shared memory model, where shared data can be accessed by all MPI processes, irrespective of location.

RMA communication calls with argument `win` must occur at an origin process only within an **access epoch** for `win`. Such an epoch is opened with an RMA synchronization call on `win`; it proceeds with zero or more RMA communication calls (e.g., `MPI_PUT`, `MPI_GET` or `MPI_ACCUMULATE`) on `win`. This allows users to amortize one synchronization with multiple data transfers and provide implementors more flexibility in the implementation of RMA operations.

Distinct access epochs for `win` at the same MPI process must be disjoint. On the other hand, epochs pertaining to different `win` arguments may overlap. Load/store accesses or other MPI calls may also occur during an epoch.

In active target communication, a target window can be accessed by RMA operations only within an **exposure epoch**. Such an epoch is opened and closed by RMA synchronization calls executed by the target process. Distinct exposure epochs at an MPI process on the same window must be disjoint, but such an exposure epoch may overlap with exposure epochs on other windows or with access epochs for the same or other window arguments. There is a one-to-one matching between access epochs at origin processes and exposure epochs on target processes: RMA operations issued by an origin process for a target window will access that target window during the same exposure epoch if and only if they were issued during the same access epoch.

In passive target communication the target process does not execute RMA synchronization calls, and there is no concept of an exposure epoch.

MPI provides three synchronization mechanisms:

1. The **MPI_WIN_FENCE** collective synchronization call supports a simple synchronization pattern that is often used in parallel computations: namely a loosely-synchronous model, where global computation phases alternate with global communication phases. This mechanism is most useful for loosely synchronous algorithms where the graph of communicating MPI processes changes very frequently, or where each MPI process communicates with many others.

   This call is used for active target communication. An access epoch at an origin process or an exposure epoch at a target process is opened and closed by calls to **MPI_WIN_FENCE**. An origin process can access windows at all target processes in the group of `win` during such an access epoch, and the local window can be accessed by all MPI processes in the group of `win` during such an exposure epoch.

2. The four functions **MPI_WIN_START**, **MPI_WIN_COMPLETE**, **MPI_WIN_POST**, and **MPI_WIN_WAIT** can be used to restrict synchronization to the minimum: only pairs
of communicating MPI processes synchronize, and they do so only when a synchronization is needed to order RMA accesses to a window correctly with respect to local accesses to that same window. This mechanism may be more efficient when each MPI process communicates with few (logical) neighbors, and the communication graph is fixed or changes infrequently.

These calls are used for active target communication. An access epoch is opened at the origin process with a call to \texttt{MPI\_WIN\_START} and is closed by a call to \texttt{MPI\_WIN\_COMPLETE}. The start call has a group argument that specifies the group of target processes for that epoch. An exposure epoch is opened at the target process by a call to \texttt{MPI\_WIN\_POST} and is closed by a call to \texttt{MPI\_WIN\_WAIT}. The post call has a group argument that specifies the set of origin processes for that epoch.

3. Finally, shared lock access is provided by the functions \texttt{MPI\_WIN\_LOCK}, \texttt{MPI\_WIN\_LOCK\_ALL}, \texttt{MPI\_WIN\_UNLOCK}, and \texttt{MPI\_WIN\_UNLOCK\_ALL}. \texttt{MPI\_WIN\_LOCK} and \texttt{MPI\_WIN\_UNLOCK} also provide exclusive lock capability. Lock synchronization is useful for MPI applications that emulate a shared memory model via MPI calls; e.g., in a “bulletin board” model, where MPI processes can, at random times, access or update different parts of the bulletin board.

These four calls provide passive target communication. An access epoch is opened by a call to \texttt{MPI\_WIN\_LOCK} or \texttt{MPI\_WIN\_LOCK\_ALL} and closed by a call to \texttt{MPI\_WIN\_UNLOCK} or \texttt{MPI\_WIN\_UNLOCK\_ALL}, respectively.

Figure 12.2 illustrates the general synchronization pattern for active target communication. The synchronization between post and start ensures that the put operation of the origin process does not start until the target process exposes the window (with the post call); the target process will expose the window only after preceding local accesses to the window have completed. The synchronization between \texttt{complete} and \texttt{wait} ensures that the put operation of the origin process completes at the origin and the target before the window is unexposed (with the \texttt{wait} call). The target process will execute subsequent local accesses to the target window only after the \texttt{wait} returned.

Figure 12.2 shows operations occurring in the natural temporal order implied by the synchronizations: the \texttt{post} occurs before the matching \texttt{start}, and \texttt{complete} occurs before the matching \texttt{wait}. However, such strong synchronization is more than needed for correct ordering of window accesses. The semantics of MPI calls allow weak synchronization, as illustrated in Figure 12.3. The access to the target window is delayed until the window is exposed, after the \texttt{post}. However the \texttt{start} may return before the exposure epoch opens at the target. Similarly, the \texttt{put} and \texttt{complete} calls may also return before the exposure epoch opens at the target, if put data is buffered by the implementation. The synchronization calls correctly order window accesses, but do not necessarily synchronize other operations. This weaker synchronization semantic allows for more efficient implementations.

Figure 12.4 illustrates the general synchronization pattern for passive target communication. The first origin process communicates data to the second origin process, through the memory of the target process; the target process is not explicitly involved in the communication. The \texttt{lock} and \texttt{unlock} calls ensure that the two RMA accesses do not occur concurrently. However, they do not ensure that the put by origin 1 will precede the \texttt{get} by origin 2.

\textit{Rationale.} RMA does not define fine-grained mutexes in memory (only logical coarse-grained window locks). MPI provides the primitives (compare and swap, accumulate,
Figure 12.2: Active target communication. Dashed arrows represent synchronizations (ordering of events).

send/receive, etc.) needed to implement high-level synchronization operations. (End of rationale.)

12.5.1 Fence

MPI_WIN_FENCE(assert, win)

\begin{verbatim}
IN assert program assertion (integer)
IN win window object (handle)
\end{verbatim}

C binding

int MPI_Win_fence(int assert, MPI_Win win)

Fortran 2008 binding

MPI_Win_fence(assert, win, ierror)

\begin{verbatim}
INTEGER, INTENT(IN) :: assert
TYPE(MPI_Win), INTENT(IN) :: win
\end{verbatim}
Figure 12.3: Active target communication, with weak synchronization. Dashed arrows represent synchronizations (ordering of events).

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_WIN_FENCE(ASSERT, WIN, IERROR)
    INTEGER ASSERT, WIN, IERROR

MPI_WIN_FENCE synchronizes RMA communication operations on win. The procedure is collective over the group of win. All RMA operations on win originating at a given origin process and started before the fence call will complete at that MPI process before the fence call returns. They will be completed at their target before the fence call returns at the target. Store accesses to shared-memory of win will become visible before the fence call returns at the target. RMA operations on win started by an origin process after the fence call returns will access their target window only after MPI_WIN_FENCE has been called by the target process.

The call closes an RMA access epoch if it was preceded by another fence call and the local MPI process initiated any RMA communication operations on win between these two calls. The call closes an RMA exposure epoch if it was preceded by another fence call and the local window was the target of RMA accesses between these two calls. The call opens an RMA access epoch if it is followed by another fence call and by RMA communication calls issued between these two fence calls. The call opens an exposure epoch if it is followed by another fence call and the local window is the target of RMA accesses between these two fence calls. Thus, the fence call is equivalent to calls to a subset of post, start, complete,
wait.

A call to \texttt{MPI\_WIN\_FENCE} is usually synchronizing. However, a call to \texttt{MPI\_WIN\_FENCE} that is known not to close any epoch (in particular, a call with the \texttt{MPI\_MODE\_NOPRECEDE} \texttt{assert} set) is not necessarily synchronizing.

The \texttt{assert} argument is used to provide assertions on the context of the call that may be used for various optimizations. This is described in Section 12.5.5. A value of \texttt{assert} = 0 is always valid.

\textit{Advice to users}. Calls to \texttt{MPI\_WIN\_FENCE} should both precede and follow calls to RMA communication procedures that are synchronized with fence calls. \textit{(End of advice to users.)}
12.5.2 General Active Target Synchronization

MPI_WIN_START(group, assert, win)

INI group group of target processes (handle)
INI assert program assertion (integer)
INI win window object (handle)

C binding
int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

Fortran 2008 binding
MPI_Win_start(group, assert, win, ierror)

  TYPE(MPI_Group), INTENT(IN) :: group
  INTEGER, INTENT(IN) :: assert
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

Opens an RMA access epoch for win. RMA calls issued on win during this epoch must access only windows at MPI processes in group. Each MPI process in group must issue a matching call to MPI_WIN_POST. RMA accesses to each target window will be delayed, if necessary, until the target process executed the matching call to MPI_WIN_POST. MPI_WIN_START is allowed to delay its return until the corresponding calls to MPI_WIN_POST have occurred, but is not required to.

The assert argument is used to provide assertions on the context of the call that may be used for various optimizations. This is described in Section 12.5.5. A value of assert = 0 is always valid.

MPI_WIN_COMPLETE(win)

INI win window object (handle)

C binding
int MPI_Win_complete(MPI_Win win)

Fortran 2008 binding
MPI_Win_complete(win, ierror)

  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

Closes an RMA access epoch on win opened by a call to MPI_WIN_START. All RMA communication operations initiated on win during this epoch will have completed at the
origin when the call returns. All updates to shared memory in \textit{win} through load/store accesses executed during this epoch will be visible at the target when the call returns. \texttt{MPI\_WIN\_COMPLETE} enforces completion of preceding RMA operations and visibility of load/store accesses at the origin, but not at the target. A put or accumulate operation may not have completed at the target when it has completed at the origin.

Consider the sequence of calls in the example below.

\begin{example}
\textbf{Example 12.4.} Use of \texttt{MPI\_WIN\_START} and \texttt{MPI\_WIN\_COMPLETE}.
\begin{verbatim}
MPI_Win_start(group, flag, win);
MPI_Put(..., win);
MPI_Win_complete(win);
\end{verbatim}

The call to \texttt{MPI\_WIN\_COMPLETE} does not return until the put operation has completed at the origin; and the target window will be accessed by the put operation only after the call to \texttt{MPI\_WIN\_START} has matched a call to \texttt{MPI\_WIN\_POST} by the target process.
\end{example}

\textit{Advice to implementors.} The semantics described above still leave much choice to implementors. The return from the call to \texttt{MPI\_WIN\_START} can block until the matching call to \texttt{MPI\_WIN\_POST} occurs at all target processes. One can also have implementations where the call to \texttt{MPI\_WIN\_START} returns immediately, but the call to \texttt{MPI\_WIN\_COMPLETE} delays its return until the call to \texttt{MPI\_WIN\_POST} occurred; or implementations where all three calls can complete before any target process has called \texttt{MPI\_WIN\_POST}—the data put must be buffered, in this last case, so as to allow the put to complete at the origin ahead of its completion at the target. However, once the call to \texttt{MPI\_WIN\_POST} is issued, the sequence above must complete, without further dependencies. (\textit{End of advice to implementors}.)

\textit{Advice to users.} In order to ensure a portable deadlock free program, users must assume that \texttt{MPI\_WIN\_START} may delay its return until the corresponding call to \texttt{MPI\_WIN\_POST} has occurred. (\textit{End of advice to users}.)

\begin{verbatim}
MPI\_WIN\_POST(group, assert, win)
\end{verbatim}

\begin{verbatim}
IN group group of origin processes (handle)
IN assert program assertion (integer)
IN win window object (handle)
\end{verbatim}

\textbf{C binding}
\begin{verbatim}
int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)
\end{verbatim}

\textbf{Fortran 2008 binding}
\begin{verbatim}
MPI_Win_post(group, assert, win, ierror)
\end{verbatim}

\begin{verbatim}
  TYPE(MPI_Group), INTENT(IN) :: group
  INTEGER, INTENT(IN) :: assert
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}
\begin{verbatim}
MPI\_WIN\_POST(GROUP, ASSERT, WIN, IERROR)
\end{verbatim}
Figure 12.5: Active target communication. Dashed arrows represent synchronizations and solid arrows represent data transfer.

\[
\text{INTEGER GROUP, ASSERT, WIN, IERROR}
\]

Opens an RMA exposure epoch for the local window associated with \texttt{win}. Only MPI processes in \texttt{group} may access the window with RMA calls on \texttt{win} during this epoch. Each MPI process in \texttt{group} must issue a matching call to \texttt{MPI\_WIN\_START}. \texttt{MPI\_WIN\_POST} is a local procedure.

\[
\text{MPI\_WIN\_WAIT}(\text{win})
\]

\begin{verbatim}
IN win window object (handle)
\end{verbatim}

\textbf{C binding}

\begin{verbatim}
int MPI_Win_wait(MPI_Win win)
\end{verbatim}

\textbf{Fortran 2008 binding}

\begin{verbatim}
MPI_Win_wait(win, ierror)
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}

\begin{verbatim}
MPI\_WIN\_WAIT(WIN, IERROR)
  INTEGER WIN, IERROR
\end{verbatim}

Closes an RMA exposure epoch opened by a call to \texttt{MPI\_WIN\_POST} on \texttt{win}. This call matches calls to \texttt{MPI\_WIN\_COMPLETE} on \texttt{win} issued by each of the origin processes that were granted access to the window during this epoch. The call to \texttt{MPI\_WIN\_WAIT} will return only after all matching calls to \texttt{MPI\_WIN\_COMPLETE} have occurred. This guarantees that all these origin processes have completed their RMA operations and shared-memory load/store accesses have become visible on the local window. When the call returns, all these RMA accesses will have completed at the target window.

Figure 12.5 illustrates the use of these four functions. Process 0 puts data in the windows of processes 1 and 2 and process 3 puts data in the window of process 2. Each start call lists the ranks of the MPI processes whose windows will be accessed; each post call...
lists the ranks of the MPI processes that access the local window. The figure illustrates a possible timing for the events, assuming strong synchronization; in a weak synchronization, the start, put or complete calls may occur ahead of the matching post calls.

```c
MPI_WIN_TEST(win, flag)
```

- **IN** win: window object (handle)
- **OUT** flag: success flag (logical)

**C binding**

```c
int MPI_Win_test(MPI_Win win, int *flag)
```

**Fortran 2008 binding**

```fortran
MPI_Win_test(win, flag, ierror)
```

- **TYPE(MPI_Win), INTENT(IN)** :: win
- **LOGICAL, INTENT(OUT)** :: flag
- **INTEGER, OPTIONAL, INTENT(OUT)** :: ierror

**Fortran binding**

```fortran
MPI_WIN_TEST(WIN, FLAG, IERROR)
```

- **INTEGER WIN, IERROR**
- **LOGICAL FLAG**

`MPI_WIN_TEST` is a local procedure. Repeated calls to `MPI_WIN_TEST` with the same `win` argument will eventually return `flag = true` once all accesses to the local window by the group to which it was exposed by the corresponding call to `MPI_WIN_POST` have been completed as indicated by matching `MPI_WIN_COMPLETE` calls, and `flag = false` otherwise. In the former case `MPI_WIN_WAIT` would have returned immediately. The effect of return of `MPI_WIN_TEST` with `flag = true` is the same as the effect of a return of `MPI_WIN_WAIT`. If `flag = false` is returned, then the call has no visible effect.

`MPI_WIN_TEST` should be called only where `MPI_WIN_WAIT` can be called. Once the call has returned `flag = true`, it must not be called again, until the window is posted again.

Assume that window `win` is associated with a “hidden” communicator `wincomm`, used for communication by the MPI processes in the group of `win`. The rules for matching of post and start calls and for matching complete and wait calls can be derived from the rules for matching sends and receives, by considering the following (partial) model implementation.

**`MPI_WIN_POST(group,0,win)`** initiates a nonblocking send with tag `tag0` to each MPI process in `group`, using `wincomm`.

**`MPI_WIN_START(group,0,win)`** initiates a nonblocking receive with tag `tag0` from each process in `group`, using `wincomm`. An RMA access to a target process is delayed until the receive from that MPI process is completed.

**`MPI_WIN_COMPLETE(win)`** initiates a nonblocking send with tag `tag1` to each MPI process in the group of the preceding start call.

**`MPI_WIN_WAIT(win)`** initiates a nonblocking receive with tag `tag1` from each MPI process in the group of the preceding post call. Wait for the completion of all receives.
No races can occur in a correct program: each of the sends matches a unique receive, and vice versa.

Rationale. The design for general active target synchronization requires the user to provide complete information on the communication pattern, at each end of a communication link: each origin specifies a list of targets, and each target specifies a list of origins. This provides maximum flexibility (hence, efficiency) for the implementor: each synchronization can be initiated by either side, since each “knows” the identity of the other. This also provides maximum protection from possible races. On the other hand, the design requires more information than RMA needs: in general, it is sufficient for the origin to know the rank of the target, but not vice versa. Users that want more “anonymous” communication will be required to use the fence or lock mechanisms. (End of rationale.)

Advice to users. Assume a communication pattern that is represented by a directed graph $G = (V, E)$, where $V = \{0, \ldots, n - 1\}$ and $ij \in E$ if origin process $i$ accesses the window at target process $j$. Then each MPI process $i$ issues a call to

\begin{verbatim}
MPI_WIN_POST(ingroup$_i$, ...), followed by a call to
MPI_WIN_START(outgroup$_i$, ...), where outgroup$_i = \{j : ij \in E\}$ and ingroup$_i = \{j : ji \in E\}$. A call is a noop, and can be skipped, if the group argument is empty. After the communications calls, each MPI process that issued a start will issue a complete. Finally, each MPI process that issued a post will issue a wait.
\end{verbatim}

Note that each MPI process may call with a group argument that has different members. (End of advice to users.)

12.5.3 Lock

Locks are used to protect accesses to the locked target window effected by RMA calls issued between the lock and unlock calls, and to protect load/store accesses to a locked local or shared memory window executed between the lock and unlock calls. Accesses that are protected by an exclusive lock (acquired using MPI_LOCK_EXCLUSIVE) will not be concurrent at the window site with other accesses to the same window that are lock protected. Accesses that are protected by a shared lock (acquired using MPI_LOCK_SHARED) will not be concurrent at the window site with accesses protected by an exclusive lock to the same window.

\begin{verbatim}
MPI_WIN_LOCK(lock_type, rank, assert, win)
\end{verbatim}

IN lock_type	either MPI_LOCK_EXCLUSIVE or \n	MPI_LOCK_SHARED (state)
IN rank	rank of locked window (non-negative integer)	
IN assert	program assertion (integer)	
IN win	window object (handle)	

C binding

```
int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)
```
Chapter 12 One-Sided Communications

Fortran 2008 binding

MPI_Win_lock(lock_type, rank, assert, win, ierror)
  INTEGER, INTENT(IN) :: lock_type, rank, assert
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)
  INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

Opens an RMA access epoch. The window at the MPI process with a rank of rank in the group of win can be accessed by RMA operations on win during that epoch. Multiple RMA access epochs (with calls to MPI_WIN_LOCK) can occur simultaneously; however, each access epoch must target a different MPI process.

MPI_WIN_LOCK_ALL(assert, win)
  IN assert program assertion (integer)
  IN win window object (handle)

C binding

int MPI_Win_lock_all(int assert, MPI_Win win)

Fortran 2008 binding

MPI_Win_lock_all(assert, win, ierror)
  INTEGER, INTENT(IN) :: assert
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_WIN_LOCK_ALL(ASSERT, WIN, IERROR)
  INTEGER ASSERT, WIN, IERROR

Opens an RMA access epoch to all MPI processes in win, with a lock type of MPI_LOCK_SHARED. During the epoch, the calling MPI process can access the window memory on all MPI processes in win by using RMA operations. A window locked with MPI_WIN_LOCK_ALL must be unlocked with MPI_WIN_UNLOCK_ALL. This routine is not collective—the ALL refers to a lock on all members of the group of the window.

Advice to users. There may be additional overheads associated with using MPI_WIN_LOCK and MPI_WIN_LOCK_ALL concurrently on the same window. These overheads could be avoided by specifying the assertion MPI_MODE_NOCHECK when possible (see Section 12.5.5). (End of advice to users.)
12.5 Synchronization Calls

MPI_WIN_UNLOCK(rank, win)

IN rank rank of window (non-negative integer)
IN win window object (handle)

C binding
int MPI_Win_unlock(int rank, MPI_Win win)

Fortran 2008 binding
MPI_Win_unlock(rank, win, ierror)
   INTEGER, INTENT(IN) :: rank
   TYPE(MPI_Win), INTENT(IN) :: win
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_UNLOCK(RANK, WIN, IERROR)
   INTEGER RANK, WIN, IERROR

Closes an RMA access epoch opened by a call to MPI_WIN_LOCK on window win. RMA operations issued during this period will have completed both at the origin and at the target when the call returns.

MPI_WIN_UNLOCK_ALL(win)

IN win window object (handle)

C binding
int MPI_Win_unlock_all(MPI_Win win)

Fortran 2008 binding
MPI_Win_unlock_all(win, ierror)
   TYPE(MPI_Win), INTENT(IN) :: win
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_UNLOCK_ALL(WIN, IERROR)
   INTEGER WIN, IERROR

Closes a shared RMA access epoch opened by a call to MPI_WIN_LOCK_ALL on window win. RMA operations issued during this epoch will have completed both at the origin and at the target when the call returns.

It is erroneous to have a window locked and exposed (in an exposure epoch) concurrently. For example, an MPI process may not call MPI_WIN_LOCK to lock a target window if the target process has called MPI_WIN_POST and has not yet called MPI_WIN_WAIT; it is erroneous to call MPI_WIN_POST while the local window is locked.

Rationale. An alternative is to require MPI to enforce mutual exclusion between exposure epochs and locking periods. But this would entail additional overheads when locks or active target synchronization do not interact in support of those rare interactions between the two mechanisms. The programming style that we encourage
here is that a set of windows is used with only one synchronization mechanism at a time, with shifts from one mechanism to another being rare and involving global synchronization. (*End of rationale.*)

*Advice to users.* Users need to use explicit synchronization code in order to enforce mutual exclusion between locking periods and exposure epochs on a window. (*End of advice to users.*)

Implementors may restrict the use of RMA communication that is synchronized by lock calls to windows in memory allocated by MPI_ALLOC_MEM (Section 9.2), MPI_WIN_ALLOCATE (Section 12.2.2), MPI_WIN_ALLOCATE_SHARED (Section 12.2.3), or attached with MPI_WIN_ATTACH (Section 12.2.4). Locks can be used portably only in such memory.

*Rationale.* The implementation of passive target communication between processes in different *shared memory domains* may require an asynchronous software agent. Such an agent can be implemented more easily, and can achieve better performance, if restricted to specially allocated memory. It can be avoided altogether if *shared memory* is used. It seems natural to impose restrictions that allow the use of shared memory for RMA communication in shared memory machines. (*End of rationale.*)

Consider the sequence of calls in the example below.

**Example 12.5. Use of MPI_WIN_LOCK and MPI_WIN_UNLOCK.**

```c
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win);
MPI_Put(..., rank, ..., win);
MPI_Win_unlock(rank, win);
```

The call to MPI_WIN_UNLOCK will not return until the put transfer has completed at the origin and at the target.

*Advice to implementors.* The semantics described above still leave much freedom to implementors. Return from the call to MPI_WIN_LOCK may be delayed until an exclusive lock on the window is acquired; or, the first two calls may return immediately, while return from MPI_WIN_UNLOCK is delayed until a lock is acquired—the update of the target window is then postponed until the call to MPI_WIN_UNLOCK occurs. However, if the call to MPI_WIN_LOCK is used to lock a window accessible via load/store accesses (i.e., a local window or a window at an MPI process for which a pointer to shared memory can be obtained via MPI_WIN_SHARED_QUERY), then the call must not return before the lock is acquired, since the lock may protect load-/store accesses to the window issued after the lock call returns. (*End of advice to implementors.*)

*Advice to users.* In order to ensure a portable deadlock free program, a user must assume that MPI_WIN_LOCK may delay its return until the desired lock on the window has been acquired. (*End of advice to users.*)
12.5.4 Flush and Sync

All flush and sync functions can be called only within passive target epochs.

**MPI_WIN_FLUSH(rank, win)**

- **IN rank** rank of target MPI process in the group of the window win (non-negative integer)
- **IN win** window object (handle)

### C binding

```c
int MPI_Win_flush(int rank, MPI_Win win)
```

### Fortran 2008 binding

```fortran
MPI_Win_flush(rank, win, ierr)
 INTEGER, INTENT(IN) :: rank
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

### Fortran binding

```fortran
MPI_WIN_FLUSH(RANK, WIN, IERROR)
 INTEGER RANK, WIN, IERROR
```

All outstanding RMA operations on win initiated by the MPI process calling this procedure to the target with rank in the group of the specified window will have completed when `MPI_WIN_FLUSH` returns. The operations are completed both at the origin and at the target.

**MPI_WIN_FLUSH_ALL(win)**

- **IN win** window object (handle)

### C binding

```c
int MPI_Win_flush_all(MPI_Win win)
```

### Fortran 2008 binding

```fortran
MPI_Win_flush_all(win, ierr)
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

### Fortran binding

```fortran
MPI_WIN_FLUSH_ALL(WIN, IERROR)
 INTEGER WIN, IERROR
```

All RMA operations initiated by the MPI process calling this procedure to any target on the specified window prior to this call will have completed both at the origin and at the target when `MPI_WIN_FLUSH_ALL` returns.
Chapter 12 One-Sided Communications

MPI_WIN_FLUSH_LOCAL(rank, win)

IN rank rank of target MPI process in the group of the window win (non-negative integer)

IN win window object (handle)

C binding
int MPI_Win_flush_local(int rank, MPI_Win win)

Fortran 2008 binding
MPI_Win_flush_local(rank, win, ierror)
  INTEGER, INTENT(IN) :: rank
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_FLUSH_LOCAL(RANK, WIN, IERROR)
  INTEGER RANK, WIN, IERROR

All outstanding RMA operations initiated on win by the MPI process calling this procedure to the target with rank in the group of the specified window will have completed at the origin when MPI_WIN_FLUSH_LOCAL returns. For example, after this procedure returns, the user may reuse any buffers provided to put, get, or accumulate operations.

MPI_WIN_FLUSH_LOCAL_ALL(win)

IN win window object (handle)

C binding
int MPI_Win_flush_local_all(MPI_Win win)

Fortran 2008 binding
MPI_Win_flush_local_all(win, ierror)
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_FLUSH_LOCAL_ALL(WIN, IERROR)
  INTEGER WIN, IERROR

All RMA operations initiated by the MPI process calling this procedure to any target on the specified window prior to this call will have completed at the origin when MPI_WIN_FLUSH_LOCAL_ALL returns.

MPI_WIN_SYNC(win)

IN win window object (handle)

C binding
int MPI_Win_sync(MPI_Win win)
Fortran 2008 binding

MPI_Win_sync(win, ierror)
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_WIN_SYNC(WIN, IERROR)
  INTEGER WIN, IERROR

For windows in the separate memory model, a call to MPI_WIN_SYNC synchronizes the private and public window copies of win at the calling MPI process, as described in Section 12.7.

In the unified memory model, MPI_WIN_SYNC may be used to order load and store accesses to shared memory and to ensure visibility of store updates in shared memory for other threads and MPI processes.

A call to MPI_WIN_SYNC does not open or close an epoch and does not complete any pending RMA operations. A call to MPI_WIN_SYNC does not guarantee progress of any pending MPI operation.

12.5.5 Assertions

The assert argument in the calls MPI_WIN_POST, MPI_WIN_START, MPI_WIN_FENCE, MPI_WIN_LOCK, and MPI_WIN_LOCK_ALL is used to provide assertions on the context of the call that may be used to optimize performance. The assert argument does not change program semantics if it provides correct information on the program—it is erroneous to provide incorrect information. Users may always provide assert = 0 to indicate a general case where no guarantees are made.

Advice to users. Many implementations may not take advantage of the information in assert; some of the information is relevant only for noncoherent shared memory machines. Users should consult their implementation’s manual to find which information is useful on each system. On the other hand, applications that provide correct assertions whenever applicable are portable and will take advantage of assertion specific optimizations whenever available. (End of advice to users.)

Advice to implementors. Implementations can always ignore the assert argument. Implementors should document which assert values are significant on their implementation. (End of advice to implementors.)

assert is the bit vector OR of zero or more of the following integer constants: MPI_MODE_NOCHECK, MPI_MODE_NOSTORE, MPI_MODE_NOPUT, MPI_MODE_NOPRECEDE, and MPI_MODE_NOSUCCEED. The significant options are listed below for each synchronization procedure.

Advice to users. C/C++ users can use bit vector OR (||) to combine these constants; Fortran 90 users can use the bit vector IOR intrinsic. Alternatively, Fortran users can portably use integer addition to OR the constants (each constant should appear at most once in the addition). (End of advice to users.)

MPI_WIN_START:
MPI\_MODE\_NOCHECK: the matching calls to MPI\_WIN\_POST have already completed on all target processes when the call to MPI\_WIN\_START is made. This option can be specified in a start call if and only if it is specified in each matching post call. This is similar to the optimization of “ready-send” that may save a handshake when the handshake is implicit in the code. However, ready-send is matched by a regular receive, whereas both start and post must specify the MPI\_MODE\_NOCHECK option.

MPI\_WIN\_POST:

MPI\_MODE\_NOCHECK: the matching calls to MPI\_WIN\_START have not yet occurred on any origin processes when the call to MPI\_WIN\_POST is made. This option can be specified by a post call if and only if it is specified by each matching start call.

MPI\_MODE\_NOSTORE: the local window was not updated by stores (or get or receive operations) since the last synchronization. This may avoid the need for cache synchronization during the post call.

MPI\_MODE\_NOPUT: the local window will not be updated by put or accumulate operations after the post call, until the ensuing (wait) synchronization. This may avoid the need for cache synchronization during the wait call.

MPI\_WIN\_FENCE:

MPI\_MODE\_NOSTORE: the local window was not updated by stores (or get or receive operations) since the last synchronization.

MPI\_MODE\_NOPUT: the local window will not be updated by put or accumulate operations after the fence call, until the ensuing (fence) synchronization.

MPI\_MODE\_NOPRECEDE: the fence does not complete any sequence of RMA operations initiated by the calling MPI process. If this assertion is given by any MPI process in the group of the window, then it must be given by all MPI processes in the group.

MPI\_MODE\_NOSUCCEED: the fence does not start any sequence of RMA operations initiated by the calling MPI process. If the assertion is given by any MPI process in the group of the window, then it must be given by all MPI processes in the group.

MPI\_WIN\_LOCK, MPI\_WIN\_LOCK\_ALL:

MPI\_MODE\_NOCHECK: no other MPI process holds, or will attempt to acquire, a conflicting lock, while the calling MPI process holds the window lock. This is useful when mutual exclusion is achieved by other means, but the coherence operations that may be attached to the lock and unlock calls are still required.

Advice to users. The MPI\_MODE\_NOSTORE and MPI\_MODE\_NOPRECEDE options provide information on what happened before the call; the MPI\_MODE\_NOPUT and MPI\_MODE\_NOSUCCEED options provide information on what will happen after the call. (End of advice to users.)
12.6 Error Handling

12.6.1 Error Handlers

Errors occurring during calls to routines that create MPI windows (e.g., MPI_WIN_CREATE) cause an error to be raised on the communicator provided to that procedure call. All other RMA calls have an input window argument on which errors will be raised if they occur.

The error handler MPI_ERRORS_ARE_FATAL is associated with the window during its creation. Users may change this default by explicitly associating a new error handler with the window (see Section 9.3).

12.6.2 Error Classes

The error classes for one-sided communication are defined in Table 12.2. RMA routines may (and almost certainly will) use other MPI error classes, such as MPI_ERR_OP or MPI_ERR_RANK.
12.7 Semantics and Correctness

The following rules specify the latest point in the execution of the application an operation must complete at the origin or the target. The update initiated by a call to MPI\_GET in the origin process memory is visible when the get operation is complete at the origin (or earlier); the update initiated by a call to MPI\_PUT or an accumulate procedure in the public copy of the target window is visible when the put or accumulate operation has completed at the target (or earlier). The rules also specify the latest point at which an update of one window copy becomes visible in another overlapping copy.

1. An RMA operation is completed at the origin by the ensuing call to
   MPI\_WIN\_COMPLETE, MPI\_WIN\_FENCE, MPI\_WIN\_FLUSH,
   MPI\_WIN\_FLUSH\_ALL, MPI\_WIN\_FLUSH\_LOCAL, MPI\_WIN\_FLUSH\_LOCAL\_ALL,
   MPI\_WIN\_UNLOCK, or MPI\_WIN\_UNLOCK\_ALL that synchronizes this access at the origin.

2. If an RMA operation is completed at the origin by a call to MPI\_WIN\_FENCE then the operation is completed at the target by the matching call to MPI\_WIN\_FENCE by the target process.

3. If an RMA operation is completed at the origin by a call to MPI\_WIN\_COMPLETE then the operation is completed at the target by the matching call to MPI\_WIN\_WAIT by the target process.

4. If an RMA operation is completed at the origin by a call to MPI\_WIN\_UNLOCK or MPI\_WIN\_FLUSH (with rank=target), MPI\_WIN\_UNLOCK\_ALL, or MPI\_WIN\_FLUSH\_ALL, then the operation is completed at the target by that same call.

5. An update of a location in a private window copy in MPI process memory becomes visible in the public window copy at the latest when an ensuing call to
   MPI\_WIN\_POST, MPI\_WIN\_FENCE, MPI\_WIN\_UNLOCK, MPI\_WIN\_UNLOCK\_ALL,
   or MPI\_WIN\_SYNC is executed on that window by the window owner. In the RMA unified memory model, an update of a location in a private window in MPI process memory becomes visible without additional RMA calls.

6. An update by a put or accumulate operation to a public window copy becomes visible in the private copy in MPI process memory at the latest when an ensuing call to
   MPI\_WIN\_WAIT, MPI\_WIN\_FENCE, MPI\_WIN\_LOCK, MPI\_WIN\_LOCK\_ALL, or
   MPI\_WIN\_SYNC is executed on that window by the window owner. In the RMA unified memory model, an update by a put or accumulate operation to a public window copy eventually becomes visible in the private copy in MPI process memory without additional RMA calls.

The MPI\_WIN\_FENCE or MPI\_WIN\_WAIT call that completes the transfer from public copy to private copy (Rule 6) is the same call that completes the put or accumulate operation in the window copy (Rule 2, Rule 3). If a put or accumulate access was synchronized with a lock, then the update of the public window copy is complete as soon as the updating origin process executed MPI\_WIN\_UNLOCK or MPI\_WIN\_UNLOCK\_ALL. In the RMA separate memory model, the update of a private copy in the target process memory may be delayed
until the target process executes a synchronization call on that window (Rule 6). Thus, updates to target process memory can always be delayed in the RMA separate memory model until the target process executes a suitable synchronization call, while they must complete in the RMA unified model without additional synchronization calls. If fence or post-start-complete-wait synchronization is used, updates to a public window copy can be delayed in both memory models until the window owner executes a synchronization call. When passive target synchronization is used, it is necessary to update the public window copy even if the window owner does not execute any related synchronization call.

The rules above also define, by implication, when an update to a public window copy becomes visible in another overlapping public window copy. Consider, for example, two overlapping windows, win1 and win2. A call to MPI_WIN_FENCE on win1 by the window owner makes visible in the target process memory previous updates to window win1 by origin processes. A subsequent call to MPI_WIN_FENCE on win2 makes these updates visible in the public copy of win2.

The behavior of some MPI RMA operations may be undefined in certain situations. For example, the result of several origin processes performing concurrent put operations to the same target location is undefined. In addition, the result of a single origin process performing multiple put operations to the same target location within the same access epoch is also undefined. The result at the target may have all of the data from one of the put operations (the “last” one, in some sense), some bytes from each of the operations, or something else. In MPI-2, such operations were erroneous. That meant that an MPI implementation was permitted to raise an error. Thus, user programs or tools that used MPI RMA could not portably permit such operations, even if the application code could function correctly with such an undefined result. Starting with MPI-3, these operations are not erroneous, but do not have a defined behavior.

**Rationale.** As discussed in [8], requiring operations such as overlapping puts to be erroneous makes it difficult to use MPI RMA to implement programming models—such as Unified Parallel C (UPC) or SHMEM—that permit these operations. Further, while MPI-2 defined these operations as erroneous, the MPI Forum is unaware of any implementation that enforces this rule, as it would require significant overhead. Thus, relaxing this condition does not impact existing implementations or applications. (End of rationale.)

**Advice to implementors.** Overlapping accesses are undefined. However, to assist users in debugging code, implementations may wish to provide a mode in which such operations are detected and reported to the user. Note, however, that starting with MPI-3, such operations must not raise an error. (End of advice to implementors.)

A program with a well-defined outcome in the MPI_WIN_SEPARATE memory model must obey the following rules.

S1. A location in a window must not be accessed with load/store accesses once an update to that location has started, until the update becomes visible in the private window copy in target process memory.

S2. A location in a window must not be accessed as a target of an RMA operation once an update to that location has started, until the update becomes visible in the public window copy. There is one exception to this rule, in the case where the same variable...
is updated by two concurrent accumulates with the same predefined datatype, on
the same window. Additional restrictions on the operation apply, see the info key
accumulate_ops in Section 12.2.1.

S3. A put or accumulate must not access a target window once a store or a put or ac-
cumulate update to another (overlapping) window has started on a location in the
target window, until the update becomes visible in the public copy of the window.
Conversely, a store to MPI process memory to a location in a window must not start
once a put or accumulate update to that target window has started, until the put
or accumulate update becomes visible in target process memory. In both cases, the
restriction applies to operations even if they access disjoint locations in the window.

Rationale. The last constraint on correct RMA accesses may seem unduly restric-
tive, as it forbids concurrent accesses to nonoverlapping locations in a window. The
reason for this constraint is that, on some architectures, explicit coherence restoring
operations may be needed at synchronization points. A different operation may be
needed for locations that were updated by stores and for locations that were remotely
updated by put or accumulate operations. Without this constraint, the MPI library
would have to track precisely which locations in a window were updated by a put or
accumulate operation. The additional overhead of maintaining such information is
considered prohibitive. (End of rationale.)

Note that MPI_WIN_SYNC may be used within a passive target epoch to synchronize
the private and public window copies (that is, updates to one are made visible to the other).
In the MPI_WIN_UNIFIED memory model, the rules are simpler because the public and
private windows are the same. However, there are restrictions to avoid concurrent access
to the same memory locations by different MPI processes. The rules that a program with a
well-defined outcome must obey in this case are:

U1. A location in a window must not be accessed with load/store accesses once an update
to that location has started, until the update is complete, subject to the special case
laid out in Rule 2.

U2. Accessing a location in the window that is also the target of a remote update is valid
(not erroneous) but the precise result will depend on the behavior of the implementa-
tion. Updates from an origin process will appear in the memory of the target, but
there are no atomicity or ordering guarantees if more than one byte is updated. Up-
dates are stable in the sense that once data appears in the memory of the target, the
data remains until replaced by another update. This permits polling on a location for
a change from zero to nonzero or for a particular value, but not polling and compar-
ing the relative magnitude of values. Users are cautioned that polling on one memory
location and then accessing a different memory location has defined behavior only if
the other rules given here and in this chapter are followed.

Advice to users. Some compiler optimizations can result in code that maintains
the sequential semantics of the program, but violates this rule by introducing
temporary values into locations in memory. Most compilers only apply such
transformations under very high levels of optimization and users should be aware
that such aggressive optimization may produce unexpected results. (End of
advice to users.)
U3. Updating a location in the window with a store access that is also the target of a remote read (but not update) is valid (not erroneous) but the precise result will depend on the behavior of the implementation. Store updates will appear in memory, but there are no atomicity or ordering guarantees if more than one byte is updated. Updates are stable in the sense that once data appears in memory, the data remains until replaced by another update. This permits updates to memory with store accesses without requiring an RMA epoch. Users are cautioned that remote accesses to a window that is updated by the local MPI process has defined behavior only if the other rules given here and elsewhere in this chapter are followed.

U4. A location in a window must not be accessed as a target of an RMA operation once an update to that location has started and until the update completes at the target. There is one exception to this rule: in the case where the same location is updated by two concurrent accumulates with the same predefined datatype on the same window. Additional restrictions on the operation apply: see the info key accumulate_ops in Section 12.2.1.

U5. A put or accumulate must not access a target window once a store, put, or accumulate update to another (overlapping) target window has started on the same location in the target window and until the update completes at the target window. Conversely, a store access to a location in a window must not be executed once a put or accumulate update to the same location in that target window has started and until the put or accumulate update completes at the target.

Advice to users. In the unified memory model, in the case where the window is in shared memory, MPI_WIN_SYNC can be used to order store accesses and make store updates to the window visible to other MPI processes and threads. Use of this routine is necessary to ensure portable behavior when point-to-point, collective, or shared memory synchronization is used in place of an RMA synchronization routine. MPI_WIN_SYNC should be called by both the reader and the writer of a shared memory variable between any non-RMA synchronization and access to that variable, as shown in Example 12.23. The calls to MPI_WIN_SYNC can be replaced by language level memory synchronization operations, if available. (End of advice to users.)

A program that violates these rules has undefined behavior.

Advice to users. A user can write correct programs by following the following rules:

fence: During each period between fence calls, each window is either updated by put or accumulate operation, or updated by stores, but not both. Locations updated by put or accumulate operations should not be accessed during the same period (with the exception of concurrent updates to the same location by accumulate operations). Locations accessed by get operations should not be updated during the same period.

post-start-complete-wait: A window should not be updated with store accesses while posted if it is being updated by put or accumulate operations. Locations updated by put or accumulate operations should not be accessed while the window is posted (with the exception of concurrent updates to the same location by accumulate operations). Locations accessed by get operations should not be updated while the window is posted.
With the post-start synchronization, the target process can tell the origin process that its window is now ready for RMA access; with the complete-wait synchronization, the origin process can tell the target process that it has finished its RMA accesses to the window.

lock: Updates to the window are protected by exclusive locks if they may conflict. Nonconflicting accesses (such as read-only accesses or accumulate accesses) are protected by shared locks, both for load/store accesses and for RMA accesses.

changing window or synchronization mode: One can change synchronization mode, or change the window used to access a location that belongs to two overlapping windows, when the MPI process memory and the window copy are guaranteed to have the same values. This is true for an MPI process after it has returned from MPI_WIN_FENCE, if RMA accesses to the window are synchronized with fences; after it has returned from MPI_WIN_WAIT, if the accesses are synchronized with post-start-complete-wait; it is true at the origin and target after the origin returned from a call to MPI_WIN_UNLOCK or MPI_WIN_UNLOCK_ALL if the accesses are synchronized with locks.

In addition, an origin process should not access the local buffer of a get operation until the operation is complete, and should not update the local buffer of a put or accumulate operation until that operation is complete.

The RMA synchronization operations define when updates are guaranteed to become visible in public and private windows. Updates may become visible earlier, but such behavior is implementation dependent. (End of advice to users.)

The following examples illustrate these semantics.

**Example 12.6.** The following example demonstrates updating a memory location inside a window for the separate memory model, according to Rule 5. The MPI_WIN_LOCK and MPI_WIN_UNLOCK calls around the store to X in process B are necessary to ensure consistency between the public and private copies of the window.

```
Process A Process B
window location X
MPI_Win_lock(EXCLUSIVE, B)
store X /* local update to private copy of B */
MPI_Win_unlock(B)
/* now visible in public window copy */

MPI_Barrier

MPI_Win_lock(EXCLUSIVE, B)
MPI_Get(X) /* ok, read from public window */
MPI_Win_unlock(B)
```

**Example 12.7.** In the RMA unified model, although the public and private copies of the windows are synchronized, caution must be used when combining load/store accesses with multi-process synchronization. Although the following example appears correct, the compiler or hardware may delay the store to X after the barrier, possibly resulting in the
MPI\_GET returning an incorrect value of \(X\).

<table>
<thead>
<tr>
<th>Process A</th>
<th>Process B</th>
</tr>
</thead>
<tbody>
<tr>
<td>window location (X)</td>
<td>store (X) /* update to private &amp; public copy of (B) */</td>
</tr>
<tr>
<td>MPI_Barrier</td>
<td>MPI_Barrier</td>
</tr>
<tr>
<td>MPI_Win_lock_all</td>
<td>MPI_Barrier</td>
</tr>
<tr>
<td>MPI_Get(X) /* ok, read from window */</td>
<td>MPI_Barrier</td>
</tr>
<tr>
<td>MPI_Win_flush_local(B)</td>
<td>MPI_Barrier</td>
</tr>
<tr>
<td>/* read value in (X) */</td>
<td>MPI_Win_unlock_all</td>
</tr>
</tbody>
</table>

Diagonal bars indicate the appropriate synchronization between \(A\) and \(B\). 

**MPI\_BARRIER** provides process synchronization, but not memory synchronization. The example could potentially be made safe through the use of compiler- and hardware-specific notations to ensure the store to \(X\) occurs before process \(B\) enters the MPI\_BARRIER. The use of one-sided synchronization calls, as shown in Example 12.6, also ensures the correct result.

**Example 12.8.** The following example demonstrates the reading of a memory location updated by an origin process (Rule 6) in the RMA separate memory model. Although the call to MPI\_WIN\_UNLOCK on process \(A\) and the MPI\_BARRIER ensure that the public copy on process \(B\) reflects the updated value of \(X\), the call to MPI\_WIN\_LOCK by process \(B\) is necessary to synchronize the private copy with the public copy.

<table>
<thead>
<tr>
<th>Process A</th>
<th>Process B</th>
</tr>
</thead>
<tbody>
<tr>
<td>window location (X)</td>
<td>store (X) /* update to private &amp; public copy of (B) */</td>
</tr>
<tr>
<td>MPI_Win_lock(\textsc{exclusive}, (B))</td>
<td>MPI_Barrier</td>
</tr>
<tr>
<td>MPI_Put(X) /* update to public window */</td>
<td>MPI_Barrier</td>
</tr>
<tr>
<td>MPI_Win_unlock(B)</td>
<td>MPI_Barrier</td>
</tr>
<tr>
<td>MPI_Barrier</td>
<td>MPI_Barrier</td>
</tr>
<tr>
<td>MPI_Win_lock(\textsc{exclusive}, (B))</td>
<td>MPI_Barrier</td>
</tr>
<tr>
<td>/* now visible in private copy of (B) */</td>
<td>MPI_Barrier</td>
</tr>
<tr>
<td>load (X)</td>
<td>MPI_Win_unlock(B)</td>
</tr>
</tbody>
</table>

Note that in this example, the barrier is not critical to the semantic correctness. The use of exclusive locks guarantees no other MPI process will modify the public copy after MPI\_WIN\_LOCK synchronizes the private and public copies. A polling implementation looking for changes in \(X\) on process \(B\) would be semantically correct. The barrier is required to ensure that process \(A\) completes the put operation at the target before process \(B\) executes the load of \(X\).

**Example 12.9.** Similar to Example 12.7, the following example is unsafe even in the unified model, because the load of \(X\) cannot be guaranteed to occur after the MPI\_BARRIER. While Process \(B\) does not need to explicitly synchronize the public and private copies through
MPI_WIN_LOCK as the MPI_PUT will update both the public and private copies of the window, the scheduling of the load could result in old values of X being returned. Compiler and hardware specific notations could ensure the load occurs after the data is updated, or explicit one-sided synchronization calls can be used to ensure the proper result.

```
Process A Process B
window location X

MPI_Win_lock_all
MPI_Put(X) /* update to window */
MPI_Win_flush(B)

MPI_Barrier MPI_Barrier
load X /* may return an obsolete value */
MPI_Win_unlock_all
```

Example 12.10. The following example further clarifies Rule 5. MPI_WIN_LOCK and MPI_WIN_LOCK_ALL do not update the public copy of a window with changes to the private copy. Therefore, there is no guarantee that process A in the following sequence will see the value of X as updated by the store by process B before the lock.

```
Process A Process B
window location X

store X /* update to private copy of B */
MPI_Win_lock(SHARED, B)

MPI_Barrier

MPI_Win_lock(SHARED, B)
MPI_Get(X) /* X may be the X before the store */
MPI_Win_unlock(B)

MPI_Win_unlock(B)
/* update on X now visible in public window */
```

The addition of a call to MPI_WIN_SYNC before the call to MPI_BARRIER by process B would guarantee process A would see the updated value of X, as the public copy of the window would be explicitly synchronized with the private copy.

Example 12.11. Similar to the previous example, Rule 5 can have unexpected implications for general active target synchronization with the RMA separate memory model. It is not guaranteed that process B reads the value of X as per the local update by process A, because neither the call to MPI_WIN_WAIT nor the call to MPI_WIN_COMPLETE by process A ensure visibility in the public window copy.

```
Process A Process B
window location X
window location Y

store Y
MPI_Win_post(A, B) /* Y visible in public window */
MPI_Win_start(A) MPI_Win_start(A)
```
store X /* update to private window */

MPI_Win_complete
MPI_Win_complete
MPI_Win_wait
/* update on X may not yet be visible in the public window copy */

MPI_Barrier
MPI_Barrier

MPI_Win_lock(EXCLUSIVE, A)
MPI_Get(X) /* may return an obsolete value */
MPI_Get(Y)
MPI_Win_unlock(A)

To allow process B to read the value of X stored by A, the local store must be replaced by a local put operation that updates the public window copy. Note that by this replacement, X may become visible in the private copy of process A only after the MPI_WIN_WAIT call in process A. The update to Y made before the MPI_WIN_POST call is visible in the public window after the MPI_WIN_POST call and therefore process B will read the proper value of Y. The get of Y could be moved to the epoch opened by MPI_WIN_START, and process B would still get the value stored by process A.

Example 12.12. The following example demonstrates the interaction of general active target synchronization with load accesses in the RMA separate memory model. Rules 5 and 6 do not guarantee that the private copy of X at process B has been updated before the load access is executed.

<table>
<thead>
<tr>
<th>Process A</th>
<th>Process B</th>
</tr>
</thead>
<tbody>
<tr>
<td>window location X</td>
<td></td>
</tr>
</tbody>
</table>

MPI_Win_lock(EXCLUSIVE, B)
MPI_Put(X) /* update to public window */
MPI_Win_unlock(B)

MPI_Barrier
MPI_Barrier

MPI_Win_post(B)
MPI_Win_start(B)

load X /* access to private window */
/* may return an obsolete value */

MPI_Win_complete
MPI_Win_wait

To ensure that the value put by process A is read, the load access must be replaced with a get operation, or must be placed after the call to MPI_WIN_WAIT.
12.7.1 Atomicity

The outcome of concurrent accumulate operations to the same location with the same predefined datatype is as if the accumulate operations were done at that location in some serial order. Additional restrictions on the operation apply; see the info key `accumulate_ops` in Section 12.2.1. Concurrent accumulate operations with different origin and target pairs are not ordered. Thus, there is no guarantee of atomicity beyond element-wise atomicity. The effect of this lack of atomicity is limited: The previous correctness conditions imply that a location updated by a accumulate operation cannot be accessed by a load access or an RMA operation other than another accumulate operation until the accumulate operation has completed (at the target). Different interleavings can lead to different results only to the extent that computer arithmetics are not truly associative or commutative. The outcome of accumulate operations with overlapping types of different sizes or target displacements is undefined.

12.7.2 Ordering

Accumulate operations enable element-wise atomic read and write to window memory locations. MPI specifies ordering between accumulate operations from an origin process to the same (or overlapping) memory locations at a target process on a per-datatype granularity. The default ordering is strict ordering, which guarantees that overlapping updates from the same origin to a remote location are committed in program order and that reads (e.g., with `MPI_GET_ACCUMULATE`) and writes (e.g., with `MPI_ACCUMULATE`) are executed and committed in program order. Ordering only applies to operations originating at the same origin that access overlapping target memory regions. MPI does not provide any guarantees for accesses or updates from different origin processes to overlapping target memory regions.

The default strict ordering may incur a significant performance penalty. MPI specifies the info key "accumulate_ordering" to allow relaxation of the ordering semantics when specified to any window creation function. The values for this key are as follows. If set to "none", then no ordering will be guaranteed for accumulate operations. This was the behavior for RMA in MPI-2 but has not been the default since MPI-3. The key can be set to a comma-separated list of required access orderings at the target. Allowed values in the comma-separated list are "rar", "war", "raw", and "waw" for read-after-read, write-after-read, read-after-write, and write-after-write ordering, respectively. These indicate whether operations of the specified type complete in the order they were issued. For example, "raw" means that any writes must complete at the target before subsequent reads. These ordering requirements apply only to operations issued by the same origin process and targeting the same target process. The default value for "accumulate_ordering" is "rar,raw,war,waw", which implies that writes complete at the target in the order in which they were issued, reads complete at the target before any writes that are issued after the reads, and writes complete at the target before any reads that are issued after the writes. Any subset of these four orderings can be specified. For example, if only read-after-read and write-after-write ordering is required, then the value of the "accumulate_ordering" key could be set to "rar,waw". The order of values is not significant.

Note that the above ordering semantics apply only to accumulate operations, not to put and get operations. Put and get operations within an epoch are unordered.
12.7.3 Progress

One-sided communication has the same progress requirements as point-to-point communication: once a communication is enabled it is guaranteed to complete. RMA calls must have local semantics, except when required for synchronization with other RMA calls.

There is some fuzziness in the definition of the time when an RMA communication becomes enabled. This fuzziness provides to the implementor more flexibility than with point-to-point communication. Access to a target window becomes enabled once the corresponding synchronization (such as MPI_WIN_FENCE or MPI_WIN_POST) has executed. On the origin process, an RMA communication operation may become enabled as soon as the corresponding put, get or accumulate call has occurred, or as late as when the ensuing synchronization call is issued. Once the operation is enabled both at the origin and at the target, the operation must complete.

Consider the code fragment in Example 12.4. Some of the calls may have to delay their return until the target window has been posted. However, if the target window is posted, then the code fragment must complete. The data transfer may start as soon as the put call occurs, but may be delayed until the ensuing complete call occurs.

Consider the code fragment in Example 12.5. Some of the calls may delay their return until the lock is acquired if another MPI process holds a conflicting lock. However, if no conflicting lock is held, then the code fragment must complete.

Consider the code illustrated in Figure 12.6. Each MPI process updates the window of the other MPI process using a put operation, then accesses its own window. The post calls are local. Once the post calls occur, RMA access to the windows is enabled, so that each MPI process should complete the sequence of start-put-complete. Once these are done, the wait calls should complete at both MPI processes. Thus, this communication should not deadlock, irrespective of the amount of data transferred.

Assume, in the last example, that the order of the post and start calls is reversed at each MPI process. Then, the code may deadlock, as each MPI process may not return from the start call, waiting for the matching post to occur. Similarly, the program will deadlock if the order of the complete and wait calls is reversed at each MPI process.

The following two examples illustrate the fact that the synchronization between complete and wait is not symmetric: the wait call returns only once the complete occurs, but
not vice versa. Consider the code illustrated in Figure 12.7. This code will deadlock: the
wait of process 1 completes only once process 0 calls complete, and the receive of process
0 completes once process 1 calls send. Consider, on the other hand, the code illustrated
in Figure 12.8. This code will not deadlock. Once process 1 calls post, then the sequence
start-put-complete on process 0 can proceed. Process 0 will reach the send call, allowing
the receive call of process 1 to return.

**Rationale.** MPI implementations must guarantee that an MPI process makes *progress*
on all enabled communications it participates in, while blocked on an MPI call. This
is true for send-receive communication and applies to RMA communication as well.
Thus, in the example in Figure 12.8, the put and complete calls of process 0 should
complete while process 1 is waiting for the receive operation to complete. This may
require the involvement of process 1, e.g., to transfer the data.

A similar issue is whether such progress must occur while an MPI process is busy
computing, or blocked in a non-MPI call. Suppose that in the last example the send-
receive pair is replaced by a write-to-socket/read-from-socket pair. Then MPI does
not specify whether deadlock is avoided. Suppose that the blocking receive of process
1 is replaced by a very long compute loop. Then, according to one interpretation
of the MPI standard, process 0 must return from the complete call after a bounded
delay, even if process 1 does not reach any MPI call in this period of time. According
to another interpretation, the complete call may block until process 1 reaches the
wait call, or reaches another MPI call. The qualitative behavior is the same, under
both interpretations, unless an MPI process is caught in an infinite compute loop, in
which case the difference may not matter. However, the quantitative expectations
are different. Different MPI implementations reflect these different interpretations.
While this ambiguity is unfortunate, the MPI Forum decided not to define which
interpretation of the standard is the correct one, since the issue is contentious. See also Section 2.9 on progress. (End of rationale.)

The use of shared memory loads and/or stores for synchronizing purposes between MPI processes does not guarantee progress, and therefore a deadlock may occur if an MPI implementation does not provide strong progress, as shown in Example 12.13.

**Example 12.13.** Possible deadlock due to the use of a shared memory variable for synchronization.

comm_sm shall be a shared memory communicator (e.g., returned from a call to MPI_COMM_SPLIT_TYPE with split_type=_MPI_COMM_TYPE_SHARED) with at least two MPI processes. win_sm is a shared memory window with the AckInRank0 as window portion in MPI process with rank 0. The ranks in comm_sm and win_sm should be the same. According to Section 12.7 rules U2 and U3, a volatile store to AckInRank0 will be visible in the other MPI process without further RMA calls.

```
int volatile_load(int *addr) { return *(volatile int *)addr; }
void volatile_store(int *addr, int val) {(*(volatile int *)addr) = val; }
```

<table>
<thead>
<tr>
<th>Process with rank 0</th>
<th>Process with rank 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_Win_shared_query(win, /<em>rank=</em>/0,..., AckInRank0);</td>
<td>MPI_Win_shared_query(win, /<em>rank=</em>/0,..., AckInRank0);</td>
</tr>
<tr>
<td>volatile_store(AckInRank0, 0);</td>
<td></td>
</tr>
<tr>
<td>MPI_Win_fence(win_sm)</td>
<td>MPI_Win_fence(win_sm)</td>
</tr>
<tr>
<td>MPI_Buffer_attach(myHugeBuffer,...);</td>
<td></td>
</tr>
<tr>
<td>MPI_Bsend(myHugeMessage,..., /<em>rank=</em>/1,..., comm_sm); sleep(5); // to ensure</td>
<td></td>
</tr>
<tr>
<td>sleep(10); // to guarantee that // the while-loop starts // after rank 1 is // blocked in MPI_Recv</td>
<td></td>
</tr>
<tr>
<td>while(volatile_load(AckInRank0) != 222) // empty polling loop*;</td>
<td></td>
</tr>
<tr>
<td>MPI_Buffer_detach(&amp;pTemp, &amp;size); // deadlock</td>
<td></td>
</tr>
</tbody>
</table>

While the call to MPI_Recv in the MPI process with rank 1 delays its return (until an unspecific MPI procedure call in the MPI process with rank 0 happens to send the buffered data), the subsequent statement cannot change the value of the shared window buffer AckInRank0. As long as this value is not changed, the while loop in the MPI process with rank 0 will continue and therefore the next MPI procedure call (MPI_Buffer_detach) cannot happen, which is then a deadlock.

Note that both communication patterns (A) BSEND-RECV-DETACH and (B) the shared memory store/load for synchronization purpose, can be in different software layers and each layer would work properly, but the combination of (A) and (B) can cause the deadlock.
12.7.4 Registers and Compiler Optimizations

Advice to users. All the material in this section is an advice to users. (End of advice to users.)

A coherence problem exists between variables kept in registers and the memory values of these variables. An RMA call may access a variable in memory (or cache), while the up-to-date value of this variable is in register. A get will not return the latest variable value, and a put may be overwritten when the register is stored back in memory. Note that these issues are unrelated to the RMA memory model; that is, these issues apply even if the memory model is MPI_WIN_UNIFIED.

The problem is illustrated in Example 12.14.

In this example, variable buff is allocated in the register reg_A and therefore ccc will have the old value of buff and not the new value 777.

<table>
<thead>
<tr>
<th>Source of Process 1</th>
<th>Source of Process 2</th>
<th>Executed in Process 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbbb = 777</td>
<td>buff = 999</td>
<td>reg_A:=999</td>
</tr>
<tr>
<td>call MPI_WIN_FENCE</td>
<td>call MPI_WIN_FENCE</td>
<td></td>
</tr>
<tr>
<td>call MPI_PUT(bbbb</td>
<td>stop appl. thread</td>
<td></td>
</tr>
<tr>
<td>into buff of process 2)</td>
<td>buff:=777 in PUT handler</td>
<td></td>
</tr>
<tr>
<td>call MPI_WIN_FENCE</td>
<td>call MPI_WIN_FENCE</td>
<td>continue appl. thread</td>
</tr>
<tr>
<td>ccc = buff</td>
<td>ccc:=reg_A</td>
<td></td>
</tr>
</tbody>
</table>

This problem, which also afflicts in some cases send/receive communication, is discussed more at length in Section 19.1.16.

Programs written in C avoid this problem, because of the semantics of C. Many Fortran compilers will avoid this problem, without disabling compiler optimizations. However, in order to avoid register coherence problems in a completely portable manner, users should restrict their use of RMA windows to variables stored in modules or COMMON blocks. To prevent problems with the argument copying and register optimization done by Fortran compilers, please note the hints in Sections 19.1.10–19.1.20. Sections 19.1.17 to 19.1.17 discuss several solutions for the problem in this example.

12.8 Examples

Example 12.15. The following example shows a generic loosely synchronous, iterative code, using MPI_FENCE for synchronization. The window at each MPI process consists of array A, which contains the origin and target buffers of the put operations.

```c
...
while (!converged(A)) {
 update(A);
 MPI_Win_fence(MPI_MODE_NOPRECEDE, win);
 for(i=0; i < toneighbors; i++)
 MPIPut(&frombuf[i], 1, fromtype[i], toneighbor[i],
 todisp[i], 1, totype[i], win);
 MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);
}```
The same code could be written with get rather than put. Note that, during the communication phase, each window is concurrently read (as origin buffer of puts) and written (as target buffer of puts). This is OK, provided that there is no overlap between the target buffer of a put and another communication buffer.

Example 12.16. Same generic example, with more computation/communication overlap. We assume that the update phase is broken into two subphases: the first, where the “boundary,” which is involved in communication, is updated, and the second, where the “core,” which neither uses nor provides communicated data, is updated.

```c
... while (!converged(A)) {
    update_boundary(A);
    MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);
    for(i=0; i < fromneighbors; i++)
        MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],
                 fromdisp[i], 1, fromtype[i], win);
    update_core(A);
    MPI_Win_fence(MPI_MODE_NOSUCCEED, win);
}
```

The get communication can be concurrent with the core update, since they do not access the same locations, and the local update of the origin buffer by the get operation can be concurrent with the local update of the core by the update_core call. In order to get similar overlap with put communication we would need to use separate windows for the core and for the boundary. This is required because we do not allow local stores to be concurrent with puts on the same, or on overlapping, windows.

Example 12.17. Same code as in Example 12.15, rewritten using post-start-complete-wait.

```c
... while (!converged(A)) {
    update(A);
    MPI_Win_post(fromgroup, 0, win);
    MPI_Win_start(togroup, 0, win);
    for(i=0; i < toneighbors; i++)
        MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],
                 todisp[i], 1, totype[i], win);
    MPI_Win_complete(win);
    MPI_Win_wait(win);
}
```

Example 12.18. Same example, with post-start-complete-wait, as in Example 12.16.

```c
... while (!converged(A)) {
    update_boundary(A);
```
MPI_Win_post(togroup, MPI_MODE_NOPUT, win);
MPI_Win_start(fromgroup, 0, win);
for (i=0; i < fromneighbors; i++)
 MPI_Gather(&tobuf[i], 1, totype[i], fromneighbor[i],
 fromdisp[i], 1, fromtype[i], win);
update_core(A);
MPI_Win_complete(win);
MPI_Win_wait(win);
}

Example 12.19. A checkerboard, or double buffer communication pattern, that allows more computation/communication overlap. Array A_0 is updated using values of array A_1, and vice versa. We assume that communication is symmetric: if process A gets data from process B, then process B gets data from process A. Window $wini$ consists of array Ai.

```c
... if (!converged(A0,A1))
  MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);
MPI_Barrier(comm);
/* the barrier is needed because the start call inside the loop uses the nocheck option */
while (!converged(A0,A1)) {
  /* communication on A0 and computation on A1 */
  update2(A1, A0); /* local update of A1 that depends on A0 (and A1) */
  MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win0);
  for (i=0; i < fromneighbors; i++)
    MPI_Gather( &tobuf0[i], 1, totype0[i], neighbor[i],
                fromdisp0[i], 1, fromtype0[i], win0);
  update1(A1); /* local update of A1 that is
                concurrent with communication that updates A0 */
  MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);
  MPI_Win_complete(win0);
  MPI_Win_wait(win0);

  /* communication on A1 and computation on A0 */
  update2(A0, A1); /* local update of A0 that depends on A1 (and A0) */
  MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win1);
  for (i=0; i < fromneighbors; i++)
    MPI_Gather( &tobuf1[i], 1, totype1[i], neighbor[i],
                fromdisp1[i], 1, fromtype1[i], win1);
  update1(A0); /* local update of A0 that depends on A0 only,
                concurrent with communication that updates A1 */
  if (!converged(A0,A1))
    MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);
  MPI_Win_complete(win1);
  MPI_Win_wait(win1);
}
```

An MPI process posts the local window associated with $win0$ before it completes RMA accesses to the remote windows associated with $win1$. When the call to MPI_WIN_WAIT on $win1$ returns, then all neighbors of the calling MPI process have posted the windows associated with $win0$. Conversely, when the call to MPI_WIN_WAIT on $win0$ returns, then
all neighbors of the calling MPI process have posted the windows associated with \texttt{win1}. Therefore, the \texttt{MPI_MODE_NOCHECK} option can be used with the calls to \texttt{MPI_WIN_START}. Put operations can be used, instead of get operations, if the area of array \texttt{A0} (resp. \texttt{A1}) used by \texttt{update(A1, A0)} (resp. \texttt{update(A0, A1)}) is disjoint from the area modified by the RMA operation. On some systems, a put operation may be more efficient than a get operation, as it requires information exchange only in one direction.

In the next several examples, for conciseness, the expression

\[z = \texttt{MPI_Get_accumulate}(\ldots) \]

means to perform a get-accumulate operation with the result buffer (given by \texttt{result_addr} in the description of \texttt{MPI_GET_ACCUMULATE}) on the left side of the assignment, in this case, \(z \). This format is also used with \texttt{MPI_COMPARE_AND_SWAP} and \texttt{MPI_COMM_SIZE}.

Process B... refers to any process other than A.

Example 12.20. The following example implements a naive, nonscalable counting semaphore. The example demonstrates the use of \texttt{MPI_WIN_SYNC} to manipulate the public copy of \(X \), as well as \texttt{MPI_WIN_FLUSH} to complete operations without closing the access epoch opened with \texttt{MPI_WIN_LOCK_ALL}. To avoid the rules regarding synchronization of the public and private copies of windows, \texttt{MPI_ACCUMULATE} and \texttt{MPI_GET_ACCUMULATE} are used to write to or read from the local public copy.

<table>
<thead>
<tr>
<th>Process A</th>
<th>Process B...</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{MPI_Win_lock_all}</td>
<td>\texttt{MPI_Win_lock_all}</td>
</tr>
<tr>
<td>window location (X)</td>
<td>window location (X)</td>
</tr>
<tr>
<td>\texttt{MPI_Barrier}</td>
<td>\texttt{MPI_Barrier}</td>
</tr>
<tr>
<td>\texttt{MPI_Accumulate(X, MPI_SUM, -1)}</td>
<td>\texttt{MPI_Accumulate(X, MPI_SUM, -1)}</td>
</tr>
<tr>
<td>stack variable (z)</td>
<td>stack variable (z)</td>
</tr>
<tr>
<td>\textbf{do}</td>
<td>\textbf{do}</td>
</tr>
<tr>
<td>\hspace{1cm} \texttt{z = MPI_Get_accumulate(X, MPI_NO_OP, 0)}</td>
<td>\hspace{1cm} \texttt{z = MPI_Get_accumulate(X, MPI_NO_OP, 0)}</td>
</tr>
<tr>
<td>\hspace{1cm} \texttt{MPI_Win_flush(A)}</td>
<td>\hspace{1cm} \texttt{MPI_Win_flush(A)}</td>
</tr>
<tr>
<td>\texttt{while((z \neq 0))}</td>
<td>\texttt{while((z \neq 0))}</td>
</tr>
<tr>
<td>\texttt{MPI_Win_unlock_all}</td>
<td>\texttt{MPI_Win_unlock_all}</td>
</tr>
</tbody>
</table>

Example 12.21. Implementing a critical region between two MPI processes (Peterson's algorithm). Despite their appearance in the following example, \texttt{MPI_WIN_LOCK_ALL} and \texttt{MPI_WIN_UNLOCK_ALL} are not collective calls, but it is frequently useful to open shared access epochs to all MPI processes from all other MPI processes in a window. Once the access epochs are opened, accumulate operations as well as flush and sync synchronization can be used to read from or write to the public copy of the window.

<table>
<thead>
<tr>
<th>Process A</th>
<th>Process B</th>
</tr>
</thead>
<tbody>
<tr>
<td>window location (X)</td>
<td>window location (Y)</td>
</tr>
<tr>
<td>window location (T)</td>
<td>window location (T)</td>
</tr>
</tbody>
</table>
Example 12.22. Implementing a critical region between multiple MPI processes with compare and swap. The call to MPI_WIN_SYNC is necessary on Process A after local initialization of A to guarantee the public copy has been updated with the initialization value found in the private copy. It would also be valid to call MPI_ACCUMULATE with MPI_REPLACE to directly initialize the public copy. A call to MPI_WIN_FLUSH would be necessary to assure A in the public copy of Process A had been updated before the barrier.

Process A

```
MPI_Win_lock_all
X=1
MPI_Win_sync
MPI_Barrier
MPI_Accumulate(T, MPI_REPLACE, 1)
```

Process B...

```
MPI_Win_lock_all
Y=1
MPI_Win_sync
MPI_Barrier
MPI_Accumulate(T, MPI_REPLACE, 0)
```

```
stack variables t,y
```

```
t=1
y=1
```

```
while(y==1 && t==1) do
  y=MPI_Get_accumulate(Y, MPI_NO_OP, 0)
  t=MPI_Get_accumulate(T, MPI_NO_OP, 0)
end // critical region
```

```
MPI_Win_flush_all
```

```
MPI_Accumulate(X, MPI_REPLACE, 0)
```

```
MPI_Win_unlock_all
```

Example 12.23. The following example demonstrates the proper synchronization in the unified memory model when a data transfer is implemented with load and store accesses in the case of windows in shared memory (instead of using MPI_PUT or MPI_GET) and the synchronization between MPI processes is performed using point-to-point communication. The synchronization between MPI processes must be supplemented with a memory synchronization through calls to MPI_WIN_SYNC, which act locally as a processor-memory barrier. In Fortran, if MPIASYNC_PROTECTS_NONBLOCKING is .FALSE. or the variable X is not declared as ASYNCHRONOUS, reordering of the accesses to the variable X must be prevented.
with MPI_F_SYNC_REG operations. (No equivalent function is needed in C.)
The variable X is contained within a *shared memory window* and X corresponds to the same memory location at both processes. The first call to MPI_WIN_SYNC performed by process A ensures completion of the load/store accesses issued by process A. The first call to MPI_WIN_SYNC performed by process B ensures that process A’s updates to X are visible to process B. Similarly, the second call to MPI_WIN_SYNC on each process ensures correct ordering of the point-to-point communication and thus that the load/store operations on process B have completed before any subsequent load/store accesses to the variable X in process A.

```
Example 12.24. The following example shows how request-based operations can be used to overlap communication with computation. Each MPI process fetches, processes, and writes the result for NSTEPS chunks of data. Instead of a single buffer, $M$ local buffers are used to allow up to $M$ communication operations to overlap with computation.
```

```c
int i, j;
MPI_Win win;
MPI_Request put_req[M] = { MPI_REQUEST_NULL };,
MPI_Request get_req;,
double *baseptr;,
double data[M][N];

MPI_Win_allocate(NSTEPS*N*sizeof(double), sizeof(double), MPI_INFO_NULL,
                 MPI_COMM_WORLD, &baseptr, &win);

MPI_Win_lock_all(0, win);
```
for (i = 0; i < NSTEPS; i++) {
 if (i<M)
 j=i;
 else
 MPI_Waitany(M, put_req, &j, MPI_STATUS_IGNORE);

 MPI_Rget(data[j], N, MPI_DOUBLE, target, i*N, N, MPI_DOUBLE, win, &get_req);
 MPI_Wait(&get_req, MPI_STATUS_IGNORE);
 compute(i, data[j], ...);
 MPI_Rput(data[j], N, MPI_DOUBLE, target, i*N, N, MPI_DOUBLE, win, &put_req[j]);
}

MPI_Waitall(M, put_req, MPI_STATUSES_IGNORE);
MPI_Win_unlock_all(win);

Example 12.25. The following example constructs a distributed shared linked list using dynamic windows. Initially process 0 creates the head of the list, attaches it to the window, and broadcasts the pointer to all MPI processes. All MPI processes then concurrently append N new elements to the list. When an MPI process attempts to attach its element to the tail of the list it may discover that its tail pointer is stale and it must chase ahead to the new tail before the element can be attached. This example requires some modification to work in an environment where the layout of the structures is different on different MPI processes.

... #define NUM_ELEMS 10
#define LLIST_ELEM_NEXT_RANK (offsetof(llist_elem_t, next) + sizeof(llist_ptr_t, rank))
#define LLIST_ELEM_NEXT_DISP (offsetof(llist_elem_t, next) + sizeof(llist_ptr_t, disp))

/* Linked list pointer */
typedef struct {
 MPI_Aint disp;
 int rank;
} llist_ptr_t;

/* Linked list element */
typedef struct {
 llist_ptr_t next;
 int value;
} llist_elem_t;

const llist_ptr_t nil = { (MPI_Aint) MPI_BOTTOM, -1 };

/* List of locally allocated list elements. */
static llist_elem_t **my elems = NULL;
static int my elems_size = 0;
static int my elems_count = 0;
/* Allocate a new shared linked list element */
MPI_Aint alloc_elem(int value, MPI_Win win) {
 MPI_Aint disp;
 llist_elem_t *elem_ptr;

 /* Allocate the new element and register it with the window */
 MPI_Alloc_mem(sizeof(llist_elem_t), MPI_INFO_NULL, &elem_ptr);
 elem_ptr->value = value;
 elem_ptr->next = nil;
 MPI_Win_attach(win, elem_ptr, sizeof(llist_elem_t));

 /* Add the element to the list of local elements so we can free it later. */
 if (my_elems_size == my_elems_count) {
 my_elems_size += 100;
 my elems = realloc(my elems, my elems_size*sizeof(void*));
 }
 my_elems[my_elems_count] = elem_ptr;
 my_elems_count++;

 MPI_Get_address(elem_ptr, &disp);
 return disp;
}

int main(int argc, char *argv[]) {
 int procid, nproc, i;
 MPI_Win llist_win;
 llist_ptr_t head_ptr, tail_ptr;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &procid);
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);

 MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &llist_win);

 /* Process 0 creates the head node */
 if (procid == 0)
 head_ptr.disp = alloc_elem(-1, llist_win);

 /* Broadcast the head pointer to everyone */
 head_ptr.rank = 0;
 MPI_Bcast(&head_ptr.disp, 1, MPI_AINT, 0, MPI_COMM_WORLD);
 tail_ptr = head_ptr;

 /* Lock the window for shared access to all targets */
 MPI_Win_lock_all(0, llist_win);

 /* All processes concurrently append NUM_ELEMS elements to the list */
 for (i = 0; i < NUM_ELEMS; i++) {
 llist_ptr_t new_elem_ptr;
 int success;

 /* Create a new list element and attach it to the window */
 new_elem_ptr.rank = procid;
 new_elem_ptr.disp = alloc_elem(procid, llist_win);

 /* Append the new node to the list. This might take multiple

 */
 }

 MPI_Finalize();
}

attempts if others have already appended and our tail pointer
is stale. */
do {
 llist_ptr_t next_tail_ptr = nil;
 MPI_Compare_and_swap((void*) &new_elem_ptr.rank, (void*) &nil.rank,
 (void*) &next_tail_ptr.rank, MPI_INT, tail_ptr.rank,
 MPI_Aint_add(tail_ptr.disp, LLIST_ELEM_NEXT_RANK),
 llist_win);
 MPI_Win_flush(tail_ptr.rank, llist_win);
 success = (next_tail_ptr.rank == nil.rank);
 if (success) {
 MPI_Accumulate(& new_elem_ptr.disp, 1, MPI_AINT, tail_ptr.rank,
 MPI_Aint_add(tail_ptr.disp, LLIST_ELEM_NEXT_DISP), 1,
 MPI_AINT, MPI_REPLACE, llist_win);
 MPI_Win_flush(tail_ptr.rank, llist_win);
 tail_ptr = new_elem_ptr;
 } else {
 /* Tail pointer is stale, fetch the displacement. May take
 * multiple tries if it is being updated. */
 do {
 MPI_Get_accumulate(NULL, 0, MPI_AINT, &next_tail_ptr.disp,
 1, MPI_AINT, tail_ptr.rank,
 MPI_Aint_add(tail_ptr.disp, LLIST_ELEM_NEXT_DISP),
 1, MPI_AINT, MPI_NO_OP, llist_win);
 MPI_Win_flush(tail_ptr.rank, llist_win);
 } while (next_tail_ptr.disp == nil.disp);
 tail_ptr = next_tail_ptr;
 }
} while (!success);

MPI_Win_unlock_all(llist_win);
MPI_BARRIER(MPI_COMM_WORLD);
/* Free all the elements in the list */
for (; my_elems_count > 0; my_elems_count--) {
 MPI_Win_detach(llist_win, my_elems[my_elems_count-1]);
 MPI_Free_mem(my_elems[my_elems_count-1]);
}
MPI_Win_free(& llist_win);
...
Chapter 13

External Interfaces

13.1 Introduction

This chapter contains calls used to create generalized requests, which allow users to create new nonblocking operations with an interface similar to what is present in MPI. These calls can be used to layer new functionality on top of MPI. Section 13.3 deals with setting the information found in status. This functionality is needed for generalized requests.

13.2 Generalized Requests

The goal of generalized requests is to allow users to define new nonblocking operations. Such an outstanding nonblocking operation is represented by a (generalized) request. A fundamental property of nonblocking operations is that progress toward the completion of this operation occurs asynchronously, i.e., concurrently with normal program execution. Typically, this requires execution of code concurrently with the execution of the user code, e.g., in a separate thread or in a signal handler. Operating systems provide a variety of mechanisms in support of concurrent execution. MPI does not attempt to standardize or to replace these mechanisms: it is assumed programmers who wish to define new asynchronous operations will use the mechanisms provided by the underlying operating system. Thus, the calls in this section only provide a means for defining the effect of MPI calls such as MPI_WAIT or MPI_CANCEL when they apply to generalized requests, and for signaling to MPI the completion of a generalized operation.

Rationale. It is tempting to also define an MPI standard mechanism for achieving concurrent execution of user-defined nonblocking operations. However, it is difficult to define such a mechanism without consideration of the specific mechanisms used in the operating system. The Forum feels that concurrency mechanisms are a proper part of the underlying operating system and should not be standardized by MPI; the MPI standard should only deal with the interaction of such mechanisms with MPI. (End of rationale.)

For a regular request, the operation associated with the request is performed by the MPI implementation, and the operation completes without intervention by the application. For a generalized request, the operation associated with the request is performed by the application; therefore, the application must notify MPI through a call to MPI_GREQUEST_COMPLETE when the operation completes. MPI maintains the “completion” status of generalized requests. Any other request state has to be maintained by the user.

A new generalized request is started with
Chapter 13 External Interfaces

MPI

- GREQUEST
- START(query_fn, free_fn, cancel_fn, extra_state, request)

C binding

```c
int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,
                        MPI_Grequest_free_function *free_fn,
                        MPI_Grequest_cancel_function *cancel_fn, void *extra_state,
                        MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_Grequest_start(query_fn, free_fn, cancel_fn, extra_state, request, ierror)
```

Fortran binding

```fortran
EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
INTEGER REQUEST, IERROR
```

Advice to users. Note that a generalized request is of the same type as regular requests, in C and Fortran. (End of advice to users.)

The call starts a generalized request and returns a handle to it in `request`.

The syntax and meaning of the callback functions are listed below. All callback functions are passed the `extra_state` argument that was associated with the request by the starting call `MPI_GREQUEST_START`; `extra_state` can be used to maintain user-defined state for the request.

In C, the query procedure is

```c
typedef int MPI_Grequest_query_function(void *extra_state, MPI_Status *status);
```

in Fortran with the `mpi_f08` module

```fortran
SUBROUTINE MPI_Grequest_query_function(extra_state, status, ierror)
    INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state
    TYPE(MPI_Status) :: status
```

```
13.2 Generalized Requests

INTEGRER :: ierror

in Fortran with the mpi module and (deprecated) mpif.h include file

SUBROUTINE GREQUET_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
INTEGER STATUS(MPI_STATUS_SIZE), IERROR

The query_fn function computes the status that should be returned for the generalized request. The status also includes information about successful/unsuccessful cancellation of the request (result to be returned by MPI_TEST_CANCELLERED).

The query_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that completed the generalized request associated with this callback. The callback function is also invoked by calls to MPI_REQUEST_GET_STATUS, if the request is complete when the call occurs. In both cases, the callback is passed a reference to the corresponding status variable passed by the user to the MPI call; the status set by the callback function is returned by the MPI call. If the user provided MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE to the MPI procedure that causes query_fn to be called, then MPI will pass a valid status object to query_fn, and this status will be ignored upon return of the callback function.

Note that query_fn is invoked only after MPI_GREQUEST_COMPLETE is called on the request; it may be invoked several times for the same generalized request, e.g., if the user calls MPI_REQUEST_GET_STATUS several times for this request. Note also that a call to MPI_{WAIT|TEST}{SOME|ALL} may cause multiple invocations of query_fn callback functions, one for each generalized request that is completed by the MPI call. The order of these invocations is not specified by MPI.

In C, the free procedures is

typedef int MPI_Grequest_free_function(void *extra_state);

in Fortran with the mpi_f08 module

ABSTRACT INTERFACE

SUBROUTINE MPI_Grequest_free_function(extra_state, ierror)

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state
INTEGER :: ierror

in Fortran with the mpi module and (deprecated) mpif.h include file

SUBROUTINE GREQUET_FREE_FUNCTION(EXTRA_STATE, IERROR)

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
INTEGER IERROR

The free_fn function is invoked to clean up user-allocated resources when the generalized request is freed.

The free_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that completed the generalized request associated with this callback. free_fn is invoked after the call to query_fn for the same request. However, if the MPI call completed multiple generalized requests, the order in which free_fn callback functions are invoked is not specified by MPI.

The free_fn callback is also invoked for generalized requests that are freed by a call to MPI_REQUEST_FREE (no call to MPI_{WAIT|TEST}{ANY|SOME|ALL} will occur for such a request). In this case, the callback function will be called either in the MPI call MPI_REQUEST_FREE(request), or in the MPI call MPIGREQUEST_COMPLETE(request), whichever happens last, i.e., in this case the actual freeing code is executed as soon as both calls MPI_REQUEST_FREE and MPIGREQUEST_COMPLETE have occurred. The request
is not deallocated until after free_fn completes. Note that free_fn will be invoked only once per request by a correct program.

Advice to users. Calling MPI_REQUEST_FREE(request) will cause the request handle to be set to MPI_REQUEST_NULL. This handle to the generalized request is no longer valid. However, user copies of this handle are valid until after free_fn completes since MPI does not deallocate the object until then. Since free_fn is not called until after MPI_GREQUEST_COMPLETE, the user copy of the handle can be used to make this call. Users should note that MPI will deallocate the object after free_fn executes. At this point, user copies of the request handle no longer point to a valid request. MPI will not set user copies to MPI_REQUEST_NULL in this case, so it is up to the user to avoid accessing this stale handle. This is a special case in which MPI defers deallocating the object until a later time that is known by the user. (End of advice to users.)

In C, the cancel procedure is
typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);
in Fortran with the mpi_f08 module
ABSTRACT INTERFACE
SUBROUTINE MPI_Grequest_cancel_function(extra_state, complete, ierror)
  INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state
  LOGICAL :: complete
  INTEGER :: ierror
in Fortran with the mpi module and (deprecated) mpif.h include file
SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)
  INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
  LOGICAL COMPLETE
  INTEGER IERROR

The cancel_fn function is invoked to start the cancelation of a generalized request. It is called by MPI_CANCEL(request). MPI passes complete = true to the callback function if MPI_GREQUEST_COMPLETE was already called on the request, and complete = false otherwise.

All callback functions return an error code. The code is passed back and dealt with as appropriate for the error code by the MPI procedure that invoked the callback function. For example, if error codes are returned then the error code returned by the callback function will be returned by the MPI procedure that invoked the callback function. In the case of an MPI_{WAIT|TEST}{ANY} call that invokes both query_fn and free_fn, the MPI call will return the error code returned by the last callback, namely free_fn. If one or more of the requests in a call to MPI_{WAIT|TEST}{SOME|ALL} failed, then the MPI call will return MPI_ERR_IN_STATUS. In such a case, if the MPI call was passed an array of statuses, then MPI will return in each of the statuses that correspond to a completed generalized request the error code returned by the corresponding invocation of its free_fn callback function. However, if the MPI procedure was passed MPI_STATUSES_IGNORE, then the individual error codes returned by each callback functions will be lost.

Advice to users. query_fn must not set the error field of status since query_fn may be called by MPI_WAIT or MPI_TEST, in which case the error field of status should not change. The MPI library knows the “context” in which query_fn is invoked and can
decide correctly when to put the returned error code in the error field of \texttt{status}. \textit{(End of advice to users.)}

\begin{verbatim}
MPI_GREQUEST_COMPLETE(request)
INOUT request        generalized request (handle)
\end{verbatim}

\textbf{C binding}

\begin{verbatim}
int MPI_Grequest_complete(MPI_Request request)
\end{verbatim}

\textbf{Fortran 2008 binding}

\begin{verbatim}
MPI_Grequest_complete(request, ierror)
  TYPE(MPI_Request), INTENT(IN) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
\end{verbatim}

\textbf{Fortran binding}

\begin{verbatim}
MPI_GREQUEST_COMPLETE(REQUEST, IERROR)
  INTEGER REQUEST, IERROR
\end{verbatim}

The call informs MPI that the operations represented by the generalized request \texttt{request} are complete (see definitions in Section 2.4). A call to \texttt{MPI_WAIT(request, status)} will return and a call to \texttt{MPI_TEST(request, flag, status)} will return \texttt{flag = true} only after a call to \texttt{MPI_GREQUEST_COMPLETE} has declared that these operations are complete.

MPI imposes no restrictions on the code executed by the callback functions. However, new nonblocking operations should be defined so that the general semantic rules about MPI calls such as \texttt{MPI_TEST}, \texttt{MPI_REQUEST_FREE}, or \texttt{MPI_CANCEL} still hold. For example, these calls are supposed to be local and nonblocking. Therefore, the callback functions \texttt{query_fn}, \texttt{free_fn}, or \texttt{cancel_fn} should invoke blocking MPI communication calls only if the context is such that these calls are guaranteed to return in finite time. Once \texttt{MPI_CANCEL} is invoked, the cancelled operation should complete in finite time, irrespective of the state of other MPI processes (the operation has acquired “local” semantics). It should either succeed, or fail without side-effects. The user should guarantee these same properties for newly defined operations.

\textit{Advice to implementors.} A call to \texttt{MPI_GREQUEST_COMPLETE} may unblock a blocked user process/thread. The MPI library should ensure that the blocked user computation will resume. \textit{(End of advice to implementors.)}

13.2.1 Examples

\textbf{Example 13.1.} This example shows the code for a user-defined reduce operation on an \texttt{int} using a binary tree: each nonroot node receives two messages, sums them, and sends them up. We assume that no status is returned and that the operation cannot be cancelled.

\begin{verbatim}
typedef struct {
  MPI_Comm comm;
  int tag;
  int root;
  int valin;
  int *valout;
} ExampleData;
\end{verbatim}
```c
MPI_Request request;
} ARGS;

int myreduce(MPI_Comm comm, int tag, int root,
int valin, int *valout, MPI_Request *request)
{
 ARGS *args;
 pthread_t thread;

 /* start request */
 MPI_Grequest_start(query_fn, free_fn, cancel_fn, NULL, request);

 args = (ARGS*)malloc(sizeof(ARGS));
 args->comm = comm;
 args->tag = tag;
 args->root = root;
 args->valin = valin;
 args->valout = valout;
 args->request = *request;

 /* spawn thread to handle request */
 /* The availability of the pthread_create call is system dependent */
 pthread_create(&thread, NULL, reduce_thread, args);
 return MPI_SUCCESS;
}

/* thread code */
void* reduce_thread(void *ptr)
{
 int lchild, rchild, parent, lval, rval, val;
 MPI_Request req[2];
 ARGS *args;

 args = (ARGS*)ptr;

 /* compute left and right child and parent in tree; set to MPI_PROC_NULL if does not exist */
 /* code not shown */
 ...

 MPI_Irecv(&lval, 1, MPI_INT, lchild, args->tag, args->comm, &req[0]);
 MPI_Irecv(&rval, 1, MPI_INT, rchild, args->tag, args->comm, &req[1]);
 MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
 val = lval + args->valin + rval;
 MPI_Send(&val, 1, MPI_INT, parent, args->tag, args->comm);
 if (parent != MPI_PROC_NULL) *(args->valout) = val;
 MPI_Grequest_complete((args->request));
 free(ptr);
 return(NULL);
}
```
13.3 Associating Information with Status

MPI supports several different types of requests besides those for point-to-point operations. These range from MPI calls for I/O to generalized requests. It is desirable to allow these calls to use the same request mechanism, which allows one to wait or test on different types of requests. However, MPI_{TEST|WAIT}{ANY|SOME|ALL} returns a status with information about the request. With the generalization of requests, one needs to define what information will be returned in the status object.

Each MPI call fills in the appropriate fields in the status object. Any unused fields will have undefined values. A call to MPI_{TEST|WAIT}{ANY|SOME|ALL} can modify any of the fields in the status object. Specifically, it can modify fields that are undefined. The fields with meaningful values for a given request are defined in the sections with the new request.

Generalized requests raise additional considerations. Here, the user provides the func-
tions to deal with the request. Unlike other MPI calls, the user needs to provide the information to be returned in the status. The status argument is provided directly to the callback function where the status needs to be set. Users can directly set the values in 3 of the 5 status values. The count and cancel fields are opaque. To overcome this, these calls are provided:

\[\text{MPI\_STATUS\_SET\_ELEMENTS}(\text{status, datatype, count})\]

- **INOUT** status: status with which to associate count (status)
- **IN** datatype: datatype associated with count (handle)
- **IN** count: number of elements to associate with status (integer)

**C binding**

```c
int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype, int count)
int MPI_Status_set_elements_c(MPI_Status *status, MPI_Datatype datatype, MPI_Count count)
```

**Fortran 2008 binding**

```fortran
MPI_Status_set_elements(status, datatype, count, ierror)
```

```fortran
TYPE(MPI_Status), INTENT(INOUT) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
```

```fortran
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR
```

This procedure modifies the opaque part of status so calls to \texttt{MPI\_GET\_ELEMENTS} will return count. Calls to \texttt{MPI\_GET\_COUNT} will return a compatible value.

**Rationale.** The number of elements is set instead of the count because the former can deal with a non-integer number of datatypes. (End of rationale.)

A subsequent call to \texttt{MPI\_GET\_COUNT} or \texttt{MPI\_GET\_ELEMENTS} must use a \texttt{datatype} argument that has the same type signature as the \texttt{datatype} argument that was used in the call to \texttt{MPI\_STATUS\_SET\_ELEMENTS}.

**Rationale.** The requirement of matching type signatures for these calls is similar to the restriction that holds when \texttt{count} is set by a receive operation: in that case, calls to \texttt{MPI\_GET\_COUNT} and \texttt{MPI\_GET\_ELEMENTS} must use a \texttt{datatype} with the same signature as the \texttt{datatype} used in the receive call. (End of rationale.)
MPI_STATUS_SET_CANCELLED(status, flag)
    INOUT status status with which to associate cancel flag (status)
    IN flag if true, indicates request was cancelled (logical)

C binding
int MPI_Status_set_cancelled(MPI_Status *status, int flag)

Fortran 2008 binding
MPI_Status_set_cancelled(status, flag, ierror)
    TYPE(MPI_Status), INTENT(INOUT) :: status
    LOGICAL, INTENT(IN) :: flag
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)
    INTEGER STATUS(MPI_STATUS_SIZE), IERROR
    LOGICAL FLAG

If flag is set to true then a subsequent call to MPI_TEST_CANCELLED will also return
flag = true, otherwise it will return false.

Advice to users. Users are advised not to reuse the status fields for values other
than those for which they were intended. Doing so may lead to unexpected results
when using the status object. For example, calling MPI_GET_ELEMENTS may cause
an error if the value is out of range or it may be impossible to detect such an error.
The extra_state argument provided with a generalized request can be used to return
information that does not logically belong in status. Furthermore, modifying the
values in a status set internally by MPI, e.g., MPI_RECV, may lead to unpredictable
results and is strongly discouraged. (End of advice to users.)

While the MPI_SOURCE, MPI_TAG, and MPI_ERROR status values are directly accessible
by the user, for convenience in some contexts, users can also modify them via the procedure
calls described below. Procedures for querying these fields from a status object are defined
in Section 3.2.5.

MPI_STATUS_SET_SOURCE(status, source)
    INOUT status status with which to associate source rank (status)
    IN source rank to set in the MPI_SOURCE field (integer)

C binding
int MPI_Status_set_source(MPI_Status *status, int source)

Fortran 2008 binding
MPI_Status_set_source(status, source, ierror)
    TYPE(MPI_Status), INTENT(INOUT) :: status
    INTEGER, INTENT(IN) :: source
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
Fortran binding

MPI_STATUS_SET_SOURCE(STATUS, SOURCE, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), SOURCE, IERROR

Set the MPI_SOURCE field in the status object to the provided source argument.

MPI_STATUS_SET_TAG(status, tag)
INOUT status status with which to associate tag (status)
IN tag tag to set in the MPI_TAG field (integer)

C binding

int MPI_Status_set_tag(MPI_Status *status, int tag)

Fortran 2008 binding

MPI_Status_set_tag(status, tag, ierror)
    TYPE(MPI_Status), INTENT(INOUT) :: status
    INTEGER, INTENT(IN) :: tag
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_STATUS_SET_TAG(STATUS, TAG, IERROR)
    INTEGER STATUS(MPI_STATUS_SIZE), TAG, IERROR

Set the MPI_TAG field in the status object to the provided tag argument.

MPI_STATUS_SET_ERROR(status, err)
INOUT status status with which to associate error (status)
IN err error to set in the MPI_ERROR field (integer)

C binding

int MPI_Status_set_error(MPI_Status *status, int err)

Fortran 2008 binding

MPI_Status_set_error(status, err, ierror)
    TYPE(MPI_Status), INTENT(INOUT) :: status
    INTEGER, INTENT(IN) :: err
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_STATUS_SET_ERROR(STATUS, ERR, IERROR)
    INTEGER STATUS(MPI_STATUS_SIZE), ERR, IERROR

Set the MPI_ERROR field in the status object to the provided err error code.

Rationale. These functions exist for convenience when using MPI from languages other than C and Fortran, where having a function in the MPI library with a known API reduces the need for utility code written in C. (End of rationale.)
Chapter 14
I/O

14.1 Introduction

POSIX provides a model of a widely portable file system, but the portability and optimization needed for parallel I/O cannot be achieved with the POSIX interface.

The significant optimizations required for efficiency (e.g., grouping [55], collective buffering [9, 17, 56, 60, 67], and disk-directed I/O [50]) can only be implemented if the parallel I/O system provides a high-level interface supporting partitioning of file data among processes and a collective interface supporting complete transfers of global data structures between process memories and files. In addition, further efficiencies can be gained via support for asynchronous I/O, strided accesses, and control over physical file layout on storage devices (disks). The I/O environment described in this chapter provides these facilities.

Instead of defining I/O access modes to express the common patterns for accessing a shared file (broadcast, reduction, scatter, gather), we chose another approach in which data partitioning is expressed using derived datatypes. Compared to a limited set of predefined access patterns, this approach has the advantage of added flexibility and expressiveness.

14.1.1 Definitions

file: An MPI file is an ordered collection of typed data items. MPI supports random or sequential access to any integral set of these items. A file is opened collectively by a group of processes. All collective I/O calls on a file are collective over this group.

displacement: A file displacement is an absolute byte position relative to the beginning of a file. The displacement defines the location where a view begins. Note that a “file displacement” is distinct from a “typemap displacement.”

etype: An etype (elementary datatype) is the unit of data access and positioning. It can be any MPI predefined or derived datatype. Derived etypes can be constructed using any of the MPI datatype constructor routines, provided all resulting typemap displacements are nonnegative and monotonically nondecreasing. Data access is performed in etype units, reading or writing whole data items of type etype. Offsets are expressed as a count of etypes; file pointers point to the beginning of etypes. Depending on context, the term "etype" is used to describe one of three aspects of an elementary datatype: a particular MPI type, a data item of that type, or the extent of that type.

filetype: A filetype is the basis for partitioning a file among processes and defines a template for accessing the file. A filetype is either a single etype or a derived MPI datatype constructed from multiple instances of the same etype. In addition, the extent of any hole in the filetype must be a multiple of the etype’s extent. The displacements in the
typemap of the filetype are not required to be distinct, but they must be nonnegative and monotonically nondecreasing.

**view:** A view defines the current set of data visible and accessible from an open file as an ordered set of etypes. Each process has its own view of the file, defined by three quantities: a displacement, an etype, and a filetype. The pattern described by a filetype is repeated, beginning at the displacement, to define the view. The pattern of repetition is defined to be the same pattern that MPI_TYPE_CONTIGUOUS would produce if it were passed the filetype and an arbitrarily large count. Figure 14.1 shows how the tiling works; note that the filetype in this example must have explicit lower and upper bounds set in order for the initial and final holes to be repeated in the view. Views can be changed by the user during program execution. The default view is a linear byte stream (displacement is zero, etype and filetype equal to MPI_BYTE).

![Figure 14.1: Etypes and filetypes](image)

A group of processes can use complementary views to achieve a global data distribution such as a scatter/gather pattern (see Figure 14.2).

![Figure 14.2: Partitioning a file among parallel processes](image)

**offset:** An offset is a position in the file relative to the current view, expressed as a count of etypes. Holes in the view’s filetype are skipped when calculating this position. Offset 0 is the location of the first etype visible in the view (after skipping the displacement and any initial holes in the view). For example, an offset of 2 for process 1 in Figure 14.2 is the position of the eighth etype in the file after the displacement. An “explicit offset” is an offset that is used as an argument in explicit data access routines.

**file size and end of file:** The size of an MPI file is measured in bytes from the beginning of the file. A newly created file has a size of zero bytes. Using the size as an absolute displacement gives the position of the byte immediately following the last byte in the
file. For any given view, the *end of file* is the offset of the first etype accessible in the current view starting after the last byte in the file.

**file pointer:** A *file pointer* is an implicit offset maintained by MPI. “Individual file pointers” are file pointers that are local to each process that opened the file. A “shared file pointer” is a file pointer that is shared by the group of processes that opened the file.

**file handle:** A *file handle* is an opaque object created by MPI\_FILE\_OPEN and freed by MPI\_FILE\_CLOSE. All operations on an open file reference the file through the file handle.

### 14.2 File Manipulation

#### 14.2.1 Opening a File

MPI\_FILE\_OPEN(comm, filename, amode, info, fh)

```plaintext
IN comm communicator (handle)
IN filename name of file to open (string)
IN amode file access mode (integer)
IN info info object (handle)
OUT fh new file handle (handle)
```

**C binding**

```c
int MPI_File_open(MPI_Comm comm, const char *filename, int amode,
 MPI_Info info, MPI_File *fh)
```

**Fortran 2008 binding**

```fortran
MPI_File_open(comm, filename, amode, info, fh, ierror)
```

```fortran
 TYPE(MPI_Comm), INTENT(IN) :: comm
 CHARACTER(LEN=*), INTENT(IN) :: filename
 INTEGER, INTENT(IN) :: amode
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_File), INTENT(OUT) :: fh
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

**Fortran binding**

```fortran
MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)
```

```
INTEGER COMM, AMODE, INFO, FH, IERROR
CHARACTER*(*) FILENAME
```

MPI\_FILE\_OPEN opens the file identified by the file name filename on all processes in the comm communicator group. MPI\_FILE\_OPEN is a collective routine: all processes must provide the same value for amode, and all processes must provide filenames that reference the same file. (Values for info may vary.) comm must be an intra-communicator; it is erroneous to pass an inter-communicator to MPI\_FILE\_OPEN. Errors in MPI\_FILE\_OPEN are raised using the default file error handler (see Section 14.7). When using the World Model (Section 11.1), a process can open a file independently of other processes by using
the MPI_COMM_SELF communicator. Applications using the Sessions Model (Section 11.3) can achieve the same result using communicators created from the "mpi://SELF" process set. The file handle returned, fh, can be subsequently used to access the file until the file is closed using MPI_FILE_CLOSE. Before calling MPI_FINALIZE, the user is required to close (via MPI_FILE_CLOSE) all files that were opened with MPI_FILE_OPEN. Note that the communicator comm is unaffected by MPI_FILE_OPEN and continues to be usable in all MPI routines (e.g., MPI_SEND). Furthermore, the use of comm will not interfere with I/O behavior.

The format for specifying the file name in the filename argument is implementation dependent and must be documented by the implementation.

Advice to implementors. An implementation may require that filename include a string or strings specifying additional information about the file. Examples include the type of filesystem (e.g., a prefix of ufs:), a remote hostname (e.g., a prefix of machine.univ.edu:), or a file password (e.g., a suffix of /PASSWORD=SECRET). (End of advice to implementors.)

Advice to users. On some implementations of MPI, the file namespace may not be identical from all processes of all applications. For example, "/tmp/foo" may denote different files on different processes, or a single file may have many names, dependent on process location. The user is responsible for ensuring that a single file is referenced by the filename argument, as it may be impossible for an implementation to detect this type of namespace error. (End of advice to users.)

Initially, all processes view the file as a linear byte stream, and each process views data in its own native representation (no data representation conversion is performed). (POSIX files are linear byte streams in the native representation.) The file view can be changed via the MPI_FILE_SET_VIEW routine.

The following access modes are supported (specified in amode, a bit vector OR of the following integer constants):

```
MPI_MODE_RDONLY read only
MPI_MODE_RDWR reading and writing
MPI_MODE_WRONLY write only
MPI_MODE_CREATE create the file if it does not exist
MPI_MODE_EXCL error if creating file that already exists
MPI_MODE_DELETE_ON_CLOSE delete file on close
MPI_MODE.Unique Open file will not be concurrently opened elsewhere
MPI_MODE_SEQUENTIAL file will only be accessed sequentially
MPI_MODE_APPEND set initial position of all file pointers to end of file
```

Advice to users. C users can use bit vector OR (|) to combine these constants; Fortran 90 users can use the bit vector IOR intrinsic. Fortran 77 users can use (nonportably) bit vector IOR on systems that support it. Alternatively, Fortran users can portably use integer addition to OR the constants (each constant should appear at most once in the addition.). (End of advice to users.)

Advice to implementors. The values of these constants must be defined such that the bitwise OR and the sum of any distinct set of these constants is equivalent. (End of advice to implementors.)
The modes MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_WRONLY, MPI_MODE_CREATE, and MPI_MODE_EXCL have identical semantics to their POSIX counterparts [45]. Exactly one of MPI_MODE_RDONLY, MPI_MODE_RDWR, or MPI_MODE_WRONLY, must be specified. It is erroneous to specify MPI_MODE_CREATE or MPI_MODE_EXCL in conjunction with MPI_MODE_RDONLY; it is erroneous to specify MPI_MODE_SEQUENTIAL together with MPI_MODE_RDWR.

The MPI_MODE_DELETE_ON_CLOSE mode causes the file to be deleted (equivalent to performing an MPI_FILE_DELETE) when the file is closed.

The MPI_MODE_UNIQUE_OPEN mode allows an implementation to optimize access by eliminating the overhead of file locking. It is erroneous to open a file in this mode unless the file will not be concurrently opened elsewhere.

Advice to users. For MPI_MODE_UNIQUE_OPEN, not opened elsewhere includes both inside and outside the MPI environment. In particular, one needs to be aware of potential external events that may open files (e.g., automated backup facilities). When MPI_MODE_UNIQUE_OPEN is specified, the user is responsible for ensuring that no such external events take place. (End of advice to users.)

The MPI_MODE_SEQUENTIAL mode allows an implementation to optimize access to some sequential devices (tapes and network streams). It is erroneous to attempt non-sequential access to a file that has been opened in this mode.

Specifying MPI_MODE_APPEND only guarantees that all shared and individual file pointers are positioned at the initial end of file when MPI_FILE_OPEN returns. Subsequent positioning of file pointers is application dependent. In particular, the implementation does not ensure that all writes are appended.

Errors related to the access mode are raised in the class MPI_ERR_AMODE.

The info argument is used to provide information regarding file access patterns and file system specifics (see Section 14.2.8). The constant MPI_INFO_NULL can be used when no info needs to be specified.

Advice to users. Some file attributes are inherently implementation dependent (e.g., file permissions). These attributes must be set using either the info argument or facilities outside the scope of MPI. (End of advice to users.)

Files are opened by default using nonatomic mode file consistency semantics (see Section 14.6.1). The more stringent atomic mode consistency semantics, required for atomicity of conflicting accesses, can be set using MPI_FILE_SET_ATOMICITY.

14.2.2 Closing a File

MPI_FILE_CLOSE(fh)

INOUT fh file handle (handle)

C binding
int MPI_File_close(MPI_File *fh)

Fortran 2008 binding
MPI_File_close(fh, ierror)
Chapter 14 I/O

```
TYPE(MPI_File), INTENT(INOUT) :: fh
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_CLOSE(FH, IERROR)
 INTEGER FH, IERROR

MPI_FILE_CLOSE first synchronizes file state (equivalent to performing an
MPI_FILE_SYNC), then closes the file associated with fh. The file is deleted if it was opened
with access mode MPI_MODE_DELETE_ON_CLOSE (equivalent to performing an
MPI_FILE_DELETE). MPI_FILE_CLOSE is a collective routine.

Advice to users. If the file is deleted on close, and there are other processes currently
accessing the file, the status of the file and the behavior of future accesses by these
processes are implementation dependent. (End of advice to users.)

The user is responsible for ensuring that all outstanding nonblocking requests and
split collective operations associated with fh made by a process have completed before that
process calls MPI_FILE_CLOSE.

The MPI_FILE_CLOSE routine deallocates the file handle object and sets fh to
MPI_FILE_NULL.

14.2.3 Deleting a File

MPI_FILE_DELETE(filename, info)
 IN filename name of file to delete (string)
 IN info info object (handle)

C binding
int MPI_File_delete(const char *filename, MPI_Info info)

Fortran 2008 binding
MPI_File_delete(filename, info, ierror)
 CHARACTER(LEN=*) , INTENT(IN) :: filename
 TYPE(MPI_Info), INTENT(IN) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_DELETE(FILENAME, INFO, IERROR)
 CHARACTER(*), FILENAME
 INTEGER INFO, IERROR

MPI_FILE_DELETE deletes the file identified by the file name filename. If the file does
not exist, MPI_FILE_DELETE raises an error in the class MPI_ERR_NO_SUCH_FILE.

The info argument can be used to provide information regarding file system specifics
(see Section 14.2.8). The constant MPI_INFO_NULL refers to the null info, and can be used
when no info needs to be specified.

If a process currently has the file open, the behavior of any access to the file (as well
as the behavior of any outstanding accesses) is implementation dependent. In addition,
whether an open file is deleted or not is also implementation dependent. If the file is not
deleted, an error in the class MPI_ERR_FILE_IN_USE or MPI_ERR_ACCESS will be raised.
Errors are raised using the default file error handler (see Section 14.7).

14.2.4 Resizing a File

MPI_FILE_SET_SIZE(fh, size)

INOUT fh file handle (handle)
IN size size to truncate or expand file (integer)

C binding
int MPI_File_set_size(MPI_File fh, MPI_Offset size)

Fortran 2008 binding
MPI_File_set_size(fh, size, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_SET_SIZE(FH, SIZE, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_SET_SIZE resizes the file associated with the file handle fh. size is measured
in bytes from the beginning of the file. MPI_FILE_SET_SIZE is collective; all processes in
the group must pass identical values for size.

If size is smaller than the current file size, the file is truncated at the position defined
by size. The implementation is free to deallocate file blocks located beyond this position.

If size is larger than the current file size, the file size becomes size. Regions of the file
that have been previously written are unaffected. The values of data in the new regions in
the file (those locations with displacements between old file size and size) are undefined. It is
implementation dependent whether the MPI_FILE_SET_SIZE routine allocates file space—
use MPI_FILE_PREALLOCATE to force file space to be reserved.

MPI_FILE_SET_SIZE does not affect the individual file pointers or the shared file
pointer. If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is
erroneous to call this routine.

Advice to users. It is possible for the file pointers to point beyond the end of file
after a MPI_FILE_SET_SIZE operation truncates a file. This is valid, and equivalent
to seeking beyond the current end of file. (End of advice to users.)

All nonblocking requests and split collective operations on fh must be completed before
calling MPI_FILE_SET_SIZE. Otherwise, calling MPI_FILE_SET_SIZE is erroneous. As far as
consistency semantics are concerned, MPI_FILE_SET_SIZE is a write operation that conflicts
with operations that access bytes at displacements between the old and new file sizes (see
Section 14.6.1).
14.2.5 Preallocating Space for a File

\[\text{MPI_FILE_PREALLOCATE}(fh, \text{size}) \]

\[\text{INOUT} \quad \text{fh} \quad \text{file handle (handle)} \]
\[\text{IN} \quad \text{size} \quad \text{size to preallocate file (integer)} \]

\textbf{C binding}

\text{int MPI_File_preallocate(MPI_File fh, MPI_Offset size)}

\textbf{Fortran 2008 binding}

\text{MPI_File_preallocate(fh, size, ierror)}

\text{TYPE(MPI_File), INTENT(IN)} :: fh
\text{INTEGER(KIND=MP_OFFSET_KIND), INTENT(IN)} :: size
\text{INTEGER, OPTIONAL, INTENT(OUT)} :: ierror

\textbf{Fortran binding}

\text{MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)}

\text{INTEGER FH, IERROR}
\text{INTEGER(KIND=MP_OFFSET_KIND) SIZE}

\text{MPI_FILE_PREALLOCATE} ensures that storage space is allocated for the first \text{size} bytes of the file associated with \text{fh}. \text{MPI_FILE_PREALLOCATE} is collective; all processes in the group must pass identical values for \text{size}. Regions of the file that have previously been written are unaffected. For newly allocated regions of the file, \text{MPI_FILE_PREALLOCATE} has the same effect as writing undefined data. If \text{size} is larger than the current file size, the file size increases to \text{size}. If \text{size} is less than or equal to the current file size, the file size is unchanged.

The treatment of file pointers, nonblocking accesses, and file consistency is the same as with \text{MPI_FILE_SET_SIZE}. If \text{MPI_MODE_SEQUENTIAL} mode was specified when the file was opened, it is erroneous to call this routine.

\textit{Advice to users.} In some implementations, file preallocation may be time-consuming.
\textit{(End of advice to users.)}

14.2.6 Querying the Size of a File

\[\text{MPI_FILE_GET_SIZE}(fh, \text{size}) \]

\[\text{OUT} \quad \text{size} \quad \text{size of the file in bytes (integer)} \]

\textbf{C binding}

\text{int MPI_File_get_size(MPI_File fh, MPI_Offset *size)}

\textbf{Fortran 2008 binding}

\text{MPI_File_get_size(fh, size, ierror)}

\text{TYPE(MPI_File), INTENT(IN)} :: fh
14.2 File Manipulation

```fortran
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_FILE_GET_SIZE(FH, SIZE, IERROR)
INTEGER FH, IERROR
```

```
INTEGER(KIND=MPI_OFFSET_KIND) SIZE
```

MPI_FILE_GET_SIZE returns, in `size`, the current size in bytes of the file associated with the file handle `fh`. As far as consistency semantics are concerned, `MPI_FILE_GET_SIZE` is a data access operation (see Section 14.6.1).

14.2.7 Querying File Parameters

MPI_FILE_GET_GROUP(fh, group)

```fortran
IN fh file handle (handle)
OUT group group that opened the file (handle)
```

C binding

```c
int MPI_File_get_group(MPI_File fh, MPI_Group *group)
```

Fortran 2008 binding

```fortran
MPI_File_get_group(fh, group, ierror)
```

```
TYPE(MPI_File), INTENT(IN) :: fh
```

```
TYPE(MPI_Group), INTENT(OUT) :: group
```

```
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_FILE_GET_GROUP(FH, GROUP, IERROR)
```

```
INTEGER FH, GROUP, IERROR
```

MPI_FILE_GET_GROUP returns a duplicate of the group of the communicator used to open the file associated with `fh`. The group is returned in `group`. The user is responsible for freeing `group`.

MPI_FILE_GET_AMODE(fh, amode)

```fortran
IN fh file handle (handle)
OUT amode file access mode used to open the file (integer)
```

C binding

```c
int MPI_File_get_amode(MPI_File fh, int *amode)
```

Fortran 2008 binding

```fortran
MPI_File_get_amode(fh, amode, ierror)
```

```
TYPE(MPI_File), INTENT(IN) :: fh
```

```
INTEGER, INTENT(OUT) :: amode
```

```
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
Fortran binding

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)

INTEGER FH, AMODE, IERROR

MPI_FILE_GET_AMODE returns, in amode, the access mode of the file associated with fh.

Example 14.1. In Fortran 77, decoding an amode bit vector will require a routine such as the following:

```fortran
SUBROUTINE BIT_QUERY (TEST_BIT, MAX_BIT, AMODE, BIT_FOUND)
!
! TEST IF THE INPUT TEST_BIT IS SET IN THE INPUT AMODE
! IF SET, RETURN 1 IN BIT_FOUND, 0 OTHERWISE
!
  INTEGER TEST_BIT, AMODE, BIT_FOUND, CP_AMODE, HIFOUND
  INTEGER L, LBIT, MATCHER, MAX_BIT
  BIT_FOUND = 0
  CP_AMODE = AMODE
  CONTINUE
  LBIT = 0
  HIFOUND = 0
  DO L = MAX_BIT, 0, -1
    MATCHER = 2**L
    IF (CP_AMODE .GE. MATCHER .AND. HIFOUND .EQ. 0) THEN
      HIFOUND = 1
      LBIT = MATCHER
      CP_AMODE = CP_AMODE - MATCHER
    END IF
  END DO
  IF (HIFOUND .EQ. 1 .AND. LBIT .EQ. TEST_BIT) BIT_FOUND = 1
  IF (BIT_FOUND .EQ. 0 .AND. HIFOUND .EQ. 1 .AND. CP_AMODE .GT. 0) GO TO 100
END
```

This routine could be called successively to decode amode, one bit at a time. For example, the following code fragment would check for MPI_MODE_RDONLY:

```fortran
CALL BIT_QUERY(MPI_MODE_RDONLY, 30, AMODE, BIT_FOUND)
IF (BIT_FOUND .EQ. 1) THEN
  PRINT *, ' FOUND READ-ONLY BIT IN AMODE=', AMODE
ELSE
  PRINT *, ' READ-ONLY BIT NOT FOUND IN AMODE=', AMODE
END IF
```

14.2.8 File Info

Hints specified via info (see Chapter 10) allow a user to provide information such as file access patterns and file system specifics to direct optimization. Providing hints may enable an implementation to deliver increased I/O performance or minimize the use of system resources. As described in Section 10, an implementation is free to ignore all hints; however, applications must comply with any info hints they provide that are used by the MPI implementation (i.e., are returned by a call to MPI_FILE_GET_INFO) and that place a restriction on the behavior of the application. Hints are specified on a per file basis, in
MPI_FILE_OPEN, MPI_FILE_DELETE, MPI_FILE_SET_VIEW, and MPI_FILE_SET_INFO, via the opaque info object. When an info object that specifies a subset of valid hints is passed to MPI_FILE_SET_VIEW or MPI_FILE_SET_INFO, there will be no effect on previously set or defaulted hints that the info does not specify.

Advice to implementors. It may happen that a program is coded with hints for one system, and later executes on another system that does not support these hints. In general, unsupported hints should simply be ignored.

However, for each hint used by a specific implementation, a default value must be provided when the user does not specify a value for this hint. (End of advice to implementors.)

MPI_FILE_SET_INFO(fh, info)

INOUT fh file handle (handle)
IN info info object (handle)

C binding
int MPI_File_set_info(MPI_File fh, MPI_Info info)

Fortran 2008 binding
MPI_File_set_info(fh, info, ierr)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(MPI_Info), INTENT(IN) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

Fortran binding
MPI_FILE_SET_INFO(FH, INFO, IERROR)
 INTEGER FH, INFO, IERROR

MPI_FILE_SET_INFO updates the hints of the file associated with fh using the hints provided in info. This operation has no effect on previously set or defaulted hints that are not specified by info. It also has no effect on previously set or defaulted hints that are specified by info, but are ignored by the MPI implementation in this call to MPI_FILE_SET_INFO. MPI_FILE_SET_INFO is a collective routine. The info object may be different on each process, but any info entries that an implementation requires to be the same on all processes must appear with the same value in each process’s info object.

Advice to users. Many info items that an implementation can use when it creates or opens a file cannot easily be changed once the file has been created or opened. Thus, an implementation may ignore hints issued in this call that it would have accepted in an open call. An implementation may also be unable to update certain info hints in a call to MPI_FILE_SET_VIEW or MPI_FILE_SET_INFO. MPI_FILE_GET_INFO can be used to determine whether info changes were ignored by the implementation. (End of advice to users.)
MPI_FILE_GET_INFO(fh, info_used)

IN fh file handle (handle)

OUT info_used new info object (handle)

C binding
int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

Fortran 2008 binding
MPI_File_get_info(fh, info_used, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Info), INTENT(OUT) :: info_used

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)

INTEGER FH, INFO_USED, IERROR

MPI_FILE_GET_INFO returns a new info object containing the hints of the file associated with fh. The current setting of all hints related to this file is returned in info_used. An MPI implementation is required to return all hints that are supported by the implementation and have default values specified; any user-supplied hints that were not ignored by the implementation; and any additional hints that were set by the implementation. If no such hints exist, a handle to a newly created info object is returned that contains no (key,value) pairs. The user is responsible for freeing info_used via MPI_INFO_FREE.

Reserved File Hints

Some potentially useful hints (info key values) are outlined below. The following key values are reserved. An implementation is not required to interpret these key values, but if it does interpret the key value, it must provide the functionality described. (For more details on “info,” see Chapter 10.)

These hints mainly affect access patterns and the layout of data on parallel I/O devices. For each hint name introduced, we describe the purpose of the hint, and the type of the hint value. The “[SAME]” annotation specifies that the hint values provided by all participating processes must be identical; otherwise the program is erroneous. In addition, some hints are context dependent, and are only used by an implementation at specific times (e.g., “file_perm” is only useful during file creation).

"access_style" (comma separated list of strings): This hint specifies the manner in which the file will be accessed until the file is closed or until the "access_style" key value is altered. The hint value is a comma separated list of the following: "read_once", "write_once", "read_mostly", "write_mostly", "sequential", "reverse_sequential", and "random".

"collective_buffering" (boolean) [SAME]: This hint specifies whether the application may benefit from collective buffering. Collective buffering is an optimization performed on collective accesses. Accesses to the file are performed on behalf of all processes in the group by a number of target nodes. These target nodes coalesce small requests into large disk accesses. Valid values for this key are “true” and “false”. Collective buffering
parameters are further directed via additional hints: "cb_block_size", "cb_buffer_size", and "cb_nodes".

"cb_block_size" (integer) [SAME]: This hint specifies the block size to be used for collective buffering file access. Target nodes access data in chunks of this size. The chunks are distributed among target nodes in a round-robin (cyclic) pattern.

"cb_buffer_size" (integer) [SAME]: This hint specifies the total buffer space that can be used for collective buffering on each target node, usually a multiple of "cb_block_size".

"cb_nodes" (integer) [SAME]: This hint specifies the number of target nodes to be used for collective buffering.

"chunked" (comma separated list of integers) [SAME]: This hint specifies that the file consists of a multidimensional array that is often accessed by subarrays. The value for this hint is a comma separated list of array dimensions, starting from the most significant one (for an array stored in row-major order, as in C, the most significant dimension is the first one; for an array stored in column-major order, as in Fortran, the most significant dimension is the last one, and array dimensions should be reversed).

"chunked_item" (comma separated list of integers) [SAME]: This hint specifies the size of each array entry, in bytes.

"chunked_size" (comma separated list of integers) [SAME]: This hint specifies the dimensions of the subarrays. This is a comma separated list of array dimensions, starting from the most significant one.

"filename" (string): This hint specifies the file name used when the file was opened. If the implementation is capable of returning the file name of an open file, it will be returned using this key by MPI_FILE_GET_INFO. This key is ignored when passed to MPI_FILE_OPEN, MPI_FILE_SET_VIEW, MPI_FILE_SET_INFO, and MPI_FILE_DELETE.

"file_perm" (string) [SAME]: This hint specifies the file permissions to use for file creation. Setting this hint is only useful when passed to MPI_FILE_OPEN with an amode that includes MPI_MODE_CREATE. The set of valid values for this key is implementation dependent.

"io_node_list" (comma separated list of strings) [SAME]: This hint specifies the list of I/O devices that should be used to store the file. This hint is most relevant when the file is created.

"nb_proc" (integer) [SAME]: This hint specifies the number of parallel processes that will typically be assigned to access this file. This hint is most relevant when the file is created.

"num_io_nodes" (integer) [SAME]: This hint specifies the number of I/O devices in the system. This hint is most relevant when the file is created.

"striping_factor" (integer) [SAME]: This hint specifies the number of I/O devices that the file should be striped across, and is relevant only when the file is created.
"striping_unit" (integer) [SAME]: This hint specifies the suggested striping unit to be used for this file. The striping unit is the amount of consecutive data assigned to one I/O device before progressing to the next device, when striping across a number of devices. It is expressed in bytes. This hint is relevant only when the file is created.

"mpi_assert_memory_alloc_kinds" (string, not set by default): If set, the implementation may assume that the memory for all data buffers passed to MPI operations performed by the calling MPI process on the given file will use only the memory allocation kinds listed in the value string. See Section 11.4.3.

14.3 File Views

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

C binding

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype, MPI_Datatype filetype, const char *datarep, MPI_Info info)

Fortran 2008 binding

MPI_File_set_view(fh, disp, etype, filetype, datarep, info, ierror)

 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: disp
 TYPE(MPI_Datatype), INTENT(IN) :: etype, filetype
 CHARACTER(LEN=*) , INTENT(IN) :: datarep
 TYPE(MPI_Info) , INTENT(IN) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)

 INTEGER FH, ETYPE, FILETYPE, INFO, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) DISP
 CHARACTER*(*) DATAREP

The MPI_FILE_SET_VIEW routine changes the process's view of the data in the file. The start of the view is set to disp; the type of data is set to etype; the distribution of data to processes is set to filetype; and the representation of data in the file is set to datarep. In addition, MPI_FILE_SET_VIEW resets the individual file pointers and the shared file pointer to zero. MPI_FILE_SET_VIEW is collective; the values for datarep and the extents of etype in the file data representation must be identical on all processes in the group; values for disp, filetype, and info may vary. The datatypes passed in etype and filetype must be committed.
The etype always specifies the data layout in the file. If etype is a portable datatype (see Section 2.4), the extent of etype is computed by scaling any displacements in the datatype to match the file data representation. If etype is not a portable datatype, no scaling is done when computing the extent of etype. The user must be careful when using nonportable etypes in heterogeneous environments; see Section 14.5.1 for further details.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, the special displacement MPI_DISPLACEMENT_CURRENT must be passed in disp. This sets the displacement to the current position of the shared file pointer. MPI_DISPLACEMENT_CURRENT is invalid unless the amode for the file has MPI_MODE_SEQUENTIAL set.

Rationale. For some sequential files, such as those corresponding to magnetic tapes or streaming network connections, the displacement may not be meaningful. MPI_DISPLACEMENT_CURRENT allows the view to be changed for these types of files. *(End of rationale.)*

Advice to implementors. It is expected that a call to MPI_FILE_SET_VIEW will immediately follow MPI_FILE_OPEN in numerous instances. A high-quality implementation will ensure that this behavior is efficient. *(End of advice to implementors.)*

The disp displacement argument specifies the position (absolute offset in bytes from the beginning of the file) where the view begins.

Advice to users. disp can be used to skip headers or when the file includes a sequence of data segments that are to be accessed in different patterns (see Figure 14.3). Separate views, each using a different displacement and filetype, can be used to access each segment.

![Figure 14.3: Displacements](image)

(End of advice to users.)

An etype (elementary datatype) is the unit of data access and positioning. It can be any MPI predefined or derived datatype. Derived etypes can be constructed by using any of the MPI datatype constructor routines, provided all resulting typemap displacements are nonnegative and monotonically nondecreasing. Data access is performed in etype units, reading or writing whole data items of type etype. Offsets are expressed as a count of etypes; file pointers point to the beginning of etypes.

Advice to users. In order to ensure interoperability in a heterogeneous environment, additional restrictions must be observed when constructing the etype (see Section 14.5). *(End of advice to users.)*
A filetype is either a single etype or a derived MPI datatype constructed from multiple instances of the same etype. In addition, the extent of any hole in the filetype must be a multiple of the etype’s extent. These displacements are not required to be distinct, but they cannot be negative, and they must be monotonically nondecreasing.

If the file is opened for writing, neither the etype nor the filetype is permitted to contain overlapping regions. This restriction is equivalent to the “datatype used in a receive cannot specify overlapping regions” restriction for communication. Note that filetypes from different processes may still overlap each other.

If a filetype has holes in it, then the data in the holes is inaccessible to the calling process. However, the disp, etype, and filetype arguments can be changed via future calls to MPI_FILE_SET_VIEW to access a different part of the file.

It is erroneous to use absolute addresses in the construction of the etype and filetype.

The info argument is used to provide information regarding file access patterns and file system specifics to direct optimization (see Section 14.2.8). The constant MPI_INFO_NULL refers to the null info and can be used when no info needs to be specified.

The datarep argument is a string that specifies the representation of data in the file. See the file interoperability section (Section 14.5) for details and a discussion of valid values.

The user is responsible for ensuring that all nonblocking requests and split collective operations on fh have been completed before calling MPI_FILE_SET_VIEW—otherwise, the call to MPI_FILE_SET_VIEW is erroneous.

`MPI_FILE_GET_VIEW(fh, disp, etype, filetype, datarep)`

- **IN** fh: file handle (handle)
- **OUT** disp: displacement (integer)
- **OUT** etype: elementary datatype (handle)
- **OUT** filetype: filetype (handle)
- **OUT** datarep: data representation (string)

C binding

```c
int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,
                      MPI_Datatype *filetype, char *datarep)
```

Fortran 2008 binding

```fortran
MPI_File_get_view(fh, disp, etype, filetype, datarep, ierr)
```

```fortran
  TYPE(MPI_File), INTENT(IN) :: fh
  INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: disp
  TYPE(MPI_Datatype), INTENT(OUT) :: etype, filetype
  CHARACTER(LEN=*) , INTENT(OUT) :: datarep
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

Fortran binding

```fortran
MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)
```

```fortran
  INTEGER FH, ETYPE, FILETYPE, IERROR
  INTEGER(KIND=MPI_OFFSET_KIND) DISP
  CHARACTER(*) DATAREP
```
MPI_FILE_GET_VIEW returns the process’s view of the data in the file. The current value of the displacement is returned in disp. The etype and filetype are new datatypes with typemaps equal to the typemaps of the current etype and filetype, respectively.

The data representation is returned in datarep. The user is responsible for ensuring that datarep is large enough to hold the returned data representation string. The length of a data representation string is limited to the value of MPI_MAX_DATAREP_STRING.

In addition, if a portable datatype was used to set the current view, then the corresponding datatype returned by MPI_FILE_GET_VIEW is also a portable datatype. If etype or filetype are derived datatypes, the user is responsible for freeing them. The etype and filetype returned are both in a committed state.

14.4 Data Access

14.4.1 Data Access Routines

Data is moved between files and processes by issuing read and write calls. There are three orthogonal aspects to data access: positioning (explicit offset vs. implicit file pointer), synchronism (blocking vs. nonblocking and split collective), and coordination (noncollective vs. collective). The following combinations of these data access routines, including two types of file pointers (individual and shared) are provided in Table 14.1.

<table>
<thead>
<tr>
<th>positioning</th>
<th>synchronism</th>
<th>coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit</td>
<td>blocking</td>
<td>noncollective</td>
</tr>
<tr>
<td>offsets</td>
<td></td>
<td>MPI_FILE_READ_AT_ALL</td>
</tr>
<tr>
<td></td>
<td>nonblocking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>split</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>collective</td>
<td>N/A</td>
</tr>
<tr>
<td>individual</td>
<td>blocking</td>
<td></td>
</tr>
<tr>
<td>file pointers</td>
<td></td>
<td>noncollective</td>
</tr>
<tr>
<td></td>
<td>nonblocking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>split</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>collective</td>
<td>N/A</td>
</tr>
<tr>
<td>shared</td>
<td>blocking</td>
<td></td>
</tr>
<tr>
<td>file pointer</td>
<td></td>
<td>noncollective</td>
</tr>
<tr>
<td></td>
<td>nonblocking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>split</td>
<td>N/A</td>
</tr>
</tbody>
</table>

POSIX read()/fread() and write()/fwrite() are blocking, noncollective operations and use individual file pointers. The MPI equivalents are MPI_FILE_READ and
MPI_FILE_WRITE.

Implementations of data access routines may buffer data to improve performance. This
does not affect reads, as the data is always available in the user’s buffer after a read operation
completes. For writes, however, the MPI_FILE_SYNC routine provides the only guarantee
that data has been transferred to the storage device.

Positioning

MPI provides three types of positioning for data access routines: explicit offsets, individual file pointers, and shared file pointers. The different positioning methods may
be mixed within the same program and do not affect each other.

The data access routines that accept explicit offsets contain _AT in their name (e.g.,
MPI_FILE_WRITE_AT). Explicit offset operations perform data access at the file position
given directly as an argument—no file pointer is used nor updated. Note that this is not
equivalent to an atomic seek-and-read or seek-and-write operation, as no “seek” is issued.
Operations with explicit offsets are described in Section 14.4.2.

The names of the individual file pointer routines contain no positional qualifier (e.g.,
MPI_FILE_WRITE). Operations with individual file pointers are described in Section 14.4.3.
The data access routines that use shared file pointers contain _SHARED or _ORDERED
in their name (e.g., MPI_FILE_WRITE_SHARED). Operations with shared file pointers are
described in Section 14.4.4.

The main semantic issues with MPI-maintained file pointers are how and when they are
updated by I/O operations. In general, each I/O operation leaves the file pointer pointing to
the next data item after the last one that is accessed by the operation. In a nonblocking or
split collective operation, the pointer is updated by the call that initiates the I/O, possibly
before the access completes.

More formally,

\[
new_file_offset = old_file_offset + \frac{\text{elements(datatype)}}{\text{elements(etype)}} \times count
\]

where \(count\) is the number of \(\text{datatype}\) items to be accessed, \(\text{elements}(X)\) is the number of
predefined datatypes in the typemap of \(X\), and \(old_file_offset\) is the value of the implicit
offset before the call. The file position, \(new_file_offset\), is in terms of a count of etypes
relative to the current view.

Synchronism

MPI supports blocking and nonblocking I/O routines.

A blocking I/O call will not return until the I/O request is completed.

A nonblocking I/O call initiates an I/O operation, but does not wait for it to complete.
Given suitable hardware, this allows the transfer of data out of and into the user’s buffer
to proceed concurrently with computation. A separate request complete call (MPI_WAIT,
MPI_TEST, or any of their variants) is needed to complete the I/O request, i.e., to confirm
that the data has been read or written and that it is safe for the user to reuse the buffer.
The nonblocking versions of the routines are named MPI_FILE_IXXX, where the I stands for
immediate.

It is erroneous to access the local buffer of a nonblocking data access operation, or to
use that buffer as the source or target of other communications, between the initiation and
completion of the operation.
The split collective routines support a restricted form of “nonblocking” operations for collective data access (see Section 14.4.5).

Coordination

Every noncollective data access routine MPI_FILE_XXX has a collective counterpart. For most routines, this counterpart is MPI_FILE_XXX_ALL or a pair of MPI_FILE_XXX_BEGIN and MPI_FILE_XXX_END. The counterparts to the MPI_FILE_XXX_SHARED routines are MPI_FILE_XXX_ORDERED.

The completion of a noncollective call only depends on the activity of the calling process. However, the completion of a collective call (which must be called by all members of the process group) may depend on the activity of the other processes participating in the collective call. See Section 14.6.4 for rules on semantics of collective calls.

Collective operations may perform much better than their noncollective counterparts, as global data accesses have significant potential for automatic optimization.

Data Access Conventions

Data is moved between files and processes by calling read and write routines. Read routines move data from a file into memory. Write routines move data from memory into a file. The file is designated by a file handle, fh. The location of the file data is specified by an offset into the current view. The data in memory is specified by a triple: buf, count, and datatype. Upon completion, the amount of data accessed by the calling process is returned in a status.

An offset designates the starting position in the file for an access. The offset is always in etype units relative to the current view. Explicit offset routines pass offset as an argument (negative values are erroneous). The file pointer routines use implicit offsets maintained by MPI.

A data access routine attempts to transfer (read or write) count data items of type datatype between the user’s buffer buf and the file. The datatype passed to the routine must be a committed datatype. The layout of data in memory corresponding to buf, count, datatype is interpreted the same way as in MPI communication functions; see Section 3.2.2 and Section 5.1.11. The data is accessed from those parts of the file specified by the current view (Section 14.3). The type signature of datatype must match the type signature of some number of contiguous copies of the etype of the current view. As in a receive, it is erroneous to specify a datatype for reading that contains overlapping regions (areas of memory that would be stored into more than once).

The nonblocking data access routines indicate that MPI can start a data access and associate a request handle, request, with the I/O operation. Nonblocking operations are completed via MPI_TEST, MPI_WAIT, or any of their variants.

Data access operations, when completed, return the amount of data accessed in status.

Advice to users. To prevent problems with the argument copying and register optimization done by Fortran compilers, please note the hints in Sections 19.1.10–19.1.20. (End of advice to users.)

For blocking routines, status is returned directly. For nonblocking routines and split collective routines, status is returned when the operation is completed. The number of datatype entries and predefined elements accessed by the calling process can be extracted
from status by using MPI_GET_COUNT and MPI_GET_ELEMENTS, respectively. The interpretation of the MPI_ERROR field is the same as for other operations—normally undefined, but meaningful if an MPI routine returns MPI_ERR_IN_STATUS. The user can pass (in C and Fortran) MPI_STATUS_IGNORE in the status argument if the return value of this argument is not needed. The status can be passed to MPI_TEST_CANCELLED to determine if the operation was cancelled. All other fields of status are undefined.

When reading, a program can detect the end of file by noting that the amount of data read is less than the amount requested. Writing past the end of file increases the file size. The amount of data accessed will be the amount requested, unless an error is raised (or a read reaches the end of file).

14.4.2 Data Access with Explicit Offsets

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to call the routines in this section.

MPI_FILE_READ_AT(fh, offset, buf, count, datatype, status)

In	fh	file handle (handle)
In	offset	file offset (integer)
Out	buf	initial address of buffer (choice)
In	count	number of elements in buffer (integer)
In	datatype	datatype of each buffer element (handle)
Out	status	status object (status)

C binding

```c
int MPI\_File\_read\_at(MPI\_File fh, MPI\_Offset offset, void *buf, int count, MPI\_Datatype datatype, MPI\_Status *status)
```

Fortran 2008 binding

```fortran
MPI\_File\_read\_at(fh, offset, buf, count, datatype, status, ierror)
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fh</td>
<td>file handle (handle)</td>
</tr>
<tr>
<td>offset</td>
<td>file offset (integer)</td>
</tr>
<tr>
<td>buf</td>
<td>initial address of buffer (choice)</td>
</tr>
<tr>
<td>count</td>
<td>number of elements in buffer (integer)</td>
</tr>
<tr>
<td>datatype</td>
<td>datatype of each buffer element (handle)</td>
</tr>
<tr>
<td>status</td>
<td>status object (status)</td>
</tr>
<tr>
<td>ierror</td>
<td>error code (integer)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI\_File\_read\_at\_c(MPI\_File fh, MPI\_Offset offset, void *buf, MPI\_Count count, MPI\_Datatype datatype, MPI\_Status *status)
```

Fortran 2008 binding

```fortran
MPI\_File\_read\_at\_c(fh, offset, buf, count, datatype, status, ierror)
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fh</td>
<td>file handle (handle)</td>
</tr>
<tr>
<td>offset</td>
<td>file offset (integer)</td>
</tr>
<tr>
<td>buf</td>
<td>initial address of buffer (choice)</td>
</tr>
<tr>
<td>count</td>
<td>number of elements in buffer (integer)</td>
</tr>
<tr>
<td>datatype</td>
<td>datatype of each buffer element (handle)</td>
</tr>
<tr>
<td>status</td>
<td>status object (status)</td>
</tr>
<tr>
<td>ierror</td>
<td>error code (integer)</td>
</tr>
</tbody>
</table>
Fortran binding

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_READ_AT reads a file beginning at the position specified by offset.

MPI_FILE_READ_AT_ALL(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)
IN offset file offset (integer)
OUT buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT status status object (status)

C binding

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at_all_c(MPI_File fh, MPI_Offset offset, void *buf,
 MPI_Count count, MPI_Datatype datatype, MPI_Status *status)

Fortran 2008 binding

MPI_File_read_at_all(fh, offset, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at_all(fh, offset, buf, count, datatype, status, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
MPI_FILE_READ_AT_ALL is a collective version of the blocking MPI_FILE_READ_AT interface.

MPI_FILE_WRITE_AT(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)
IN offset file offset (integer)
IN buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (integer)
OUT status status object (status)

C binding
int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_at_c(MPI_File fh, MPI_Offset offset, const void *buf,
MPI_Count count, MPI_Datatype datatype, MPI_Status *status)

Fortran 2008 binding
MPI_File_write_at(fh, offset, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_at(fh, offset, buf, count, datatype, status, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_WRITE_AT writes a file beginning at the position specified by offset.
MPI_FILE_WRITE_AT_ALL(fh, offset, buf, count, datatype, status)

INOUT fh
file handle (handle)

IN
offset
file offset (integer)

IN
buf
initial address of buffer (choice)

IN
count
number of elements in buffer (integer)

IN
datatype
datatype of each buffer element (handle)

OUT
status
status object (status)

C binding

```c
int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, const void *buf,  
                          int count, MPI_Datatype datatype, MPI_Status *status)
```

```c
int MPI_File_write_at_all_c(MPI_File fh, MPI_Offset offset, const void *buf,  
                           MPI_Count count, MPI_Datatype datatype, MPI_Status *status)
```

Fortran 2008 binding

```fortran
MPI_File_write_at_all(fh, offset, buf, count, datatype, status, ierror)
    TYPE(MPI_File), INTENT(IN) :: fh
    INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
    TYPE(*), DIMENSION(..), INTENT(IN) :: buf
    INTEGER, INTENT(IN) :: count
    TYPE(MPI_Datatype), INTENT(IN) :: datatype
    TYPE(MPI_Status) :: status
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_File_write_at_all(fh, offset, buf, count, datatype, status, ierror) !(_c)
    TYPE(MPI_File), INTENT(IN) :: fh
    INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
    TYPE(*), DIMENSION(..), INTENT(IN) :: buf
    INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
    TYPE(MPI_Datatype), INTENT(IN) :: datatype
    TYPE(MPI_Status) :: status
    INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET  
<type> BUF(*)
```

MPI_FILE_WRITE_AT_ALL is a collective version of the blocking MPI_FILE_WRITE_AT interface.
MPI_FILE_IREAD_AT(fh, offset, buf, count, datatype, request)

IN fh file handle (handle)
IN offset file offset (integer)
OUT buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT request request object (handle)

C binding

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread_at_c(MPI_File fh, MPI_Offset offset, void *buf,
 MPI_Count count, MPI_Datatype datatype, MPI_Request *request)

Fortran 2008 binding

MPI_File_iread_at(fh, offset, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread_at(fh, offset, buf, count, datatype, request, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_IREAD_AT is a nonblocking version of the MPI_FILE_READ_AT interface.
MPI_FILE_IREAD_AT_ALL (fh, offset, buf, count, datatype, request)

1. IN fh
 file handle (handle)
2. IN offset
 file offset (integer)
3. OUT buf
 initial address of buffer (choice)
4. IN count
 number of elements in buffer (integer)
5. IN datatype
 datatype of each buffer element (handle)
6. OUT request
 request object (handle)

C binding

```c
int MPI_File_iread_at_all(MPI_File fh, MPI_Offset offset, void *buf, int count,  
                          MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iread_at_all_c(MPI_File fh, MPI_Offset offset, void *buf,  
                           MPI_Count count, MPI_Datatype datatype, MPI_Request *request)
```

Fortran 2008 binding

```fortran
MPI_File_iread_at_all(fh, offset, buf, count, datatype, request, ierror)
  TYPE(MPI_File), INTENT(IN) :: fh
  INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_File_iread_at_all(fh, offset, buf, count, datatype, request, ierror) !(_c)
  TYPE(MPI_File), INTENT(IN) :: fh
  INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_FILE_IREAD_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
  INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
  INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
  <type> BUF(*)
```

MPI_FILE_IREAD_AT_ALL is a nonblocking version of **MPI_FILE_READ_AT_ALL**. See Section 14.6.5 for semantics of nonblocking collective file operations.
Chapter 14 I/O

MPI_FILE_IWRITE_AT(fh, offset, buf, count, datatype, request)

INOUT fh file handle (handle)
IN offset file offset (integer)
IN buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT request request object (handle)

C binding
int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, const void *buf,
 int count, MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iwrite_at_c(MPI_File fh, MPI_Offset offset, const void *buf,
 MPI_Count count, MPI_Datatype datatype, MPI_Request *request)

Fortran 2008 binding
MPI_File_iwrite_at(fh, offset, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_at(fh, offset, buf, count, datatype, request, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_IWRITE_AT is a nonblocking version of the MPI_FILE_WRITE_AT interface.
14.4 Data Access

MPI_FILE_IWRITE_AT_ALL(fh, offset, buf, count, datatype, request)

INOUT fh file handle (handle)
IN offset file offset (integer)
IN buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT request request object (handle)

C binding

int MPI_File_iwrite_at_all(MPI_File fh, MPI_Offset offset, const void *buf,
 int count, MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_at_all_c(MPI_File fh, MPI_Offset offset, const void *buf,
 MPI_Count count, MPI_Datatype datatype, MPI_Request *request)

Fortran 2008 binding

MPI_File_iwrite_at_all(fh, offset, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_at_all(fh, offset, buf, count, datatype, request, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_IWRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_IWRITE_AT_ALL is a nonblocking version of MPI_FILE_WRITE_AT_ALL.

14.4.3 Data Access with Individual File Pointers

MPI maintains one individual file pointer per process per file handle. The current value
of this pointer implicitly specifies the offset in the data access routines described in this
section. These routines only use and update the individual file pointers maintained by MPI.
The shared file pointer is not used nor updated.
The individual file pointer routines have the same semantics as the data access with explicit offset routines described in Section 14.4.2, with the following modification:

- the offset is defined to be the current value of the MPI-maintained individual file pointer.

After an individual file pointer operation is initiated, the individual file pointer is updated to point to the next etype after the last one that will be accessed. The file pointer is updated relative to the current view of the file.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to call the routines in this section, with the exception of MPI_FILE_GET_BYTE_OFFSET.

MPI_FILE_READ(fh, buf, count, datatype, status)

INOUT fh file handle (handle)
OUT buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT status status object (status)

C binding
int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
 MPI_Status *status)

int MPI_File_read_c(MPI_File fh, void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Status *status)

Fortran 2008 binding
MPI_File_read(fh, buf, count, datatype, status, ierror)

 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read(fh, buf, count, datatype, status, ierror) !(_c)

 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_READ reads a file using the individual file pointer.
Example 14.2. The following Fortran code fragment is an example of reading a file until the end of file is reached:

```fortran
! Read a preexisting input file until all data has been read.  
! Call routine "process_input" if all requested data is read.  
! The Fortran 90 "exit" statement exits the loop.

integer bufsize, numread, totprocessed, status(MPI_STATUS_SIZE)
parameter (bufsize=100)
real localbuffer(bufsize)
integer(kind=MPI_OFFSET_KIND) zero

zero = 0

call MPI_FILE_OPEN(MPI_COMM_WORLD, "myoldfile", &
    MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr)
call MPI_FILE_SET_VIEW(myfh, zero, MPI_REAL, MPI_REAL, 'native', &
    MPI_INFO_NULL, ierr)
totprocessed = 0
do
    call MPI_FILE_READ(myfh, localbuffer, bufsize, MPI_REAL, &
        status, ierr)
call MPI_GET_COUNT(status, MPI_REAL, numread, ierr)
call process_input(localbuffer, numread)
totprocessed = totprocessed + numread
    if (numread < bufsize) exit
end do

call MPI_FILE_CLOSE(myfh, ierr)
```

```
MPI_FILE_READ_ALL(fh, buf, count, datatype, status)

INOUT fh      file handle (handle)
OUT buf       initial address of buffer (choice)
IN count      number of elements in buffer (integer)
IN datatype   datatype of each buffer element (handle)
OUT status    status object (status)

C binding

int MPI_File_read_all(MPI_File fh, void *buf, int count, MPI_Datatype datatype, 
                      MPI_Status *status)

int MPI_File_read_all_c(MPI_File fh, void *buf, MPI_Count count, 
                        MPI_Datatype datatype, MPI_Status *status)
```
Fortran 2008 binding

MPI_File_read_all(fh, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_all(fh, buf, count, datatype, status, ierror)!(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)
 MPI_FILE_READ_ALL is a collective version of the blocking MPI_FILE_READ interface.

MPI_FILE_WRITE(fh, buf, count, datatype, status)
 INOUT fh file handle (handle)
 IN buf initial address of buffer (choice)
 IN count number of elements in buffer (integer)
 IN datatype datatype of each buffer element (handle)
 OUT status status object (status)

C binding

int MPI_File_write(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Status *status)

Fortran 2008 binding

MPI_File_write(fh, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write(fh, buf, count, datatype, status, ierror)!(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
Fortran binding

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

\texttt{<type> BUF(*)}

MPI_FILE_WRITE writes a file using the individual file pointer.

MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (status)

C binding

int MPI_File_write_all(MPI_File fh, const void *buf, int count,

\hspace{1em} MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_all_c(MPI_File fh, const void *buf, MPI_Count count,

\hspace{1em} MPI_Datatype datatype, MPI_Status *status)

Fortran 2008 binding

MPI_File_write_all(fh, buf, count, datatype, status, ierror)

\hspace{1em} TYPE(MPI_File), INTENT(IN) :: fh

\hspace{1em} TYPE(*), DIMENSION(..), INTENT(IN) :: buf

\hspace{1em} INTEGER, INTENT(IN) :: count

\hspace{1em} TYPE(MPI_Datatype), INTENT(IN) :: datatype

\hspace{1em} TYPE(MPI_Status) :: status

\hspace{1em} INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_all_all_c(fh, buf, count, datatype, status, ierror) !(_c)

\hspace{1em} TYPE(MPI_File), INTENT(IN) :: fh

\hspace{1em} TYPE(*), DIMENSION(..), INTENT(IN) :: buf

\hspace{1em} INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count

\hspace{1em} TYPE(MPI_Datatype), INTENT(IN) :: datatype

\hspace{1em} TYPE(MPI_Status) :: status

\hspace{1em} INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

\texttt{<type> BUF(*)}
MPI_FILE_WRITE_ALL is a collective version of the blocking MPI_FILE_WRITE interface.

MPI_FILE_IREAD(fh, buf, count, datatype, request)

INOUT fh file handle (handle)
OUT buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT request request object (handle)

C binding

int MPI_File_iread(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
 MPI_Request *request)

int MPI_File_iread_c(MPI_File fh, void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Request *request)

Fortran 2008 binding

MPI_File_iread(fh, buf, count, datatype, request, ierror)

 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread(fh, buf, count, datatype, request, ierror) !(_c)

 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
 <type> BUF(*)

MPI_FILE_IREAD is a nonblocking version of the MPI_FILE_READ interface.

Example 14.3. The following Fortran code fragment illustrates file pointer update semantics:

! Read the first twenty real words in a file into two local ! buffers. Note that when the first MPI_FILE_IREAD returns, ! the file pointer has been updated to point to the ! eleventh real word in the file.

integer bufsize, req1, req2
integer, dimension(MPI_STATUS_SIZE) :: status1, status2
parameter (bufsize=10)
real buf1(bufsize), buf2(bufsize)
integer(kind=MPI_OFFSET_KIND) zero
zero = 0
call MPI_FILE_OPEN(MPI_COMM_WORLD, 'myoldfile', &
 MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr)
call MPI_FILE_SET_VIEW(myfh, zero, MPI_REAL, MPI_REAL, 'native', &
 MPI_INFO_NULL, ierr)
call MPI_FILE_IREAD(myfh, buf1, bufsize, MPI_REAL, &
 req1, ierr)
call MPI_FILE_IREAD(myfh, buf2, bufsize, MPI_REAL, &
 req2, ierr)
call MPI_WAIT(req1, status1, ierr)
call MPI_WAIT(req2, status2, ierr)
call MPI_FILE_CLOSE(myfh, ierr)

MPI_FILE_IREAD_ALL(fh, buf, count, datatype, request)
INOUT fh file handle (handle)
OUT buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT request request object (handle)

C binding
int MPI_File_iread_all(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iread_all_c(MPI_File fh, void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Request *request)

Fortran 2008 binding
MPI_File_iread_all(fh, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread_all(fh, buf, count, datatype, request, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_IREAD_ALL(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
<type> BUF(*)

MPI_FILE_IREAD_ALL is a nonblocking version of MPI_FILE_READ_ALL.

MPI_FILE_IWRITE(fh, buf, count, datatype, request)

INOUT fh file handle (handle)
IN buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT request request object (handle)

C binding
int MPI_File_iwrite(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iwrite_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Request *request)

Fortran 2008 binding
MPI_File_iwrite(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite(fh, buf, count, datatype, request, ierror) !(_c)

TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
<type> BUF(*)

MPI_FILE_IWRITE is a nonblocking version of MPI_FILE_WRITE.
MPI_FILE_IWRITE_ALL(fh, buf, count, datatype, request)

INOUT fh file handle (handle)
IN buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT request request object (handle)

C binding
int MPI_File_iwrite_all(MPI_File fh, const void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iwrite_all_c(MPI_File fh, const void *buf, MPI_Count count,
MPI_Datatype datatype, MPI_Request *request)

Fortran 2008 binding
MPI_File_iwrite_all(fh, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_all(fh, buf, count, datatype, request, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_IWRITE_ALL(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
 <type> BUF(*)

MPI_FILE_IWRITE_ALL is a nonblocking version of MPI_FILE_WRITE_ALL.

MPI_FILE_SEEK(fh, offset, whence)

INOUT fh file handle (handle)
IN offset file offset (integer)
IN whence update mode (state)

C binding
int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

Fortran 2008 binding
MPI_File_seek(fh, offset, whence, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
INTEGER, INTENT(IN) :: whence
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)
INTEGER FH, WHENCE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK updates the individual file pointer according to whence, which has the following possible values:

- `MPI_SEEK_SET` the pointer is set to offset
- `MPI_SEEK_CUR` the pointer is set to the current pointer position plus offset
- `MPI_SEEK_END` the pointer is set to the end of file plus offset

The offset can be negative, which allows seeking backwards. It is erroneous to seek to a negative position in the view.

MPI_FILE_GET_POSITION(fh, offset)
IN fh file handle (handle)
OUT offset offset of individual pointer (integer)

C binding

int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

Fortran 2008 binding

MPI_File_get_position(fh, offset, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: offset
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION returns, in offset, the current position of the individual file pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK using whence = MPI_SEEK_SET to return to the current position. To set the displacement to the current file pointer position, first convert offset into an absolute byte position using MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with the resulting displacement. (End of advice to users.)
14.4 Data Access

MPI_FILE_GET_BYTE_OFFSET(fh, offset, disp)

IN fh file handle (handle)
IN offset offset (integer)
OUT disp absolute byte position of offset (integer)

C binding
int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset, MPI_Offset *disp)

Fortran 2008 binding
MPI_File_get_byte_offset(fh, offset, disp, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: disp
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI_FILE_GET_BYTE_OFFSET converts a view-relative offset into an absolute byte position. The absolute byte position (from the beginning of the file) of offset relative to the current view of fh is returned in disp.

14.4.4 Data Access with Shared File Pointers

MPI maintains exactly one shared file pointer per collective MPI_FILE_OPEN (shared among processes in the communicator group). The current value of this pointer implicitly specifies the offset in the data access routines described in this section. These routines only use and update the shared file pointer maintained by MPI. The individual file pointers are not used nor updated.

The shared file pointer routines have the same semantics as the data access with explicit offset routines described in Section 14.4.2, with the following modifications:

- the offset is defined to be the current value of the MPI-maintained shared file pointer,
- the effect of multiple calls to shared file pointer routines is defined to behave as if the calls were serialized, and
- the use of shared file pointer routines is erroneous unless all processes use the same file view.

For the noncollective shared file pointer routines, the serialization ordering is not deterministic. The user needs to use other synchronization means to enforce a specific order.

After a shared file pointer operation is initiated, the shared file pointer is updated to point to the next etype after the last one that will be accessed. The file pointer is updated relative to the current view of the file.
Noncollective Operations

MPI_FILE_READ_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)
OUT buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT status status object (status)

C binding
int MPI_File_read_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)
int MPI_File_read_shared_c(MPI_File fh, void *buf, MPI_Count count,
MPI_Datatype datatype, MPI_Status *status)

Fortran 2008 binding
MPI_File_read_shared(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_shared(fh, buf, count, datatype, status, ierror) !(_c)

TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..) :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
$type$ BUF(*)

MPI_FILE_READ_SHARED reads a file using the shared file pointer.
14.4 Data Access

MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)
IN buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT status status object (status)

C binding

int MPI_File_write_shared(MPI_File fh, const void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_shared_c(MPI_File fh, const void *buf, MPI_Count count,
MPI_Datatype datatype, MPI_Status *status)

Fortran 2008 binding

MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status, ierror) !(_c)

TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER(KIND=MPI_Count_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
<type> BUF(*)

MPI_FILE_WRITE_SHARED writes a file using the shared file pointer.

MPI_FILE_IREAD_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)
OUT buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT request request object (handle)

C binding

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iread_shared_c(MPI_File fh, void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Request *request)

Fortran 2008 binding
MPI_File_iread_shared(fh, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_File_iread_shared(fh, buf, count, datatype, request, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
 <type> BUF(*)

MPI_FILE_IREAD_SHARED is a nonblocking version of MPI_FILE_READ_SHARED.

MPI_FILE_IWRITE_SHARED(fh, buf, count, datatype, request)
 INOUT fh file handle (handle)
 IN buf initial address of buffer (choice)
 IN count number of elements in buffer (integer)
 IN datatype datatype of each buffer element (handle)
 OUT request request object (handle)

C binding
int MPI_File_iwrite_shared(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iwrite_shared_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Request *request)

Fortran 2008 binding
MPI_File_iwrite_shared(fh, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
DATA ACCESS

```fortran
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_shared(fh, buf, count, datatype, request, ierror) !(_c)
  TYPE(MPI_File), INTENT(IN) :: fh
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
  INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
  <type> BUF(*)

MPI_FILE_IWRITE_SHARED is a nonblocking version of the
MPI_FILE_WRITE_SHARED interface.
```

Collective Operations

The semantics of a collective access using a shared file pointer are that the accesses to the file will be in the order determined by the ranks of the processes within the group. For each process, the location in the file at which data is accessed is the position at which the shared file pointer would be after all processes whose ranks within the group less than that of this process had accessed their data. In addition, in order to prevent subsequent shared offset accesses by the same processes from interfering with this collective access, the call might return only after all the processes within the group have initiated their accesses. When the call returns, the shared file pointer points to the next etype accessible, according to the file view used by all processes, after the last etype requested.

Advice to users. There may be some programs in which all processes in the group need to access the file using the shared file pointer, but the program may not require that data be accessed in order of process rank. In such programs, using the shared ordered routines (e.g., MPI_FILE_WRITE_ORDERED rather than MPI_FILE_WRITE_SHARED) may enable an implementation to optimize access, improving performance. (End of advice to users.)

Advice to implementors. Accesses to the data requested by all processes do not have to be serialized. Once all processes have issued their requests, locations within the file for all accesses can be computed, and accesses can proceed independently from each other, possibly in parallel. (End of advice to implementors.)
MPI

FILE

READ

ORDERED(fh, buf, count, datatype, status)

INOUT fh
file handle (handle)

OUT buf
initial address of buffer (choice)

IN count
number of elements in buffer (integer)

IN datatype
datatype of each buffer element (handle)

OUT status
status object (status)

C binding

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_ordered_c(MPI_File fh, void *buf, MPI_Count count,
MPI_Datatype datatype, MPI_Status *status)

Fortran 2008 binding

MPI_File_read_ordered(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_ordered(fh, buf, count, datatype, status, ierror) !(_c)

TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..) :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
<TYPE> BUF(*)

MPI_FILE_READ_ORDERED is a collective version of the MPI_FILE_READ_SHARED interface.

MPI_FILE_WRITE_ORDERED(fh, buf, count, datatype, status)

INOUT fh
file handle (handle)

IN buf
initial address of buffer (choice)

IN count
number of elements in buffer (integer)

IN datatype
datatype of each buffer element (handle)

OUT status
status object (status)
C binding
int MPI_File_write_ordered(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_ordered_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Status *status)

Fortran 2008 binding
MPI_File_write_ordered(fh, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_ordered(_c)(fh, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
<type> BUF(*)

MPI_FILE_WRITE_ORDERED is a collective version of the MPI_FILE_WRITE_SHARED interface.

Seek
If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the following two routines (MPI_FILESEEK_SHARED and
MPI_FILE_GET_POSITION_SHARED).

MPI_FILESEEK_SHARED(fh, offset, whence)

INOUT fh file handle (handle)
IN offset file offset (integer)
IN whence update mode (state)

C binding
int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

Fortran 2008 binding
MPI_File_seek_shared(fh, offset, whence, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
INTEGER, INTENT(IN) :: whence
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)
INTEGER FH, WHENCE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK_SHARED updates the shared file pointer according to whence, which
has the following possible values:

MPI_SEEK_SET the pointer is set to offset
MPI_SEEK_CUR the pointer is set to the current pointer position
 plus offset
MPI_SEEK_END the pointer is set to the end of file plus offset

MPI_FILE_SEEK_SHARED is collective; all the processes in the communicator group
associated with the file handle fh must call MPI_FILE_SEEK_SHARED with the same values
for offset and whence.

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI_FILE_GET_POSITION_SHARED(fh, offset)
IN fh file handle (handle)
OUT offset offset of shared pointer (integer)

C binding
int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

Fortran 2008 binding
MPI_File_get_position_shared(fh, offset, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: offset
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)
INTEGER FH, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION_SHARED returns, in offset, the current position of the
shared file pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK_SHARED
using whence = MPI_SEEK_SET to return to the current position. To set the displace-
ment to the current file pointer position, first convert offset into an absolute byte
position using MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with
the resulting displacement. (End of advice to users.)
14.4.5 Split Collective Data Access Routines

MPI provides a restricted form of “nonblocking collective” I/O operations for all data accesses using split collective data access routines. These routines are referred to as “split” collective routines, because a single collective operation is split in two: a begin routine and an end routine. The begin routine begins the operation, much like a nonblocking data access (e.g., MPI_FILE_IREAD). The end routine completes the operation, much like the matching test or wait (e.g., MPI_WAIT). As with nonblocking data access operations, the user must not use the buffer passed to a begin routine while the routine is outstanding; the operation must be completed with an end routine before it is safe to free buffers, etc.

Split collective data access operations on a file handle \(fh\) are subject to the semantic rules given below:

- On any MPI process, each file handle may have at most one active split collective operation at any time.
- Begin calls are collective over the group of processes that participated in the collective open and follow the ordering rules for collective calls.
- End calls are collective over the group of processes that participated in the collective open and follow the ordering rules for collective calls. Each end call matches the preceding begin call for the same collective operation. When an “end” call is made, exactly one unmatched “begin” call for the same operation must precede it.
- An implementation is free to implement any split collective data access routine using the corresponding blocking collective routine when either the begin call (e.g., MPI_FILE_READ_ALL_BEGIN) or the end call (e.g., MPI_FILE_READ_ALL_END) is issued. The begin and end calls are provided to allow the user and MPI implementation to optimize the collective operation.

According to the definitions in Section 2.4.2, the begin procedures are incomplete. They are also nonlocal procedures because they may or may not return before they are called in all MPI processes of the process group.

Advice to users. This is one of the exceptions in which incomplete procedures are nonlocal and therefore blocking. *(End of advice to users.)*

- Split collective operations do not match the corresponding regular collective operation. For example, in a single collective read operation, an MPI_FILE_READ_ALL on one process does not match an MPI_FILE_READ_ALL_BEGIN/ MPI_FILE_READ_ALL_END pair on another process.
- Split collective routines must specify a buffer in both the begin and end routines. By specifying the buffer that receives data in the end routine, we can avoid the problems described in Problems with Code Movement and Register Optimization, Section 19.1.17, but not all of the problems, such as those described in Sections 19.1.12, 19.1.13, and 19.1.16.
- No collective I/O operations are permitted on a file handle concurrently with a split collective access on that file handle (i.e., between the begin and end of the access). That is, the following example is erroneous.
Example 14.4. Erroneous example fragment of concurrent split collective access on a file handle:

```
MPI_File_read_all_begin(fh, ...);
...
MPI_File_read_all(fh, ...);
...
MPI_File_read_all_end(fh, ...);
```

- In a multithreaded implementation, any split collective begin and end operation called by a process must be called from the same thread. This restriction is made to simplify the implementation in the multithreaded case. (Note that we have already disallowed having two threads begin a split collective operation on the same file handle since only one split collective operation can be active on a file handle at any time.)

The arguments for these routines have the same meaning as for the equivalent collective versions (e.g., the argument definitions for `MPI_FILE_READ_ALL_BEGIN` and `MPI_FILE_READ_ALL_END` are equivalent to the arguments for `MPI_FILE_READ_ALL`). The begin routine (e.g., `MPI_FILE_READ_ALL_BEGIN`) begins a split collective operation that, when completed with the matching end routine (i.e., `MPI_FILE_READ_ALL_END`) produces the result as defined for the equivalent collective routine (i.e., `MPI_FILE_READ_ALL`).

For the purpose of consistency semantics (Section 14.6.1), a matched pair of split collective data access operations (e.g., `MPI_FILE_READ_ALL_BEGIN` and `MPI_FILE_READ_ALL_END`) compose a single data access.

```
MPI_FILE_READ_AT_ALL_BEGIN(fh, offset, buf, count, datatype)
```

- **IN** `fh` file handle (handle)
- **IN** `offset` file offset (integer)
- **OUT** `buf` initial address of buffer (choice)
- **IN** `count` number of elements in buffer (integer)
- **IN** `datatype` datatype of each buffer element (handle)

C binding

```
int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,
                                 int count, MPI_Datatype datatype)
```

```
int MPI_File_read_at_all_begin_c(MPI_File fh, MPI_Offset offset, void *buf,
                                  MPI_Count count, MPI_Datatype datatype)
```

Fortran 2008 binding

```
MPI_File_read_at_all_begin(fh, offset, buf, count, datatype, ierror)
```

```
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
```
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at_all_begin(fh, offset, buf, count, datatype, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
 INTEGER FH, COUNT, DATATYPE, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_READ_AT_ALL_END(fh, buf, status)
 IN fh file handle (handle)
 OUT buf initial address of buffer (choice)
 OUT status status object (status)

C binding

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

Fortran 2008 binding

MPI_File_read_at_all_end(fh, buf, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_WRITE_AT_ALL_BEGIN(fh, offset, buf, count, datatype)
 INOUT fh file handle (handle)
 IN offset file offset (integer)
 IN buf initial address of buffer (choice)
 IN count number of elements in buffer (integer)
 IN datatype datatype of each buffer element (handle)

C binding

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset,
 const void *buf, int count, MPI_Datatype datatype)
int MPI_File_write_at_all_begin_c(MPI_File fh, MPI_Offset offset,
 const void *buf, MPI_Count count, MPI_Datatype datatype)

Fortran 2008 binding
MPI_File_write_at_all_begin(fh, offset, buf, count, datatype, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_at_all_begin_c(fh, offset, buf, count, datatype, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
 INTEGER FH, COUNT, DATATYPE, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_WRITE_AT_ALL_END(fh, buf, status)
 INOUT fh file handle (handle)
 IN buf initial address of buffer (choice)
 OUT status status object (status)

C binding
int MPI_File_write_at_all_end(MPI_File fh, const void *buf, MPI_Status *status)

Fortran 2008 binding
MPI_File_write_at_all_end(fh, buf, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)
MPI_FILE_READ_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)
OUT buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)

C binding
int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype)

int MPI_File_read_all_begin_c(MPI_File fh, void *buf, MPI_Count count,
 MPI_Datatype datatype)

Fortran 2008 binding
MPI_File_read_all_begin(fh, buf, count, datatype, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_all_begin_c(fh, buf, count, datatype) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
 INTEGER FH, COUNT, DATATYPE, IERROR
 <type> BUF(*)

MPI_FILE_READ_ALL_END(fh, buf, status)

INOUT fh file handle (handle)
OUT buf initial address of buffer (choice)
OUT status status object (status)

C binding
int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

Fortran 2008 binding
MPI_File_read_all_end(fh, buf, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
Fortran binding

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_WRITE_ALL_BEGIN(fh, buf, count, datatype)
 INOUT fh file handle (handle)
 IN buf initial address of buffer (choice)
 IN count number of elements in buffer (integer)
 IN datatype datatype of each buffer element (handle)

C binding

int MPI_File_write_all_begin(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype)
int MPI_File_write_all_begin_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype)

Fortran 2008 binding

MPI_File_write_all_begin(fh, buf, count, datatype, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_all_begin(fh, buf, count, datatype, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
 INTEGER FH, COUNT, DATATYPE, IERROR
 <type> BUF(*)

MPI_FILE_WRITE_ALL_END(fh, buf, status)
 INOUT fh file handle (handle)
 IN buf initial address of buffer (choice)
 OUT status status object (status)

C binding

int MPI_File_write_all_end(MPI_File fh, const void *buf, MPI_Status *status)
14.4 Data Access

Fortran 2008 binding

```fortran
MPI_FILE_WRITE_ALL_END(fh, buf, status, ierr)
  TYPE(MPI_File), INTENT(IN) :: fh
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
  TYPE(MPI_Status) :: status
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

Fortran binding

```fortran
MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)
  INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
  <type> BUF(*)
```

C binding

```c
int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,
                                MPI_Datatype datatype)

int MPI_File_read_ordered_begin_c(MPI_File fh, void *buf, MPI_Count count,
                                   MPI_Datatype datatype)
```

Fortran 2008 binding

```fortran
MPI_File_read_ordered_begin(fh, buf, count, datatype, ierr)
  TYPE(MPI_File), INTENT(IN) :: fh
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_File_read_ordered_begin(fh, buf, count, datatype, ierr) !(_c)
  TYPE(MPI_File), INTENT(IN) :: fh
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER, OPTIONAL, INTENT(OUT) :: ierr
```

Fortran binding

```fortran
MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
  INTEGER FH, COUNT, DATATYPE, IERROR
  <type> BUF(*)
```
Chapter 14 I/O

MPI_FILE_READ_ORDERED_END(fh, buf, status)

INOUT fh
file handle (handle)
OUT buf
initial address of buffer (choice)
OUT status
status object (status)

C binding
int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

Fortran 2008 binding
MPI_File_read_ordered_end(fh, buf, status, ierror)

 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)

 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_WRITE_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT fh
file handle (handle)
IN buf
initial address of buffer (choice)
IN count
number of elements in buffer (integer)
IN datatype
datatype of each buffer element (handle)

C binding
int MPI_File_write_ordered_begin(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype)
int MPI_File_write_ordered_begin_c(MPI_File fh, const void *buf,
 MPI_Count count, MPI_Datatype datatype)

Fortran 2008 binding
MPI_File_write_ordered_begin(fh, buf, count, datatype, ierror)

 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_ordered_begin(fh, buf, count, datatype, ierror) !(_c)

 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
14.5 File Interoperability

At the most basic level, file interoperability is the ability to read the information previously written to a file—not just the bits of data, but the actual information the bits represent. MPI guarantees full interoperability within a single MPI environment, and supports increased interoperability outside that environment through the external data representation (Section 14.5.2) as well as the data conversion functions (Section 14.5.3).

Interoperability within a single MPI environment (which could be considered “operability”) ensures that file data written by one MPI process can be read by any other MPI process, subject to the consistency constraints (see Section 14.6.1), provided that it would have been possible to start the two processes simultaneously and have them reside in a single MPI_COMM_WORLD. Furthermore, both processes must see the same data values at every absolute byte offset in the file for which data was written.

This single environment file interoperability implies that file data is accessible regardless of the number of processes.

There are three aspects to file interoperability:

- transferring the bits,
- converting between different file structures, and
The first two aspects of file interoperability are beyond the scope of this standard, as both are highly machine dependent. However, transferring the bits of a file into and out of the MPI environment (e.g., by writing a file to tape) is required to be supported by all MPI implementations. In particular, an implementation must specify how familiar operations similar to POSIX cp, rm, and mv can be performed on the file. Furthermore, it is expected that the facility provided maintains the correspondence between absolute byte offsets (e.g., after possible file structure conversion, the data bits at byte offset 102 in the MPI environment are at byte offset 102 outside the MPI environment). As an example, a simple off-line conversion utility that transfers and converts files between the native file system and the MPI environment would suffice, provided it maintained the offset coherence mentioned above. In a high-quality implementation of MPI, users will be able to manipulate MPI files using the same or similar tools that the native file system offers for manipulating its files.

The remaining aspect of file interoperability, converting between different machine representations, is supported by the typing information specified in the etype and filetype. This facility allows the information in files to be shared between any two applications, regardless of whether they use MPI, and regardless of the machine architectures on which they run.

MPI supports multiple data representations: "native", "internal", and "external32". An implementation may support additional data representations. MPI also supports user-defined data representations (see Section 14.5.3). The "native" and "internal" data representations are implementation dependent, while the "external32" representation is common to all MPI implementations and facilitates file interoperability. The data representation is specified in the datarep argument to MPI_FILE_SET_VIEW.

Advice to users. MPI is not guaranteed to retain knowledge of what data representation was used when a file is written. Therefore, to correctly retrieve file data, an MPI application is responsible for specifying the same data representation as was used to create the file. (End of advice to users.)

"native": Data in this representation is stored in a file exactly as it is in memory. The advantage of this data representation is that data precision and I/O performance are not lost in type conversions with a purely homogeneous environment. The disadvantage is the loss of transparent interoperability within a heterogeneous MPI environment.

Advice to users. This data representation should only be used in a homogeneous MPI environment, or when the MPI application is capable of performing the datatype conversions itself. (End of advice to users.)

Advice to implementors. When implementing read and write operations on top of MPI message-passing, the message data should be typed as MPI_BYTE to ensure that the message routines do not perform any type conversions on the data. (End of advice to implementors.)

"internal": This data representation can be used for I/O operations in a homogeneous or heterogeneous environment; the implementation will perform type conversions if necessary. The implementation is free to store data in any format of its choice, with the restriction that it will maintain constant extents for all predefined datatypes in any
one file. The environment in which the resulting file can be reused is implementation-defined and must be documented by the implementation.

Rationale. This data representation allows the implementation to perform I/O efficiently in a heterogeneous environment, though with implementation-defined restrictions on how the file can be reused. (*End of rationale.*)

Advice to implementors. Since "external32" is a superset of the functionality provided by "internal", an implementation may choose to implement "internal" as "external32". (*End of advice to implementors.*)

external32: This data representation states that read and write operations convert all data from and to the "external32" representation defined in Section 14.5.2. The data conversion rules for communication also apply to these conversions (see Section 3.3.2). The data on the storage medium is always in this canonical representation, and the data in memory is always in the local process's native representation.

This data representation has several advantages. First, all processes reading the file in a heterogeneous MPI environment will automatically have the data converted to their respective native representations. Second, the file can be exported from one MPI environment and imported into any other MPI environment with the guarantee that the second environment will be able to read all the data in the file.

The disadvantage of this data representation is that data precision and I/O performance may be lost in datatype conversions.

Advice to implementors. When implementing read and write operations on top of MPI message-passing, the message data should be converted to and from the "external32" representation in the client, and sent as type MPI_BYTE. This will avoid possible double datatype conversions and the associated further loss of precision and performance. (*End of advice to implementors.*)

14.5.1 Datatypes for File Interoperability

If the file data representation is other than "native", care must be taken in constructing etypes and filetypes. Any of the datatype constructor functions may be used; however, for those functions that accept displacements in bytes, the displacements must be specified in terms of their values in the file for the file data representation being used. MPI will interpret these byte displacements as is; no scaling will be done. The function MPI_FILE_GET_TYPE_EXTENT can be used to calculate the extents of datatypes in the file. For etypes and filetypes that are portable datatypes (see Section 2.4), MPI will scale any displacements in the datatypes to match the file data representation. Datatypes passed as arguments to read/write routines specify the data layout in memory; therefore, they must always be constructed using displacements corresponding to displacements in memory.

Advice to users. One can logically think of the file as if it were stored in the memory of a file server. The etype and filetype are interpreted as if they were defined at this file server, by the same sequence of calls used to define them at the calling process. If the data representation is "native", then this logical file server runs on the same architecture as the calling process, so that these types define the same data layout on the file as they would define in the memory of the calling process. If the
etype and filetype are portable datatypes, then the data layout defined in the file is
the same as would be defined in the calling process memory, up to a scaling factor.
The routine MPI_FILE_GET_TYPE_EXTENT can be used to calculate this scaling
factor. Thus, two equivalent, portable datatypes will define the same data layout
in the file, even in a heterogeneous environment with "internal", "external32", or user
defined data representations. Otherwise, the etype and filetype must be constructed
so that their typemap and extent are the same on any architecture. This can be
achieved if they have an explicit upper bound and lower bound (defined using
MPI_TYPE_CREATE_RESIZED). This condition must also be fulfilled by any datatype
that is used in the construction of the etype and filetype, if this datatype is replicated
contiguously, either explicitly, by a call to MPI_TYPE_CONTIGUOUS, or implicitly,
by a blocklength argument that is greater than one. If an etype or filetype is not
portable, and has a typemap or extent that is architecture dependent, then the data
layout specified by it on a file is implementation dependent.

File data representations other than "native" may be different from corresponding
data representations in memory. Therefore, for these file data representations, it is
important not to use hardwired byte offsets for file positioning, including the initial
displacement that specifies the view. When a portable datatype (see Section 2.4) is
used in a data access operation, any holes in the datatype are scaled to match the data
representation. However, note that this technique only works when all the processes
that created the file view build their etypes from the same predefined datatypes. For
example, if one process uses an etype built from MPI_INT and another uses an etype
built from MPI_FLOAT, the resulting views may be nonportable because the relative
sizes of these types may differ from one data representation to another. (End of advice
to users.)

MPI_FILE_GET_TYPE_EXTENT(fh, datatype, extent)

IN fh file handle (handle)
IN datatype datatype (handle)
OUT extent datatype extent (integer)

C binding
int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,
 MPI_Aint *extent)
int MPI_File_get_type_extent_c(MPI_File fh, MPI_Datatype datatype,
 MPI_Count *extent)

Fortran 2008 binding
MPI_File_get_type_extent(fh, datatype, extent, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: extent
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_File_get_type_extent(fh, datatype, extent, ierror) !(_c)
14.5 File Interoperability

```fortran
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)
```

INTEGER FH, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

Returns the extent of datatype in the file fh. This extent will be the same for all processes accessing the file fh. If the current view uses a user-defined data representation (see Section 14.5.3), MPI uses the

dtype_file_extent_fn callback to calculate the extent.

If the datatype extent cannot be represented in extent, it is set to MPI_UNDEFINED.

Advice to implementors. In the case of user-defined data representations, the extent of a derived datatype can be calculated by first determining the extents of the predefined datatypes in this derived datatype using

dtype_file_extent_fn (see Section 14.5.3). (End of advice to implementors.)

14.5.2 External Data Representation: "external32"

All MPI implementations are required to support the data representation defined in this section. Support of optional datatypes (e.g., MPI_INTEGER2) is not required.

All floating point values are in big-endian IEEE format [43] of the appropriate size. Floating point values are represented by one of three IEEE formats. These are the IEEE “Single (binary32),” “Double (binary64),” and “Double Extended (binary128)” formats, requiring 4, 8, and 16 bytes of storage, respectively. For the IEEE “Double Extended (binary128)” formats, MPI specifies a format width of 16 bytes, with 15 exponent bits, bias = +16383, 112 fraction bits, and an encoding analogous to the “Double (binary64)” format. All integral values are in two’s complement big-endian format. Big-endian means most significant byte at lowest address byte. For C _Bool, Fortran LOGICAL, and C++ bool, 0 implies false and nonzero implies true. C float _Complex, double _Complex, and long double _Complex, Fortran COMPLEX and DOUBLE COMPLEX, and other complex types are represented by a pair of floating point format values for the real and imaginary components. Characters are in ISO 8859-1 format [44]. Wide characters (of type MPI_WCHAR) are in Unicode format [69].

All signed numerals (e.g., MPI_INT, MPI_REAL) have the sign bit at the most significant bit. MPI_COMPLEX and MPI_DOUBLE_COMPLEX have the sign bit of the real and imaginary parts at the most significant bit of each part.

According to IEEE specifications [43], the “NaN” (not a number) is system dependent. It should not be interpreted within MPI as anything other than “NaN.”

Advice to implementors. The MPI treatment of “NaN” is similar to the approach used in XDR [66]. (End of advice to implementors.)

All data is byte aligned, regardless of type. All data items are stored contiguously in the file (if the file view is contiguous).

Advice to implementors. All bytes of LOGICAL and bool must be checked to determine the value. (End of advice to implementors.)
Advice to users. The type MPI_PACKED is treated as bytes and is not converted.
The user should be aware that MPI_PACK has the option of placing a header in the
beginning of the pack buffer. (End of advice to users.)

The sizes of the predefined datatypes returned from MPI_TYPE_CREATE_F90_REAL,
MPI_TYPE_CREATE_F90_COMPLEX, and MPI_TYPE_CREATE_F90_INTEGER are defined
in Section 19.1.9, page 809.

Advice to implementors. When converting a larger size integer to a smaller size
integer, only the least significant bytes are moved. Care must be taken to preserve
the sign bit value. This allows no conversion errors if the data range is within the
range of the smaller size integer. (End of advice to implementors.)

Table 14.2, 14.3, and 14.4 specify the sizes of predefined, optional, and C++ datatypes
in "external32" format, respectively.

14.5.3 User-Defined Data Representations

There are two situations that cannot be handled by the required representations:

1. a user wants to write a file in a representation unknown to the implementation, and
2. a user wants to read a file written in a representation unknown to the implementation.

User-defined data representations allow the user to insert a third party converter into
the I/O stream to do the data representation conversion.

```c
MPI_REGISTER_DATAREP(datarep, read_conversion_fn, write_conversion_fn,
    dtype_file_extent_fn, extra_state)
```

- **IN** `datarep` data representation identifier (string)
- **IN** `read_conversion_fn` function invoked to convert from file representation
to native representation (function)
- **IN** `write_conversion_fn` function invoked to convert from native
representation to file representation (function)
- **IN** `dtype_file_extent_fn` function invoked to get the extent of a datatype as
represented in the file (function)
- **IN** `extra_state` extra state

C binding

```c
int MPI_Register_datarep(const char *datarep,
    MPI_Datarep_conversion_function *read_conversion_fn,
    MPI_Datarep_conversion_function *write_conversion_fn,
    MPI_Datarep_extent_function *dtype_file_extent_fn,
    void *extra_state)
```

```c
int MPI_Register_datarep_c(const char *datarep,
    MPI_Datarep_conversion_function_c *read_conversion_fn,
    MPI_Datarep_conversion_function_c *write_conversion_fn,
```
Table 14.2: “external32” sizes of predefined datatypes

<table>
<thead>
<tr>
<th>Predefined Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_PACKED</td>
<td>1</td>
</tr>
<tr>
<td>MPI_BYTE</td>
<td>1</td>
</tr>
<tr>
<td>MPI_CHAR</td>
<td>1</td>
</tr>
<tr>
<td>MPI_UNSIGNED_CHAR</td>
<td>1</td>
</tr>
<tr>
<td>MPI_SIGNED_CHAR</td>
<td>1</td>
</tr>
<tr>
<td>MPI_WCHAR</td>
<td>2</td>
</tr>
<tr>
<td>MPI_SHORT</td>
<td>2</td>
</tr>
<tr>
<td>MPI_UNSIGNED_SHORT</td>
<td>2</td>
</tr>
<tr>
<td>MPI_INT</td>
<td>4</td>
</tr>
<tr>
<td>MPI_LONG</td>
<td>4</td>
</tr>
<tr>
<td>MPI_UNSIGNED</td>
<td>4</td>
</tr>
<tr>
<td>MPI_UNSIGNED_LONG</td>
<td>4</td>
</tr>
<tr>
<td>MPI_LONG_LONG_INT</td>
<td>8</td>
</tr>
<tr>
<td>MPI_UNSIGNED_LONG_LONG</td>
<td>8</td>
</tr>
<tr>
<td>MPI_FLOAT</td>
<td>4</td>
</tr>
<tr>
<td>MPI_DOUBLE</td>
<td>8</td>
</tr>
<tr>
<td>MPI_LONG_DOUBLE</td>
<td>16</td>
</tr>
<tr>
<td>MPI_C_BOOL</td>
<td>1</td>
</tr>
<tr>
<td>MPI_INT8_T</td>
<td>1</td>
</tr>
<tr>
<td>MPI_INT16_T</td>
<td>2</td>
</tr>
<tr>
<td>MPI_INT32_T</td>
<td>4</td>
</tr>
<tr>
<td>MPI_INT64_T</td>
<td>8</td>
</tr>
<tr>
<td>MPI_UINT8_T</td>
<td>1</td>
</tr>
<tr>
<td>MPI_UINT16_T</td>
<td>2</td>
</tr>
<tr>
<td>MPI_UINT32_T</td>
<td>4</td>
</tr>
<tr>
<td>MPI_UINT64_T</td>
<td>8</td>
</tr>
<tr>
<td>MPI_AINT</td>
<td>8</td>
</tr>
<tr>
<td>MPI_COUNT</td>
<td>8</td>
</tr>
<tr>
<td>MPI_OFFSET</td>
<td>8</td>
</tr>
<tr>
<td>MPI_C_COMPLEX</td>
<td>2*4</td>
</tr>
<tr>
<td>MPI_C_FLOAT_COMPLEX</td>
<td>2*4</td>
</tr>
<tr>
<td>MPI_CDOUBLE_COMPLEX</td>
<td>2*8</td>
</tr>
<tr>
<td>MPI_C_LONG_DOUBLE_COMPLEX</td>
<td>2*16</td>
</tr>
<tr>
<td>MPI_CHARACTER</td>
<td>1</td>
</tr>
<tr>
<td>MPI_LOGICAL</td>
<td>4</td>
</tr>
<tr>
<td>MPI_INTEGER</td>
<td>4</td>
</tr>
<tr>
<td>MPI_REAL</td>
<td>4</td>
</tr>
<tr>
<td>MPI_DOUBLE_PRECISION</td>
<td>8</td>
</tr>
<tr>
<td>MPI_COMPLEX</td>
<td>2*4</td>
</tr>
<tr>
<td>MPI_DOUBLE_COMPLEX</td>
<td>2*8</td>
</tr>
<tr>
<td>MPI_CXX_BOOL</td>
<td>1</td>
</tr>
<tr>
<td>MPI_CXX_FLOAT_COMPLEX</td>
<td>2*4</td>
</tr>
<tr>
<td>MPI_CXX_DOUBLE_COMPLEX</td>
<td>2*8</td>
</tr>
<tr>
<td>MPI_CXX_LONG_DOUBLE_COMPLEX</td>
<td>2*16</td>
</tr>
</tbody>
</table>
Table 14.3: "external32" sizes of optional datatypes

<table>
<thead>
<tr>
<th>Predefined Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_INTEGER1</td>
<td>1</td>
</tr>
<tr>
<td>MPI_INTEGER2</td>
<td>2</td>
</tr>
<tr>
<td>MPI_INTEGER4</td>
<td>4</td>
</tr>
<tr>
<td>MPI_INTEGER8</td>
<td>8</td>
</tr>
<tr>
<td>MPI_INTEGER16</td>
<td>16</td>
</tr>
<tr>
<td>MPI_REAL2</td>
<td>2</td>
</tr>
<tr>
<td>MPI_REAL4</td>
<td>4</td>
</tr>
<tr>
<td>MPI_REAL8</td>
<td>8</td>
</tr>
<tr>
<td>MPI_REAL16</td>
<td>16</td>
</tr>
<tr>
<td>MPI_COMPLEX4</td>
<td>2*2</td>
</tr>
<tr>
<td>MPI_COMPLEX8</td>
<td>2*4</td>
</tr>
<tr>
<td>MPI_COMPLEX16</td>
<td>2*8</td>
</tr>
<tr>
<td>MPI_COMPLEX32</td>
<td>2*16</td>
</tr>
</tbody>
</table>

Table 14.4: "external32" sizes of C++ datatypes

<table>
<thead>
<tr>
<th>C++ Types</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_CXX_BOOL</td>
<td>1</td>
</tr>
<tr>
<td>MPI_CXX_FLOAT_COMPLEX</td>
<td>2*4</td>
</tr>
<tr>
<td>MPI_CXX_DOUBLE_COMPLEX</td>
<td>2*8</td>
</tr>
<tr>
<td>MPI_CXX_LONG_DOUBLE_COMPLEX</td>
<td>2*16</td>
</tr>
</tbody>
</table>

```fortran
MPI_Register_datarep(datarep, read_conversion_fn, write_conversion_fn,
  dtype_file_extent_fn, extra_state, ierror)
CHARACTER(LEN=*) :: datarep
PROCEDURE(MPI_Datarep_conversion_function) :: read_conversion_fn,
  write_conversion_fn
PROCEDURE(MPI_Datarep_extent_function) :: dtype_file_extent_fn
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Register_datarep_c(datarep, read_conversion_fn, write_conversion_fn,
  dtype_file_extent_fn, extra_state, ierror) !(_c)
CHARACTER(LEN=*) :: datarep
PROCEDURE(MPI_Datarep_conversion_function_c) :: read_conversion_fn,
  write_conversion_fn
PROCEDURE(MPI_Datarep_extent_function) :: dtype_file_extent_fn
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
Fortran binding

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,
DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)

CHARACTER*(*) DATAREP
EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
INTEGER IERROR

The call associates read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn with the data representation identifier datarep. datarep can then be used as an argument to MPI_FILE_SET_VIEW, causing subsequent data access operations to call the conversion functions to convert all data items accessed between file data representation and native representation. MPI_REGISTER_DATAREP is a local operation and only registers the data representation for the calling MPI process. If datarep is already defined, an error in the error class MPI_ERR_DUP_DATAREP is raised using the default file error handler (see Section 14.7). The length of a data representation string is limited to the value of MPI_MAX_DATAREP_STRING. MPI_MAX_DATAREP_STRING must have a value of at least 64. No routines are provided to delete data representations and free the associated resources; it is not expected that an application will generate them in significant numbers.

Extent Callback

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,
 MPI_Aint *extent, void *extra_state);

ABSTRACT INTERFACE

SUBROUTINE MPI_Datarep_extent_function(datatype, extent, extra_state, ierror)
 TYPE(MPI_Datatype) :: datatype
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extent, extra_state
 INTEGER :: ierror

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)
 INTEGER DATATYPE, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

The function dtype_file_extent_fn must return, in file_extent, the number of bytes required to store datatype in the file representation. The function is passed, in extra_state, the argument that was passed to the MPI_REGISTER_DATAREP call. MPI will only call this routine with predefined datatypes employed by the user.

Rationale. This callback does not have a large count variant because it is anticipated that large counts will not be required to represent the extent output value. (End of rationale.)

MPI_Datarep_conversion_function also supports large count types in separate additional MPI procedures in C (suffixed with the "_c") and multiple abstract interfaces in Fortran when using USE mpi_f08.

If the extent cannot be represented in extent, the callback function shall set extent to MPI_UNDEFINED. The MPI implementation will then raise an error of class MPI_ERR_VALUE_TOO_LARGE.
Datarep Conversion Functions

typedef int MPI_Datarep_conversion_function(void *userbuf,
 MPI_Datatype datatype, int count, void *filebuf,
 MPI_Offset position, void *extra_state);

typedef int MPI_Datarep_conversion_function_c(void *userbuf,
 MPI_Datatype datatype, MPI_Count count, void *filebuf,
 MPI_Offset position, void *extra_state);

ABSTRACT INTERFACE

SUBROUTINE MPI_Datarep_conversion_function(userbuf, datatype, count, filebuf,
 position, extra_state, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(C_PTR), VALUE :: userbuf, filebuf
TYPE(MPI_Datatype) :: datatype
INTEGER :: count, ierror
INTEGER(KIND=MPI_OFFSET_KIND) :: position
INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

SUBROUTINE MPI_Datarep_conversion_function_c(userbuf, datatype, count,
 filebuf, position, extra_state, ierror) !(_c)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(C_PTR), VALUE :: userbuf, filebuf
TYPE(MPI_Datatype) :: datatype
INTEGER(KIND=MPI_COUNT_KIND) :: count
INTEGER(KIND=MPI_OFFSET_KIND) :: position
INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state
INTEGER :: ierror

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,
 POSITION, EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)
INTEGER DATATYPE, COUNT, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) POSITION
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

The function read_conversion_fn must convert from file data representation to native representation. Before calling this routine, MPI allocates and fills filebuf with count contiguous data items. The type of each data item matches the corresponding entry for the predefined datatype in the type signature of datatype. The function is passed, in extra_state, the argument that was passed to the MPI_REGISTER_DATAREP call. The function must copy all count data items from filebuf to userbuf in the distribution described by datatype, converting each data item from file representation to native representation. datatype will be equivalent to the datatype that the user passed to the read function. If the size of datatype is less than the size of the count data items, the conversion function must treat datatype as being contiguously tiled over the userbuf. The conversion function must begin storing converted data at the location in userbuf specified by position into the (tiled) datatype.

Advice to users. Although the conversion functions have similarities to MPI_PACK and MPI_UNPACK, one should note the differences in the use of the arguments count
and position. In the conversion functions, count is a count of data items (i.e., count of typemap entries of datatype), and position is an index into this typemap. In MPI_PACK, incount refers to the number of whole datatypes, and position is a number of bytes. (End of advice to users.)

Advice to implementors. A converted read operation could be implemented as follows:

1. Get file extent of all data items
2. Allocate a filebuf large enough to hold all count data items
3. Read data from file into filebuf
4. Call read_conversion_fn to convert data and place it into userbuf
5. Deallocate filebuf

(End of advice to implementors.)

If MPI cannot allocate a buffer large enough to hold all the data to be converted from a read operation, it may call the conversion function repeatedly using the same datatype and userbuf, and reading successive chunks of data to be converted in filebuf. For the first call (and in the case when all the data to be converted fits into filebuf), MPI will call the function with position set to zero. Data converted during this call will be stored in the userbuf according to the first count data items in datatype. Then in subsequent calls to the conversion function, MPI will increment the value in position by the count of items converted in the previous call, and the userbuf pointer will be unchanged.

Rationale. Passing the conversion function a position and one datatype for the transfer allows the conversion function to decode the datatype only once and cache an internal representation of it on the datatype. Then on subsequent calls, the conversion function can use the position to quickly find its place in the datatype and continue storing converted data where it left off at the end of the previous call. (End of rationale.)

Advice to users. Although the conversion function may usefully cache an internal representation on the datatype, it should not cache any state information specific to an ongoing conversion operation, since it is possible for the same datatype to be used concurrently in multiple conversion operations. (End of advice to users.)

The function write_conversion_fn must convert from native representation to file data representation. Before calling this routine, MPI allocates filebuf of a size large enough to hold count contiguous data items. The type of each data item matches the corresponding entry for the predefined datatype in the type signature of datatype. The function must copy count data items from userbuf in the distribution described by datatype, to a contiguous distribution in filebuf, converting each data item from native representation to file representation. If the size of datatype is less than the size of count data items, the conversion function must treat datatype as being contiguously tiled over the userbuf.

The function must begin copying at the location in userbuf specified by position into the (tiled) datatype. datatype will be equivalent to the datatype that the user passed to the write function. The function is passed, in extra_state, the argument that was passed to the MPI_REGISTER_DATAREP call.
The predefined constant `MPI_CONVERSION_FN_NULL` may be used as either `write_conversion_fn` or `read_conversion_fn` in bindings of `MPI_REGISTER_DATAREP` without large counts in these conversion callbacks, whereas the constant `MPI_CONVERSION_FN_NULL_C` can be used in the large count version (i.e., `MPI_Register_datarep_c`). In either of these cases, MPI will not attempt to invoke `write_conversion_fn` or `read_conversion_fn`, respectively, but will perform the requested data access using the native data representation.

An MPI implementation must ensure that all data accessed is converted, either by using a filebuf large enough to hold all the requested data items or else by making repeated calls to the conversion function with the same `datatype` argument and appropriate values for position.

An implementation will only invoke the callback routines in this section (`read_conversion_fn`, `write_conversion_fn`, and `dtype_file_extent_fn`) when one of the read or write routines in Section 14.4, or `MPI_FILE_GET_TYPE_EXTENT` is called by the user. `dtype_file_extent_fn` will only be passed predefined datatypes employed by the user. The conversion functions will only be passed datatypes equivalent to those that the user has passed to one of the routines noted above.

The conversion functions must be reentrant. User defined data representations are restricted to use byte alignment for all types. Furthermore, it is erroneous for the conversion functions to call any collective routines or to free `datatype`

The conversion functions should return an error code. If the returned error code has a value other than `MPI_SUCCESS`, the implementation will raise an error in the class `MPI_ERR_CONVERSION`.

14.5.4 Matching Data Representations

It is the user’s responsibility to ensure that the data representation used to read data from a file is compatible with the data representation that was used to write that data to the file.

In general, using the same data representation name when writing and reading a file does not guarantee that the representation is compatible. Similarly, using different representation names on two different implementations may yield compatible representations.

Compatibility can be obtained when "external32" representation is used, although precision may be lost and the performance may be less than when "native" representation is used. Compatibility is guaranteed using "external32" provided at least one of the following conditions is met.

- The data access routines directly use types enumerated in Section 14.5.2, that are supported by all implementations participating in the I/O. The predefined type used to write a data item must also be used to read a data item.
- In the case of Fortran 90 programs, the programs participating in the data accesses obtain compatible datatypes using MPI routines that specify precision and/or range (Section 19.1.9).
- For any given data item, the programs participating in the data accesses use compatible predefined types to write and read the data item.

User-defined data representations may be used to provide an implementation compatibility with another implementation’s "native" or "internal" representation.
Advice to users. Section 19.1.9 defines routines that support the use of matching datatypes in heterogeneous environments and contains examples illustrating their use. (End of advice to users.)

14.6 Consistency and Semantics

14.6.1 File Consistency

Consistency semantics define the outcome of multiple accesses to a single file. All file accesses in MPI are relative to a specific file handle created from a collective open. MPI provides three levels of consistency: sequential consistency among all accesses using a single file handle, sequential consistency among all accesses using file handles created from a single collective open with atomic mode enabled, and user-imposed consistency among accesses other than the above. Sequential consistency means the behavior of a set of operations will be as if the operations were performed in some serial order consistent with program order; each access appears atomic, although the exact ordering of accesses is unspecified. User-imposed consistency may be obtained using program order and calls to MPI_FILE_SYNC.

Let FH_1 be the set of file handles created from one particular collective open of the file FOO, and FH_2 be the set of file handles created from a different collective open of FOO. Note that nothing restrictive is said about FH_1 and FH_2: the sizes of FH_1 and FH_2 may be different, the groups of processes used for each open may or may not intersect, the file handles in FH_1 may be destroyed before those in FH_2 are created, etc. Consider the following three cases: a single file handle (e.g., $fh_1 \in FH_1$), two file handles created from a single collective open (e.g., $fh_{1a} \in FH_1$ and $fh_{1b} \in FH_1$), and two file handles from different collective opens (e.g., $fh_1 \in FH_1$ and $fh_2 \in FH_2$).

For the purpose of consistency semantics, a matched pair (Section 14.4.5) of split collective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and MPI_FILE_READ_ALL_END) compose a single data access operation. Similarly, a non-blocking data access routine (e.g., MPI_FILE_IREAD) and the routine that completes the request (e.g., MPI_WAIT) also compose a single data access operation. For all cases below, these data access operations are subject to the same constraints as blocking data access operations.

Advice to users. For an MPI_FILE_IREAD and MPI_WAIT pair, the operation begins when MPI_FILE_IREAD is called and ends when MPI_WAIT returns. (End of advice to users.)

Assume that A_1 and A_2 are two data access operations. Let D_1 (D_2) be the set of absolute byte displacements of every byte accessed in A_1 (A_2). The two data accesses overlap if $D_1 \cap D_2 \neq \emptyset$. The two data accesses conflict if they overlap and at least one is a write access.

Let SEQ_{fh} be a sequence of file operations on a single file handle, bracketed by MPI_FILE_SYNCS on that file handle. (Both opening and closing a file implicitly perform an MPI_FILE_SYNC.) SEQ_{fh} is a “write sequence” if any of the data access operations in the sequence are writes or if any of the file manipulation operations in the sequence change the state of the file (e.g., MPI_FILE_SET_SIZE or MPI_FILE_PREALLOCATE). Given two sequences, SEQ_1 and SEQ_2, we say they are not concurrent if one sequence is guaranteed to completely precede the other (temporally).
The requirements for guaranteeing sequential consistency among all accesses to a particular file are divided into the three cases given below. If any of these requirements are not met, then the value of all data in that file is implementation dependent.

Case 1: \(fh_1 \in FH_1 \). All operations on \(fh_1 \) are sequentially consistent if atomic mode is set. If nonatomic mode is set, then all operations on \(fh_1 \) are sequentially consistent if they are either nonconcurrent, nonconflicting, or both.

Case 2: \(fh_{1a} \in FH_1 \) and \(fh_{1b} \in FH_1 \). Assume \(A_1 \) is a data access operation using \(fh_{1a} \), and \(A_2 \) is a data access operation using \(fh_{1b} \). If for any access \(A_1 \), there is no access \(A_2 \) that conflicts with \(A_1 \), then MPI guarantees sequential consistency.

However, unlike POSIX semantics, the default MPI semantics for conflicting accesses do not guarantee sequential consistency. If \(A_1 \) and \(A_2 \) conflict, sequential consistency can be guaranteed by either enabling atomic mode via the \texttt{MPI_FILE_SET_ATOMICITY} routine, or meeting the condition described in Case 3 below.

Case 3: \(fh_1 \in FH_1 \) and \(fh_2 \in FH_2 \). Consider access to a single file using file handles from distinct collective opens. In order to guarantee sequential consistency, \texttt{MPI_FILE_SYNC} must be used (both opening and closing a file implicitly perform an \texttt{MPI_FILE_SYNC}).

Sequential consistency is guaranteed among accesses to a single file if for any write sequence \(SEQ_1 \) to the file, there is no sequence \(SEQ_2 \) to the file that is concurrent with \(SEQ_1 \). To guarantee sequential consistency when there are write sequences, \texttt{MPI_FILE_SYNC} must be used together with a mechanism that guarantees nonconcurrency of the sequences.

See the examples in Section 14.6.11 for further clarification of some of these consistency semantics.

The \texttt{MPI_FILE_SET_ATOMICITY} routine:

\texttt{MPI_FILE_SET_ATOMICITY(fh, flag)}

- **INOUT** \(fh \) file handle (handle)
- **IN** \(flag \) true to set atomic mode, false to set nonatomic mode (logical)

C binding

\texttt{int MPI_File_set_atomicity(MPI_File \texttt{fh}, \texttt{int flag})}

Fortran 2008 binding

\texttt{MPI_File_set_atomicity(fh, flag, ierr)}

- \texttt{TYPE(MPI_File), INTENT(IN)} :: \(fh \)
- \texttt{LOGICAL, INTENT(IN)} :: \(flag \)
- \texttt{INTEGER, OPTIONAL, INTENT(OUT)} :: \(ierr \)

Fortran binding

\texttt{MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)}

- \texttt{INTEGER \(FH \), IERROR}
- \texttt{LOGICAL \(FLAG \)}

Let \(FH \) be the set of file handles created by one collective open. The consistency semantics for data access operations using \(FH \) is set by collectively calling
MPI_FILE_SET_ATOMICITY on FH. MPI_FILE_SET_ATOMICITY is collective; all processes in the group must pass identical values for fh and flag. If flag is true, atomic mode is set; if flag is false, nonatomic mode is set.

Changing the consistency semantics for an open file only affects new data accesses. All completed data accesses are guaranteed to abide by the consistency semantics in effect during their execution. Nonblocking data accesses and split collective operations that have not completed (e.g., via MPI_WAIT) are only guaranteed to abide by nonatomic mode consistency semantics.

Advice to implementors. Since the semantics guaranteed by atomic mode are stronger than those guaranteed by nonatomic mode, an implementation is free to adhere to the more stringent atomic mode semantics for outstanding requests. (End of advice to implementors.)

MPI_FILE_GET_ATOMICITY(fh, flag)

 IN fh file handle (handle)
 OUT flag true if atomic mode, false if nonatomic mode (logical)

C binding
int MPI_File_get_atomicity(MPI_File fh, int *flag)

Fortran 2008 binding
MPI_File_get_atomicity(fh, flag, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 LOGICAL, INTENT(OUT) :: flag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)
 INTEGER FH, IERROR
 LOGICAL FLAG

MPI_FILE_GET_ATOMICITY returns the current consistency semantics for data access operations on the set of file handles created by one collective open. If flag is true, atomic mode is enabled; if flag is false, nonatomic mode is enabled.

MPI_FILE_SYNC(fh)

 INOUT fh file handle (handle)

C binding
int MPI_File_sync(MPI_File fh)

Fortran 2008 binding
MPI_File_sync(fh, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
Fortran binding

```fortran
MPI_FILE_SYNC(FH, IERROR)
INTEGER FH, IERROR
```

Calling `MPI_FILE_SYNC` with `fh` causes all previous writes to `fh` by the calling process to be transferred to the storage device. If other processes have made updates to the storage device, then all such updates become visible to subsequent reads of `fh` by the calling process. `MPI_FILE_SYNC` may be necessary to ensure sequential consistency in certain cases (see above).

`MPI_FILE_SYNC` is a collective operation.

The user is responsible for ensuring that all nonblocking requests and split collective operations on `fh` have been completed before calling `MPI_FILE_SYNC`—otherwise, the call to `MPI_FILE_SYNC` is erroneous.

14.6.2 Random Access vs. Sequential Files

MPI distinguishes ordinary random access files from sequential stream files, such as pipes and tape files. Sequential stream files must be opened with the `MPI_MODESEQUENTIAL` flag set in the amode. For these files, the only permitted data access operations are shared file pointer reads and writes. Filetypes and etypes with holes are erroneous. In addition, the notion of file pointer is not meaningful; therefore, calls to `MPI_FILE_SEEK_SHARED` and `MPI_FILE_GET_POSITION_SHARED` are erroneous, and the pointer update rules specified for the data access routines do not apply. The amount of data accessed by a data access operation will be the amount requested unless the end of file is reached or an error is raised.

Rationale. This implies that reading on a pipe will always wait until the requested amount of data is available or until the process writing to the pipe has issued an end of file. *(End of rationale.)*

Finally, for some sequential files, such as those corresponding to magnetic tapes or streaming network connections, writes to the file may be destructive. In other words, a write may act as a truncate (a `MPI_FILE_SET_SIZE` with `size` set to the current position) followed by the write.

14.6.3 Progress

The *progress* rules of MPI are both a promise to users and a set of constraints on implementors. In cases where the progress rules restrict possible implementation choices more than the interface specification alone, the progress rules take precedence.

All blocking routines must complete in finite time unless an exceptional condition (such as resource exhaustion) causes an error.

Nonblocking data access routines inherit the following progress rule from nonblocking point-to-point communication: a nonblocking write is equivalent to a nonblocking send for which a receive is eventually posted, and a nonblocking read is equivalent to a nonblocking receive for which a send is eventually posted.

Finally, an implementation is free to delay progress of collective routines until all processes in the group associated with the collective call have invoked the routine. Once all processes in the group have invoked the routine, the progress rule of the equivalent noncollective routine must be followed.
14.6.4 Collective File Operations

Collective file operations are subject to the same restrictions as collective communication operations. For a complete discussion, please refer to the semantics set forth in Section 6.14. Collective file operations are collective over a duplicate of the communicator used to open the file—this duplicate communicator is implicitly specified via the file handle argument. Different processes can pass different values for other arguments of a collective routine unless specified otherwise.

14.6.5 Nonblocking Collective File Operations

Nonblocking collective file operations are defined only for data access routines with explicit offsets and individual file pointers but not with shared file pointers.

Nonblocking collective file operations are subject to the same restrictions as blocking collective I/O operations. All processes belonging to the group of the communicator that was used to open the file must call collective I/O operations (blocking and nonblocking) in the same order. This is consistent with the ordering rules for collective operations in threaded environments. For a complete discussion, please refer to the semantics set forth in Section 6.14.

Nonblocking collective I/O operations do not match with blocking collective I/O operations. Multiple nonblocking collective I/O operations can be outstanding on a single file handle. High quality MPI implementations should be able to support a large number of pending nonblocking I/O operations.

All nonblocking collective I/O calls are local and return immediately, irrespective of the status of other processes. The call initiates the operation that may progress independently of any communication, computation, or I/O. The call returns a request handle, which must be passed to a completion call. Input buffers should not be modified and output buffers should not be accessed before the completion call returns. The same progress rules described for nonblocking collective operations apply for nonblocking collective I/O operations. For a complete discussion, please refer to the semantics set forth in Section 6.12.

14.6.6 Type Matching

The type matching rules for I/O mimic the type matching rules for communication with one exception: if etype is MPI_BYTE, then this matches any datatype in a data access operation. In general, the etype of data items written must match the etype used to read the items, and for each data access operation, the current etype must also match the type declaration of the data access buffer.

Advice to users. In most cases, use of MPI_BYTE as a wild card will defeat the file interoperability features of MPI. File interoperability can only perform automatic conversion between heterogeneous data representations when the exact datatypes accessed are explicitly specified. (End of advice to users.)

14.6.7 Miscellaneous Clarifications

Once an I/O routine completes, it is safe to free any opaque objects passed as arguments to that routine. For example, the comm and info used in an MPI_FILE_OPEN, or the etype and filetype used in an MPI_FILE_SET_VIEW, can be freed without affecting access to the
file. Note that for nonblocking routines and split collective operations, the operation must be completed before it is safe to reuse data buffers passed as arguments.

As in communication, datatypes must be committed before they can be used in file manipulation or data access operations. For example, the etype and filetype must be committed before calling MPI_FILE_SET_VIEW, and the datatype must be committed before calling MPI_FILE_READ or MPI_FILE_WRITE.

14.6.8 MPI_Offset Type

MPI_Offset is an integer type of size sufficient to represent the size (in bytes) of the largest file supported by MPI. Displacements and offsets are always specified as values of type MPI_Offset.

In Fortran, the corresponding integer is an integer with kind parameter MPI_OFFSET_KIND, which is defined in the mpi_f08 module, the mpi module and the mpif.h include file.

In Fortran 77 environments that do not support KIND parameters, MPI_Offset arguments should be declared as an INTEGER of suitable size. The language interoperability implications for MPI_Offset are similar to those for addresses (see Section 19.3).

14.6.9 Logical vs. Physical File Layout

MPI specifies how the data should be laid out in a virtual file structure (the view), not how that file structure is to be stored on one or more disks. Specification of the physical file structure was avoided because it is expected that the mapping of files to disks will be system specific, and any specific control over file layout would therefore restrict program portability. However, there are still cases where some information may be necessary to optimize file layout. This information can be provided as hints specified via info when a file is created (see Section 14.2.8).

14.6.10 File Size

The size of a file may be increased by writing to the file after the current end of file. The size may also be changed by calling MPI size changing routines, such as MPI_FILE_SET_SIZE. A call to a size changing routine does not necessarily change the file size. For example, calling MPI_FILE_PREALLOCATE with a size less than the current size does not change the size.

Consider a set of bytes that has been written to a file since the most recent call to a size changing routine, or since MPI_FILE_OPEN if no such routine has been called. Let the high byte be the byte in that set with the largest displacement. The file size is the larger of

- One plus the displacement of the high byte.
- The size immediately after the size changing routine, or MPI_FILE_OPEN, returned.

When applying consistency semantics, calls to MPI_FILE_SET_SIZE and MPI_FILE_PREALLOCATE are considered writes to the file (which conflict with operations that access bytes at displacements between the old and new file sizes), and MPI_FILE_GET_SIZE is considered a read of the file (which overlaps with all accesses to the file).
Advice to users. Any sequence of operations containing the collective routines
\texttt{MPI_FILE_SET_SIZE} and \texttt{MPI_FILE_PREALLOCATE} is a write sequence. As such,
sequential consistency in nonatomic mode is not guaranteed unless the conditions in
Section 14.6.1 are satisfied. (End of advice to users.)

File pointer update semantics (i.e., file pointers are updated by the amount accessed)
are only guaranteed if file size changes are sequentially consistent.

Advice to users. Consider the following example. Given two operations made by
separate processes to a file containing 100 bytes: an \texttt{MPI_FILE_READ} of 10 bytes and
an \texttt{MPI_FILE_SET_SIZE} to 0 bytes. If the user does not enforce sequential consistency between these two operations, the file pointer may be updated by the amount requested (10 bytes) even if the amount accessed is zero bytes. (End of advice to users.)

14.6.11 Examples

The examples in this section illustrate the application of the MPI consistency and semantics guarantees. These address:

- conflicting accesses on file handles obtained from a single collective open, and
- all accesses on file handles obtained from two separate collective opens.

The simplest way to achieve consistency for conflicting accesses is to obtain sequential consistency by setting atomic mode.

\textbf{Example 14.5.} For the code below, process 1 will read either 0 or 10 integers. If the latter, every element of \texttt{b} will be 5. If nonatomic mode is set, the results of the read are undefined.

```c
/* Process 0 */

int i, a[10];
int TRUE = 1;

for (i=0; i<10; i++)
    a[i] = 5;

MPI_File_open(MPI_COMM_WORLD, "workfile",
    MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0);
MPI_File_set_view(fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
MPI_File_set_atomicity(fh0, TRUE);
MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status);
/* MPI_Barrier(MPI_COMM_WORLD); */

/* Process 1 */

int b[10];
int TRUE = 1;
MPI_File_open(MPI_COMM_WORLD, "workfile",
    MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1);
MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
```

MPI_File_set_atomicity(fh1, TRUE);
/* MPI_Barrier(MPI_COMM_WORLD); */
MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status);

A user may guarantee that the write on process 0 precedes the read on process 1 by imposing
 temporal order with, for example, calls to MPI_BARRIER.

Advice to users. Routines other than MPI_BARRIER may be used to impose temporal
order. In the example above, process 0 could use MPI_SEND to send a 0 byte message,
received by process 1 using MPI_RECV. (End of advice to users.)

Example 14.6. Alternatively, a user can impose consistency with nonatomic mode set:

/* Process 0 */
int i, a[10];
for (i=0;i<10;i++)
a[i] = 5;
MPI_File_open(MPI_COMM_WORLD, "workfile",
 MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0);
MPI_File_set_view(fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status);
MPI_File_sync(fh0);
MPI_BARRIER(MPI_COMM_WORLD);
MPI_File_sync(fh0);

/* Process 1 */
int b[10];
MPI_File_open(MPI_COMM_WORLD, "workfile",
 MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1);
MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
MPI_File_sync(fh1);
MPI_BARRIER(MPI_COMM_WORLD);
MPI_File_sync(fh1);
MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status);

The “sync-barrier-sync” construct is required because:

- The barrier ensures that the write on process 0 occurs before the read on process 1.
- The first sync guarantees that the data written by all processes is transferred to the
 storage device.
- The second sync guarantees that all data that has been transferred to the storage
 device is visible to all processes. (This does not affect process 0 in this example.)

Example 14.7. The following program represents an erroneous attempt to achieve
consistency by eliminating the apparently superfluous second “sync” call for each process.
/* ---------------- THIS EXAMPLE IS ERRONEOUS ---------------- */
/* Process 0 */
int i, a[10];
for (i=0;i<10;i++)
a[i] = 5;

MPI_File_open(MPI_COMM_WORLD, "workfile",
MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0);
MPI_File_set_view(fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status);
MPI_File_sync(fh0);
MPI_Barrier(MPI_COMM_WORLD);

/* Process 1 */
int b[10];
MPI_File_open(MPI_COMM_WORLD, "workfile",
MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1);
MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
MPI_Barrier(MPI_COMM_WORLD);
MPI_File_sync(fh1);
MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status);
/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

The above program also violates the MPI rule against out-of-order collective operations and will deadlock for implementations in which MPI_FILE_SYNC blocks.

Advice to users. Some implementations may choose to implement MPI_FILE_SYNC as a temporally synchronizing function. When using such an implementation, the “sync-barrier-sync” construct above can be replaced by a single “sync.” The results of using such code with an implementation for which MPI_FILE_SYNC is not temporally synchronizing is undefined. (End of advice to users.)

Asynchronous I/O

The behavior of asynchronous I/O operations is determined by applying the rules specified above for synchronous I/O operations.

Example 14.8. The following examples all access a preexisting file “myfile.” Word 10 in myfile initially contains the integer 2. Each example writes and reads word 10.

First consider the following code fragment:

```c
int a = 4, b, TRUE=1;
MPI_File_open(MPI_COMM_WORLD, "myfile",
MPI_MODE_RDWR, MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
/* MPI_File_set_atomicity(fh, TRUE); Use this to set atomic mode. */
MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]);
MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]);
MPI_Waitall(2, reqs, statuses);
```
write before the read is consistent with program order. If atomic mode is set, then MPI guarantees sequential consistency, and the program will read either 2 or 4 into b. If atomic mode is not set, then sequential consistency is not guaranteed and the program may read something other than 2 or 4 due to the conflicting data access.

Similarly, the following code fragment does not order file accesses:

```c
int a = 4, b;
MPI_File_open(MPI_COMM_WORLD, "myfile", MPI_MODE_RDWR, MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
/* MPI_File_set_atomicity(fh, TRUE); Use this to set atomic mode. */
MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]);
MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]);
MPI_Wait(&reqs[0], &status);
MPI_Wait(&reqs[1], &status);
```

If atomic mode is set, either 2 or 4 will be read into b. Again, MPI does not guarantee sequential consistency in nonatomic mode.

On the other hand, the following code fragment:

```c
int a = 4, b;
MPI_File_open(MPI_COMM_WORLD, "myfile", MPI_MODE_RDWR, MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]);
MPI_Wait(&reqs[0], &status);
MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]);
MPI_Wait(&reqs[1], &status);
```

defines the same ordering as:

```c
int a = 4, b;
MPI_File_open(MPI_COMM_WORLD, "myfile", MPI_MODE_RDWR, MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
MPI_File_write_at(fh, 10, &a, 1, MPI_INT, &status);
MPI_File_read_at(fh, 10, &b, 1, MPI_INT, &status);
```

Since

- nonconcurrent operations on a single file handle are sequentially consistent, and
- the program fragments specify an order for the operations,

MPI guarantees that both program fragments will read the value 4 into b. There is no need to set atomic mode for this example.

Similar considerations apply to conflicting accesses of the form:

```c
MPI_File_iwrite_all(fh,...);
MPI_File_iread_all(fh,...);
MPI_Waitall(...);
```

In addition, as mentioned in Section 14.6.5, nonblocking collective I/O operations have to be called in the same order on the file handle by all processes.

Similar considerations apply to conflicting accesses of the form:
Recall that constraints governing consistency and semantics are not relevant to the following:

<table>
<thead>
<tr>
<th>MPI_File_write_all_begin(fh,...);</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_File_iwrite(fh,...);</td>
</tr>
<tr>
<td>MPI_Wait(fh,...);</td>
</tr>
<tr>
<td>MPI_File_write_all_end(fh,...);</td>
</tr>
</tbody>
</table>

since split collective operations on the same file handle may not overlap (see Section 14.4.5).

14.7 I/O Error Handling

By default, communication errors are fatal—MPI_ERRORS_ARE_FATAL is the default error handler associated with MPI_COMM_WORLD. I/O errors are usually less catastrophic (e.g., “file not found”) than communication errors, and common practice is to catch these errors and continue executing. For this reason, MPI provides additional error facilities for I/O.

Advice to users. MPI does not specify the state of a computation after an erroneous MPI call has occurred. A high-quality implementation will support the I/O error handling facilities, allowing users to write programs using common practice for I/O.

(End of advice to users.)

Like communicators, each file handle has an error handler associated with it. The MPI I/O error handling routines are defined in Section 9.3.

When MPI calls a user-defined error handler resulting from an error on a particular file handle, the first two arguments passed to the file error handler are the file handle and the error code. For I/O errors that are not associated with a valid file handle (e.g., in MPI_FILE_OPEN or MPI_FILE_DELETE), the first argument passed to the error handler is MPI_FILE_NULL.

I/O error handling differs from communication error handling in another important aspect. By default, the predefined error handler for file handles is MPI_ERRORS_RETURN. The default file error handler has two purposes: when a new file handle is created (by MPI_FILE_OPEN), the error handler for the new file handle is initially set to the default file error handler, and I/O routines that have no valid file handle on which to raise an error (e.g., MPI_FILE_OPEN or MPI_FILE_DELETE) use the default file error handler. The default file error handler can be changed by specifying MPI_FILE_NULL as the fh argument to MPI_FILE_SET_ERRHANDLER. The current value of the default file error handler can be determined by passing MPI_FILE_NULL as the fh argument to MPI_FILE_GET_ERRHANDLER.

Rationale. For communication, the default error handler is inherited from MPI_COMM_WORLD when using the World Model. In I/O, there is no analogous “root” file handle from which default properties can be inherited. Rather than invent a new global file handle, the default file error handler is manipulated as if it were attached to MPI_FILE_NULL. (End of rationale.)
Table 14.5: I/O error classes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_ERR_FILE</td>
<td>Invalid file handle</td>
</tr>
<tr>
<td>MPI_ERR_NOTSAME</td>
<td>Collective argument not identical on all processes, or collective routines called in a different order by different processes</td>
</tr>
<tr>
<td>MPI_ERR_AMODE</td>
<td>Error related to the amode passed to MPI_FILE_OPEN</td>
</tr>
<tr>
<td>MPI_ERR_UNSUPPORTED_DATAREP</td>
<td>Unsupported datarep passed to MPI_FILE_SET_VIEW</td>
</tr>
<tr>
<td>MPI_ERR_UNSUPPORTED_OPERATION</td>
<td>Unsupported operation, such as seeking on a file that supports sequential access only</td>
</tr>
<tr>
<td>MPI_ERR_NO_SUCH_FILE</td>
<td>File does not exist</td>
</tr>
<tr>
<td>MPI_ERR_FILE_EXISTS</td>
<td>File exists</td>
</tr>
<tr>
<td>MPI_ERR_BAD_FILE</td>
<td>Invalid file name (e.g., path name too long)</td>
</tr>
<tr>
<td>MPI_ERR_ACCESS</td>
<td>Permission denied</td>
</tr>
<tr>
<td>MPI_ERR_NO_SPACE</td>
<td>Not enough space</td>
</tr>
<tr>
<td>MPI_ERR_QUOTA</td>
<td>Quota exceeded</td>
</tr>
<tr>
<td>MPI_ERR_READ_ONLY</td>
<td>Read-only file or file system</td>
</tr>
<tr>
<td>MPI_ERR_FILE_IN_USE</td>
<td>File operation could not be completed, as the file is currently open by some process</td>
</tr>
<tr>
<td>MPI_ERR_DUP_DATAREP</td>
<td>Conversion functions could not be registered because a data representation identifier that was already defined was passed to MPI_REGISTER_DATAREP</td>
</tr>
<tr>
<td>MPI_ERR_CONVERSION</td>
<td>An error occurred in a user supplied data conversion function.</td>
</tr>
<tr>
<td>MPI_ERR_IO</td>
<td>Other I/O error</td>
</tr>
</tbody>
</table>

14.8 I/O Error Classes

The implementation dependent error codes returned by the I/O routines can be converted into the error classes defined in Table 14.5.

In addition, calls to routines in this chapter may raise errors in other MPI classes, such as MPI_ERR_TYPE.

14.9 Examples

14.9.1 Double Buffering with Split Collective I/O

Example 14.9. This example shows how to overlap computation and output. The computation is performed by the function `compute_buffer()`.

```c
/* =========================================================================
** Function : double_buffer
** Synopsis :
*/
void double_buffer()
```

```c
/* Function: double_buffer */
/* Synopsis: */
```
** void double_buffer(
 MPI_File fh, ** IN
 MPI_Datatype buftype, ** IN
 int bufcount ** IN
) **

** Description: **
Performs the steps to overlap computation with a collective write
by using a double-buffering technique.

** Parameters: **
* fh previously opened MPI file handle
* buftype MPI datatype for memory layout
 (Assumes a compatible view has been set on fh)
* bufcount # buftype elements to transfer

--/

/* this macro switches which buffer "x" is pointing to */
#define TOGGLE_PTR (x) (((x)==(buffer1)) ? (x= buffer2) : (x= buffer1))

void double_buffer(MPI_File fh, MPI_Datatype buftype, int bufcount) {

 MPI_Status status; /* status for MPI calls */
 float *buffer1, *buffer2; /* buffers to hold results */
 float *compute_buf_ptr; /* destination buffer */
 /* for computing */
 float *write_buf_ptr; /* source for writing */
 int done; /* determines when to quit */

 /* buffer initialization */
 buffer1 = (float *)
 malloc(bufcount*sizeof(float));
 buffer2 = (float *)
 malloc(bufcount*sizeof(float));
 compute_buf_ptr = buffer1; /* initially point to buffer1 */
 write_buf_ptr = buffer1; /* initially point to buffer1 */

 /* DOUBLE-BUFFER prolog: */
 /* compute buffer1; then initiate writing buffer1 to disk */
 compute_buffer(compute_buf_ptr, bufcount, &done);
 MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

 /* DOUBLE-BUFFER steady state:
 * Overlap writing old results from buffer pointed to by write_buf_ptr
 * with computing new results into buffer pointed to by compute_buf_ptr.
 *
 * There is always one write-buffer and one compute-buffer in use
 * during steady state.
 */
 while (!done) {
 TOGGLE_PTR(compute_buf_ptr);
 compute_buffer(compute_buf_ptr, bufcount, &done);
 MPI_File_write_all_end(fh, write_buf_ptr, &status);
 TOGGLE_PTR(write_buf_ptr);
 }
}
MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

/* DOUBLE-BUFFER epilog: */
* wait for final write to complete. */
MPI_File_write_all_end(fh, write_buf_ptr, &status);

/* buffer cleanup */
free(buffer1);
free(buffer2);
}

14.9.2 Subarray Filetype Constructor

Example 14.10. Assume we are writing out a 100 × 100 2D array of double precision floating point numbers that is distributed among 4 processes such that each process has a block of 25 columns (e.g., process 0 has columns 0–24, process 1 has columns 25–49, etc.; see Figure 14.4). To create the filetypes for each process one could use the following C program

Figure 14.4: Example array file layout

Figure 14.5: Example local array filetype for process 1
Examples (see Section 5.1.3):

```c
double subarray[100][25];
MPI_Datatype filetype;
int sizes[2], subsizes[2], starts[2];
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
sizes[0]=100; sizes[1]=100;
subsizes[0]=100; subsizes[1]=25;
starts[0]=0; starts[1]=rank*subsizes[1];

MPI_Type_create_subarray(2, sizes, subsizes, starts, 
    MPI_ORDER_C, MPI_DOUBLE, &filetype);
```

Or, equivalently in Fortran:

Example 14.11. Writing out a 100 × 100 2D array of double precision floating point numbers that is distributed among 4 processes such that each process has a block of 25 columns (e.g., process 0 has columns 0–24, process 1 has columns 25–49, etc.; see Figure 14.4).

```fortran
double precision subarray(100,25)
integer filetype, rank, ierror
integer sizes(2), subsizes(2), starts(2)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
sizes(1) = 100
sizes(2) = 100
subsizes(1) = 100
subsizes(2) = 25
starts(1) = 0
starts(2) = rank*subsizes(2)

call MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts, &
    MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, &
    filetype, ierror)
```

The generated filetype will then describe the portion of the file contained within the process’s subarray with holes for the space taken by the other processes. Figure 14.5 shows the filetype created for process 1.
Chapter 15

Tool Support

15.1 Introduction

This chapter discusses interfaces that allow debuggers, performance analyzers, and other tools to extract information about the behavior of MPI processes. Specifically, this chapter defines both the MPI profiling interface (Section 15.2), which supports the transparent interception and inspection of MPI calls, and the MPI tool information interface (Section 15.3), which supports the inspection and manipulation of MPI control and performance variables, as well as the registration of callbacks for MPI library events. The interfaces described in this chapter are all defined in the context of an MPI process, i.e., are callable from the same code that invokes other MPI functions.

15.2 Profiling Interface

15.2.1 Requirements

To meet the requirements for the MPI profiling interface, an implementation of the MPI functions must

1. provide a mechanism through which all of the MPI defined functions, except those allowed as macros (See Section 2.6.4), may be accessed with a name shift. This requires, in C and Fortran, an alternate entry point name, with the prefix PMPI_, for each MPI function in each provided language binding and language support method. For routines implemented as macros, it is still required that the PMPI_ version be supplied and work as expected, but it is not possible to replace at link time the MPI_ version with a user-defined version.

 For Fortran, the different support methods cause several specific procedure names. Therefore, several profiling routines (with these specific procedure names) are needed for each Fortran MPI routine, as described in Section 19.1.5.

2. ensure that those MPI functions that are not replaced may still be linked into an executable image without causing name clashes.

3. document the implementation of different language bindings of the MPI interface if they are layered on top of each other, so that the profiler developer knows whether to implement the profile interface for each binding, or to economize by implementing it only for the lowest level routines.

4. where the implementation of different language bindings is done through a layered approach (e.g., the Fortran binding is a set of “wrapper” functions that call the C
implementation), ensure that these wrapper functions are separable from the rest of the library. This separability is necessary to allow a separate profiling library to be correctly implemented, since (at least with Unix linker semantics) the profiling library must contain these wrapper functions if it is to perform as expected. This requirement allows the person who builds the profiling library to extract these functions from the original MPI library and add them into the profiling library without bringing along any other unnecessary code.

5. provide a no-op routine MPI_PCONTROL in the MPI library.

15.2.2 Discussion

The objective of the MPI profiling interface is to ensure that it is relatively easy for authors of profiling (and other similar) tools to interface their codes to MPI implementations on different machines.

Since MPI is a machine independent standard with many different implementations, it is unreasonable to expect that the authors of profiling tools for MPI will have access to the source code that implements MPI on any particular machine. It is therefore necessary to provide a mechanism by which the implementors of such tools can collect whatever performance information they wish without access to the underlying implementation.

We believe that having such an interface is important if MPI is to be attractive to end users, since the availability of many different tools will be a significant factor in attracting users to the MPI standard.

The profiling interface is just that, an interface. It says nothing about the way in which it is used. There is therefore no attempt to lay down what information is collected through the interface, or how the collected information is saved, filtered, or displayed.

While the initial impetus for the development of this interface arose from the desire to permit the implementation of profiling tools, it is clear that an interface like that specified may also prove useful for other purposes, such as “internetworking” multiple MPI implementations. Since all that is defined is an interface, there is no objection to it being used wherever it is useful.

As the issues being addressed here are intimately tied up with the way in which executable images are built, which may differ greatly on different machines, the examples given below should be treated solely as one way of implementing the objective of the MPI profiling interface. The actual requirements made of an implementation are those detailed in the Requirements section above, the whole of the rest of this section is only present as justification and discussion of the logic for those requirements.

The examples below show one way in which an implementation could be constructed to meet the requirements on a Unix system (there are doubtless others that would be equally valid).

15.2.3 Logic of the Design

Provided that an MPI implementation meets the requirements above, it is possible for the implementor of the profiling system to intercept the MPI calls that are made by the user program. The profiling system implementor can then collect any required information before calling the underlying MPI implementation (through its name shifted entry points) to achieve the desired effects.
15.2.4 Miscellaneous Control of Profiling

There is a clear requirement for the user code to be able to control the profiler dynamically at run time. This capability is normally used for (at least) the purposes of

- Enabling and disabling profiling depending on the state of the calculation.
- Flushing trace buffers at noncritical points in the calculation.
- Adding user events to a trace file.

These requirements are met by use of MPI_PCONTROL.

\[
\text{MPI_PCONTROL(level, ...)}
\]

\[
\text{IN level Profiling level (integer)}
\]

C binding

\[
\text{int MPI_Pcontrol(const int level, ...)}
\]

Fortran 2008 binding

\[
\text{MPI_Pcontrol(level)}
\]

\[
\text{INTEGER, INTENT(IN)} :: level
\]

Fortran binding

\[
\text{MPI_PCONTROL(LEVEL)}
\]

\[
\text{INTEGER LEVEL}
\]

MPI libraries themselves make no use of this routine, and simply return immediately to the user code. However the presence of calls to this routine allows a profiling package to be explicitly called by the user.

Since MPI has no control of the implementation of the profiling code, we are unable to specify precisely the semantics that will be provided by calls to MPI_PCONTROL. This vagueness extends to the number of arguments to the function, and their datatypes.

However to provide some level of portability of user codes to different profiling libraries, we request the following meanings for certain values of level.

- \text{level=0} Profiling is disabled.
- \text{level=1} Profiling is enabled at a normal default level of detail.
- \text{level=2} Profile buffers are flushed, which may be a no-op in some profilers.
- All other values of \text{level} have profile library defined effects and additional arguments.

We also request that the default state after MPI has been initialized is for profiling to be enabled at the normal default level. (i.e., as if MPI_PCONTROL had just been called with the argument 1). This allows users to link with a profiling library and to obtain profile output without having to modify their source code at all.

The provision of MPI_PCONTROL as a no-op in the standard MPI library supports the collection of more detailed profiling information with source code that can still link against the standard MPI library.
Example 15.1. A wrapper to accumulate the total amount of data sent by the MPI Send function, along with the total elapsed time spent in the function.

```c
static int totalBytes = 0;
static double totalTime = 0.0;

int MPI_Send(const void* buffer, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)
{
    double tstart = MPI_Wtime();    /* Pass on all arguments */
    int size;
    int result = PMPI_Send(buffer, count, datatype, dest, tag, comm);
    totalTime += MPI_Wtime() - tstart; /* Compute time */
    MPI_Type_size(datatype, &size);    /* and size */
    totalBytes += count*size;
    return result;
}
```

15.2.5 MPI Library Implementation

If the MPI library is implemented in C on a Unix system, then there are various options, including the two presented here, for supporting the name-shift requirement. The choice between these two options depends partly on whether the linker and compiler support weak symbols.

If the compiler and linker support weak external symbols, then only a single library is required as the following example shows:

Example 15.2. Library implementation using weak symbols.

```c
#pragma weak MPI_Example = PMPI_Example

int PMPI_Example(/* appropriate args */)
{
    /* Useful content */
}
```

The effect of this `#pragma` is to define the external symbol `MPI_Example` as a weak definition. This means that the linker will not complain if there is another definition of the symbol (for instance in the profiling library); however if no other definition exists, then the linker will use the weak definition.

In the absence of weak symbols then one possible solution would be to use the C macro preprocessor as the following example shows:

Example 15.3. Library implementation using C pre-processor macros.

```c
#ifdef PROFILELIB
    #ifdef __STDC__
        #define FUNCTION(name) P##name
    #else
        #define FUNCTION(name) name
    #endif
#else
    #endif
#endif
```

```c
```

Example 15.3. Library implementation using C pre-processor macros.

```c
```

`#ifdef PROFILELIB`
Each of the user visible functions in the library would then be declared thus

```c
int FUNCTION(MPI_Example)(/* appropriate args */) {
    /* Useful content */
}
```

The same source file can then be compiled to produce both versions of the library, depending on the state of the PROFILELIB macro symbol.

It is required that the standard MPI library be built in such a way that the inclusion of MPI functions can be achieved one at a time. This may mean that each external function must reside in its own compilation unit. This is necessary so that the author of the profiling library need only define those MPI functions that need to be intercepted, references to any others being fulfilled by the normal MPI library.

Example 15.4.
The following example shows a potential link step when using the profiling interface.

```
% cc ... -lmyprof -lpmpi -lmpi
```

Here libmyprof.a contains the profiler functions that intercept some of the MPI functions, libpmpi.a contains the “name shifted” MPI functions, and libmpi.a contains the normal definitions of the MPI functions.

15.2.6 Complications

Multiple Counting

Since parts of the MPI library may themselves be implemented using more basic MPI functions (e.g., a portable implementation of the collective operations implemented using point-to-point communications), there is potential for profiling functions to be called from within an MPI function that was called from a profiling function. This could lead to “double counting” of the time spent in the inner routine. Since this effect could actually be useful under some circumstances (e.g., it might allow one to answer the question “How much time is spent in the point-to-point routines when they are called from collective functions?”), we have decided not to enforce any restrictions on the author of the MPI library that would overcome this. Therefore the author of the profiling library should be aware of this problem, and guard against it. In a single-threaded world this is easily achieved through use of a static variable in the profiling code that remembers if you are already inside a profiling routine. It becomes more complex in a multithreaded environment (as does the meaning of the times recorded).

Linker Oddities

The Unix linker traditionally operates in one pass: the effect of this is that functions from libraries are only included in the image if they are needed at the time the library is scanned.
When combined with weak symbols, or multiple definitions of the same function, this can cause odd (and unexpected) effects.

Consider, for instance, an implementation of MPI in which the Fortran binding is achieved by using wrapper functions on top of the C implementation. The author of the profile library then assumes that it is reasonable only to provide profile functions for the C binding, since Fortran will eventually call these, and the cost of the wrappers is assumed to be small. However, if the wrapper functions are not in the profiling library, then none of the profiled entry points will be undefined when the profiling library is called. Therefore none of the profiling code will be included in the image. When the standard MPI library is scanned, the Fortran wrappers will be resolved, and will also pull in the base versions of the MPI functions. The overall effect is that the code will link successfully, but will not be profiled.

To overcome this we must ensure that the Fortran wrapper functions are included in the profiling version of the library. We ensure that this is possible by requiring that these be separable from the rest of the base MPI library. This allows them to be copied out of the base library and into the profiling one using a tool such as ar.

Fortran Support Methods

The different Fortran support methods and possible options for the support of subarrays (depending on whether the compiler can support TYPE(*), DIMENSION(....) choice buffers) imply different specific procedure names for the same Fortran MPI routine. The rules and implications for the profiling interface are described in Section 19.1.5.

15.2.7 Multiple Levels of Interception

The scheme given here does not directly support the nesting of profiling functions, since it provides only a single alternative name for each MPI function. Consideration was given to an implementation that would allow multiple levels of call interception, however we were unable to construct an implementation of this that did not have the following disadvantages

- assuming a particular implementation language, and
- imposing a run time cost even when no profiling was taking place.

Since one of the objectives of MPI is to permit efficient, low latency implementations, and it is not the business of a standard to require a particular implementation language, we decided to accept the scheme outlined above.

Note, however, that it is possible to use the scheme above to implement a multi-level system, since the function called by the user may call many different profiling functions before calling the underlying MPI function. This capability has been demonstrated in the P^N MPI tool infrastructure [59].

15.3 The MPI Tool Information Interface

MPI implementations often use internal variables to control their behavior and performance and rely on internal events for their implementation. Understanding and manipulating these variables and tracking these events can provide a more efficient execution environment or improve performance for many applications. This section describes the MPI tool information
The MPI Tool Information Interface, which provides a mechanism for MPI implementors to expose variables, each of which represents a particular property, setting, or performance measurement from within the MPI implementation, as well as expose events that can be tracked by tools. The interface is split into three parts: the first part provides information about, and supports the setting of, control variables through which the MPI implementation tunes its configuration. The second part provides access to performance variables that can provide insight into internal performance information of the MPI implementation. The third part enables tools to query available events within an MPI implementation and register callbacks for them.

To avoid restrictions on the MPI implementation, the MPI tool information interface allows the implementation to specify which control variables, performance variables, and events exist. Additionally, the user of the MPI tool information interface can obtain metadata about each available variable or event, such as its datatype, and a textual description. The MPI tool information interface provides the necessary routines to find all variables and events that exist in a particular MPI implementation; to query their properties; to retrieve descriptions about their meaning; to access and, if appropriate, to alter their values; and (in case of events) set callbacks triggered by them.

Variables, events, and categories across connected MPI processes with equivalent names are required to have the same meaning (see the definition of “equivalent” as related to strings in Section 15.3.3). Furthermore, enumerations with equivalent names across connected MPI processes are required to have the same meaning, but are allowed to comprise different enumeration items. Enumeration items that have equivalent names across connected MPI processes in enumerations with the same meaning must also have the same meaning. In order for variables and categories to have the same meaning, routines in the tools information interface that return details for those variables and categories have requirements on what parameters must be identical. These requirements are specified in their respective sections.

Rationale. The intent of requiring the same meaning for entities with equivalent names is to enforce consistency across connected MPI processes. For example, variables describing the number of packets sent on different types of network devices should have different names to reflect their potentially different meanings. *(End of rationale.)*

The MPI tool information interface can be used independently from the MPI communication functionality. In particular, the routines of this interface can be called before MPI is initialized and after MPI is finalized. In order to support this behavior cleanly, the MPI tool information interface uses separate initialization and finalization routines. All identifiers used in the MPI tool information interface have the prefix **MPI_T**.

On success, all MPI tool information interface routines return **MPI_SUCCESS**, otherwise they return an appropriate and unique return code indicating the reason why the call was not successfully completed. Details on return codes can be found in Section 15.3.10. However, unsuccessful calls to the MPI tool information interface are not fatal and do not impact the execution of subsequent MPI routines.

Since the MPI tool information interface primarily focuses on tools and support libraries, MPI implementations are only required to provide C bindings for functions and constants introduced in this section. Except where otherwise noted, all conventions and principles governing the C bindings of the MPI API also apply to the MPI tool information interface, which is available by including the `mpi.h` header file. All routines in this interface have local semantics.
Table 15.1: MPI tool information interface verbosity levels

<table>
<thead>
<tr>
<th>Constant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_T_VERBOSITY_USER_BASIC</td>
<td>Basic information of interest to users</td>
</tr>
<tr>
<td>MPI_T_VERBOSITY_USER_DETAIL</td>
<td>Detailed information of interest to users</td>
</tr>
<tr>
<td>MPI_T_VERBOSITY_USER_ALL</td>
<td>All remaining information of interest to users</td>
</tr>
<tr>
<td>MPI_T_VERBOSITY_TUNER_BASIC</td>
<td>Basic information required for tuning</td>
</tr>
<tr>
<td>MPI_T_VERBOSITY_TUNER_DETAIL</td>
<td>Detailed information required for tuning</td>
</tr>
<tr>
<td>MPI_T_VERBOSITY_TUNER_ALL</td>
<td>All remaining information required for tuning</td>
</tr>
<tr>
<td>MPI_T_VERBOSITY_MPIDEV_BASIC</td>
<td>Basic information for MPI implementors</td>
</tr>
<tr>
<td>MPI_T_VERBOSITY_MPIDEV_DETAIL</td>
<td>Detailed information for MPI implementors</td>
</tr>
<tr>
<td>MPI_T_VERBOSITY_MPIDEV_ALL</td>
<td>All remaining information for MPI implementors</td>
</tr>
</tbody>
</table>

Advice to users. The number and type of control variables, performance variables, and events can vary between MPI implementations, platforms and different builds of the same implementation on the same platform as well as between runs. Hence, any application relying on a particular variable will not be portable. Further, there is no guarantee that the number of variables and variable indices are the same across connected MPI processes.

This interface is primarily intended for performance monitoring tools, support tools, and libraries controlling the application’s environment. When maximum portability is desired, application programmers should either avoid using the MPI tool information interface or avoid being dependent on the existence of a particular control or performance variable or of a particular event. *(End of advice to users.)*

15.3.1 Verbosity Levels

The MPI tool information interface provides access to internal configuration and performance information through a set of control and performance variables defined by the MPI implementation. Since some implementations may export a large number of variables, variables are classified by a verbosity level that categorizes both their intended audience (end users, performance tuners or MPI implementors) and a relative measure of level of detail (basic, detailed or all). These verbosity levels are described by a single integer. Table 15.1 lists the constants for all possible verbosity levels. The values of the constants are monotonic in the order listed in the table; i.e., $\text{MPI}_T_\text{VERBOSITY_USER_BASIC} < \text{MPI}_T_\text{VERBOSITY_USER_DETAIL} < \ldots < \text{MPI}_T_\text{VERBOSITY_MPIDEV_ALL}$.

15.3.2 Binding MPI Tool Information Interface Variables to MPI Objects

Each MPI tool information interface variable provides access to a particular control setting or performance property of the MPI implementation. A variable may refer to a specific MPI object such as a communicator, datatype, or one-sided communication window, or the variable may refer more generally to the MPI environment of the process. Except for the last case, the variable must be bound to exactly one MPI object before it can be used. Table 15.2 lists all MPI object types to which an MPI tool information interface variable can be bound, together with the matching constant that MPI tool information interface routines return to identify the object type. It is erroneous to bind a control variable, performance variable, or
event to a handle that would not be valid to use as an input argument to another MPI call (excluding calls to the MPI Tool Information Interface) at the same point of execution.

Table 15.2: Constants to identify associations of variables

<table>
<thead>
<tr>
<th>Constant</th>
<th>MPI object</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_T_BIND_NO_OBJECT</td>
<td>N/A; applies globally to entire MPI process</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_COMM</td>
<td>MPI communicators</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_DATATYPE</td>
<td>MPI datatypes</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_ERRHANDLER</td>
<td>MPI error handlers</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_FILE</td>
<td>MPI file handles</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_GROUP</td>
<td>MPI groups</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_OP</td>
<td>MPI reduction operators</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_REQUEST</td>
<td>MPI requests</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_WIN</td>
<td>MPI windows for one-sided communication</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_MESSAGE</td>
<td>MPI message object</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_INFO</td>
<td>MPI info object</td>
</tr>
<tr>
<td>MPI_T_BIND_MPI_SESSION</td>
<td>MPI session object</td>
</tr>
</tbody>
</table>

Rationale. Some variables have meanings tied to a specific MPI object. Examples include the number of send or receive operations that use a particular datatype, the number of times a particular error handler has been called, or the communication protocol and “eager limit” used for a particular communicator. Creating a new MPI tool information interface variable for each MPI object would cause the number of variables to grow without bound, since they cannot be reused to avoid naming conflicts. By associating MPI tool information interface variables with a specific MPI object, the MPI implementation only must specify and maintain a single variable, which can then be applied to as many MPI objects of the respective type as created during the program’s execution. *(End of rationale.)*

15.3.3 Convention for Returning Strings

Several MPI tool information interface functions return one or more strings. These functions have two arguments for each string to be returned: an **OUT** parameter that identifies a pointer to the buffer in which the string will be returned, and an **INOUT** parameter to pass the length of the buffer. The user is responsible for the memory allocation of the buffer and must pass the size of the buffer \((n)\) as the length argument. Let \(n\) be the length value specified to the function. On return, the function writes at most \(n - 1\) of the string’s characters into the buffer, followed by a null terminator. If the returned string’s length is greater than or equal to \(n\), the string will be truncated to \(n - 1\) characters. In this case, the length of the string plus one (for the terminating null character) is returned in the length argument. If the user passes the null pointer as the buffer argument or passes 0 as the length argument, the function does not return the string and only returns the length of the string plus one in the length argument. If the user passes the null pointer as the length argument, the buffer argument is ignored and nothing is returned.

MPI implementations behave as if they have an internal character array that is copied to the output character array supplied by the user. Such output strings are only defined
to be equivalent if their notional source-internal character arrays are identical (up to and including the null terminator), even if the output string is truncated due to a small input length parameter \(n \).

15.3.4 Initialization and Finalization

The MPI tool information interface requires a separate set of initialization and finalization routines.

```c
MPI_T_INIT_THREAD(required, provided)
```

IN required

- desired level of thread support (integer)

OUT provided

- provided level of thread support (integer)

C binding

```c
int MPI_T_init_thread(int required, int *provided)
```

All programs or tools that use the MPI tool information interface must initialize the MPI tool information interface in the processes that will use the interface before calling any other of its routines. A user can initialize the MPI tool information interface by calling `MPI_T_INIT_THREAD`, which can be called multiple times. In addition, this routine initializes the thread environment for all routines in the MPI tool information interface. Calling this routine when the MPI tool information interface is already initialized has no effect beyond increasing the reference count of how often the interface has been initialized. The argument `required` is used to specify the desired level of thread support. The possible values and their semantics are identical to the ones that can be used with `MPI_INIT_THREAD` listed in Section 11.6. The call returns in `provided` information about the actual level of thread support that will be provided by the MPI implementation for calls to MPI tool information interface routines. It can be one of the four values listed in Section 11.6.

The MPI specification does not require all MPI processes to exist before MPI is initialized. If the MPI tool information interface is used before initialization of MPI, the user is responsible for ensuring that the MPI tool information interface is initialized on all processes it is used in. Processes created by the MPI implementation during initialization inherit the status of the MPI tool information interface (whether it is initialized or not as well as all active sessions and handles) from the process from which they are created.

Processes created at runtime as a result of calls to MPI’s dynamic process management require their own initialization before they can use the MPI tool information interface.

Advice to users. If `MPI_T_INIT_THREAD` is called before `MPI_INIT_THREAD`, the requested and provided thread level for `MPI_T_INIT_THREAD` may influence the behavior and return value of `MPI_INIT_THREAD`. The same is true for the reverse order. Likewise, when using the Sessions Model (Section 11.3), the requested and provided thread level for `MPI_T_INIT_THREAD` may influence the behavior and return values of `MPI_SESSION_INIT` (see Section 11.3), with the same being true for the reverse order. (End of advice to users.)

Advice to implementors. MPI implementations should strive to make as many control or performance variables available before MPI initialization (instead of adding them...
during initialization) to allow tools the most flexibility. In particular, control variables should be available before MPI initialization if their value cannot be changed after MPI initialization. (End of advice to implementors.)

MPI_T_FINALIZE()

C binding

int MPI_T_finalize(void)

This routine finalizes the use of the MPI tool information interface and may be called as often as the corresponding MPI_T_INIT_THREAD routine up to the current point of execution. Calling it more times returns a corresponding return code. As long as the number of calls to MPI_T_FINALIZE is smaller than the number of calls to MPI_T_INIT_THREAD up to the current point of execution, the MPI tool information interface remains initialized and calls to its routines are permissible. Further, additional calls to MPI_T_INIT_THREAD after one or more calls to MPI_T_FINALIZE are permissible.

Once MPI_T_FINALIZE is called the same number of times as the routine MPI_T_INIT_THREAD up to the current point of execution, the MPI tool information interface is no longer initialized. The user can reinitialize the interface by a subsequent call to MPI_T_INIT_THREAD.

At the end of the program execution, unless MPI_ABORT is called, an application must have called MPI_T_INIT_THREAD and MPI_T_FINALIZE an equal number of times.

15.3.5 Datatype System

All variables managed through the MPI tool information interface represent their values through typed buffers of a given length and type using an MPI datatype (similar to regular send/receive buffers). Since the initialization of the MPI tool information interface is separate from the initialization of MPI, MPI tool information interface routines can be called before MPI initialization. Consequently, these routines can also use MPI datatypes before MPI initialization. Therefore, within the context of the MPI tool information interface, it is permissible to use a subset of MPI datatypes as specified below before MPI initialization.

Table 15.3: MPI datatypes that can be used by the MPI tool information interface

<table>
<thead>
<tr>
<th>Datatype</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_INT</td>
</tr>
<tr>
<td>MPI_INT32_T</td>
</tr>
<tr>
<td>MPI_INT64_T</td>
</tr>
<tr>
<td>MPI_UNSIGNED</td>
</tr>
<tr>
<td>MPI_UNSIGNED_LONG</td>
</tr>
<tr>
<td>MPI_UNSIGNED_LONG_LONG</td>
</tr>
<tr>
<td>MPI_UINT32_T</td>
</tr>
<tr>
<td>MPI_UINT64_T</td>
</tr>
<tr>
<td>MPI_COUNT</td>
</tr>
<tr>
<td>MPI_CHAR</td>
</tr>
<tr>
<td>MPI_DOUBLE</td>
</tr>
</tbody>
</table>
Rationale. The MPI tool information interface relies mainly on unsigned datatypes for integer values since most variables are expected to represent counters or resource sizes. MPI_INT is provided for additional flexibility and is expected to be used mainly for control variables and enumeration types (see below).

Providing all basic datatypes, in particular providing all signed and unsigned variants of integer types, would lead to a larger number of types, which tools need to interpret. This would cause unnecessary complexity in the implementation of tools based on the MPI tool information interface. (End of rationale.)

The MPI tool information interface only relies on a subset of the basic MPI datatypes and does not use any derived MPI datatypes. Table 15.3 lists all MPI datatypes that can be returned by the MPI tool information interface to represent its variables.

Rationale. The MPI tool information interface requires a significantly simpler type system than MPI itself. Therefore, only its required subset must be present before MPI initialization and MPI implementations do not need to initialize the complete MPI datatype system. (End of rationale.)

For variables of type MPI_INT, an MPI implementation can provide additional information by associating names with a fixed number of values. We refer to this information in the following as an enumeration. In this case, the respective calls that provide additional metadata for each control or performance variable, i.e., MPI_T_CVAR_GET_INFO (Section 15.3.6), MPI_T_PVAR_GET_INFO (Section 15.3.7), and MPI_T_EVENT_GET_INFO (Section 15.3.8), return a handle of type MPI_T_enum that can be passed to the following functions to extract additional information. Thus, the MPI implementation can describe variables with a fixed set of values that each represents a particular state. Each enumeration type can have \(N \) different values, with a fixed \(N \) that can be queried using MPI_T_ENUM_GET_INFO.

MPI_T_ENUM_GET_INFO

<table>
<thead>
<tr>
<th>IN</th>
<th>enumtype</th>
<th>enumeration to be queried (handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>num</td>
<td>number of discrete values represented by this enumeration (integer)</td>
</tr>
<tr>
<td>OUT</td>
<td>name</td>
<td>buffer to return the string containing the name of the enumeration item (string)</td>
</tr>
<tr>
<td>INOUT</td>
<td>name_len</td>
<td>length of the string and/or buffer for name (integer)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_T_enum_get_info(MPI_T_enum enumtype, int *num, char *name, int *name_len)
```
If `enumtype` is a valid enumeration, this routine returns the number of items represented by this enumeration type as well as its name. \(N \) must be greater than 0, i.e., the enumeration must represent at least one value.

The arguments `name` and `name_len` are used to return the name of the enumeration as described in Section 15.3.3.

The routine is required to return a name of at least length one. This name must be unique with respect to all other names for enumerations that the MPI implementation uses.

Names associated with individual values in each enumeration `enumtype` can be queried using `MPI_T_ENUM_GET_ITEM`.

MPI_T_ENUM_GET_ITEM(`enumtype`, `index`, `value`, `name`, `name_len`)

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN <code>enumtype</code></td>
<td>enumeration to be queried (handle)</td>
</tr>
<tr>
<td>IN <code>index</code></td>
<td>number of the value to be queried in this enumeration (integer)</td>
</tr>
<tr>
<td>OUT <code>value</code></td>
<td>variable value (integer)</td>
</tr>
<tr>
<td>OUT <code>name</code></td>
<td>buffer to return the string containing the name of the enumeration item (string)</td>
</tr>
<tr>
<td>INOUT <code>name_len</code></td>
<td>length of the string and/or buffer for <code>name</code> (integer)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_T_enum_get_item(MPI_T_enum enumtype, int index, int *value, char *name, int *name_len)
```

The arguments `name` and `name_len` are used to return the name of the enumeration item as described in Section 15.3.3.

If completed successfully, the routine returns the name/value pair that describes the enumeration at the specified index. The call is further required to return a name of at least length one. This name must be unique with respect to all other names of items for the same enumeration.

15.3.6 Control Variables

The routines described in this section of the MPI tool information interface specification focus on the ability to list, query, and possibly set control variables exposed by the MPI implementation. These variables can typically be used by the user to fine tune properties and configuration settings of the MPI implementation. On many systems, such variables can be set using environment variables, although other configuration mechanisms may be available, such as configuration files or central configuration registries. A typical example that is available in several existing MPI implementations is the ability to specify an “eager limit,” i.e., an upper bound on the size of messages sent or received using an eager protocol.

Control Variable Query Functions

An MPI implementation exports a set of \(N \) control variables through the MPI tool information interface. If \(N \) is zero, then the MPI implementation does not export any control variables, otherwise the provided control variables are indexed from 0 to \(N - 1 \). This index number is used in subsequent calls to identify the individual variables.
An MPI implementation is allowed to increase the number of control variables during the execution of an MPI application when new variables become available through dynamic loading. However, MPI implementations are not allowed to change the index of a control variable or to delete a variable once it has been added to the set. When a variable becomes inactive, e.g., through dynamic unloading, accessing its value should return a corresponding return code.

Advice to users. While the MPI tool information interface guarantees that indices or variable properties do not change during a particular run of an MPI program, it does not provide a similar guarantee between runs. (End of advice to users.)

The following function can be used to query the number of control variables, num_cvar:

```plaintext
MPI_T_CVAR_GET_NUM(num_cvar)
OUT     num_cvar                   returns number of control variables (integer)
```

C binding
```c
int MPI_T_cvar_get_num(int *num_cvar)
```

The function MPI_T_CVAR_GET_INFO provides access to additional information for each variable.

```plaintext
MPI_T_CVAR_GET_INFO(cvar_index, name, name_len, verbosity, datatype, enumtype, desc, desc_len, bind, scope)
IN      cvar_index                index of the control variable to be queried, value between 0 and num_cvar – 1 (integer)
OUT     name                      buffer to return the string containing the name of the control variable (string)
INOUT   name_len                 length of the string and/or buffer for name (integer)
OUT     verbosity                verbosity level of this variable (integer)
OUT     datatype                 MPI datatype of the information stored in the control variable (handle)
OUT     enumtype                 optional descriptor for enumeration information (handle)
OUT     desc                     buffer to return the string containing a description of the control variable (string)
INOUT   desc_len                 length of the string and/or buffer for desc (integer)
OUT     bind                     type of MPI object to which this variable must be bound (integer)
OUT     scope                    scope of when changes to this variable are possible (integer)
```

C binding
```c
int MPI_T_cvar_get_info(int cvar_index, char *name, int *name_len, int *desc_len, int *desc, int *verbositiy, MPI_Datatype *datatype, MPI_EnumType *enumtype, char *desc, int *bind, int *scope)
```
After a successful call to `MPI_T_CVAR_GET_INFO` for a particular variable, subsequent calls to this routine that query information about the same variable must return the same information. An MPI implementation is not allowed to alter any of the returned values.

If any OUT parameter to `MPI_T_CVAR_GET_INFO` is a NULL pointer, the implementation will ignore the parameter and not return a value for the parameter.

The arguments `name` and `name_len` are used to return the name of the control variable as described in Section 15.3.3.

If completed successfully, the routine is required to return a name of at least length one. The name must be unique with respect to all other names for control variables used by the MPI implementation.

The argument `verbosity` returns the verbosity level of the variable (see Section 15.3.1).

The argument `datatype` returns the MPI datatype that is used to represent the control variable.

If the variable is of type `MPI_INT`, MPI can optionally specify an enumeration for the values represented by this variable and return it in `enumtype`. In this case, MPI returns an enumeration identifier, which can then be used to gather more information as described in Section 15.3.5. Otherwise, `enumtype` is set to `MPI_T_ENUM_NULL`. If the datatype is not `MPI_INT` or the argument `enumtype` is the null pointer, no enumeration type is returned.

The arguments `desc` and `desc_len` are used to return a description of the control variable as described in Section 15.3.3.

Returning a description is optional. If an MPI implementation does not return a description, the first character for `desc` must be set to the null character and `desc_len` must be set to one at the return of this call.

The parameter `bind` returns the type of the MPI object to which the variable must be bound or the value `MPI_T_BIND_NO_OBJECT` (see Section 15.3.2).

The scope of a variable determines whether changing a variable’s value is either local to the MPI process or must be done by the user across multiple connected MPI processes. The latter is further split into variables that require changes in a group of MPI processes and those that require collective changes among all connected MPI processes. Both cases can require variables on all participating MPI processes either to be set to consistent (but potentially different) values or to equal values. The description provided with the variable must contain an explanation about the requirements and/or restrictions for setting the particular variable.

On successful return from `MPI_T_CVAR_GET_INFO`, the argument `scope` will be set to one of the constants listed in Table 15.4.

If the name of a control variable is equivalent across connected MPI processes, the following OUT parameters must be identical: `verbosity`, `datatype`, `enumtype`, `bind`, and `scope`. The returned description must be equivalent.

Advice to users. The scope of a variable only indicates if a variable might be changeable; it is not a guarantee that it can be changed at any time. (End of advice to users.)
Table 15.4: Scopes for control variables

<table>
<thead>
<tr>
<th>Scope Constant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_T_SCOPE_CONSTANT</td>
<td>read-only, value is constant</td>
</tr>
<tr>
<td>MPI_T_SCOPE_READONLY</td>
<td>read-only, cannot be written, but can change</td>
</tr>
<tr>
<td>MPI_T_SCOPE_LOCAL</td>
<td>may be writeable, writing only affects the calling MPI process</td>
</tr>
<tr>
<td>MPI_T_SCOPE_GROUP</td>
<td>may be writeable, must be set to consistent values across a group of connected MPI processes</td>
</tr>
<tr>
<td>MPI_T_SCOPE_GROUP_EQ</td>
<td>may be writeable, must be set to the same value across a group of connected MPI processes</td>
</tr>
<tr>
<td>MPI_T_SCOPE_ALL</td>
<td>may be writeable, must be set to consistent values across all connected MPI processes</td>
</tr>
<tr>
<td>MPI_T_SCOPE_ALL_EQ</td>
<td>may be writeable, must be set to the same value across all connected MPI processes</td>
</tr>
</tbody>
</table>

MPI_T_CVAR_GET_INDEX(name, cvar_index)

IN name name of the control variable (string)
OUT cvar_index index of the control variable (integer)

C binding

int MPI_T_cvar_get_index(const char *name, int *cvar_index)

MPI_T_CVAR_GET_INDEX is a function for retrieving the index of a control variable given a known variable name. The name parameter is provided by the caller, and cvar_index is returned by the MPI implementation. The name parameter is a string terminated with a null character.

This routine returns MPI_SUCCESS on success and returns MPI_T_ERR_INVALID_NAME if name does not match the name of any control variable provided by the implementation at the time of the call.

Rationale. This routine is provided to enable fast retrieval of control variables by a tool, assuming it knows the name of the variable for which it is looking. The number of variables exposed by the implementation can change over time, so it is not possible for the tool to simply iterate over the list of variables once at initialization. Although using MPI implementation specific variable names is not portable across MPI implementations, tool developers may choose to take this route for lower overhead at runtime because the tool will not have to iterate over the entire set of variables to find a specific one. (End of rationale.)

Example 15.5. Querying and printing the names of all available control variables.

```c
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main(int argc, char *argv[]) {
```
```c
int i, err, num, namelen, bind, verbose, scope;
int threadsupport;
char name[100];

MPI_Datatype datatype;

err = MPI_T_init_thread(MPI_THREAD_SINGLE, &threadsupport);
if (err != MPI_SUCCESS)
    return err;

err = MPI_T_cvar_get_num(&num);
if (err != MPI_SUCCESS)
    return err;

for (i = 0; i < num; i++) {
    namelen = 100;
    err = MPI_T_cvar_get_info(i, name, &namelen,
                              &verbose, &datatype, NULL,
                              NULL, NULL, /* no description */
                              &bind, &scope);
    if (err != MPI_SUCCESS && err != MPI_T_ERR_INVALID_INDEX)
        return err;
    printf("Var %i: %s\n", i, name);
}

err = MPI_T_finalize();
if (err != MPI_SUCCESS)
    return 1;
else
    return 0;
```

Handle Allocation and Deallocation

Before reading or writing the value of a variable, a user must first allocate a handle of type `MPI_T_cvar_handle` for the variable by binding it to an MPI object (see also Section 15.3.2).

Rationale. Handles used in the MPI tool information interface are distinct from handles used in the remaining parts of the MPI standard because they must be usable before MPI is initialized and after MPI is finalized. Further, accessing handles, in particular for performance variables, can be time critical and having a separate handle space enables optimizations. *(End of rationale.)*

MPI_T_CVAR_HANDLE_ALLOC(cvar_index, obj_handle, handle, count)

IN `cvar_index`
index of control variable for which handle is to be allocated (index)

IN `obj_handle`
reference to a handle of the MPI object to which this variable is supposed to be bound (pointer)
Chapter 15 Tool Support

OUT handle allocated handle (handle)

OUT count number of elements used to represent this variable (integer)

C binding

int MPI_T_cvar_handle_alloc(int cvar_index, void *obj_handle, MPI_T_cvar_handle *handle, int *count)

This routine binds the control variable specified by the argument index to an MPI object. The object is passed in the argument obj_handle as an address to a local variable that stores the object’s handle. The argument obj_handle is ignored if the MPI_T_CVAR_GET_INFO call for this control variable returned MPI_T_BIND_NO_OBJECT in the argument bind. The handle allocated to reference the variable is returned in the argument handle. Upon successful return, count contains the number of elements (of the datatype returned by a previous MPI_T_CVAR_GET_INFO call) used to represent this variable.

Advice to users. The count can be different based on the MPI object to which the control variable was bound. For example, variables bound to communicators could have a count that matches the size of the communicator.

It is not portable to pass references to predefined MPI object handles, such as MPI_COMM_WORLD to this routine, since their implementation depends on the MPI library. Instead, such object handles should be stored in a local variable and the address of this local variable should be passed into MPI_T_CVAR_HANDLE_ALLOC.

(End of advice to users.)

The value of cvar_index should be in the range from 0 to num_cvar−1, where num_cvar is the number of available control variables as determined from a prior call to MPI_T_CVAR_GET_NUM. The type of the MPI object it references must be consistent with the type returned in the bind argument in a prior call to MPI_T_CVAR_GET_INFO.

MPI_T_CVAR_HANDLE_FREE(handle)

INOUT handle handle to be freed (handle)

C binding

int MPI_T_cvar_handle_free(MPI_T_cvar_handle *handle)

When a handle is no longer needed, a user of the MPI tool information interface should call MPI_T_CVAR_HANDLE_FREE to free the handle and the associated resources in the MPI implementation. On a successful return, MPI sets the handle to MPI_T_CVAR_HANDLE_NULL.

Control Variable Access Functions

MPI_T_CVAR_READ(handle, buf)

IN handle handle to the control variable to be read (handle)
15.3 The MPI Tool Information Interface

OUT buf
initial address of storage location for variable value

C binding

int MPI_T_cvar_read(MPI_T_cvar_handle handle, void *buf)

This routine queries the value of a control variable identified by the argument handle and stores the result in the buffer identified by the parameter buf. The user must ensure that the buffer is of the appropriate size to hold the entire value of the control variable (based on the returned datatype and count from prior corresponding calls to MPI_T_CVAR_GET_INFO and MPI_T_CVAR_HANDLE_ALLOC, respectively).

MPI_T_CVAR_WRITE(handle, buf)

INOUT handle
handle to the control variable to be written (handle)

IN buf
initial address of storage location for variable value

C binding

int MPI_T_cvar_write(MPI_T_cvar_handle handle, const void *buf)

This routine sets the value of the control variable identified by the argument handle to the data stored in the buffer identified by the parameter buf. The user must ensure that the buffer is of the appropriate size to hold the entire value of the control variable (based on the returned datatype and count from prior corresponding calls to MPI_T_CVAR_GET_INFO and MPI_T_CVAR_HANDLE_ALLOC, respectively).

If the variable has a global scope (as returned by a prior corresponding MPI_T_CVAR_GET_INFO call), any write call to this variable must be issued by the user in all connected (as defined in Section 11.10.4) MPI processes. If the variable has group scope, any write call to this variable must be issued by the user in all MPI processes in the group, which must be described by the MPI implementation in the description by the MPI_T_CVAR_GET_INFO.

In both cases, the user must ensure that the writes in all participating MPI processes are consistent. If the scope is either MPI_T_SCOPE_ALL_EQ or MPI_T_SCOPE_GROUP_EQ this means that the variable in all connected MPI processes or MPI processes of the group, respectively, must be set to the same value.

If it is not possible to change the variable at the time the call is made, the function returns either MPI_T_ERR_CVAR_SET_NOT_NOW, if there may be a later time at which the variable could be set, or MPI_T_ERR_CVAR_SET_NEVER, if the variable cannot be set for the remainder of the application’s execution.

Example 15.6. Reading the value of a control variable.

```c
int getValue_int_comm(int index, MPI_Comm comm, int *val) {
    int err, count;
    MPI_T_cvar_handle handle;

    /* This example assumes that the variable index */
    /* can be bound to a communicator */
```
err = MPI_T_cvar_handle_alloc(index, &comm, &handle, &count);
if (err != MPI_SUCCESS)
 return err;

/* The following assumes that the variable is */
/* represented by a single integer */

err = MPI_T_cvar_read(handle, val);
if (err != MPI_SUCCESS)
 return err;

err = MPI_T_cvar_handle_free(&handle);
return err;
}

15.3.7 Performance Variables

The following section focuses on the ability to list and to query performance variables provided by the MPI implementation. Performance variables provide insight into MPI implementation-specific internals and can represent information such as the state of the MPI implementation (e.g., waiting blocked, receiving, not active), aggregated timing data for submodules, or queue sizes and lengths.

Rationale. The interface for performance variables is separate from the interface for control variables, since performance variables have different requirements and parameters. By keeping them separate, the interface provides cleaner semantics and allows for more performance optimization opportunities. (End of rationale.)

Some performance variables and classes refer to events. In general, such events describe state transitions within software or hardware related to the performance of an MPI application. The events offered through the callback-driven event-notification interface described in Section 15.3.8 also refer to such state transitions; however, the set of state transitions referred to by performance variables and events as described in Section 15.3.8 may not be identical.

Performance Variable Classes

Each performance variable is associated with a class that describes its basic semantics, possible datatypes, basic behavior, its starting value, whether it can overflow, and when and how an MPI implementation can change the variable’s value. The starting value is the value that is assigned to the variable the first time that it is used or whenever it is reset.

Advice to users. If a performance variable belongs to a class that can overflow, it is up to the user to protect against this overflow, e.g., by frequently reading and resetting the variable value. (End of advice to users.)

Advice to implementors. MPI implementations should use large enough datatypes for each performance variable to avoid overflows under normal circumstances. (End of advice to implementors.)
The classes are defined by the following constants:

MPI_T_PVAR_CLASS_STATE: A performance variable in this class represents a set of discrete states. Variables of this class are represented by MPI_INT and can be set by the MPI implementation at any time. Variables of this type should be described further using an enumeration, as discussed in Section 15.3.5. The starting value is the current state of the implementation at the time that the starting value is set. MPI implementations must ensure that variables of this class cannot overflow.

MPI_T_PVAR_CLASS_LEVEL: A performance variable in this class represents a value that describes the utilization level of a resource. The value of a variable of this class can change at any time to match the current utilization level of the resource. Values returned from variables in this class are nonnegative and represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value is the current utilization level of the resource at the time that the starting value is set. MPI implementations must ensure that variables of this class cannot overflow.

MPI_T_PVAR_CLASS_SIZE: A performance variable in this class represents a value that is the size of a resource. Values returned from variables in this class are nonnegative and represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value is the current size of the resource at the time that the starting value is set. MPI implementations must ensure that variables of this class cannot overflow.

MPI_T_PVAR_CLASS_PERCENTAGE: The value of a performance variable in this class represents the percentage utilization of a finite resource. The value of a variable of this class can change at any time to match the current utilization level of the resource. It will be returned as an MPI_DOUBLE datatype. The value must always be between 0.0 (resource not used at all) and 1.0 (resource completely used). The starting value is the current percentage utilization level of the resource at the time that the starting value is set. MPI implementations must ensure that variables of this class cannot overflow.

MPI_T_PVAR_CLASS_HIGHWATERMARK: A performance variable in this class represents a value that describes the maximum observed utilization of a resource. The value of a variable of this class is nonnegative and grows monotonically from the initialization or reset of the variable. It can be represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value is the current utilization level of the resource at the time that the variable is started or reset. MPI implementations must ensure that variables of this class cannot overflow.

MPI_T_PVAR_CLASS_LOWWATERMARK: A performance variable in this class represents a value that describes the minimum observed utilization of a resource. The value of a variable of this class is nonnegative and decreases monotonically from the initialization or reset of the variable. It can be represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value is the current utilization level of the resource at the time that the variable is started or reset. MPI implementations must ensure that variables of this class cannot overflow.
MPI_T_PVAR_CLASS_COUNTER: A performance variable in this class counts the number of occurrences of a specific event (e.g., the number of memory allocations within an MPI library). The value of a variable of this class increases monotonically from the initialization or reset of the performance variable by one for each specific event that is observed. Values must be nonnegative and represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG. The starting value for variables of this class is 0. Variables of this class can overflow.

MPI_T_PVAR_CLASS_AGGREGATE: The value of a performance variable in this class is an aggregated value that represents a sum of arguments processed during a specific event (e.g., the amount of memory allocated by all memory allocations). This class is similar to the counter class, but instead of counting individual events, the value can be incremented by arbitrary amounts. The value of a variable of this class increases monotonically from the initialization or reset of the performance variable. It must be nonnegative and represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value for variables of this class is 0. Variables of this class can overflow.

MPI_T_PVAR_CLASS_TIMER: The value of a performance variable in this class represents the aggregated time that the MPI implementation spends executing a particular event, type of event, or section of the MPI library. This class has the same basic semantics as MPI_T_PVAR_CLASS_AGGREGATE, but explicitly records a timing value. The value of a variable of this class increases monotonically from the initialization or reset of the performance variable. It must be nonnegative and represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value for variables of this class is 0. If the type MPI_DOUBLE is used, the units that represent time in this datatype must match the units used by MPI_WTIME. Otherwise, the time units should be documented, e.g., in the description returned by MPI_T_PVAR_GET_INFO. Variables of this class can overflow.

MPI_T_PVAR_CLASS_GENERIC: This class can be used to describe a variable that does not fit into any of the other classes. For variables in this class, the starting value is variable-specific and implementation-defined.

Performance Variable Query Functions

An MPI implementation exports a set of \(N \) performance variables through the MPI tool information interface. If \(N \) is zero, then the MPI implementation does not export any performance variables; otherwise the provided performance variables are indexed from 0 to \(N - 1 \). This index number is used in subsequent calls to identify the individual variables.

An MPI implementation is allowed to increase the number of performance variables during the execution of an MPI application when new variables become available through dynamic loading. However, MPI implementations are not allowed to change the index of a performance variable or to delete a variable once it has been added to the set. When a variable becomes inactive, e.g., through dynamic unloading, accessing its value should return a corresponding return code.

The following function can be used to query the number of performance variables, num_pvar:
MPI_T_PVAR_GET_NUM(num_pvar)
 OUT num_pvar returns number of performance variables (integer)

C binding
int MPI_T_pvar_get_num(int *num_pvar)

The function MPI_T_PVAR_GET_INFO provides access to additional information for each variable.

MPI_T_PVAR_GET_INFO(pvar_index, name, name_len, verbosity, var_class, datatype,
 enumtype, desc, desc_len, bind, readonly, continuous, atomic)
 IN pvar_index index of the performance variable to be queried
 between 0 and num_pvar − 1 (integer)
 OUT name buffer to return the string containing the name of the
 performance variable (string)
 INOUT name_len length of the string and/or buffer for name (integer)
 OUT verbosity verbosity level of this variable (integer)
 OUT var_class class of performance variable (integer)
 OUT datatype MPI datatype of the information stored in the
 performance variable (handle)
 OUT enumtype optional descriptor for enumeration information
 (handle)
 OUT desc buffer to return the string containing a description of
 the performance variable (string)
 INOUT desc_len length of the string and/or buffer for desc (integer)
 OUT bind type of MPI object to which this variable must be
 bound (integer)
 OUT readonly flag indicating whether the variable can be written/reset (integer)
 OUT continuous flag indicating whether the variable can be started
 and stopped or is continuously active (integer)
 OUT atomic flag indicating whether the variable can be
 atomically read and reset (integer)

C binding
int MPI_T_pvar_get_info(int pvar_index, char *name, int *name_len,
 int *verbosity, int *var_class, MPI_Datatype *datatype,
 MPI_T_enum *enumtype, char *desc, int *desc_len, int *bind,
 int *readonly, int *continuous, int *atomic)

After a successful call to MPI_T_PVAR_GET_INFO for a particular variable, subsequent
calls to this routine that query information about the same variable must return the same
information. An MPI implementation is not allowed to alter any of the returned values.
If any OUT parameter to MPI_T_PVAR_GET_INFO is a NULL pointer, the implementation will ignore the parameter and not return a value for the parameter.

The arguments name and name_len are used to return the name of the performance variable as described in Section 15.3.3. If completed successfully, the routine is required to return a name of at least length one.

The argument verbosity returns the verbosity level of the variable (see Section 15.3.1). The class of the performance variable is returned in the parameter var_class. The class must be one of the constants defined in Section 15.3.7.

The combination of the name and the class of the performance variable must be unique with respect to all other names for performance variables used by the MPI implementation.

Advice to implementors. Groups of variables that belong closely together, but have different classes, can have the same name. This choice is useful, e.g., to refer to multiple variables that describe a single resource (like the level, the total size, as well as high- and low-water marks). (End of advice to implementors.)

The argument datatype returns the MPI datatype that is used to represent the performance variable.

If the variable is of type MPI_INT, MPI can optionally specify an enumeration for the values represented by this variable and return it in enumtype. In this case, MPI returns an enumeration identifier, which can then be used to gather more information as described in Section 15.3.5. Otherwise, enumtype is set to MPI_T_ENUM_NULL. If the datatype is not MPI_INT or the argument enumtype is the null pointer, no enumeration type is returned.

Returning a description is optional. If an MPI implementation does not return a description, the first character for desc must be set to the null character and desc_len must be set to one at the return from this function.

The parameter bind returns the type of the MPI object to which the variable must be bound or the value MPI_T_BIND_NO_OBJECT (see Section 15.3.2).

Upon return, the argument readonly is set to zero if the variable can be written or reset by the user. It is set to one if the variable can only be read.

Upon return, the argument continuous is set to zero if the variable can be started and stopped by the user, i.e., it is possible for the user to control if and when the value of a variable is updated. It is set to one if the variable is always active and cannot be controlled by the user.

Upon return, the argument atomic is set to zero if the variable cannot be read and reset atomically. Only variables for which the call sets atomic to one can be used in a call to MPI_T_PVAR_READRESET.

If a performance variable has an equivalent name and has the same class across connected MPI processes, the following OUT parameters must be identical: verbosity, var_class, datatype, enumtype, bind, readonly, continuous, and atomic. The returned description must be equivalent.

MPI_T_PVAR_GET_INDEX(name, var_class, pvar_index)

IN name the name of the performance variable (string)
IN var_class the class of the performance variable (integer)
OUT pvar_index the index of the performance variable (integer)
C binding

```c
int MPI_T_pvar_get_index(const char *name, int var_class, int *pvar_index)
```

`MPI_T_PVAR_GET_INDEX` is a function for retrieving the index of a performance variable given a known variable name and class. The `name` and `var_class` parameters are provided by the caller, and `pvar_index` is returned by the MPI implementation. The `name` parameter is a string terminated with a null character.

This routine returns `MPI_SUCCESS` on success and returns `MPI_T_ERR_INVALID_NAME` if `name` does not match the name of any performance variable of the specified `var_class` provided by the implementation at the time of the call.

Rationale. This routine is provided to enable fast retrieval of performance variables by a tool, assuming it knows the name of the variable for which it is looking. The number of variables exposed by the implementation can change over time, so it is not possible for the tool to simply iterate over the list of variables once at initialization. Although using MPI implementation specific variable names is not portable across MPI implementations, tool developers may choose to take this route for lower overhead at runtime because the tool will not have to iterate over the entire set of variables to find a specific one. (*End of rationale.*)

Performance Experiment Sessions

Within a single program, multiple components can use the MPI tool information interface. To avoid collisions with respect to accesses to performance variables, users of the MPI tool information interface must first create a performance experiment session. Subsequent calls that access performance variables can then be made within the context of this performance experiment session. Starting, stopping, reading, writing, or resetting a variable in one performance experiment session shall not influence whether a variable is started, stopped, read, written, or reset in another performance experiment session.

```c
MPI_T_PVAR_SESSION_CREATE(pe_session)
```

C binding

```c
int MPI_T_pvar_session_create(MPI_T_pvar_session *pe_session)
```

This call creates a new performance experiment session for accessing performance variables and returns a handle for this performance experiment session in the argument `pe_session` of type `MPI_T_pvar_session`.

```c
MPI_T_PVAR_SESSION_FREE(pe_session)
```

C binding

```c
int MPI_T_pvar_session_free(MPI_T_pvar_session *pe_session)
```

This call frees an existing performance experiment session. Calls to the MPI tool information interface can no longer be made within the context of a performance experiment.
session after it is freed. On a successful return, MPI sets the performance experiment session identifier to
MPI_T_PVAR_SESSION_NULL.

Handle Allocation and Deallocation

Before using a performance variable, a user must first allocate a handle of type MPI_T_pvar_handle for the variable by binding it to an MPI object (see also Section 15.3.2).

MPI_T_PVAR_HANDLE_ALLOC

<table>
<thead>
<tr>
<th>Mode</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INOUT</td>
<td>pe_session</td>
<td>identifier of performance experiment session (handle)</td>
</tr>
<tr>
<td>IN</td>
<td>pvar_index</td>
<td>index of performance variable for which handle is to be allocated (integer)</td>
</tr>
<tr>
<td>IN</td>
<td>obj_handle</td>
<td>reference to a handle of the MPI object to which this variable is supposedly to be bound (pointer)</td>
</tr>
<tr>
<td>OUT</td>
<td>handle</td>
<td>allocated handle (handle)</td>
</tr>
<tr>
<td>OUT</td>
<td>count</td>
<td>number of elements used to represent this variable (integer)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_T_pvar_handle_alloc(MPI_T_pvar_session pe_session, int pvar_index,
                            void *obj_handle, MPI_T_pvar_handle *handle, int *count)
```

This routine binds the performance variable specified by the argument **index** to an MPI object in the performance experiment session identified by the parameter **pe_session**. The object is passed in the argument **obj_handle** as an address to a local variable that stores the object’s handle. The argument **obj_handle** is ignored if the **MPI_T_PVAR_GET_INFO** call for this performance variable returned **MPI_T_BIND_NO_OBJECT** in the argument **bind**. The handle allocated to reference the variable is returned in the argument **handle**. Upon successful return, **count** contains the number of elements (of the datatype returned by a previous **MPI_T_PVAR_GET_INFO** call) used to represent this variable.

Advice to users. The **count** can be different based on the MPI object to which the performance variable was bound. For example, variables bound to communicators could have a count that matches the size of the communicator.

It is not portable to pass references to predefined MPI object handles, such as **MPI_COMM_WORLD**, to this routine, since their implementation depends on the MPI library. Instead, such an object handle should be stored in a local variable and the address of this local variable should be passed into **MPI_T_PVAR_HANDLE_ALLOC**.

(End of advice to users.)

The value of index should be in the range from 0 to **num_pvar** − 1, where **num_pvar** is the number of available performance variables as determined from a prior call to **MPI_T_PVAR_GET_NUM**. The type of the MPI object it references must be consistent with the type returned in the **bind** argument in a prior call to **MPI_T_PVAR_GET_INFO**.

For all routines in the rest of this section that take both **handle** and **pe_session** as IN or INOUT arguments, if the **handle** argument passed in is not associated with the **pe_session** argument, **MPI_T_ERR_INVALID_HANDLE** is returned.
15.3 The MPI Tool Information Interface

MPI_T_PVAR_HANDLE_FREE

```c
int MPI_T_pvar_handle_free(MPI_T_pvar_session pe_session, MPI_T_pvar_handle *handle)
```

When a handle is no longer needed, a user of the MPI tool information interface should call **MPI_T_PVAR_HANDLE_FREE** to free the handle in the performance experiment session identified by the parameter `pe_session` and the associated resources in the MPI implementation. On a successful return, MPI sets the handle to **MPI_T_PVAR_HANDLE_NULL**.

Starting and Stopping of Performance Variables

Performance variables that have the continuous flag set during the query procedure are continuously updated once a handle has been allocated. Such variables may be queried at any time, but they cannot be started or stopped by the user. All other variables are in a stopped state after their handle has been allocated; their values are not updated until they have been started by the user.

MPI_T_PVAR_START

```c
int MPI_T_pvar_start(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle)
```

This function starts the performance variable with the handle identified by the parameter `handle` in the performance experiment session identified by the parameter `pe_session`.

If the constant **MPI_T_PVAR_ALL_HANDLES** is passed in `handle`, the MPI implementation attempts to start all variables within the performance experiment session identified by the parameter `pe_session` for which handles have been allocated. In this case, the routine returns **MPI_SUCCESS** if all variables are started successfully (even if there are no noncontinuous variables to be started), otherwise **MPI_T_ERR_PVAR_NO_STARTSTOP** is returned. Continuous variables and variables that are already started are ignored when **MPI_T_PVAR_ALL_HANDLES** is specified.

MPI_T_PVAR_STOP

```c
int MPI_T_pvar_stop(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle)
```
This function stops the performance variable with the handle identified by the parameter \texttt{handle} in the performance experiment session identified by the parameter \texttt{pe_session}.

If the constant \texttt{MPI_T_PVAR_ALL_HANDLES} is passed in \texttt{handle}, the MPI implementation attempts to stop all variables within the performance experiment session identified by the parameter \texttt{pe_session} for which handles have been allocated. In this case, the routine returns \texttt{MPI_SUCCESS} if all variables are stopped successfully (even if there are no noncontinuous variables to be stopped), otherwise \texttt{MPI_T_ERR_PVAR_NO_STARTSTOP} is returned. Continuous variables and variables that are already stopped are ignored when \texttt{MPI_T_PVAR_ALL_HANDLES} is specified.

Performance Variable Access Functions

\texttt{MPI_T_PVAR_READ}(\texttt{pe_session}, \texttt{handle}, \texttt{buf})

C binding

\begin{verbatim}
int MPI_T_pvar_read(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle,
 void *buf)
\end{verbatim}

The \texttt{MPI_T_PVAR_READ} call queries the value of the performance variable with the handle \texttt{handle} in the performance experiment session identified by the parameter \texttt{pe_session} and stores the result in the buffer identified by the parameter \texttt{buf}. The user is responsible to ensure that the buffer is of the appropriate size to hold the entire value of the performance variable (based on the datatype and count returned by the corresponding previous calls to \texttt{MPI_T_PVAR_GET_INFO} and \texttt{MPI_T_PVAR_HANDLE_ALLOC}, respectively).

The constant \texttt{MPI_T_PVAR_ALL_HANDLES} cannot be used as an argument for the function \texttt{MPI_T_PVAR_READ}.

\texttt{MPI_T_PVAR_WRITE}(\texttt{pe_session}, \texttt{handle}, \texttt{buf})

C binding

\begin{verbatim}
int MPI_T_pvar_write(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle,
 const void *buf)
\end{verbatim}

The \texttt{MPI_T_PVAR_WRITE} call attempts to write the value of the performance variable with the handle identified by the parameter \texttt{handle} in the performance experiment session identified by the parameter \texttt{pe_session}. The value to be written is passed in the buffer.
identified by the parameter \texttt{buf}. The user must ensure that the buffer is of the appropriate size to hold the entire value of the performance variable (based on the datatype and count returned by the corresponding previous calls to \texttt{MPI_T_PVAR_GET_INFO} and \texttt{MPI_T_PVAR_HANDLEALLOC}, respectively).

If it is not possible to change the variable, the function returns \texttt{MPI_T_ERR_PVAR_NO_WRITE}.

The constant \texttt{MPI_T_PVAR_ALL_HANDLES} cannot be used as an argument for the function \texttt{MPI_T_PVAR_WRITE}.

\texttt{MPI_T_PVAR_RESET} \((pe_session,\ handle) \)

\begin{verbatim}
IN pe_session identifier of performance experiment session (handle)
INOUT handle handle of a performance variable (handle)
\end{verbatim}

C binding

\begin{verbatim}
int MPI_T_pvar_reset(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle)
\end{verbatim}

The \texttt{MPI_T_PVAR_RESET} call sets the performance variable with the handle identified by the parameter \texttt{handle} to its starting value specified in Section 15.3.7. If it is not possible to change the variable, the function returns \texttt{MPI_T_ERR_PVAR_NO_WRITE}.

If the constant \texttt{MPI_T_PVAR_ALL_HANDLES} is passed in \texttt{handle}, the MPI implementation attempts to reset all variables within the performance experiment session identified by the parameter \texttt{pe_session} for which handles have been allocated. In this case, the routine returns \texttt{MPI_SUCCESS} if all variables are reset successfully (even if there are no valid handles or all are read-only), otherwise \texttt{MPI_T_ERR_PVAR_NO_WRITE} is returned. Read-only variables are ignored when \texttt{MPI_T_PVAR_ALL_HANDLES} is specified.

\texttt{MPI_T_PVAR_READRESET} \((pe_session, handle, buf) \)

\begin{verbatim}
IN pe_session identifier of performance experiment session (handle)
INOUT handle handle of a performance variable (handle)
OUT buf initial address of storage location for variable value (choice)
\end{verbatim}

C binding

\begin{verbatim}
int MPI_T_pvar_readreset(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle, void *buf)
\end{verbatim}

This call atomically combines the functionality of \texttt{MPI_T_PVAR_READ} and \texttt{MPI_T_PVAR_RESET} with the same semantics as if these two calls were called separately. If the variable cannot be read and reset atomically, this routine returns \texttt{MPI_T_ERR_PVAR_NO_ATOMIC}.

The constant \texttt{MPI_T_PVAR_ALL_HANDLES} cannot be used as an argument for the function \texttt{MPI_T_PVAR_READRESET}.

\textit{Advice to implementors}. Sampling-based tools rely on the ability to call the MPI tool information interface, in particular routines to start, stop, read, write, and reset performance variables, from any program context, including asynchronous contexts such
as signal handlers. MPI implementations should strive, if possible in their particular environment, to enable these usage scenarios for all or a subset of the routines mentioned above. If implementing only a subset, the read, write, and reset routines are typically the most critical for sampling based tools. An MPI implementation should clearly document any restrictions on the program contexts in which the MPI tool information interface can be used. Restrictions might include guaranteeing usage outside of all signals or outside a specific set of signals. Any restrictions could be documented, for example, through the description returned by \texttt{MPI_T_PVAR_GET_INFO}. \textit{(End of advice to implementors.)}

\textbf{Rationale.} All routines to read, to write or to reset performance variables require the performance experiment session argument. This requirement keeps the interface consistent and allows the use of \texttt{MPI_T_PVAR_ALL_HANDLES} where appropriate. Further, this opens up additional performance optimizations for the implementation of handles. \textit{(End of rationale.)}

\begin{example}
Detecting Receives with long unexpected message queues.
The following example shows a sample tool to identify receive operations that occur during times with long message queues. This examples assumes that the MPI implementation exports a variable with the name "\texttt{MPI_T_UMQ_LENGTH}" to represent the current length of the unexpected message queue. The tool is implemented as a PMPI tool using the MPI profiling interface.

The tool consists of three parts: (1) the initialization (by intercepting the call to \texttt{MPI_INIT}), (2) the test for long unexpected message queues (by intercepting calls to \texttt{MPI_RECV}), and (3) the clean-up phase (by intercepting the call to \texttt{MPI_FINALIZE}). To capture all receives, the example would have to be extended to have similar wrappers for all receive operations.

\textbf{Part 1—Initialization:} During initialization, the tool searches for the variable and, once the right index is found, allocates a performance experiment session and a handle for the variable with the found index, and starts the performance variable.

\begin{verbatim}
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <mpi.h>

/* Global variables for the tool */
static MPI_T_pvar_session pe_session;
static MPI_T_pvar_handle handle;

int MPI_Init(int *argc, char ***argv) {
 int err, num, i, index, namelen, verbosity;
 int var_class, bind, threadsup;
 int readonly, continuous, atomic, count;
 char name[18];

 MPI_Comm comm;
 MPI_Datatype datatype;
 MPI_T_enum enumtype;

 err=PMPI_Init(argc, argv);

 ... (continued) ...

 return err;
}
\end{verbatim}
\end{example}
if (err!=MPI_SUCCESS)
 return err;

err=PMPI_T_init_thread(MPI_THREAD_SINGLE, &threadsup);
if (err!=MPI_SUCCESS)
 return err;

err=PMPI_T_pvar_get_num(&num);
if (err!=MPI_SUCCESS)
 return err;

index=-1;
i=0;
while ((i<num) && (index<0) && (err==MPI_SUCCESS)){
 /* Pass a buffer that is at least one character longer than */
 /* the name of the variable being searched for to avoid */
 /* finding variables that have a name that has a prefix */
 /* equal to the name of the variable being searched. */
 namelen=18;
 err=PMPI_T_pvar_get_info(i, name, &namelen, &verbosity,
 &var_class, &datatype, &enumtype,
 NULL, NULL, &bind,&readonly,
 &continuous, &atomic);
 if (strcmp(name,"MPI_T_UMQ_LENGTH")==0) index=i;
 i++;
}
if (err!=MPI_SUCCESS)
 return err;

/* this could be handled in a more flexible way for a generic tool */
assert(index>=0);
assert(var_class==MPI_T_PVAR_CLASS_LEVEL);
assert(datatype==MPI_INT);
assert(bind==MPI_T_BIND_MPI_COMM);

/* Create a session */
err=PMPI_T_pvar_session_create(&pe_session);
if (err!=MPI_SUCCESS) return err;

/* Get a handle and bind to MPI_COMM_WORLD */
comm=MPI_COMM_WORLD;
err=PMPI_T_pvar_handle_alloc(pe_session, index, &comm, &handle,
 &count);
if (err!=MPI_SUCCESS) return err;

/* this could be handled in a more flexible way for a generic tool */
assert(count==1);

/* Start variable */
err=PMPI_T_pvar_start(pe_session, handle);
if (err!=MPI_SUCCESS) return err;

return MPI_SUCCESS;

Part 2—Testing the Queue Lengths During Receives: During every receive operation,
the tool reads the unexpected queue length through the matching performance variable and compares it against a predefined threshold.

```c
#define THRESHOLD 5

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status)
{
    int value, err;

    if (comm==MPI_COMM_WORLD) {
        err=PMPI_T_pvar_read(pe_session, handle, &value);
        if ((err==MPI_SUCCESS) && (value>THRESHOLD))
            /* tool identified receive called with long UMQ */
            /* execute tool functionality, */
            /* e.g., gather and print call stack */
    }

    return PMPI_Recv(buf, count, datatype, source, tag, comm, status);
}
```

Part 3—Termination: In the wrapper for `MPI_FINALIZE`, the MPI tool information interface is finalized.

```c
int MPI_Finalize(void)
{
    int err;

    err=PMPI_T_pvar_handle_free(pe_session, &handle);
    err=PMPI_T_pvar_session_free(&pe_session);
    err=PMPI_T_finalize();
    return PMPI_Finalize();
}
```

15.3.8 Events

During the execution of an MPI application, the MPI implementation can raise *events* of a specific type to inform the user of a state change in the implementation. **Event types** describe specific state changes within the MPI implementation. In comparison to aggregate performance variables, events provide per-instance information on such state changes. The MPI implementation is said to **raise an event** when it invokes a callback function previously registered for the corresponding event type by the user. Each callback invocation for a specific event instance has a timestamp associated with it, which can be queried by the user, describing the time when the event was observed by the implementation. This decouples the observation of the state change from the communication of this information to the user. A timestamp in this context is a count of clock ticks elapsed since some time in the past and represented as a variable of type `MPI_Count`.
15.3 The MPI Tool Information Interface

Event Sources

As a means to manage multiple state changes to be observed concurrently by different parts of the software and hardware system, the event interface of the MPI Tool Information Interface uses the concept of sources. A source in this context is a concept describing the logical entity raising the event. A source may or may not directly represent a concrete part of the software or hardware system. This concept is used primarily to describe partial ordering of events across different components where total ordering cannot necessarily be determined or is too costly to enforce.

The following function can be used to query the number of event sources, num_sources:

```
MPI_T_SOURCE_GET_NUM(num_sources)
```

C binding
```
int MPI_T_source_get_num(int *num_sources)
```

The number of available event sources can be queried with a call to MPI_T_SOURCE_GET_NUM. An MPI implementation is allowed to increase the number of sources during the execution of an MPI process. However, MPI implementations are not allowed to change the index of an event source or to delete an event source once it has been made visible to the user (e.g., if new event sources become available via dynamic loading of additional components in the MPI implementation).

```
MPI_T_SOURCE_GET_INFO(source_index, name, name_len, desc, desc_len, ordering,
                         ticks_per_second, max_ticks, info)
```

C binding
```
int MPI_T_source_get_info(int source_index, char *name, int *name_len,
                          int *desc_len, char *desc, int *ordering,
                          int *ticks_per_second, int *max_ticks, void *info)
```

char *desc, int *desc_len, MPI_T_source_order *ordering,
MPI_Count *ticks_per_second, MPI_Count *max_ticks,
MPI_Info *info)

A call to MPI_T_SOURCE_GET_INFO returns additional information on the source
identified by the source_index argument.

The arguments name and name_len are used to return the name of the source as de-
scribed in Section 15.3.3.

The arguments desc and desc_len are used to return the description of the source as
described in Section 15.3.3.

The ordering argument returns whether event callbacks of this source will be invoked
in chronological order, i.e., the timestamps reported by MPI_T_EVENT_GET_TIMESTAMP
of subsequent events of the same source are monotonically increasing. The value of ordering
can be MPI_T_SOURCE_ORDERED or MPI_T_SOURCE_UNORDERED.

The ticks_per_seconds argument returns the number of ticks elapsed in one second for
the timer used for the specific source.

The max_ticks argument returns the largest number of ticks reported by this source as
a timestamp before the value overflows.

Advice to users. As the size of MPI_Count is defined in relation to the types MPI_Aint
and MPI_Offset, the effective size of MPI_Count may lead to overflows of the timestamp
values reported. Users can use the argument max_ticks to mitigate resulting problems.
(End of advice to users.)

MPI can optionally return an info object containing the default hints set for this source.
If the argument to info provided by the user is the NULL pointer, this argument is ignored,
otherwise an MPI implementation is required to return all hints that are supported by
the implementation for this source and have default values specified; any user-supplied
hints that were not ignored by the implementation; and any additional hints that were
set by the implementation. If no such hints exist, a handle to a newly created info object
is returned that contains no key/value pair. The user is responsible for freeing info via
MPI_INFO_FREE.

MPI_T_SOURCE_GET_TIMESTAMP(source_index, timestamp)
 IN source_index index of the source (integer)
 OUT timestamp current timestamp from specified source (integer)

C binding
int MPI_T_source_get_timestamp(int source_index, MPI_Count *timestamp)

To enable proper query of a reference timestamp for a specific source, a user can obtain
a current timestamp using MPI_T_SOURCE_GET_TIMESTAMP. The argument
source_index identifies the index of the source to query. The call returns MPI_SUCCESS and
a current timestamp in the argument timestamp if the source supports ad-hoc generation of
timestamps. The call returns MPI_T_ERR_INVALID_INDEX if the index does not identify a
valid source. The call returns MPI_T_ERR_NOT_SUPPORTED if the source does not support
the ad-hoc generation of timestamps.
Table 15.5: Hierarchy of safety requirement levels for event callback routines

<table>
<thead>
<tr>
<th>Safety Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_T_CB_REQUIRE_NONE</td>
</tr>
<tr>
<td>MPI_T_CB_REQUIRE_MPI_RESTRICTED</td>
</tr>
<tr>
<td>MPI_T_CB_REQUIRE_THREAD_SAFE</td>
</tr>
<tr>
<td>MPI_T_CB_REQUIRE_ASYNC_SIGNAL_SAFE</td>
</tr>
</tbody>
</table>

Callback Safety Requirements

The actions a user is allowed to perform inside a callback function may vary with its execution context. As the user has no control over the execution context of specific callback function invocations, MPI provides a way to communicate this information using callback safety levels.

Table 15.5 provides the hierarchy of callback safety requirements levels within user-defined callback functions. The MPI implementation provides the safety requirement as an argument to the callback when it is invoked.

The level of MPI_T_CB_REQUIRE_NONE is the lowest level and does not impose any restrictions on the callback function.

The level of MPI_T_CB_REQUIRE_MPI_RESTRICTED restricts the set of MPI functions that can be called from inside the callback to all functions with the prefix MPI_T as well as MPI_WTICK and MPI_WTIME.

Advice to users. While some MPI functions are safe to be called inside a callback function used in the MPI tool information interface—which may in some implementations be issued from asynchronous contexts such as signal handlers—this does not imply that those MPI functions are generally safe to be called in asynchronous contexts such as signal handlers. (End of advice to users.)

The level of MPI_T_CB_REQUIRE_THREAD_SAFE includes all the limitations of MPI_T_CB_REQUIRE_MPI_RESTRICTED and additionally requires the callback to be reentrant and thread-safe. This means the callback must allow its execution to be interrupted by or happen concurrently with any other callback including itself.

The level of MPI_T_CB_REQUIRE_ASYNC_SIGNAL_SAFE includes all the limitations of MPI_T_CB_REQUIRE_THREAD_SAFE and additionally requires the callback to meet the safety requirements needed to support invocations from asynchronous contexts, such as signal handlers.

Advice to users. It is always safe to assume the highest restrictions for a callback invocation (i.e., MPI_T_CB_REQUIRE_ASYNC_SIGNAL_SAFE). By evaluating the specific requirements at runtime, a tool may obtain more freedom of action within the callback. (End of advice to users.)

Advice to implementors. A high-quality implementation will strive to set callback safety requirements to the most permissive level for a given callback invocation. (End of advice to implementors.)

All functions with the prefix MPI_T, except those listed in Table 15.6, may return the return code MPI_T_ERR_NOT_ACCESSIBLE to indicate that the user may not access this
Table 15.6: List of MPI functions that when called from within a callback function may not return MPI_T_ERR_NOT_ACCESSIBLE

- MPI_T_EVENT_COPY
- MPI_T_EVENT_GET_SOURCE
- MPI_T_EVENT_GET_TIMESTAMP
- MPI_T_EVENT_READ
- MPI_T_PVAR_READ
- MPI_T_PVAR_READRESET
- MPI_T_PVAR_RESET
- MPI_T_PVAR_START
- MPI_T_PVAR_STOP
- MPI_T_PVAR_WRITE
- MPI_T_SOURCE_GET_TIMESTAMP

function at this time. The functions (and their respective PMPI versions) listed in Table 15.6 are exceptions to this rule and shall not return MPI_T_ERR_NOT_ACCESSIBLE.

Rationale. A call may be implemented in a way that is not safe for all execution contexts of a callback function, e.g., inside a signal handler. An MPI implementation therefore needs a way to communicate its inability to perform a certain action due to the execution context of a callback invocation. (End of rationale.)

Advice to implementors. A high-quality implementation shall not return MPI_T_ERR_NOT_ACCESSIBLE except where absolutely necessary. (End of advice to implementors.)

Advice to users. Users intercepting calls into the MPI tool information interface using the PMPI interface must ensure that the safety requirements for the calling context are met. This means that users may have to implement the wrapper with the highest safety level used by the MPI implementation. (End of advice to users.)

Event Type Query Functions

An MPI implementation exports a set of N event types through the MPI tool information interface. If N is zero, then the MPI implementation does not export any event types; otherwise, the provided event types are indexed from 0 to $N-1$. This index number is used in subsequent calls to identify a specific event type.

An MPI implementation is allowed to increase the number of event types during the execution of an MPI process. However, MPI implementations are not allowed to change the index of an event type or to delete an event type once it has been made visible to the user (e.g., if new event types become available via dynamic loading of additional components in the MPI implementation).

The following function can be used to query the number of event types, num_events:
MPI_T_EVENT_GET_NUM(num_events)
 OUT num_events returns number of event types (integer)

C binding
int MPI_T_event_get_num(int *num_events)

The function MPI_T_EVENT_GET_INFO provides access to additional information about a specific event type.

MPI_T_EVENT_GET_INFO(event_index, name, name_len, verbosity, array_of_datatypes,
 array_of_displacements, num_elements, enumtype, info, desc, desc_len, bind)

IN event_index index of the event type to be queried between 0 and num_events − 1 (integer)
OUT name buffer to return the string containing the name of the event type (string)
INOUT name_len length of the string and/or buffer for name (integer)
OUT verbosity verbosity level of this event type (integer)
OUT array_of_datatypes array of MPI basic datatypes used to encode the event data (array of handles)
OUT array_of_displacements array of byte displacements of the elements in the event buffer (array of non-negative integers)
INOUT num_elements length of array_of_datatypes and array_of_displacements arrays (non-negative integer)
OUT enumtype optional descriptor for enumeration information (handle)
OUT info optional info object (handle)
OUT desc buffer to return the string containing a description of the event type (string)
INOUT desc_len length of the string and/or buffer for desc (integer)
OUT bind type of MPI object to which an event of this type must be bound (integer)

C binding
int MPI_T_event_get_info(int event_index, char *name, int *name_len,
 int *verbosity, MPI_Datatype array_of_datatypes[],
 MPI_Aint array_of_displacements[], int *num_elements,
 MPI_T_enum *enumtype, MPI_Info *info, char *desc, int *desc_len,
 int *bind)

After a successful call to MPI_T_EVENT_GET_INFO for a particular event type, subsequent calls to this routine that query information about the same event type must return the same information. If any INOUT or OUT argument to MPI_T_EVENT_GET_INFO is a
null pointer, the implementation will ignore the argument and not return a value for the specific argument.

The arguments name and name_len are used to return the name of the event type as described in Section 15.3.3. If completed successfully, the routine is required to return a name of at least length one. The name of the event type must be unique with respect to all other names for event types used by the MPI implementation.

The argument verbosity returns the verbosity level of the event type (see Section 15.3.1). The argument array_of_datatypes returns an array of MPI datatype handles that describe the elements returned for an instance of the event type with index event_index. The event data can either be queried element by element with MPI_T_EVENT_READ or copied into a contiguous event buffer with MPI_T_EVENT_COPY. For the latter case, the argument array_of_displacements returns an array of byte displacements in the event buffer in ascending order starting with zero.

The user is responsible for the memory allocation for the array_of_datatypes and array_of_displacements arrays. The number of elements in each array is supplied by the user in num_elements. If the number of elements used by the event type is larger than the value of num_elements provided by the user, the number of datatype handles and displacements returned in the corresponding arrays is truncated to the value of num_elements passed in by the user. If the user passes the NULL pointer for array_of_datatypes or array_of_displacements, the respective arguments are ignored. Unless the user passes the NULL pointer for num_elements, the function returns the number of elements required for this event type. If the user passes the NULL pointer for num_elements, the arguments num_elements, array_of_datatypes, and array_of_displacements are ignored.

MPI can optionally return an enumeration identifier in the enumtype argument, describing the individual elements in the array_of_datatypes argument. Otherwise, enumtype is set to MPI_T_ENUM_NULL. If the argument to enumtype provided by the user is the NULL pointer, no enumeration type is returned.

MPI can optionally return an info object containing the default hints set for a registration handle for this event type. If the argument to info provided by the user is the NULL pointer, this argument is ignored, otherwise an MPI implementation is required to return all hints that are supported by the implementation for a registration handle for this event type and have default values specified; any user-supplied hints that were not ignored by the implementation; and any additional hints that were set by the implementation. If no such hints exist, a handle to a newly created info object is returned that contains no key/value pair. The user is responsible for freeing info via MPI_INFO_FREE.

The arguments desc and desc_len are used to return the description of the event type as described in Section 15.3.3. Returning a description is optional. If an MPI implementation does not return a description, the first character for desc must be set to the null character and desc_len must be set to one at the return from this function.

The parameter bind returns the type of the MPI object to which the event type must be bound or the value MPI_T_BIND_NO_OBJECT (see Section 15.3.2). If an event type has an equivalent name across connected MPI processes, the following OUT parameters must be identical: verbosity, array_of_datatypes, num_elements, enumtype, and bind. The returned description must be equivalent. As the argument array_of_displacements is process dependent, it may differ across connected MPI processes.

This routine returns MPI_SUCCESS on success and returns MPI_T_ERR_INVALID_INDEX if event_index does not match a valid event type index provided by the implementation at the time of the call.
MPI_T_EVENT_GET_INDEX(name, event_index)

IN name name of the event type (string)
OUT event_index index of the event type (integer)

C binding

int MPI_T_event_get_index(const char *name, int *event_index)

MPI_T_EVENT_GET_INDEX returns the index of an event type identified by a known event type name. The name parameter is provided by the caller, and event_index is returned by the MPI implementation. The name parameter is a string terminated with a null character.

This routine returns MPI_SUCCESS on success and returns MPI_T_ERR_INVALID_NAME if name does not match the name of any event type provided by the implementation at the time of the call.

Rationale. This routine is provided to enable fast retrieval of an event index by a tool, assuming it knows the name of the event type for which it is looking. The number of event types exposed by the implementation can change over time, so it is not possible for the tool to simply iterate over the list of event types once at initialization. Although using MPI implementation specific event type names is not portable across MPI implementations, tool developers may choose to take this route for lower overhead at runtime because the tool will not have to iterate over the entire set of event types to find a specific one. (End of rationale.)

Handle Allocation and Deallocation

Before the MPI implementation calls a callback function on the occurrence of a specific event, the user needs to register a callback function to be called for that event type and obtain a handle of type MPI_T_event_registration.

MPI_T_EVENT_HANDLE_ALLOC(event_index, obj_handle, info, event_registration)

IN event_index index of event type for which the registration handle is to be allocated (integer)
IN obj_handle reference to a handle of the MPI object to which this event is supposed to be bound (pointer)
IN info info object (handle)
OUT event_registration event registration (handle)

C binding

int MPI_T_event_handle_alloc(int event_index, void *obj_handle, MPI_Info info, MPI_T_event_registration *event_registration)

MPI_T_EVENTHANDLE_ALLOC creates a registration handle for the event type identified by event_index. Furthermore, if required by the event type, the registration handle is bound to the object referred to by the argument obj_handle. The argument obj_handle is ignored if the MPI_T_EVENT_GET_INFO call for this event type returned
MPI_T_BIND_NO_OBJECT in the argument bind. The user can pass hints for the handle allocation to the MPI implementation via the info argument. The allocated event-registration handle is returned in the argument event_registration.

MPI_T_EVENT_HANDLE_SET_INFO

```c
INOUT event_registration event registration (handle)
IN info info object (handle)
```

C binding

```c
int MPI_T_event_handle_set_info(MPI_T_event_registration event_registration,
                                MPI_Info info)
```

MPI_T_EVENT_HANDLE_SET_INFO updates the hints of the event-registration handle associated with event_registration using the hints provided in info. A call to this procedure has no effect on previously set or defaulted hints that are not specified by info. It also has no effect on previously set or defaulted hints that are specified by info, but are ignored by the MPI implementation in this call to MPI_T_EVENT_HANDLE_SET_INFO.

Advice to users. Some info items that an implementation can use when it creates an event-registration handle cannot easily be changed once the registration handle is created. Thus, an implementation may ignore hints issued in this call that it would have accepted in a handle allocation call. An implementation may also be unable to update certain info hints in a call to MPI_T_EVENT_HANDLE_SET_INFO. **MPI_T_EVENT_HANDLE_GET_INFO** can be used to determine whether info changes were ignored by the implementation. (End of advice to users.)

MPI_T_EVENT_HANDLE_GET_INFO

```c
IN event_registration event registration (handle)
OUT info_used info object (handle)
```

C binding

```c
int MPI_T_event_handle_get_info(MPI_T_event_registration event_registration,
                                MPI_Info *info_used)
```

MPI_T_EVENT_HANDLE_GET_INFO returns a new info object containing the hints of the event-registration handle associated with event_registration. The current setting of all hints related to this registration handle is returned in info_used. An MPI implementation is required to return all hints that are supported by the implementation and have default values specified; any user-supplied hints that were not ignored by the implementation; and any additional hints that were set by the implementation. If no such hints exist, a handle to a newly created info object is returned that contains no key/value pairs. The user is responsible for freeing info_used via MPI_INFO_FREE.
15.3 The MPI Tool Information Interface

MPI T EVENT REGISTER CALLBACK (event registration, cb_safety, info, user_data,
 event cb function)

INOUT event registration event registration (handle)
IN cb_safety maximum callback safety level (integer)
IN info info object (handle)
IN user_data pointer to a user-controlled buffer
IN event cb function pointer to user-defined callback function (function)

C binding
int MPI T event_register_callback(MPI T event_registration event_registration,
 MPI T cb safety cb_safety, MPI Info info, void *user_data,
 MPI T event_cb_function event cb function)

MPI T EVENT REGISTER CALLBACK associates a user-defined function pointed to
by event_cb_function with an allocated event-registration handle. The maximum callback
safety level supported by the callback function is passed in the argument cb_safety. The
safety levels are defined in Table 15.5. A user can register multiple callback functions for
a given event-registration handle, potentially specifying one for each callback safety level.
Registering a callback function for a specific callback safety level overwrites any previously-
registered callback function pointer and info object associated with the event registration
for the specific callback safety level. If event_cb_function is the NULL pointer, an existing
association of a callback function for that callback safety level is removed.

When an event is triggered, the implementation will select from all registered callbacks
the callback with the lowest safety level valid in the context in which the callback is invoked.
In situations where the required callback safety level exceeds the highest level for which a
callback function is registered for a given registration handle, the event instance is dropped.

At callback invocation time, the implementation passes the pointer to a user-defined
memory region specified during callback registration with the argument user_data.

The user can pass hints for the registration of the specified callback function to the
MPI implementation via the info argument.

Advice to users. As event instances can be raised as soon as the registration handle
is associated with the first callback function, the callback function with the highest
callback safety guarantees should be registered before any further registrations for
lower callback safety guarantees, to avoid dropped events due to insufficient callback
safety guarantees. (End of advice to users.)

The callback function passed to MPI T EVENT REGISTER CALLBACK in the argument
event cb function needs to have the following type:
typedef void MPI T event_cb_function(MPI T event_instance event_instance,
 MPI T event_registration event_registration,
 MPI T cb_safety cb_safety, void *user_data);

The argument event_instance corresponds to a handle for the opaque event-instance
object of type MPI T event_instance. This handle is only valid inside the corresponding
invocation of the function to which it is passed. The argument event_registration corresponds
to the event-registration handle returned by MPI T EVENT HANDLE_ALLOC for the user
function to the same event type and bound object combination. The handle can be used to identify the specific event registration information, such as event type and bound object, or even to deallocate the handle from within the callback invocation. The argument `cb_safety` describes the safety requirements the callback function must fulfill in the current invocation. The argument `user_data` is the pointer to user-allocated memory that was passed to the MPI implementation during callback registration.

\[
\text{MPI_T_EVENT_CALLBACK_SET_INFO(event_registration, cb_safety, info)}
\]

\[
\text{C binding}
\]

```
int MPI_T_event_callback_set_info(MPI_T_event_registration event_registration,
                                  MPI_T_cb_safety cb_safety, MPI_Info info)
```

\[\text{MPI_T_EVENT_CALLBACK_SET_INFO}\] updates the hints of the callback function registered for the callback safety level specified by `cb_safety` of the event-registration handle associated with `event_registration` using the hints provided in `info`. A call to this procedure has no effect on previously set or defaulted hints that are not specified by `info`. It also has no effect on previously set or defaulted hints that are specified by `info`, but are ignored by the MPI implementation in this call to \[\text{MPI_T_EVENT_CALLBACK_SET_INFO}\].

\[
\text{MPI_T_EVENT_CALLBACK_GET_INFO(event_registration, cb_safety, info_used)}
\]

\[
\text{C binding}
\]

```
int MPI_T_event_callback_get_info(MPI_T_event_registration event_registration,
                                  MPI_T_cb_safety cb_safety, MPI_Info *info_used)
```

\[\text{MPI_T_EVENT_CALLBACK_GET_INFO}\] returns a new info object containing the hints of the callback function registered for the callback safety level specified by `cb_safety` of the event-registration handle associated with `event_registration`. The current set of all hints related to this callback safety level of the event-registration handle is returned in `info_used`. An MPI implementation is required to return all hints that are supported by the implementation and have default values specified, any user-supplied hints that were not ignored by the implementation, and any additional hints that were set by the implementation. If no such hints exist, a handle to a newly created info object is returned that contains no key/value pairs. The user is responsible for freeing `info_used` via \[\text{MPI_INFO_FREE}\].

To stop the MPI implementation from raising events for a specific registration, a user needs to free the corresponding event-registration handle.
The MPI Tool Information Interface

MPI_T_EVENTHANDLE_FREE

- **C binding**
  ```c
  int MPI_T_event_handle_free(MPI_T_event_registration event_registration, 
                              void *user_data, MPI_T_event_free_cb_function free_cb_function)
  ```

 The function **MPI_T_EVENTHANDLE_FREE** returns **MPI_SUCCESS** when deallocation of the handle was initiated successfully and returns **MPI_T_ERR_INVALID_HANDLE** if **event_registration** does not match a valid allocated event-registration handle at the time of the call. The callback function **free_cb_function** is called by the MPI implementation, when it is able to guarantee that no further event instances for the corresponding event-registration handle will be raised. If the pointer to **free_cb_function** is the NULL pointer, no user function is invoked after successful deallocation of the event registration handle. The pointer to user-controlled memory provided in the **user_data** argument will be passed to the function provided in the **free_cb_function** on invocation.

 Advice to users. A free-callback function associated with a registration handle should always be prepared to postpone any pending actions, should the provided callback safety requirements exceed those required by the pending actions. *(End of advice to users.)*

 The callback function passed to **MPI_T_EVENTHANDLE_FREE** in the argument **free_cb_function** needs to have the following type:
  ```c
typedef void MPI_T_event_freeCb_function(
    MPI_T_event_registration event_registration, 
    MPI_T_cb_safety cb_safety, void *user_data);
  ```

Handling Dropped Events

Events may occur at times when the MPI implementation cannot invoke the user function corresponding to a matching event handle. An implementation is allowed to buffer such events and delay the callback invocation. If an event occurs at times when the corresponding callback function cannot be called and the corresponding data cannot be buffered, or no callback function meeting the required callback safety level is registered, the event data may be dropped. To discover such data loss, the user can set a handler function for a specific event-registration handle.

MPI_T_EVENT_SET_DROPPED_HANDLER

- **C binding**
  ```c
  int MPI_T_event_set_dropped_handler(
    MPI_T_event_registration event_registration, 
    MPI_T_dropped_cb_function dropped_cb_function)
  ```

 MPI_T_EVENT_SET_DROPPED_HANDLER sets the callback function associated with a registration handle so that it will be invoked whenever MPI detects that it is unable to call the currently registered callback function for the corresponding event.
MPI_T_event_registration event_registration,
MPI_T_event_dropped_cb_function dropped_cb_function)

MPI_T_EVENT_SET_DROPPED_HANDLER registers the function

dropped_cb_function to be called by the MPI implementation when event information is
dropped for the registration handle specified in event_registration. Subsequent calls to
MPI_T_EVENT_SET_DROPPED_HANDLER with the same registration handle will replace
previously-registered callback functions for that registration handle. If the pointer to
dropped_cb_function is the NULL pointer, no data loss is recorded or reported until a new
valid callback function is registered.

Advice to users. The invocation of the dropped handler callback function may not
necessarily occur close to the time the event was actually lost. (End of advice to
users.)

The callback function passed to MPI_T_EVENT_SET_DROPPED_HANDLER in the
argument dropped_cb_function needs to have the following type:

typedef void MPI_T_event_dropped_cb_function(MPI_Count count,
MPI_T_event_registration event_registration, int source_index,
MPI_T_cb_safety cb_safety, void *user_data);

The argument event_registration corresponds to the event registration handle to which
the dropped data corresponds. The argument count provides a best effort estimation of
the number of invocations to a registered event callback corresponding to
event_registration that were not executed since the registration of the dropped-callback
handler or the last invocation of a registered dropped-callback handler. If the number
of dropped events observed by the implementation exceeds the limit of
count, an implementation shall set count to the maximum possible value for the type of
count. The source_index provides the index of the source that dropped the corresponding
event information. The argument cb_safety describes the safety requirements the callback
function must fulfill in the current invocation. The possible values for cb_safety are described
in Table 15.5. The argument user_data is the pointer to user-allocated memory that was
passed to the MPI implementation during callback registration. If no event callback is
registered for safety requirement levels that an implementation uses to invoke the dropped
handler callback function for a specific event, the corresponding dropped handler callback
function will not be invoked.

Advice to users. A callback function for dropped events associated with a registra-
tion handle should always be prepared to postpone any pending actions, should the
provided callback safety requirements exceed those required by the pending actions.
(End of advice to users.)

Advice to implementors. A high-quality implementation should strive to find a good
balance between timely notification, completeness of information, and the freedom of
action for a tool when invoking the callback function for dropped events associated
with a registration handle. (End of advice to implementors.)

If dropped event notifications have been observed for a specific source since the last
event notification of that source, the corresponding dropped handler callback function must
be called before other events are raised for that source. This means in a sequence of five
events E1 to E5 from the same source, where E3 and E4 were dropped, any handler function set through MPI_T_EVENT_SET_DROPPED_HANDLER for event-registration handles associated with E3 or E4 must be called before E5 is raised.

Reading Event Data

In event callbacks, the parameter `event_instance` provides access to the per-instance event data, i.e., the data encoded by the specific event type for this instance. The user can obtain event data as well as event meta data, such as a time stamp and the source, by providing this handle to the respective query functions. The event-instance handle is invalid beyond the scope of the current invocation of the callback function to which it is provided.

The callback function argument `event_registration` identifies the registration handle that was used to register the callback function.

The callback function argument `cb_safety` indicates the requirements for the specific callback invocation. The value is one of the safety requirements levels described in Table 15.5. The argument `user_data` passes the pointer provided by the user during callback registration back to the function call.

Advice to users. Depending on the registered event and usage of MPI by the application, a callback function may be invoked with high frequency. Users should therefore strive to minimize the amount of work done inside callback functions. Furthermore, the time spent in a callback function may influence the capability of an implementation to buffer events; long execution times may lead to an increased number of dropped events. (*End of advice to users.*)

MPI provides the following function calls to access data of a specific event instance and its corresponding meta data (such as its time and source).

MPI_T_EVENT_READ(event_instance, element_index, buffer)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td><code>event_instance</code> event-instance handle provided to the callback function (handle)</td>
</tr>
<tr>
<td>IN</td>
<td><code>element_index</code> index into the array of datatypes of the item to be queried (integer)</td>
</tr>
<tr>
<td>OUT</td>
<td><code>buffer</code> pointer to a memory location to store the item data (choice)</td>
</tr>
</tbody>
</table>

C binding

```c
int MPI_T_event_read(MPI_T_event_instance event_instance, int element_index, 
                    void *buffer)
```

MPI_T_EVENT_READ allows users to copy one element of the event data to a user-specified buffer at a time.

The `event_instance` argument identifies the event instance to query. It is erroneous to provide any other event-instance handle to the call than the one passed by the MPI implementation to the callback function in which the data is read. The `buffer` argument must point to a memory location the MPI implementation can copy the element of the event data to identified by `element_index`.
MPI_T_EVENT_COPY

```
MPI_T_EVENT_COPY(event_instance, buffer)
```

IN
- `event_instance` event instance provided to the callback function (handle)

OUT
- `buffer` user-allocated buffer for event data (choice)

C binding

```c
int MPI_T_event_copy(MPI_T_event_instance event_instance, void *buffer)
```

MPI_T_EVENT_COPY copies the event data as a whole into the user-provided buffer. The user must assure that the buffer is of at least the size of the extent of the event type, which can be computed from the type and displacement information returned by the corresponding call to **MPI_T_EVENT_GET_INFO**. The data may include padding bytes between individual elements of the event data in the buffer. A user can reconstruct the location and size of the data contained in the buffer through the information returned by **MPI_T_EVENT_GET_INFO**.

Advice to implementors. An implementation should strive to use an appropriately compact representation when copying event instance data to a user buffer via **MPI_T_EVENT_COPY** to reduce the amount of memory required for the user buffer.

(End of advice to implementors.)

Reading Event Meta Data

Additional to the specific event data encoded by each event type, supplemental information available across all event types can be queried.

MPI_T_EVENT_GET_TIMESTAMP

```
MPI_T_EVENT_GET_TIMESTAMP(event_instance, event_timestamp)
```

IN
- `event_instance` event instance provided to the callback function (handle)

OUT
- `event_timestamp` timestamp the event was observed (integer)

C binding

```c
int MPI_T_event_get_timestamp(MPI_T_event_instance event_instance,
                               MPI_Count *event_timestamp)
```

MPI_T_EVENT_GET_TIMESTAMP returns the timestamp of when the event was initially observed by the implementation. The `event_instance` argument identifies the event instance to query. It is erroneous to provide any other handle to the call than the one passed by the MPI implementation to the callback function in which the timestamp is read.

Advice to users. An MPI implementation may postpone the call to the user’s callback function. In this case, the call to **MPI_T_EVENT_GET_TIMESTAMP** may yield a timestamp in the past that is closer to the time the event was initially observed, as opposed to a timestamp captured during callback function invocation. (End of advice to users.)
Advice to implementors. A high-quality implementation will return a timestamp as close as possible to the earliest time the event was observed by the MPI implementation. *(End of advice to implementors.)*

An event may be raised from different components acting as event sources in the MPI implementation. A source in this context is an abstract concept that helps to define partial ordering of raised events, as each source provides its own ordering guarantees. A source describes the entity that raises the event, rather than the origin of the data.

To identify the source of an event instance, the user can query the index of the source within the corresponding event callback function invocation.

Advice to implementors. An excessive number of event sources may negatively impact performance of a tool due to per-source overhead in event handling. *(End of advice to implementors.)*

MPI_T_EVENT_GET_SOURCE

```plaintext
MPI_T_EVENT_GET_SOURCE(event_instance, source_index)
```

C binding

```c
int MPI_T_event_get_source(MPI_T_event_instance event_instance,
                          int *source_index)
```

The `event_instance` argument identifies the event instance to query. It is erroneous to provide any other event-instance handle to the call than the one passed by the MPI implementation to the callback function in which the source is queried.

The `source_index` argument returns the index of the source of the event instance. It can be used to query more information on the source using `MPI_T_SOURCE_GET_INFO`.

Rationale. Event callback function invocations are associated with a source to enable chronological processing of events on the tool side, when required, while retaining low overhead on the side of the MPI implementation. *(End of rationale.)*

15.3.9 Variable Categorization

MPI implementations can optionally group performance and control variables into categories to express logical relationships between various variables. For example, an MPI implementation could group all control and performance variables that refer to message transfers in the MPI implementation and thereby distinguish them from variables that refer to local resources such as memory allocations or other interactions with the operating system.

Categories can also contain other categories to form a hierarchical grouping. Categories can never include themselves, either directly or transitively within other included categories. Expanding on the example above, this allows MPI to refine the grouping of variables referring to message transfers into variables to control and to monitor message queues, message matching activities and communication protocols. Each of these groups of variables would
be represented by a separate category and these categories would then be listed in a single
category representing variables for message transfers.

The category information may be queried in a fashion similar to the mechanism for
querying variable information. The MPI implementation exports a set of N categories via
the MPI tool information interface. If $N = 0$, then the MPI implementation does not export
any categories, otherwise the provided categories are indexed from 0 to $N - 1$. This index
number is used in subsequent calls to functions of the MPI tool information interface to
identify the individual categories.

An MPI implementation is permitted to increase the number of categories during the
execution of an MPI program when new categories become available through dynamic load-
ing. However, MPI implementations are not allowed to change the index of a category or
delete it once it has been added to the set.

Similarly, MPI implementations are allowed to add variables to categories, but they
are not allowed to remove variables from categories or change the order in which they are
returned.

Category Query Functions

The following function can be used to query the number of categories, `num_cat`.

```c
MPI_T_CATEGORY_GET_NUM(num_cat)
```

C binding

```c
int MPI_T_category_get_num(int *num_cat)
```

Individual category information can then be queried by calling the following function:

```c
MPI_T_CATEGORY_GET_INFO(cat_index, name, name_len, desc, desc_len, num_cvars,
                        num_pvars, num_categories)
```

C binding

```c
int MPI_T_category_get_info(int cat_index, char *name, size_t name_len,
                            char *desc, size_t desc_len, int num_cvars,
                            int num_pvars, int num_categories)
```
15.3 The MPI Tool Information Interface

C binding

```c
int MPI_T_category_get_info(int cat_index, char *name, int *name_len,
      char *desc, int *desc_len, int *num_cvars, int *num_pvars,
      int *num_categories)
```

The arguments `name` and `name_len` are used to return the name of the category as described in Section 15.3.3.

The routine is required to return a name of at least length one. This name must be unique with respect to all other names for categories used by the MPI implementation.

If any `OUT` parameter to `MPI_T_CATEGORY_GET_INFO` is the `NULL` pointer, the implementation will ignore the parameter and not return a value for the parameter.

The arguments `desc` and `desc_len` are used to return the description of the category as described in Section 15.3.3.

Returning a description is optional. If an MPI implementation decides not to return a description, the first character for `desc` must be set to the null character and `desc_len` must be set to one at the return of this call.

The function returns the number of control variables, performance variables and other categories contained in the queried category in the arguments `num_cvars`, `num_pvars`, and `num_categories`, respectively.

If the name of a category is equivalent across connected MPI processes, then the returned description must be equivalent.

```c
MPI_T_CATEGORY_GET_NUM_EVENTS(cat_index, num_events)
```

```c
IN  cat_index    index of the category to be queried (integer)
OUT num_events  number of event types in the category (integer)
```

C binding

```c
int MPI_T_category_get_num_events(int cat_index, int *num_events)
```

`MPI_T_CATEGORY_GET_NUM_EVENTS` returns the number of event types contained in the queried category.

```c
MPI_T_CATEGORY_GET_INDEX(name, cat_index)
```

```c
IN  name       the name of the category (string)
OUT cat_index  the index of the category (integer)
```

C binding

```c
int MPI_T_category_get_index(const char *name, int *cat_index)
```

`MPI_T_CATEGORY_GET_INDEX` is a function for retrieving the index of a category given a known category name. The `name` parameter is provided by the caller, and `cat_index` is returned by the MPI implementation. The `name` parameter is a string terminated with a null character.

This routine returns `MPI_SUCCESS` on success and returns `MPI_T_ERR_INVALID_NAME` if `name` does not match the name of any category provided by the implementation at the time of the call.
Rationale. This routine is provided to enable fast retrieval of a category index by a tool, assuming it knows the name of the category for which it is looking. The number of categories exposed by the implementation can change over time, so it is not possible for the tool to simply iterate over the list of categories once at initialization. Although using MPI implementation specific category names is not portable across MPI implementations, tool developers may choose to take this route for lower overhead at runtime because the tool will not have to iterate over the entire set of categories to find a specific one. (End of rationale.)

Category Member Query Functions

MPI_T_CATEGORY_GET_CVARS(cat_index, len, indices)

IN cat_index index of the category to be queried, in the range from 0 to num_cat – 1 (integer)
IN len the length of the indices array (integer)
OUT indices an integer array of size len, indicating control variable indices (array of integers)

C binding
int MPI_T_category_get_cvars(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_CVARS can be used to query which control variables are contained in a particular category. A category contains zero or more control variables.

MPI_T_CATEGORY_GET_PVARS(cat_index, len, indices)

IN cat_index index of the category to be queried, in the range from 0 to num_cat – 1 (integer)
IN len the length of the indices array (integer)
OUT indices an integer array of size len, indicating performance variable indices (array of integers)

C binding
int MPI_T_category_get_pvars(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_PVARS can be used to query which performance variables are contained in a particular category. A category contains zero or more performance variables.

MPI_T_CATEGORY_GET_EVENTS(cat_index, len, indices)

IN cat_index index of the category to be queried, in the range from 0 to num_cat – 1 (integer)
IN len the length of the indices array (integer)
15.3 The MPI Tool Information Interface

OUT indices an integer array of size len, indicating event type indices (array of integers)

C binding
int MPI_T_category_get_events(int cat_index, int len, int indices[])

MPI_TCATEGORY_GETEVENTS can be used to query which event types are contained in a particular category. A category contains zero or more event types.

MPI_TCATEGORY_GETCATEGORIES(cat_index, len, indices)
IN cat_index index of the category to be queried, in the range from 0 to num_cat − 1 (integer)
IN len the length of the indices array (integer)
OUT indices an integer array of size len, indicating category indices (array of integers)

C binding
int MPI_T_category_get_categories(int cat_index, int len, int indices[])

MPI_TCATEGORY_GETCATEGORIES can be used to query which other categories are contained in a particular category. A category contains zero or more other categories.

As mentioned above, MPI implementations can grow the number of categories as well as the number of variables or other categories within a category. In order to allow users of the MPI tool information interface to check quickly whether new categories have been added or new variables or categories have been added to a category, MPI maintains an update number that is monotonically increasing during the execution and is returned by the following function:

MPI_TCATEGORY_CHANGED(update_number)
OUT update_number update number (integer)

C binding
int MPI_T_category_changed(int *update_number)

If two calls to this routine return the same update number, it is guaranteed that the category information has not changed between the two calls. If the update number retrieved from the second call is higher, then some categories have been added or expanded. If the number of changes to categories exceeds the limit of update_number, an implementation shall set update_number to the maximum possible value for the type of update_number.

The index values returned in indices by MPI_TCATEGORY_GETCVARS,
MPI_TCATEGORYGETPVARS, MPI_TCATEGORYGETEVENTS, and
MPI_TCATEGORYGETCATEGORIES can be used as input to
MPI_TCVAR_GETINFO, MPI_TPVAR_GETINFO, MPI_TEVENT_GETINFO, and
MPI_TCATEGORY_GETINFO, respectively.

The user is responsible for allocating the arrays passed into the functions
MPI_TCATEGORY_GETCVARS, MPI_TCATEGORY_GETPVARS,
MPI_T_CATEGORY_GET_EVENTS, and MPI_T_CATEGORY_GET_CATEGORIES. Starting from array index 0, each function writes up to \(len \) elements into the array. If the category contains more than \(len \) elements, the function returns an arbitrary subset of size \(len \). Otherwise, the entire set of elements is returned in the beginning entries of the array, and any remaining array entries are not modified.

15.3.10 Return Codes for the MPI Tool Information Interface

All procedures defined as part of the MPI tool information interface return an integer return code (see Table 15.7) to indicate whether the function was completed successfully or was aborted. For the former case, the value MPI_SUCCESS is returned. In the latter case, the return code indicates the reason for not completing the routine. Regardless of whether the return code is MPI_SUCCESS or indicates that the procedure abnormally terminated, the MPI process continues normal execution and does not invoke any MPI error handler. The MPI implementation is not required to check all user-provided parameters; if a user passes invalid parameter values to any routine, the behavior of the implementation is undefined.

All return codes with the prefix MPI_T_ERR_ must be unique values and cannot overlap with any error codes or error classes returned by the MPI implementation. They must also satisfy

\[
0 = MPI_SUCCESS < MPI_T_ERR_XXX \leq MPI_ERR_LASTCODE.
\]

15.3.11 Profiling Interface

All requirements for the profiling interface, as described in Section 15.2, also apply to the MPI tool information interface. All rules, guidelines, and recommendations from Section 15.2 apply equally to procedures defined as part of the MPI tool information interface.
Table 15.7: Return codes used in procedures of the MPI tool information interface.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Codes for All Procedures in the MPI Tool Information Interface</td>
<td></td>
</tr>
<tr>
<td>MPI_SUCCESS</td>
<td>Call completed successfully</td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID</td>
<td>Invalid or bad parameter value(s)</td>
</tr>
<tr>
<td>MPI_T_ERR_MEMORY</td>
<td>Out of memory</td>
</tr>
<tr>
<td>MPI_T_ERR_NOT_INITIALIZED</td>
<td>Interface not initialized</td>
</tr>
<tr>
<td>MPI_T_ERR_CANNOT_INIT</td>
<td>Interface not in the state to be initialized</td>
</tr>
<tr>
<td>MPI_T_ERR_NOT_ACCESSIBLE</td>
<td>Requested functionality not accessible</td>
</tr>
<tr>
<td>Return Codes for Datatype Procedures: MPI_T_ENUM XXX</td>
<td></td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_INDEX</td>
<td>The enumeration index is invalid</td>
</tr>
<tr>
<td>Return Codes for Variable, Category, and Event Query Procedures: MPI_T_XXX_GET_XXX</td>
<td></td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_INDEX</td>
<td>The variable or category index is invalid</td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_NAME</td>
<td>The variable or category name is invalid</td>
</tr>
<tr>
<td>Return Codes for Handle Procedures: MPI_T_XXX_{ALLOC</td>
<td>FREE}</td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_INDEX</td>
<td>The variable index is invalid</td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_HANDLE</td>
<td>The handle is invalid</td>
</tr>
<tr>
<td>MPI_T_ERR_OUT_OF_HANDLES</td>
<td>No more handles available</td>
</tr>
<tr>
<td>Return Codes for Performance Experiment Session Procedures: MPI_T_PVAR_SESSION_XXX</td>
<td></td>
</tr>
<tr>
<td>MPI_T_ERR_OUT_OF_SESSIONS</td>
<td>No more sessions available</td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_SESSION</td>
<td>Session argument is not a valid session</td>
</tr>
<tr>
<td>Return Codes for Control Variable Access Procedures: MPI_T_CVAR_{READ</td>
<td>WRITE}</td>
</tr>
<tr>
<td>MPI_T_ERR_CVAR_SET_NOT_NOW</td>
<td>Variable cannot be set at this moment</td>
</tr>
<tr>
<td>MPI_T_ERR_CVAR_SET_NEVER</td>
<td>Variable cannot be set until end of execution</td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_HANDLE</td>
<td>The handle is invalid</td>
</tr>
<tr>
<td>Return Codes for Performance Variable Access and Control Procedures: MPI_T_PVAR_{START</td>
<td>STOP</td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_HANDLE</td>
<td>The handle is invalid</td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_SESSION</td>
<td>Performance experiment session argument is invalid</td>
</tr>
<tr>
<td>MPI_T_ERR_PVAR_NO_STARTSTOP</td>
<td>Variable cannot be started or stopped (for MPI_T_PVAR_START and MPI_T_PVAR_STOP)</td>
</tr>
<tr>
<td>MPI_T_ERR_PVAR_NO_WRITE</td>
<td>Variable cannot be written or reset (for MPI_T_PVAR_WRITE and MPI_T_PVAR_RESET)</td>
</tr>
<tr>
<td>MPI_T_ERR_PVAR_NO_ATOMIC</td>
<td>Variable cannot be read and written atomically (for MPI_T_PVAR_READRESET)</td>
</tr>
<tr>
<td>Return Codes for Source Procedures: MPI_T_SOURCE_XXX</td>
<td></td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_INDEX</td>
<td>The source index is invalid</td>
</tr>
<tr>
<td>MPI_T_ERR_NOT_SUPPORTED</td>
<td>Requested functionality not supported</td>
</tr>
<tr>
<td>Return Codes for Category Procedures: MPI_TCATEGORY_XXX</td>
<td></td>
</tr>
<tr>
<td>MPI_T_ERR_INVALID_INDEX</td>
<td>The category index is invalid</td>
</tr>
</tbody>
</table>
Chapter 16
 Deprecated Interfaces

16.1 Deprecated since MPI-2.0

- The following function is deprecated and is superseded by
 MPI_COMM_CREATE_KEYVAL in MPI-2.0. The language independent definition of
 the deprecated function is the same as that of the new function, except for the func-
 tion name and a different behavior in the C/Fortran language interoperability, see
 Section 19.3.7. The language bindings are modified.

MPI_KEYVAL_CREATE(copy_fn, delete_fn, keyval, extra_state)

IN	copy_fn	Copy callback function for keyval
IN	delete_fn	Delete callback function for keyval
OUT	keyval	key value for future access (integer)
IN	extra_state	Extra state for callback functions

C binding

int MPI_Keyval_create(MPI_Copy_function *copy_fn,
MPI_Delete_function *delete_fn, int *keyval, void *extra_state)

For this routine, an interface within the mpi_f08 module was never defined.

Fortran binding

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)

EXTERNAL COPY_FN, DELETE_FN
IN INTEGER KEYVAL, EXTRA_STATE, IERROR

The copy_fn function is invoked when a communicator is duplicated by
MPI_COMM_DUP. copy_fn should be of type MPI_Copy_function, which is defined as
follows:

typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,
void *extra_state, void *attribute_val_in, void *attribute_val_out,
int *flag);

A Fortran declaration for such a function is as follows:
For this routine, an interface within the mpi_f08 module was never defined.
Chapter 16 Deprecated Interfaces

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERR)
 INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, IERR
 LOGICAL FLAG

copy_fn may be specified as MPI_NULL_COPY_FN or MPI_DUP_FN from either C or Fortran; MPI_NULL_COPY_FN is a function that does nothing other than return flag = 0 and MPI_SUCCESS. MPI_DUP_FN is a simple-minded copy function that sets flag = 1, returns the value of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS. Note that MPI_NULL_COPY_FN and MPI_DUP_FN are also deprecated.

Analogous to copy_fn is a callback deletion function, defined as follows. The delete_fn function is invoked when a communicator is deleted by MPI_COMM_FREE or when a call is made explicitly to MPI_ATTR_DELETE. delete_fn should be of type MPI_Delete_function, which is defined as follows:

```c
typedef int MPI_Delete_function(MPI_Comm comm, int keyval, void *attribute_val, void *extra_state);
```

A Fortran declaration for such a function is as follows:

For this routine, an interface within the mpi_f08 module was never defined.

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)
 INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

delete_fn may be specified as MPI_NULL_DELETE_FN from either C or Fortran; MPI_NULL_DELETE_FN is a function that does nothing other than return MPI_SUCCESS. Note that MPI_NULL_DELETE_FN is also deprecated.

- The following function is deprecated and is superseded by MPI_COMM_FREE_KEYVAL in MPI-2.0. The language independent definition of the deprecated function is the same as the new function, except for the function name. The language bindings are modified.

```c
MPI_KEYVAL_FREE(keyval)
    inout keyval
```

C binding

int MPI_Keyval_free(int *keyval)

For this routine, an interface within the mpi_f08 module was never defined.

Fortran binding

```fortran
MPI_KEYVAL_FREE(KEYVAL, IERROR)
    INTEGER KEYVAL, IERROR
```
• The following function is deprecated and is superseded by `MPI_COMM_SET_ATTR` in MPI-2.0. The language independent definition of the deprecated function is the same as the new function, except for the function name. The language bindings are modified.

```c
MPI_ATTR_PUT(comm, keyval, attribute_val)
```

C binding

```c
int MPI_Attr_put(MPI_Comm comm, int keyval, void *attribute_val)
```

For this routine, an interface within the `mpi_f08` module was never defined.

Fortran binding

```fortran
MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)
```

```fortran
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR
```

• The following function is deprecated and is superseded by `MPI_COMM_GET_ATTR` in MPI-2.0. The language independent definition of the deprecated function is the same as the new function, except for the function name. The language bindings are modified.

```c
MPI_ATTR_GET(comm, keyval, attribute_val, flag)
```

C binding

```c
int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)
```

For this routine, an interface within the `mpi_f08` module was never defined.

Fortran binding

```fortran
MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
```
Chapter 16 Deprecated Interfaces

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR
LOGICAL FLAG

The following function is deprecated and is superseded by
MPI_COMM_DELETE_ATTR in MPI-2.0. The language independent definition of the
deprecated function is the same as the new function, except for the function name.
The language bindings are modified.

MPI_ATTR_DELETE(comm, keyval)

 INOUT comm communicator to which attribute is attached
 (handle)
 IN keyval The key value of the deleted attribute (integer)

C binding

int MPI_Attr_delete(MPI_Comm comm, int keyval)

For this routine, an interface within the mpi_f08 module was never defined.

Fortran binding

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)

INTEGER COMM, KEYVAL, IERROR

16.2 Deprecated since MPI-2.2

The entire set of C++ language bindings was deprecated as of MPI-2.2 and removed in MPI-3.0. See Chapter 17, Removed Interfaces for more information.

The following function typedefs have been deprecated and are superseded by new
names. Other than the typedef names, the function signatures are exactly the same;
the names were updated to match conventions of other function typedef names.

<table>
<thead>
<tr>
<th>Deprecated Name</th>
<th>New Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_Comm_errhandler_fn</td>
<td>MPI_Comm_errhandler_function</td>
</tr>
<tr>
<td>MPI_File_errhandler_fn</td>
<td>MPI_File_errhandler_function</td>
</tr>
<tr>
<td>MPI_Win_errhandler_fn</td>
<td>MPI_Win_errhandler_function</td>
</tr>
</tbody>
</table>

16.3 Deprecated since MPI-4.0

Cancelling a send request by calling MPI_CANCEL has been deprecated and may be
removed in a future version of the MPI specification.
The following function is deprecated and is superseded by the new
MPI_INFO_GET_STRING call in MPI-4.0.

MPI_INFO_GET(info, key, valuelen, value, flag)

IN info info object (handle)
IN key key (string)
IN valuelen length of value associated with key (integer)
OUT value value (string)
OUT flag true if key defined, false if not (logical)

C binding
int MPI_Info_get(MPI_Info info, const char *key, int valuelen,
char *value, int *flag)

Fortran 2008 binding
MPI_Info_get(info, key, valuelen, value, flag, ierror)

 TYPE(MPI_Info), INTENT(IN) :: info
 CHARACTER(LEN=*_), INTENT(IN) :: key
 INTEGER, INTENT(IN) :: valuelen
 CHARACTER(LEN=valuelen), INTENT(OUT) :: value
 LOGICAL, INTENT(OUT) :: flag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)
 INTEGER INFO, VALUELEN, IERROR
 CHARACTER*(*) KEY, VALUE
 LOGICAL FLAG

This function retrieves the value associated with key in a previous call to
MPI_INFO_SET. If such a key exists, it sets flag to true and returns the value in value,
otherwise it sets flag to false and leaves value unchanged. valuelen is the number of
characters available in value. If it is less than the actual size of the value, the value
is truncated. In C, valuelen should be one less than the amount of allocated space to
allow for the null terminator.

If key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

The function MPI_INFO_GET is allowed to be called at any time, following the de-
scription for MPI functionality that is always available in Section 11.4.1.
The following function is deprecated and is superseded by the new MPI_INFO_GET_STRING call in MPI-4.0.

MPI_INFO_GET_VALUELEN(info, key, valuelen, flag)

<table>
<thead>
<tr>
<th>IN</th>
<th>info</th>
<th>info object (handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>key</td>
<td>key (string)</td>
</tr>
<tr>
<td>OUT</td>
<td>valuelen</td>
<td>length of value associated with key (integer)</td>
</tr>
<tr>
<td>OUT</td>
<td>flag</td>
<td>true if key defined, false if not (logical)</td>
</tr>
</tbody>
</table>

C binding

int MPI_Info_get_valuelen(MPI_Info info, const char *key, int *valuelen, int *flag)

Fortran 2008 binding

MPI_Info_get_valuelen(info, key, valuelen, flag, ierr)
 TYPE(MPI_Info), INTENT(IN) :: info
 CHARACTER(LEN=*) , INTENT(IN) :: key
 INTEGER, INTENT(OUT) :: valuelen
 LOGICAL, INTENT(OUT) :: flag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

Fortran binding

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)
 INTEGER INFO, VALUELEN, IERROR
 CHARACTER(*) KEY
 LOGICAL FLAG

Retrieves the length of the value associated with key. If key is defined, valuelen is set to the length of its associated value and flag is set to true. If key is not defined, valuelen is not touched and flag is set to false. The length returned in C does not include the end-of-string character.

If key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

The function MPI_INFO_GET_VALUELEN is allowed to be called at any time, following the description for MPI functionality that is always available in Section 11.4.1.

The following return code has been deprecated and is superseded by a new name in MPI-4.0.

<table>
<thead>
<tr>
<th>Deprecated Name</th>
<th>Replacement Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_T_ERR_INVALID_ITEM</td>
<td>MPI_T_ERR_INVALID_INDEX</td>
</tr>
</tbody>
</table>
• The following Fortran subroutines are deprecated because the Fortran language
storage_size() and c sizeof() intrinsic functions provide similar functionality. Note that
while MPI_SIZEOF and c sizeof() return the size in bytes, storage_size() provides the
size in bits.

MPI_SIZEOF(x, size)

IN x a Fortran variable of numeric intrinsic type
(choice)

OUT size size of machine representation of that type
(integer)

Fortran 2008 binding

MPI_Sizeof(x, size, ierror)

TYPE(*), DIMENSION(..) :: x
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_SIZEOF(X, SIZE, IERROR)

<type> X
INTEGER SIZE, IERROR

This function returns the size in bytes of the machine representation of the given
variable. It is a generic Fortran routine and has a Fortran binding only.

Advice to users. This function is similar to the C sizeof operator but behaves
slightly differently. If given an array argument, it returns the size of the base
element, not the size of the whole array. (End of advice to users.)

Rationale. This function is not available in other languages because it would
not be useful. (End of rationale.)

16.4 Deprecated since MPI-4.1

• The use of the mpif.h include file has been deprecated. Information supporting the
transition to USE mpi or USE mpi_f08 is provided in Section 19.1.4.

• The predefined attribute key MPI_HOST for MPI_COMM_WORLD when using the World
Model is deprecated.

MPI_HOST: Host process rank, if such exists, MPI_PROC_NULL, otherwise.
Chapter 16 Deprecated Interfaces

Host Rank

The value returned for MPI_HOST gets the rank of the HOST process in the group associated with communicator MPI_COMM_WORLD, if there is such. MPI_PROC_NULL is returned if there is no host. MPI does not specify what it means for a process to be a HOST, nor does it requires that a HOST exists.

The attribute MPI_HOST has the same value on all processes of MPI_COMM_WORLD.

Environmental inquiry keys

<table>
<thead>
<tr>
<th>C type</th>
<th>Fortran type</th>
</tr>
</thead>
<tbody>
<tr>
<td>const int (or unnamed enum)</td>
<td>INTEGER</td>
</tr>
<tr>
<td>MPI_HOST</td>
<td></td>
</tr>
</tbody>
</table>

- All MPI_XXX_X procedures have been deprecated and may be removed in a future version of the MPI specification. In the case of their C binding and their Fortran binding through the mpi_f08 module, they are superseded by the large count and large byte displacement bindings of their counterpart in the form of MPI_XXX.

MPI_TYPE_SIZE_X(datatype, size)

<table>
<thead>
<tr>
<th>IN</th>
<th>datatype</th>
<th>datatype to get information on (handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>size</td>
<td>datatype size (integer)</td>
</tr>
</tbody>
</table>

C binding

int MPI_Type_size_x(MPI_Datatype datatype, MPI_Count *size)

Fortran 2008 binding

```fortran
MPI_Type_size_x(datatype, size, ierror)
```

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding

```fortran
MPI_TYPE_SIZE_X(DATATYPE, SIZE, IERROR)
```

```fortran
INTEGER DATATYPE, IERROR
INTEGER(KIND=MPI_COUNT_KIND) SIZE
```

The description of MPI_TYPE_SIZE is applicable to this deprecated MPI_TYPE_SIZE_X accordingly, see Section 5.1.5.
16.4 Deprecated since MPI-4.1

MPI_TYPE_GET_EXTENT_X(datatype, lb, extent)

C binding

```c
int MPI_Type_get_extent_x(MPI_Datatype datatype, MPI_Count *lb, MPI_Count *extent)
```

Fortran 2008 binding

```fortran
MPI_Type_get_extent_x(datatype, lb, extent, ierror)
```

Fortran binding

```fortran
MPI_TYPE_GET_EXTENT_X(DATATYPE, LB, EXTENT, IERROR)
```

The description of MPI_TYPE_GET_EXTENT is applicable to this deprecated
MPI_TYPE_GET_EXTENT_X accordingly, see Section 5.1.7.

MPI_TYPE_GET_TRUE_EXTENT_X(datatype, true_lb, true_extent)

C binding

```c
int MPI_Type_get_true_extent_x(MPI_Datatype datatype, MPI_Count *true_lb, MPI_Count *true_extent)
```

Fortran 2008 binding

```fortran
MPI_Type_get_true_extent_x(datatype, true_lb, true_extent, ierror)
```

Fortran binding

```fortran
MPI_TYPE_GET_TRUE_EXTENT_X(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
```
The description of `MPI_TYPE_GET_TRUE_EXTENT` is applicable to this deprecated `MPI_TYPE_GET_TRUE_EXTENT_X` accordingly, see Section 5.1.8.

MPIS_GET_ELEMENTS_X(status, datatype, count)

```c
IN status return status of receive operation (status)
IN datatype datatype used by receive operation (handle)
OUT count number of received basic elements (integer)
```

C binding

```c
int MPI_Get_elements_x(const MPI_Status *status, MPI_Datatype datatype,
                       MPI_Count *count)
```

Fortran 2008 binding

```fortran
MPI_Get_elements_x(status, datatype, count, ierror)
```

```fortran
TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

The description of `MPI_GET_ELEMENTS` is applicable to this deprecated `MPI_GET_ELEMENTS_X` accordingly, see Section 5.1.11.

MPI_STATUS_SET_ELEMENTS_X(status, datatype, count)

```c
INOUT status status with which to associate count (status)
IN datatype datatype associated with count (handle)
IN count number of elements to associate with status (integer)
```

C binding

```c
int MPI_Status_set_elements_x(MPI_Status *status, MPI_Datatype datatype,
                               MPI_Count count)
```

Fortran 2008 binding

```fortran
MPI_Status_set_elements_x(status, datatype, count, ierror)
```

```fortran
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR
INTEGER(KIND=MPI_COUNT_KIND) COUNT
```
16.4 Deprecated since MPI-4.1

```fortran
TYPE(MPI_Status) :: status
TYPE(MPI_Datatype) :: datatype
INTEGER(KIND=MPI_COUNT_KIND) :: count
INTEGER, OPTIONAL :: ierror

Fortran binding

MPI_STATUS_SET_ELEMENTS_X(status, datatype, count, ierror)

The description of MPI_STATUS_SET_ELEMENTS is applicable to this deprecated MPI_STATUS_SET_ELEMENTS_X accordingly, see Section 13.3.
```
Chapter 17

Removed Interfaces

17.1 Removed MPI-1 Bindings

17.1.1 Overview

The following MPI-1 bindings were deprecated as of MPI-2 and were removed in MPI-3. They may be provided by an implementation for backwards compatibility, but are not required. Removal of these bindings affects all language-specific definitions thereof. Only the language-neutral bindings are listed when possible.

17.1.2 Removed MPI-1 Functions

Table 17.1 shows the removed MPI-1 functions and their replacements.

<table>
<thead>
<tr>
<th>Removed</th>
<th>MPI-2 Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_ADDRESS</td>
<td>MPI_GET_ADDRESS</td>
</tr>
<tr>
<td>MPI_ERRHANDLER_CREATE</td>
<td>MPI_COMM_CREATE_ERRHANDLER</td>
</tr>
<tr>
<td>MPI_ERRHANDLER_GET</td>
<td>MPI_COMM_GET_ERRHANDLER</td>
</tr>
<tr>
<td>MPI_ERRHANDLER_SET</td>
<td>MPI_COMM_SET_ERRHANDLER</td>
</tr>
<tr>
<td>MPI_TYPE_EXTENT</td>
<td>MPI_TYPE_GET_EXTENT</td>
</tr>
<tr>
<td>MPI_TYPE_HINDEXED</td>
<td>MPI_TYPE_CREATE_HINDEXED</td>
</tr>
<tr>
<td>MPI_TYPE_HVECTOR</td>
<td>MPI_TYPE_CREATE_HVECTOR</td>
</tr>
<tr>
<td>MPI_TYPE_LB</td>
<td>MPI_TYPE_GET_EXTENT</td>
</tr>
<tr>
<td>MPI_TYPE_STRUCT</td>
<td>MPI_TYPE_CREATE_STRUCT</td>
</tr>
<tr>
<td>MPI_TYPE_UB</td>
<td>MPI_TYPE_GET_EXTENT</td>
</tr>
</tbody>
</table>

17.1.3 Removed MPI-1 Datatypes

Table 17.2 shows the removed MPI-1 datatypes and their replacements.

17.1.4 Removed MPI-1 Constants

Table 17.3 shows the removed MPI-1 constants. There are no replacements.

17.1.5 Removed MPI-1 Callback Prototypes

Table 17.4 shows the removed MPI-1 callback prototypes and their replacements.
Table 17.2: Removed MPI-1 datatypes. The indicated routine may be used for changing the lower and upper bound respectively.

<table>
<thead>
<tr>
<th>Removed</th>
<th>MPI-2 Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_LB</td>
<td>MPI_TYPE_CREATE_RESIZED</td>
</tr>
<tr>
<td>MPI_UB</td>
<td>MPI_TYPE_CREATE_RESIZED</td>
</tr>
</tbody>
</table>

Table 17.3: Removed MPI-1 constants

<table>
<thead>
<tr>
<th>Removed MPI-1 Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>C type: const int (or unnamed enum)</td>
</tr>
<tr>
<td>Fortran type: INTEGER</td>
</tr>
<tr>
<td>MPI_COMBINER_HINDEXED_INTEGER</td>
</tr>
<tr>
<td>MPI_COMBINER_HVECTOR_INTEGER</td>
</tr>
<tr>
<td>MPI_COMBINER_STRUCT_INTEGER</td>
</tr>
</tbody>
</table>

Table 17.4: Removed MPI-1 callback prototypes and their replacements

<table>
<thead>
<tr>
<th>Removed</th>
<th>MPI-2 Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_Handler_function</td>
<td>MPI_Comm_errhandler_function</td>
</tr>
</tbody>
</table>

17.2 C++ Bindings

The C++ bindings were deprecated as of MPI-2.2. The C++ bindings were removed in MPI-3.0. The namespace is still reserved, however, and bindings may only be provided by an implementation as described in the MPI-2.2 standard.
Chapter 18

Semantic Changes and Warnings

This chapter lists semantic changes that have been introduced into the MPI standard as well as warnings that could potentially impact program behavior. In addition to those listed here, Chapter 17 also lists changes and backward incompatibilities caused by removing interfaces. Unlike Chapter 17, the changes in this chapter did not go through a deprecation process.

18.1 Semantic Changes

This section describes semantics that have changed in a way that would potentially cause an MPI program to behave differently when using this version of the MPI standard without changing the program’s code.

18.1.1 Semantic Changes Starting in MPI-4.0

- MPI_COMM_DUP and MPI_COMM_IDUP no longer propagate info hints from the input communicator to the output communicator. This behavior can be achieved using MPI_COMM_DUP_WITH_INFO and MPI_COMM_IDUP_WITH_INFO.

- The default communicator where errors are raised when not involving a communicator, window, or file was changed from MPI_COMM_WORLD to MPI_COMM_SELF.

18.2 Additional Warnings

This section describes additional changes that could potentially cause a program that relies on the semantics described in a previous version of the MPI standard to behave differently than with this version of MPI. The changes in this section are limited in scope and unlikely to impact most programs.

18.2.1 Warnings Starting in MPI-4.1

Implementations are no longer allowed to implement MPI_WTICK, PMPI_WTICK, MPI_WTIME, and PMPI_WTIME as well as handle conversion functions as macros (Sections 9.6 and 19.3.4). This should not impact applications but may require changes in some implementations.
18.2.2 Warnings Starting in MPI-4.0

The limit for length of MPI identifiers was removed. Prior to MPI-4.0, MPI identifiers were limited to 30 characters (31 with the profiling interface). This limitation was initially introduced to avoid exceeding the limit on some compilation systems.

Rationale. For Fortran, this limit was already relaxed for the Fortran specific function names, see Section 19.1.5, and the Fortran language specification 2003 requires support for a minimum of 63 characters for internal and external identifiers. Starting with the ISO/IEC 9899:1999 C programming language standard, support for a minimum of 63 characters is required for internal identifiers, but only 31 characters are required to be significant for external identifiers. At the time of the release of MPI-4.0, most or nearly all compilers allow external identifiers longer than 31 characters. Therefore, the restriction is removed. (End of rationale.)

Advice to users. This affects users only if they store MPI identifiers into fixed sized strings. (End of advice to users.)
Chapter 19

Language Bindings

19.1 Support for Fortran

19.1.1 Overview

The Fortran MPI language bindings have been designed to be compatible with the Fortran 90 standard with additional features from Fortran 2018 [48]. In previous versions of this document, references were made to Fortran 2003 and Fortran 2008 [46] with TS 29113 [47]; where appropriate, the specific features of Fortran 2018 that MPI requires will be noted explicitly.

Rationale. Fortran 90 contains numerous features designed to make it a more “modern” language than Fortran 77. It seems natural that MPI should be able to take advantage of these new features with a set of bindings tailored to Fortran 90. In Fortran 2008 with TS 29113 and later Fortran 2018, the major new language features used are the ASYNCHRONOUS attribute to protect nonblocking MPI operations, and assumed-type and assumed-rank dummy arguments for choice buffer arguments. Further requirements for compiler support are listed in Section 19.1.7. (End of rationale.)

MPI defines three methods of Fortran support:

1. **USE mpi_f08**: This method is described in Section 19.1.2. It requires compile-time argument checking with unique MPI handle types and provides techniques to fully solve the optimization problems with nonblocking calls. This is the only Fortran support method that is consistent with the Fortran standard (Fortran 2008 with TS 29113 and later Fortran 2018). This method is highly recommended for all MPI applications.

2. **USE mpi**: This method is described in Section 19.1.3 and requires compile-time argument checking. Handles are defined as INTEGER. This Fortran support method is inconsistent with the Fortran standard, and its use is therefore not recommended. It exists only for backwards compatibility.

3. **INCLUDE ’mpif.h’**: This method is described in Section 19.1.4. The use of the include file mpif.h has been strongly discouraged starting with MPI-3.0 and deprecated with MPI-4.1, because this method neither guarantees compile-time argument checking nor provides sufficient techniques to solve the optimization problems with nonblocking calls, and is therefore inconsistent with the Fortran standard. It exists only for backwards compatibility with legacy MPI applications.

MPI implementations providing a Fortran interface must provide one or both of the following:
• The USE mpi_f08 Fortran support method.
• The USE mpi and INCLUDE 'mpif.h' Fortran support methods.

Section 19.1.6 describes restrictions if the compiler does not support all the needed features.

Application subroutines and functions may use either one of the modules or the (deprecated) mpif.h include file. An implementation may require the use of one of the modules to prevent type mismatch errors.

Advice to users. Users are advised to utilize one of the MPI modules even if mpif.h enforces type checking on a particular system. Using a module provides several potential advantages over using an include file; the mpi_f08 module offers the most robust and complete Fortran support. (End of advice to users.)

In a single application, it must be possible to link together routines that USE mpi_f08, USE mpi, and INCLUDE 'mpif.h'.

The LOGICAL constant MPI_SUBARRAYS_SUPPORTED is set to .TRUE. if all buffer choice arguments are defined in explicit interfaces with assumed-type and assumed-rank [48]; otherwise it is set to .FALSE.. The LOGICAL constant MPIASYNC_PROTECTS_NONBLOCKING is set to .TRUE. if the ASYNCHRONOUS attribute was added to the choice buffer arguments of all nonblocking interfaces and the underlying Fortran compiler supports the ASYNCHRONOUS attribute for MPI communication (as part of TS 29113, which has been superceded by Fortran 2018), otherwise it is set to .FALSE.. These constants exist for each Fortran support method, but not in the C header file. The values may be different for each Fortran support method. All other constants and the integer values of handles must be the same for each Fortran support method.

Sections 19.1.2 through 19.1.4 define the Fortran support methods. The Fortran interfaces of each MPI routine are shorthands. Section 19.1.5 defines the corresponding full interface specification together with the specific procedure names and implications for the profiling interface. Section 19.1.6 describes the implementation of the MPI routines for different versions of the Fortran standard. Section 19.1.7 summarizes major requirements for MPI implementations with Fortran support. Section 19.1.8 and Section 19.1.9 describe additional functionality that is part of the Fortran support. MPI_F_SYNC_REG is needed for one of the methods to prevent register optimization problems. A set of functions provides additional support for Fortran intrinsic numeric types, including parameterized types: MPI_TYPE_MATCH_SIZE, MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL and MPI_TYPE_CREATE_F90_COMPLEX. In the context of MPI, parameterized types are Fortran intrinsic types that are specified using KIND type parameters. Sections 19.1.10 through 19.1.19 give an overview and details on known problems when using Fortran together with MPI; Section 19.1.20 compares the Fortran problems with those in C.

19.1.2 Fortran Support Through the mpi_f08 Module

An MPI implementation providing a Fortran interface must provide a module named mpi_f08 that can be used in a Fortran program. Section 19.1.6 describes restrictions if the compiler does not support all the needed features. Within all MPI function specifications, the first of the set of two Fortran routine interface specifications is provided by this module. This module must:
• Define all named MPI constants.

• Declare MPI functions that return a value.

• Provide explicit interfaces according to the Fortran routine interface specifications. This module therefore guarantees compile-time argument checking for all arguments that are not TYPE(*), with the following exception:

 Only one Fortran interface is defined for functions that are deprecated as of MPI-3.0. This interface must be provided as an explicit interface according to the rules defined for the mpi module, see Section 19.1.3.

 Advice to users. It is strongly recommended that developers substitute calls to deprecated routines when upgrading from the (deprecated) mpif.h or the mpi module to the mpi_f08 module. (End of advice to users.)

• Define the derived type MPI_Status, and define all MPI handles with uniquely named handle types (instead of INTEGER handles, as in the mpi module). This is reflected in the first Fortran binding in each MPI function definition throughout this document (except for the deprecated routines).

• Overload the operators .EQ. and .NE. to allow the comparison of these MPI handles with .EQ., .NE., == and /=.

• Use the ASYNCHRONOUS attribute to protect the buffers of nonblocking operations, and set the LOGICAL constant MPI_ASYNC_PROTECTS_NONBLOCKING to .TRUE. if the underlying Fortran compiler supports the ASYNCHRONOUS attribute for MPI communication (as part of TS 29113). See Section 19.1.6 for older compiler versions.

• Set the LOGICAL constant MPI_SUBARRAYS_SUPPORTED to .TRUE. and declare choice buffers using the Fortran 2018 features assumed-type and assumed-rank, i.e., TYPE(*), DIMENSION(..) in all nonblocking, split collective and persistent communication routines, if the underlying Fortran compiler supports it. With this, noncontiguous sub-arrays can be used as buffers in nonblocking routines.

 Rationale. In all blocking routines, i.e., if the choice-buffer is not declared as ASYNCHRONOUS, the Fortran 2018 feature is not needed for the support of non-contiguous buffers because the compiler can pass the buffer by in-and-out-copy through a contiguous scratch array. (End of rationale.)

• Set the MPI_SUBARRAYS_SUPPORTED constant to .FALSE. and declare choice buffers with a compiler-dependent mechanism that overrides type checking if the underlying Fortran compiler does not support the Fortran 2018 assumed-type and assumed-rank notation. In this case, the use of noncontiguous sub-arrays as buffers in nonblocking calls may be invalid. See Section 19.1.6 for details.

• Declare each argument with an INTENT of IN, OUT, or INOUT as defined in this standard.

 Rationale. For these definitions in the mpi_f08 bindings, in most cases, INTENT(IN) is used if the C interface uses call-by-value. For all buffer arguments and for OUT and INOUT dummy arguments that allow one of the nonordinary Fortran constants (see MPI_BOTTOM, etc. in Section 2.5.4) as input, an INTENT is not specified. (End of rationale.)
Advice to users. If a dummy argument is declared with INTENT(OUT), then the Fortran standard stipulates that the actual argument becomes undefined upon invocation of the MPI routine, i.e., it may be overwritten by some other values, e.g. zeros; according to [46], 12.5.2.4 Ordinary dummy variables, Paragraph 17: “If a dummy argument has INTENT(OUT), the actual argument becomes undefined at the time the association is established, except [...]”. For example, if the dummy argument is an assumed-size array and the actual argument is a strided array, the call may be implemented with copy-in and copy-out of the argument. In the case of INTENT(OUT) the copy-in may be suppressed by the optimization and the routine starts execution using an array of undefined values. If the routine stores fewer elements into the dummy argument than is provided in the actual argument, then the remaining locations are overwritten with these undefined values. See also both advices to implementors in Section 19.1.3. (End of advice to users.)

• Declare all ierror output arguments as OPTIONAL, except for user-defined callback functions (e.g., of type MPI_Comm_copy_attr_function or COMM_COPY_ATTR_FUNCTION) and predefined callbacks (e.g., MPI_COMM_NULL_COPY_FN).

Rationale. For user-defined callback functions (e.g., of type MPI_Comm_copy_attr_function or COMM_COPY_ATTR_FUNCTION) and their predefined callbacks (e.g., MPI_COMM_NULL_COPY_FN), the ierror argument is not optional. The MPI library must always call these routines with an actual ierror argument. Therefore, these user-defined functions need not check whether the MPI library calls these routines with or without an actual ierror output argument. (End of rationale.)

The MPI Fortran bindings in the mpi_f08 module are designed based on the Fortran 2008 standard [46] together with the Technical Specification “TS 29113 Further Interoperability with C” [47] of the ISO/IEC JTC1/SC22/WG5 (Fortran) working group, which is now integrated in Fortran 2018 standard [48].

Rationale. The features in TS 29113 on further interoperability with C were decided on by ISO/IEC JTC1/SC22/WG5 and designed by PL22.3 (formerly J3) to support a higher level of integration between Fortran-specific features and C than was provided in the Fortran 2008 standard; part of this design is based on requirements from the MPI Forum to support MPI-3.0. These features became part of Fortran 2018 [48], so references to TS 29113 are obsolete, except insofar as to specify a particular feature set from Fortran 2018 or minimal requirements to a compiler.

Fortran 2018 contains the following language features that are needed for the MPI bindings in the mpi_f08 module: assumed-type and assumed-rank. It is important that any possible actual argument can be used for such dummy arguments, e.g., scalars, arrays, assumed-shape arrays, assumed-size arrays, allocatable arrays, and with any element type, e.g., REAL, CHARACTER*5, CHARACTER*(*) sequence derived types, or BIND(C) derived types. Especially for backward compatibility reasons, it is important that any possible actual argument in an implicit interface implementation of a choice buffer dummy argument (e.g., with the deprecated mpif.h without argument-checking) can be used in an implementation with assumed-type and assumed-rank argument in an explicit interface (e.g., with the mpi_f08 module).
A further feature useful for MPI is the extension of the semantics of the ASYNCHRONOUS attribute: In F2003 and F2008, this attribute could be used only to protect buffers of Fortran asynchronous I/O. With TS 29113 and now Fortran 2018, this attribute also covers asynchronous communication occurring within library routines written in C.

The MPI Forum hereby wishes to acknowledge this important effort by the Fortran PL22.3 and WG5 committee. (End of rationale.)

19.1.3 Fortran Support Through the mpi Module

An MPI implementation providing a Fortran interface must provide a module named mpi that can be used in a Fortran program. Within all MPI function specifications, the second of the set of two Fortran routine interface specifications is provided by this module. This module must:

- Define all named MPI constants.
- Declare MPI functions that return a value.
- Provide explicit interfaces according to the Fortran routine interface specifications. This module therefore guarantees compile-time argument checking and allows positional and keyword-based argument lists. If an implementation is paired with a compiler that either does not support TYPE(*), DIMENSION(..) from Fortran 2018, or is otherwise unable to ignore the types of choice buffers, then the implementation must provide explicit interfaces only for MPI routines with no choice buffer arguments. See Section 19.1.6 for more details.
- Define all MPI handles as type INTEGER.
- Define the derived type MPI_Status and all named handle types that are used in the mpi_f08 module. For these named handle types, overload the operators .EQ. and .NE. to allow handle comparison via the .EQ., .NE., == and /= operators.

Rationale. They are needed only when the application converts old-style INTEGER handles into new-style handles with a named type. (End of rationale.)

- A high quality MPI implementation may enhance the interface by using the ASYNCHRONOUS attribute in the same way as in the mpi_f08 module if it is supported by the underlying compiler.
- Set the LOGICAL constant MPI_ASYNC_PROTECTS_NONBLOCKING to .TRUE. if the ASYNCHRONOUS attribute is used in all nonblocking interfaces and the underlying Fortran compiler supports the ASYNCHRONOUS attribute for MPI communication (as part of Fortran 2018), otherwise to .FALSE..

Advice to users. For an MPI implementation that fully supports nonblocking calls with the ASYNCHRONOUS attribute for choice buffers, an existing MPI-2.2 application may fail to compile even if it compiled and executed with expected results with an MPI-2.2 implementation. One reason may be that the application uses “contiguous” but not “simply contiguous” ASYNCHRONOUS arrays as actual arguments for choice buffers of nonblocking routines, e.g., by using subscript triplets with stride one or specifying...
(1:n) for a whole dimension instead of using (:). This should be fixed to fulfill the Fortran constraints for ASYNCHRONOUS dummy arguments. This is not considered a violation of backward compatibility because existing applications can not use the ASYNCHRONOUS attribute to protect nonblocking calls. Another reason may be that the application does not conform either to the MPI standard or to the Fortran standard, typically because the program forces the compiler to perform copy-in/out for a choice buffer argument in a nonblocking MPI call. This is also not a violation of backward compatibility because the application itself is nonconforming. See Section 19.1.12 for more details. (End of advice to users.)

- A high quality MPI implementation may enhance the interface by using TYPE(*), DIMENSION(..) choice buffer dummy arguments instead of using nonstandardized extensions such as !PRAGMA IGNORE_TKR or a set of overloaded functions as described by M. Hennecke in [33], if the compiler supports this Fortran 2018 language feature. See Section 19.1.6 for further details.

- Set the LOGICAL constant MPI_SUBARRAYS_SUPPORTED to .TRUE. if all choice buffer arguments in all nonblocking, split collective and persistent communication routines are declared with TYPE(*), DIMENSION(..), otherwise set it to .FALSE.. When MPI_SUBARRAYS_SUPPORTED is defined as .TRUE., noncontiguous sub-arrays can be used as buffers in nonblocking routines.

- Set the MPI_SUBARRAYS_SUPPORTED constant to .FALSE. and declare choice buffers with a compiler-dependent mechanism that overrides type checking if the underlying Fortran compiler does not support the Fortran 2018 assumed-type and assumed-rank features. In this case, the use of noncontiguous sub-arrays in nonblocking calls may be disallowed. See Section 19.1.6 for details.

An MPI implementation may provide other features in the mpi module that enhance the usability of MPI while maintaining adherence to the standard. For example, it may provide INTENT information in these interface blocks.

Advice to implementors. The appropriate INTENT may be different from what is given in the MPI language-neutral bindings. Implementations must choose INTENT so that the function adheres to the MPI standard, e.g., by defining the INTENT as provided in the mpi_f08 bindings. (End of advice to implementors.)

Rationale. The intent given by the MPI generic interface is not precisely defined and does not in all cases correspond to the correct Fortran INTENT. For instance, receiving into a buffer specified by a datatype with absolute addresses may require associating MPI_BOTTOM with a dummy OUT argument. Moreover, “constants” such as MPI_BOTTOM and MPI_STATUS_IGNORE are not constants as defined by Fortran, but “special addresses” used in a nonstandard way. Finally, the MPI-1 generic intent was changed in several places in MPI-2. For instance, MPI_IN_PLACE changes the intent of an OUT argument to be INOUT. (End of rationale.)

Advice to implementors. The Fortran 2008 standard illustrates in its Note 5.17 that “INTENT(OUT) means that the value of the argument after invoking the procedure is entirely the result of executing that procedure. If an argument should retain
its value rather than being redefined, INTENT(INOUT) should be used rather than
INTENT(OUT), even if there is no explicit reference to the value of the dummy ar-
gument. Furthermore, INTENT(INOUT) is not equivalent to omitting the INTENT
attribute, because INTENT(INOUT) always requires that the associated actual argu-
ment is definable.” Applications that include the (deprecated) mpif.h may not expect
that INTENT(OUT) is used. In particular, output array arguments are expected to keep
their content as long as the MPI routine does not modify them. To keep this behav-
ior, it is recommended that implementations not use INTENT(OUT) in the mpi module
and the (deprecated) mpif.h include file, even though INTENT(OUT) is specified in an
interface description of the mpi_f08 module. (*End of advice to implementors.*)

19.1.4 Fortran Support Through the mpif.h Include File

The use of the mpif.h include file has been deprecated in MPI-4.1.

An MPI implementation providing a Fortran interface must provide an include file
named mpif.h that can be used in a Fortran program. Within all MPI function specifica-
tions, the second of the set of two Fortran routine interface specifications is supported by
this include file. This include file must:

- Define all named MPI constants.
- Declare MPI functions that return a value.
- Define all handles as INTEGER.
- Be valid and equivalent for both fixed and free source form.

For each MPI routine, an implementation can choose to use an implicit or explicit interface
for the second Fortran binding (in deprecated routines, the first one may be omitted).

- Set the LOGICAL constants MPI_SUBARRAYS_SUPPORTED and
 MPI_ASYNC_PROTECTS_NONBLOCKING according to the same rules as for the mpi
 module. In the case of implicit interfaces for choice buffer or nonblocking routines,
 the constants must be set to .FALSE..

Advice to users. Instead of using mpif.h, the use of the mpi_f08 or mpi module is
strongly encouraged for the following reasons:

- Most mpif.h implementations do not include compile-time argument checking.
- Therefore, many bugs in MPI applications remain undetected at compile-time,
 such as:
 - Missing ierror as last argument in most Fortran bindings.
 - Declaration of a status as an INTEGER variable instead of an INTEGER array
 with size MPI_STATUS_SIZE.
 - Incorrect argument positions; e.g., interchanging the count and
datatype arguments.
 - Passing incorrect MPI handles; e.g., passing a datatype instead of a commu-
nicator.
• The migration from `mpif.h` to the `mpi` module should be relatively straightforward (i.e., substituting `INCLUDE 'mpif.h'` after an `implicit` statement by `use mpi` before that `implicit` statement) as long as the application syntax is correct.

• Migrating portable and correctly written applications to the `mpi` module is not expected to be difficult. No compile or runtime problems should occur because an `mpif.h` include file was always allowed to provide explicit Fortran interfaces.

(End of advice to users.)

19.1.5 Interface Specifications, Procedure Names, and the Profiling Interface

The Fortran interface specification of each MPI routine specifies the routine name that must be called by the application program, and the names and types of the dummy arguments together with additional attributes. The Fortran standard allows a given Fortran interface to be implemented with several methods, e.g., within or outside of a module, with or without `BIND(C)`, or the buffers with or without Fortran 2018 (as successor of Fortran 2008 with TS 29113). Such implementation decisions imply different binary interfaces and different specific procedure names. The requirements for several implementation schemes together with the rules for the specific procedure names and its implications for the profiling interface are specified within this section, but not the implementation details.

Rationale. When this section was originally introduced in MPI-3.0, the major goals for the three Fortran support methods were:

• Portable implementation of the wrappers from the MPI Fortran interfaces to the MPI routines in C.

• Binary backward compatible implementation path when switching `MPI_SUBARRAYS_SUPPORTED` from `.FALSE.` to `.TRUE.`.

• The Fortran PMPI interface need not be backward compatible, but a method must be included that a tools layer can use to examine the MPI library about the specific procedure names and interfaces used.

• No performance drawbacks.

• Consistency between all three Fortran support methods.

• Consistent with Fortran 2018.

The design expected that all dummy arguments in the MPI Fortran interfaces are interoperable with C according to Fortran 2018. This expectation was not fulfilled. The `LOGICAL` arguments are not interoperable with C, mainly because the internal representations for `.FALSE.` and `.TRUE.` are compiler dependent. The provided interface was mainly based on `BIND(C)` interfaces and therefore inconsistent with Fortran. To be consistent with Fortran, the `BIND(C)` had to be removed from the callback procedure interfaces and the predefined callbacks, e.g., `MPI_COMM_DUP_FN`. Non-`BIND(C)` procedures are also not interoperable with C, and therefore the `BIND(C)` had to be removed from all routines with `PROCEDURE` arguments, e.g., from `MPI_OP_CREATE`.

Therefore, this section was rewritten as an erratum to MPI-3.0. (End of rationale.)

A Fortran call to an MPI routine shall result in a call to a procedure with one of the specific procedure names and calling conventions, as described in Table 19.1. Case is not significant in the names.
Table 19.1: Specific Fortran procedure names and related calling conventions. `MPI_ISEND` is used as an example. For routines without choice buffers, only 1A and 2A apply.

<table>
<thead>
<tr>
<th>No.</th>
<th>Specific procedure name</th>
<th>Calling convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td><code>MPI_Isend_f08</code></td>
<td>Fortran interface and arguments, as in Annex A.4, except that in routines with a choice buffer dummy argument, this dummy argument is implemented with nonstandard extensions like <code>!$PRAGMA IGNORE_TKR</code>, which provides a call-by-reference argument without type, kind, and dimension checking.</td>
</tr>
<tr>
<td>1B</td>
<td><code>MPI_Isend_f08ts</code></td>
<td>Fortran interface and arguments, as in Annex A.4, but only for routines with one or more choice buffer dummy arguments; these dummy arguments are implemented with <code>TYPE(*)</code>, <code>DIMENSION(..)</code>.</td>
</tr>
<tr>
<td>2A</td>
<td><code>MPI_ISEND</code></td>
<td>Fortran interface and arguments, as in Annex A.5, except that in routines with a choice buffer dummy argument, this dummy argument is implemented with nonstandard extensions like <code>!$PRAGMA IGNORE_TKR</code>, which provides a call-by-reference argument without type, kind, and dimension checking.</td>
</tr>
<tr>
<td>2B</td>
<td><code>MPI_ISEND_FTS</code></td>
<td>Fortran interface and arguments, as in Annex A.5, but only for routines with one or more choice buffer dummy arguments; these dummy arguments are implemented with <code>TYPE(*)</code>, <code>DIMENSION(..)</code>. In the (deprecated) <code>mpif.h</code> only, the postfix "_FTS" for <code>MPI_NEIGHBOR_ALLGATHERV_INIT</code>, <code>MPI_NEIGHBOR_ALLTOALLV_INIT</code>, and <code>MPI_NEIGHBOR_ALLTOALLW_INIT</code> is shortened to "_F".</td>
</tr>
</tbody>
</table>
Note that for the deprecated routines in Section 16.1, which are reported only in Annex A.5, scheme 2A is utilized in the mpi module and (deprecated) mpif.h, and also in the mpi_f08 module.

To set MPI_SUBARRAYS_SUPPORTED to .TRUE. within a Fortran support method, it is required that all nonblocking and split-collective routines with buffer arguments are implemented according to 1B and 2B, i.e., with MPI_Xxxx_f08ts in the mpi_f08 module, and with MPI_XXXX_FTS in the mpi module and the (deprecated) mpif.h include file.

The mpi and mpi_f08 modules and the (deprecated) mpif.h include file will each correspond to exactly one implementation scheme from Table 19.1. However, the MPI library may contain multiple implementation schemes from Table 19.1.

Advice to implementors. This may be desirable for backwards binary compatibility in the scope of a single MPI implementation, for example. (End of advice to implementors.)

Rationale. After a compiler provides the facilities TYPE(*), DIMENSION(...) from Fortran 2018, it is possible to change the bindings within a Fortran support method to support subarrays without recompiling the complete application provided that the previous interfaces with their specific procedure names are still included in the library. Of course, only recompiled routines can benefit from the added facilities. There is no binary compatibility conflict because each interface uses its own specific procedure names and all interfaces use the same constants (except the value of MPI_SUBARRAYS_SUPPORTED and MPI_ASYNC_PROTECTS_NONBLOCKING) and type definitions. After a compiler also ensures that buffer arguments of nonblocking MPI operations can be protected through the ASYNCHRONOUS attribute, and the procedure declarations in the mpi_f08 and mpi module and the (deprecated) mpif.h include file declare choice buffers with the ASYNCHRONOUS attribute, then the value of MPI_ASYNC_PROTECTS_NONBLOCKING can be switched to .TRUE. in the module definition and include file. (End of rationale.)

Advice to users. Partial recompilation of user applications when upgrading MPI implementations is a highly complex and subtle topic. Users are strongly advised to consult their MPI implementation’s documentation to see exactly what is—and what is not—supported. (End of advice to users.)

Within the mpi_f08 and mpi modules and (deprecated) mpif.h include file, for all MPI procedures, a second procedure with the same calling conventions shall be supplied, except that the name is modified by prefixing with the letter “P”, e.g., PMPI_Isend. The specific procedure names for these PMPI_Xxxx procedures must be different from the specific procedure names for the MPI_Xxxx procedures and are not specified by this standard.

A user-written or middleware profiling routine should provide the same specific Fortran procedure names and calling conventions, and therefore can interpose itself as the MPI library routine. The profiling routine can internally call the matching PMPI routine with any of its existing bindings, except for routines that have callback routine dummy arguments, choice buffer arguments, or that are attribute caching routines (MPI_{COMM\|WIN\|TYPE}_{\{SET\|GET\}_ATTR}). In this case, the profiling software should invoke the corresponding PMPI routine using the same Fortran support method as used in the calling application program, because the C, mpi_f08 and mpi callback prototypes are different or the meaning of the choice buffer or attribute_val arguments are different.
Advice to users. Although for each support method and MPI routine (e.g., MPI_ISEND in mpi_f08), multiple routines may need to be provided to intercept the specific procedures in the MPI library (e.g., MPI_Isend and MPI_Isend_f08ts), each profiling routine itself uses only one support method (e.g., mpi_f08) and calls the real MPI routine through the one PMPI routine defined in this support method (i.e., PMPI_Isend in this example). (End of advice to users.)

Advice to implementors. If all of the following conditions are fulfilled:

- the handles in the mpi_f08 module occupy one Fortran numerical storage unit (same as an INTEGER handle),
- the internal argument passing mechanism used to pass an actual ierror argument to a nonoptional ierror dummy argument is binary compatible to passing an actual ierror argument to an ierror dummy argument that is declared as OPTIONAL,
- the internal argument passing mechanism for ASYNCHRONOUS and non-ASYNCHRONOUS arguments is the same,
- the internal routine call mechanism is the same for the Fortran and the C compilers for which the MPI library is compiled, and
- the compiler does not provide the appropriate features from Fortran 2018,

then the implementor may use the same internal routine implementations for all Fortran support methods but with several different specific procedure names. If the accompanying Fortran compiler supports Fortran 2018 or at least Fortran 2008 with TS 29113, then the new routines are needed only for routines with choice buffer arguments. (End of advice to implementors.)

Advice to implementors. In the (deprecated) Fortran support method mpif.h, compile-time argument checking can be also implemented for all routines. For mpif.h, the argument names are not specified through the MPI standard, i.e., only positional argument lists are defined, and not key-word based lists. Due to the rule that mpif.h must be valid for fixed and free source form, the subroutine declaration is restricted to one line with 72 characters. To keep the argument lists short, each argument name can be shortened to a minimum of one character. With this, the three longest subroutine declaration statements are

```fortran
SUBROUTINE PMPI_DIST_GRAPH_CREATE_ADJACENT(a,b,c,d,e,f,g,h,i,j,k)
SUBROUTINE PMPI_NEIGHBOR_ALLTOALLW_INIT(a,b,c,d,e,f,g,h,i,j,k,l)
SUBROUTINE PMPI_NEIGHBOR_ALLTOALLV_INIT(a,b,c,d,e,f,g,h,i,j,k,l)
```

with 71 and 70 characters each. With buffers implemented with Fortran 2018 (or TS 29113), the specific procedure names have an additional postfix. Some of the longest of such interface definitions are

```fortran
INTERFACE PMPI_NEIGHBOR_ALLTOALLW_INIT
SUBROUTINE PMPI_NEIGHBOR_ALLTOALLW_INIT_F(a,b,c,d,e,f,g,h,i,j,k,l)
INTERFACE PMPI_NEIGHBOR_ALLGATHERV_INIT
SUBROUTINE PMPI_NEIGHBOR_ALLGATHERV_INIT_F(a,b,c,d,e,f,g,h,i,j,k,l)
INTERFACE PMPI_RGET_ACCUMULATE
SUBROUTINE PMPI_RGET_ACCUMULATE_FTS(a,b,c,d,e,f,g,h,i,j,k,l,m,n)
```
Chapter 19 Language Bindings

with 72, 71, and 70 characters. In principle, continuation lines would be possible in `mpif.h` (spaces in columns 73–131, & in column 132, and in column 6 of the continuation line) but this would not be valid if the source line length is extended with a compiler flag to 132 characters. Column 133 is also not available for the continuation character because lines longer than 132 characters are invalid with some compilers by default.

If an implementation applies the rules of Table 19.1 also for the PMPI interface, then the longest specific procedure name is `PMPI_Reduce_scatter_block_init_c_f08ts` with 38 characters in the `mpi_f08` module.

For example, the interface specifications together with the specific procedure names can be implemented with

```fortran
MODULE mpi_f08
  TYPE, BIND(C) :: MPI_Comm
  INTEGER :: MPI_VAL
END TYPE MPI_Comm

INTERFACE MPI_Comm_rank  ! (as defined in Chapter 6)
  SUBROUTINE MPI_Comm_rank_f08 (comm, rank, ierr)
    IMPORT :: MPI_Comm
    TYPE(MPI_Comm), INTENT(IN) :: comm
    INTEGER, INTENT(OUT) :: rank
    INTEGER, OPTIONAL, INTENT(OUT) :: ierr
  END SUBROUTINE
END INTERFACE
END MODULE mpi_f08

MODULE mpi
  INTERFACE MPI_Comm_rank  ! (as defined in Chapter 6)
  SUBROUTINE MPI_Comm_rank (comm, rank, ierr)
    INTEGER, INTENT(IN) :: comm  ! The INTENT may be added although it is not defined in the official routine definition.
    INTEGER, INTENT(OUT) :: rank
    INTEGER, INTENT(OUT) :: ierr
  END SUBROUTINE
END INTERFACE
END MODULE mpi
```

And if interfaces are provided in `mpif.h`, they might look like this (outside of any module and in fixed source format):

```fortran
! 234567890123456789012345678901234567890123456789012345678901234567890123456789
INTERFACE MPI_Comm_rank  ! (as defined in Chapter 6)
  SUBROUTINE MPI_Comm_rank (comm, rank, ierr)
    INTEGER, INTENT(IN) :: comm  ! The argument names may be shortened so that the subroutine line fits to the maximum of 72 characters.
    INTEGER, INTENT(OUT) :: rank
    INTEGER, INTENT(OUT) :: ierr
  END SUBROUTINE
END INTERFACE
```

(End of advice to implementors.)

Advice to users. The following is an example of how a user-written or middleware profiling routine can be implemented:

```fortran
SUBROUTINE MPI_Isend_f08ts(buf, count, datatype, dest, tag, comm, request, ierr)
  USE :: mpi_f08, my_noname => MPI_Isend_f08ts
```
Note that this routine is used to intercept the existing specific procedure name MPI_Isend_f08ts in the MPI library. This routine must not be part of a module. This routine itself calls PMPI_Isend. The USE of the mpi_f08 module is needed for definitions of handle types and the interface for PMPI_Isend. However, this module also contains an interface definition for the specific procedure name MPI_Isend_f08ts that conflicts with the definition of this profiling routine (i.e., the name is doubly defined). Therefore, the USE here specifically excludes the interface from the module by renaming the unused routine name in the mpi_f08 module into “my_noname” in the scope of this routine. (End of advice to users.)

Advice to users. The PMPI interface allows intercepting MPI routines. For example, an additional MPI_ISEND profiling wrapper can be provided that is called by the application and internally calls PMPI_ISEND. There are two typical use cases: a profiling layer that is developed independently from the application and the MPI library, and profiling routines that are part of the application and have access to the application data. With MPI-3.0, new Fortran interfaces and implementation schemes were introduced that have several implications on how Fortran MPI routines are internally implemented and optimized. For profiling layers, these schemes imply that several internal interfaces with different specific procedure names may need to be intercepted, as shown in the example code above. Therefore, for wrapper routines that are part of a Fortran application, it may be more convenient to make the name shift within the application, i.e., to substitute the call to the MPI routine (e.g., MPI_ISEND) by a call to a user-written profiling wrapper with a new name (e.g., X_MPI_ISEND) and to call the Fortran MPI_ISEND from this wrapper, instead of using the PMPI interface. (End of advice to users.)

Advice to implementors. An implementation that provides a Fortran interface must provide a combination of MPI library and module or include file that uses the specific procedure names as described in Table 19.1 so that the MPI Fortran routines are interceptable as described above. (End of advice to implementors.)

19.1.6 MPI for Different Fortran Standard Versions

This section describes which Fortran interface functionality can be provided for different versions of the Fortran standard.

- For Fortran 77 with some extensions:
 - MPI identifiers may be up to 30 characters (31 with the profiling interface).
 - MPI identifiers may contain underscores after the first character.
An MPI subroutine with a choice argument may be called with different argument types.

Although not required by the MPI standard, the INCLUDE statement should be available for including mpif.h into the user application source code.

Only MPI-1.1, MPI-1.2, and MPI-1.3 can be implemented. The use of absolute addresses from MPI_ADDRESS and MPI_BOTTOM may cause problems if an address does not fit into the memory space provided by an INTEGER. (In MPI-2.0 this problem is solved with MPI_GET_ADDRESS, but not for Fortran 77.)

• For Fortran 90:
 The major additional features that are needed from Fortran 90 are:

 - The MODULE and INTERFACE concept.
 - The KIND= and SELECTED_XXX_KIND concept.
 - Fortran derived TYPES and the SEQUENCE attribute.
 - The OPTIONAL attribute for dummy arguments.
 - Cray pointers, which are a nonstandard compiler extension, are needed for the use of MPI_ALLOC_MEM.

With these features, MPI-1.1 – MPI-2.2 can be implemented without restrictions. MPI-3.0 and later can be implemented with some restrictions. The Fortran support methods are abbreviated with S1 = the mpi_f08 module, S2 = the mpi module, and S3 = the mpif.f include file. If not stated otherwise, restrictions exist for each method that prevent implementing the complete semantics of MPI.

- MPI_SUBARRAYS_SUPPORTED equals .FALSE., i.e., subscript triplets and non-contiguous subarrays cannot be used as buffers in nonblocking routines, RMA, or split-collective I/O.

- S1, S2, and S3 can be implemented, but for S1, only a preliminary implementation is possible.

- In this preliminary interface of S1, the following changes are necessary:
 * TYPE(*) , DIMENSION(...) is substituted by nonstandardized extensions like !$PRAGMA IGNORE_TKR.
 * The ASYNCHRONOUS attribute is omitted.
 * PROCEDURE(...) callback declarations are substituted by EXTERNAL.

- The specific procedure names are specified in Section 19.1.5.

- Due to the rules specified in Section 19.1.5, choice buffer declarations should be implemented only with nonstandardized extensions like !$PRAGMA IGNORE_TKR (as long as F2008 with TS 29113 or Fortran 2018 is not available).

In S2 and S3: Without such extensions, routines with choice buffers should be provided with an implicit interface, instead of overloading with a different MPI function for each possible buffer type (as mentioned in Section 19.1.11). Such overloading would also imply restrictions for passing Fortran derived types as choice buffer, see also Section 19.1.15.
Only in S1: The implicit interfaces for routines with choice buffer arguments imply that the ierror argument cannot be defined as OPTIONAL. For this reason, it is recommended not to provide the mpi_f08 module if such an extension is not available.

- The ASYNCHRONOUS attribute can not be used in applications to protect buffers in nonblocking MPI calls (S1–S3).
- The TYPE(C_PTR) binding of the MPI_ALLOC_MEM and MPI_WIN_ALLOCATE routines is not available.
- In S1 and S2, the definition of the handle types (e.g., TYPE(MPI_Comm) and the status type TYPE(MPI_Status) must be modified: The SEQUENCE attribute must be used instead of BIND(C) (which is not available in Fortran 90/95). This restriction implies that the application must be fully recompiled if one switches to an MPI library for Fortran 2003 and later because the internal memory size of the handles may have changed. For this reason, an implementor may choose not to provide the mpi_f08 module for Fortran 90 compilers. In this case, the mpi_f08 handle types and all routines, constants and types related to TYPE(MPI_Status) (see Section 19.3.5) are also not available in the mpi module and mpif.h.

- For Fortran 95:
 The quality of the MPI interface and the restrictions are the same as with Fortran 90.

- For Fortran 2003:
 The major features that are needed from Fortran 2003 are:
 - Interoperability with C, i.e.,
 * BIND(C) derived types.
 * The ISO_C_BINDING intrinsic type C_PTR and routine C_F_POINTER.
 - The ability to define an ABSTRACT INTERFACE and to use it for PROCEDURE dummy arguments.
 - The ability to overload the operators .EQ. and .NE. to allow the comparison of derived types (used in MPI-3.0 and later for MPI handles).
 - The ASYNCHRONOUS attribute is available to protect Fortran asynchronous I/O. This feature is not yet used by MPI, but it is the basis for the enhancement for MPI communication in the TS 29113.

With these features (but still without the features of TS 29113), MPI-1.1 – MPI-2.2 can be implemented without restrictions, but with one enhancement:

- The user application can use TYPE(C_PTR) together with MPI_ALLOC_MEM as long as MPI_ALLOC_MEM is defined with an implicit interface because a C_PTR and an INTEGER(KIND=MPI_ADDRESS_KIND) argument must both map to a void *

MPI-3.0 and later can be implemented with the following restrictions:

- MPI_SUBARRAYS_SUPPORTED equals .FALSE..
- For S1, only a preliminary implementation is possible. The following changes are necessary:
According to the document, the specific procedure names are specified in Section 19.1.5.

With S1, the ASYNCHRONOUS is required as specified in the second Fortran interfaces. With S2 and S3 the implementation can also add this attribute if explicit interfaces are used.

The ASYNCHRONOUS Fortran attribute can be used in applications to try to protect buffers in nonblocking MPI calls, but the protection can work only if the compiler is able to protect asynchronous Fortran I/O and makes no difference between such asynchronous Fortran I/O and MPI communication.

The TYPE(C_PTR) binding of the MPI_ALLOC_MEM, MPI_WIN_ALLOCATE, MPI_WIN_ALLOCATE_SHARED, and MPI_WIN_SHARED_QUERY routines can be used only for Fortran types that are C compatible.

The same restriction as for Fortran 90 applies if nonstandardized extensions like !$PRAGMA IGNORE_TKR are not available.

For Fortran 2008 with TS 29113 and later and For Fortran 2003 with TS 29113:
The major features that are needed from TS 29113 are:

- TYPE(*), DIMENSION(...) is available.
- The ASYNCHRONOUS attribute is extended to protect also nonblocking MPI communication.
- The array dummy argument of the ISO_C_BINDING intrinsic C_F_POINTER is not restricted to Fortran types for which a corresponding type in C exists.

Using these features, MPI-3.0 and later can be implemented without any restrictions.

- With S1, MPI_SUBARRAYS_SUPPORTED equals .TRUE.. The ASYNCHRONOUS attribute can be used to protect buffers in nonblocking MPI calls. The TYPE(C_PTR) binding of the MPI_ALLOC_MEM, MPI_WIN_ALLOCATE, MPI_WIN_ALLOCATE_SHARED, and MPI_WIN_SHARED_QUERY routines can be used for any Fortran type.
- With S2 and S3, the value of MPI_SUBARRAYS_SUPPORTED is implementation dependent. A high quality implementation will also provide MPI_SUBARRAYS_SUPPORTED set to .TRUE. and will use the ASYNCHRONOUS attribute in the same way as in S1.
- If nonstandardized extensions like !$PRAGMA IGNORE_TKR are not available then S2 must be implemented with TYPE(*), DIMENSION(...).

Advice to implementors. If MPI_SUBARRAYS_SUPPORTED=.FALSE., the choice argument may be implemented with an explicit interface using compiler directives, for example:

```fortran
INTERFACE
  SUBROUTINE MPI...(buf, ...)
  !DEC$ ATTRIBUTES NO_ARG_CHECK :: buf
  !$PRAGMA IGNORE_TKR buf
  !DIR$ IGNORE_TKR buf
END SUBROUTINE
```
19.1.7 Requirements on Fortran Compilers

MPI-3.0 (and later) compliant Fortran bindings are not only a property of the MPI library itself, but rather a property of an MPI library together with the Fortran compiler suite for which it is compiled.

Advice to users. Users must take appropriate steps to ensure that proper options are specified to compilers. MPI libraries must document these options. Some MPI libraries are shipped together with special compilation scripts (e.g., mpif90, mpicc) that set these options automatically. (End of advice to users.)

An MPI library together with the Fortran compiler suite is only compliant with MPI-3.0 (and later), as referred by MPI_GET_VERSION, if all the solutions described in Sections 19.1.11 through 19.1.19 work correctly. Based on this rule, major requirements for all three Fortran support methods (i.e., the mpi_f08 and mpi modules, and mpif.h) are:

- The language features assumed-type and assumed-rank from Fortran 2008 TS 29113 [47] are available. This is required only for mpi_f08. As long as this requirement is not supported by the compiler, it is valid to build an MPI library that implements the mpi_f08 module with MPI_SUBARRAYS_SUPPORTED set to .FALSE..

- “Simply contiguous” arrays and scalars must be passed to choice buffer dummy arguments of nonblocking routines with call by reference. This is needed only if one of the support methods does not use the ASYNCHRONOUS attribute. See Section 19.1.12 for more details.

- SEQUENCE and BIND(C) derived types are valid as actual arguments passed to choice buffer dummy arguments, and, in the case of MPI_SUBARRAYS_SUPPORTED set to .FALSE., they are passed with call by reference, and passed by descriptor in the case of .TRUE..

- All actual arguments that are allowed for a dummy argument in an implicitly defined and separately compiled Fortran routine with the given compiler (e.g., CHARACTER(LEN=*) strings and array of strings) must also be valid for choice buffer dummy arguments with all Fortran support methods.

- The array dummy argument of the ISO_C_BINDING intrinsic module procedure C_F_POINTER is not restricted to Fortran types for which a corresponding type in C exists.

- The Fortran compiler shall not provide TYPE(*) unless the ASYNCHRONOUS attribute protects MPI communication as described in TS 29113. Specifically, the TS 29113 must be implemented as a whole.
The following rules are required at least as long as the compiler does not provide the extension of the ASYNCHRONOUS attribute as part of TS 29113 and there still exists a Fortran support method with MPI_ASYNC_PROTECTS_NONBLOCKING set to .FALSE.. Observation of these rules by the MPI application developer is especially recommended for backward compatibility of existing applications that use the mpi module or the (deprecated) mpif.h include file. The rules are as follows:

- Separately compiled empty Fortran routines with implicit interfaces and separately compiled empty C routines with BIND(C) Fortran interfaces (e.g., MPI_F_SYNC_REG on page 826 and Section 19.1.8, and DD on page 827) solve the problems described in Section 19.1.17.
- The problems with temporary data movement (described in detail in Section 19.1.18) are solved as long as the application uses different sets of variables for the nonblocking communication (or nonblocking or split collective I/O) and the computation when overlapping communication and computation.
- Problems caused by automatic and permanent data movement (e.g., within a garbage collection, see Section 19.1.19) are resolved without any further requirements on the application program, neither on the usage of the buffers, nor on the declaration of application routines that are involved in invoking MPI procedures.

All of these rules are valid for the mpi_f08 and mpi modules and independently of whether mpif.h uses explicit interfaces.

Advice to implementors. Some of these rules are already part of the Fortran 2003 standard, some of these requirements require the Fortran TS 29113 [47], and some of these requirements for MPI are beyond the scope of TS 29113. (End of advice to implementors.)

19.1.8 Additional Support for Fortran Register-Memory-Synchronization

As described in Section 19.1.17, a dummy call may be necessary to tell the compiler that registers are to be flushed for a given buffer or that accesses to a buffer may not be moved across a given point in the execution sequence. Only a Fortran binding exists for this call.

```
MPI_F_SYNC_REG(buf)
    INOUT buf
        initial address of buffer (choice)
```

Fortran 2008 binding

```
MPI_F_sync_reg(buf)
        TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
```

Fortran binding

```
MPI_F_SYNC_REG(BUF)
        <type> BUF(*)
```

This routine has no executable statements. It must be compiled in the MPI library in such a manner that a Fortran compiler cannot detect in the module that the routine has an empty body. It is used only to force the compiler to flush a cached register value of a variable or buffer back to memory (when necessary), or to invalidate the register value.
Rationale. This function is not available in other languages because it would not be useful. This routine has no ierror return argument because there is no operation that can fail. (End of rationale.)

Advice to implementors. This routine can be bound to a C routine to minimize the risk that the Fortran compiler can learn that this routine is empty (and that the call to this routine can be removed as part of an optimization). However, it is explicitly allowed to implement this routine within the mpi_f08 module according to the definition for the mpi module or mpif.h to circumvent the overhead of building the internal dope vector to handle the assumed-type, assumed-rank argument. (End of advice to implementors.)

Rationale. This routine is not defined with TYPE(*), DIMENSION(*), i.e., assumed size instead of assumed rank, because this would restrict the usability to “simply contiguous” arrays and would require overloading with another interface for scalar arguments. (End of rationale.)

Advice to users. If only a part of an array (e.g., defined by a subscript triplet) is used in a nonblocking routine, it is recommended to pass the whole array to MPI_F_SYNC_REG anyway to minimize the overhead of this no-operation call. Note that this routine need not be called if MPI_ASYNC_PROTECTS_NONBLOCKING is .TRUE. and the application fully uses the facilities of ASYNCHRONOUS arrays. (End of advice to users.)

19.1.9 Additional Support for Fortran Numeric Intrinsic Types

MPI provides a small number of named datatypes that correspond to named intrinsic types supported by C and Fortran. These include MPI_INTEGER, MPI_REAL, MPI_INT, MPI_DOUBLE, etc., as well as the optional types MPI_REAL4, MPI_REAL8, etc. There is a one-to-one correspondence between language declarations and MPI types.

Fortran (starting with Fortran 90) provides so-called KIND-parameterized types. These types are declared using an intrinsic type (one of INTEGER, REAL, COMPLEX, LOGICAL, and CHARACTER) with an optional integer KIND parameter that selects from among one or more variants. The specific meaning of different KIND values themselves are implementation dependent and not specified by the language. Fortran provides the KIND selection functions selected_real_kind for REAL and COMPLEX types, and selected_int_kind for INTEGER types that allow users to declare variables with a minimum precision or number of digits. These functions provide a portable way to declare KIND-parameterized REAL, COMPLEX, and INTEGER variables in Fortran. This scheme is backward compatible with Fortran 77. REAL and INTEGER Fortran variables have a default KIND if none is specified. Fortran DOUBLE PRECISION variables are of intrinsic type REAL with a nondefault KIND. The following two declarations are equivalent:

\begin{verbatim}
double precision x
real(KIND(0.0d0)) x
\end{verbatim}

MPI provides two orthogonal methods for handling communication buffers of numeric intrinsic types. The first method (see the following section) can be used when variables have been declared in a portable way—using default KIND or using KIND parameters obtained with the selected_int_kind or selected_real_kind functions. With this method, MPI...
automatically selects the correct data size (e.g., 4 or 8 bytes) and provides representation conversion in heterogeneous environments. The second method (see “Support for size-specific MPI Datatypes” on page 810) gives the user complete control over communication by exposing machine representations.

Parameterized Datatypes with Specified Precision and Exponent Range

MPI provides named datatypes corresponding to standard Fortran 77 numeric types: MPI_INTEGER, MPI_COMPLEX, MPI_REAL, MPI_DOUBLE_PRECISION and MPI_DOUBLE_COMPLEX. MPI automatically selects the correct data size and provides representation conversion in heterogeneous environments. The mechanism described in this section extends this model to support portable parameterized numeric types.

The model for supporting portable parameterized types is as follows. Real variables are declared (perhaps indirectly) using selected_real_kind(p, r) to determine the KIND parameter, where p is decimal digits of precision and r is an exponent range. Implicitly MPI maintains a two-dimensional array of predefined MPI datatypes D(p, r). D(p, r) is defined for each value of (p, r) supported by the compiler, including pairs for which one value is unspecified. Attempting to access an element of the array with an index (p, r) not supported by the compiler is erroneous. MPI implicitly maintains a similar array of COMPLEX datatypes. For integers, there is a similar implicit array related to selected_int_kind and indexed by the requested number of digits r. Note that the predefined datatypes contained in these implicit arrays are not the same as the named MPI datatypes MPI_REAL, etc., but a new set.

Advice to implementors. The above description is for explanatory purposes only. It is not expected that implementations will have such internal arrays. (End of advice to implementors.)

Advice to users. selected_real_kind() maps a large number of (p,r) pairs to a much smaller number of KIND parameters supported by the compiler. KIND parameters are not specified by the language and are not portable. From the language point of view intrinsic types of the same base type and KIND parameter are of the same type. In order to allow interoperability in a heterogeneous environment, MPI is more stringent. The corresponding MPI datatypes match if and only if they have the same (p,r) value (REAL and COMPLEX) or r value (INTEGER). Thus MPI has many more datatypes than there are fundamental language types. (End of advice to users.)

MPI_TYPE_CREATE_F90_REAL(p, r, newtype)

IN p precision, in decimal digits (integer)
IN r decimal exponent range (integer)
OUT newtype the requested MPI datatype (handle)

C binding
int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_create_f90_real(p, r, newtype, ierror)
INTEGER, INTENT(IN) :: p, r
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)
 INTEGER P, R, NEWTYPE, IERROR

 This function returns a predefined MPI datatype that matches a REAL variable of KIND selected_real_kind(p, r). In the model described above it returns a handle for the element D(p, r). Either p or r may be omitted from calls to selected_real_kind(p, r) (but not both). Analogously, either p or r may be set to MPI_UNDEFINED. In communication, an MPI datatype A returned by MPI_TYPE_CREATE_F90_REAL matches a datatype B if and only if B was returned by MPI_TYPE_CREATE_F90_REAL called with the same values for p and r or B is a duplicate of such a datatype. Restrictions on using the returned datatype with the “external32” data representation are given on page 809.

 It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_COMPLEX(p, r, newtype)
 IN p precision, in decimal digits (integer)
 IN r decimal exponent range (integer)
 OUT newtype the requested MPI datatype (handle)

C binding

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)

Fortran 2008 binding

MPI_Type_create_f90_complex(p, r, newtype, ierror)
 INTEGER, INTENT(IN) :: p, r
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)
 INTEGER P, R, NEWTYPE, IERROR

 This function returns a predefined MPI datatype that matches a COMPLEX variable of KIND selected_real_kind(p, r). Either p or r may be omitted from calls to selected_real_kind(p, r) (but not both). Analogously, either p or r may be set to MPI_UNDEFINED. Matching rules for datatypes created by this function are analogous to the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL. Restrictions on using the returned datatype with the “external32” data representation are given on page 809.

 It is erroneous to supply values for p and r not supported by the compiler.
MPI_TYPE_CREATE_F90_INTEGER(r, newtype)

IN r decimal exponent range, i.e., number of decimal digits (integer)

OUT newtype the requested MPI datatype (handle)

C binding
int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

Fortran 2008 binding
MPI_Type_create_f90_integer(r, newtype, ierror)

 INTEGER, INTENT(IN) :: r
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)

 INTEGER R, NEWTYPE, IERROR

 This function returns a predefined MPI datatype that matches an INTEGER variable of KIND selected_int_kind(r). Matching rules for datatypes created by this function are analogous to the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL. Restrictions on using the returned datatype with the "external32" data representation are given on page 809.

 It is erroneous to supply a value for r that is not supported by the compiler.

Example 19.1. Fortran selected integer and real kind buffers in MPI communications.

integer longtype, quadtype
integer, parameter :: long = selected_int_kind(15)
integer(long) ii(10)
real(selected_real_kind(30)) x(10)
call MPI_TYPE_CREATE_F90_INTEGER(15, longtype, ierror)
call MPI_TYPE_CREATE_F90_REAL(30, MPI_UNDEFINED, quadtype, ierror)
...
call MPI_SEND(ii, 10, longtype, ...)
call MPI_SEND(x, 10, quadtype, ...)

Advice to users. The datatypes returned by the procedures in Example 19.1 are predefined datatypes. They cannot be freed; they do not need to be committed; they can be used with predefined reduction operations. There are two situations in which they behave differently syntactically, but not semantically, from the MPI named predefined datatypes.

1. MPI_TYPE_GET_ENVELOPE returns special combiners that allow a program to retrieve the values of p and r.

2. Because the datatypes are not named, they cannot be used as compile-time initializers or otherwise accessed before a call to one of the MPI_TYPE_CREATE_F90_XXX routines.
If a variable was declared specifying a nondefault KIND value that was not obtained with selected_real_kind() or selected_int_kind(), the only way to obtain a matching MPI datatype is to use the size-based mechanism described in the next section. *(End of advice to users.)*

Advice to implementors. An application may often repeat a call to MPI_TYPE_CREATE_F90_XXX with the same combination of (XXX,p,r). The application is not allowed to free the returned predefined, unnamed datatype handles. To prevent the creation of a potentially huge amount of handles, a high quality MPI implementation should return the same datatype handle for the same (REAL/COMPLEX/INTEGER,p,r) combination. Checking for the combination (p,r) in the preceding call to MPI_TYPE_CREATE_F90_XXX and using a hash table to find formerly generated handles should limit the overhead of finding a previously generated datatype with same combination of (XXX,p,r). *(End of advice to implementors.)*

Rationale. The MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER interface needs as input the original range and precision values to be able to define useful and compiler-independent external (Section 14.5.2) or user-defined (Section 14.5.3) data representations, and in order to be able to perform automatic and efficient data conversions in a heterogeneous environment. *(End of rationale.)*

We now specify how the datatypes described in this section behave when used with the "external32" external data representation described in Section 14.5.2.

The "external32" representation specifies data formats for integer and floating point values. Integer values are represented in two’s complement big-endian format. Floating point values are represented by one of three IEEE formats. These are the IEEE “Single,” “Double,” and “Double Extended” formats, requiring 4, 8, and 16 bytes of storage, respectively. For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16 bytes, with 15 exponent bits, bias = +10383, 112 fraction bits, and an encoding analogous to the “Double” format.

The "external32" representations of the datatypes returned by MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER are given by the following rules.

For MPI_TYPE_CREATE_F90_REAL:

```fortran
if (p > 33) or (r > 4931) then external32 representation is undefined
else if (p > 15) or (r > 307) then external32_size = 16
else if (p > 6) or (r > 37) then external32_size = 8
else external32_size = 4
```

For MPI_TYPE_CREATE_F90_COMPLEX: twice the size as for MPI_TYPE_CREATE_F90_REAL.

For MPI_TYPE_CREATE_F90_INTEGER:

```fortran
if (r > 38) then external32 representation is undefined
else if (r > 18) then external32_size = 16
else if (r > 9) then external32_size = 8
else if (r > 4) then external32_size = 4
else if (r > 2) then external32_size = 2
else external32_size = 1
```
If the "external32" representation of a datatype is undefined, the result of using the datatype
directly or indirectly (i.e., as part of another datatype or through a duplicated datatype)
in operations that require the "external32" representation is undefined. These operations in-
clude MPI_PACK_EXTERNAL, MPI_UNPACK_EXTERNAL, and many MPI_FILE functions,
when the "external32" data representation is used. The ranges for which the "external32"
representation is undefined are reserved for future standardization.

Support for Size-specific MPI Datatypes

MPI provides named datatypes corresponding to optional Fortran 77 numeric types that
contain explicit byte lengths—MPI_REAL4, MPI_INTEGER8, etc. This section describes a
mechanism that generalizes this model to support all Fortran numeric intrinsic types.
We assume that for each typeclass (integer, real, complex) and each word size \(n \) there
is a unique machine representation. For every pair \((\text{typeclass}, n)\) supported by a compiler,
MPI must provide a named size-specific datatype. The name of this datatype is of the form
MPI_<\text{typeclass}><n> in C and Fortran where \(<\text{typeclass}>\) is one of REAL, INTEGER,
or COMPLEX, and \(<n>\) is the length in bytes of the machine representation. This datatype
locally matches all variables of type \((\text{typeclass}, n)\) in Fortran. The list of names for such
types includes:

- MPI_REAL4
- MPI_REAL8
- MPI_REAL16
- MPI_COMPLEX8
- MPI_COMPLEX16
- MPI_COMPLEX32
- MPI_INTEGER1
- MPI_INTEGER2
- MPI_INTEGER4
- MPI_INTEGER8
- MPI_INTEGER16

One datatype is required for each representation supported by the Fortran compiler.

Rationale. Particularly for the longer floating-point types, C and Fortran may use
different representations. For example, a Fortran compiler may define a 16-byte REAL
type with 33 decimal digits of precision while a C compiler may define a 16-byte long
double type that implements an 80-bit (10 byte) extended precision floating point
value. Both of these types are 16 bytes long, but they are not interoperable. Thus,
these types are defined by Fortran, even though C may define types of the same length.
(End of rationale.)

To be backward compatible with the interpretation of these types in MPI-1, we as-
sume that the nonstandard declarations REAL*n, INTEGER*n, always create a variable whose
representation is of size \(n \). These datatypes may also be used for variables declared with
\text{KIND=INT8/16/32/64} or \text{KIND=REAL32/64/128}, which are defined in the ISO_FORTRAN_ENV in-
trinsic module. Note that the MPI datatypes and the REAL*n, INTEGER*n declarations count
bytes whereas the Fortran KIND values count bits. All these datatypes are predefined.

The following function allows a user to obtain a size-specific MPI datatype for any
intrinsic Fortran type.
19.1 Support for Fortran

MPI_TYPE_MATCH_SIZE(typeclass, size, datatype)

IN typeclass generic type specifier (integer)
IN size size, in bytes, of representation (integer)
OUT datatype datatype with correct type, size (handle)

C binding
int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *datatype)

Fortran 2008 binding
MPI_Type_match_size(typeclass, size, datatype, ierror)
 INTEGER, INTENT(IN) :: typeclass, size
 TYPE(MPI_Datatype), INTENT(OUT) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, DATATYPE, IERROR)
 INTEGER TYPECLASS, SIZE, DATATYPE, IERROR

 typeclass is one of MPI_TYPECLASS_REAL, MPI_TYPECLASS_INTEGER and
 MPI_TYPECLASS_COMPLEX, corresponding to the desired typeclass. The function returns
 an MPI datatype matching a local variable of type (typeclass, size).

 This function returns a reference (handle) to one of the predefined named datatypes,
 not a duplicate. This type cannot be freed. MPI_TYPE_MATCH_SIZE can be used to
 obtain a size-specific type that matches a Fortran numeric intrinsic type by first calling
 storage_size() in order to compute the variable size in bits, dividing it by eight, and then
 calling MPI_TYPE_MATCH_SIZE to find a suitable datatype. In C, one can use the C
 operator sizeof() (which returns the size in bytes) instead of
 storage_size() (which returns the size in bits). In addition, for variables of default kind the variable’s size can be computed
 by a call to MPI_TYPE_GET_EXTENT, if the typeclass is known. It is erroneous to specify
 a size not supported by the compiler.

Rationale. This is a convenience function. Without it, it can be tedious to find the
 correct named type. See note to implementors below. (End of rationale.)

Advice to implementors. This function could be implemented as a series of tests.

Example 19.2. Example of an implementation of MPI_TYPE_MATCH_SIZE.

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *rtype)
{
 switch(typeclass) {
 case MPI_TYPECLASS_REAL: switch(size) {
 case 4: *rtype = MPI_REAL4; return MPI_SUCCESS;
 case 8: *rtype = MPI_REAL8; return MPI_SUCCESS;
 default: error(...);
 }
 case MPI_TYPECLASS_INTEGER: switch(size) {
 case 4: *rtype = MPI_INTEGER4; return MPI_SUCCESS;
 case 8: *rtype = MPI_INTEGER8; return MPI_SUCCESS;
 default: error(...);
 }
 ... etc. ...
Communication With Size-specific Types

The usual type matching rules apply to size-specific datatypes: a value sent with datatype MPI_<TYPECLASS><n> can be received with this same datatype on another MPI process. Most modern computers use two’s complement for integers and IEEE format for floating point. Thus, communication using these size-specific datatypes will not entail loss of precision or truncation errors.

Advice to users. Care is required when communicating in a heterogeneous environment. Consider the following code:

```
Example 19.3. Unsafe heterogeneous communication due to the use of MPI_TYPE_MATCH_SIZE.

real(selected_real_kind(5)) x(100)
size = storage_size(x) / 8
call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)
if (myrank .eq. 0) then
  ... initialize x ...
call MPI_SEND(x, xtype, 100, 1, ...)
else if (myrank .eq. 1) then
  call MPI_RECV(x, xtype, 100, 0, ...)
endif
```

This may not work in a heterogeneous environment if the value of size is not the same on the MPI processes with ranks 0 and 1. There should be no problem in a homogeneous environment. To communicate in a heterogeneous environment, there are at least four options. The first is to declare variables of default type and use the MPI datatypes for these types, e.g., declare a variable of type REAL and use MPI_REAL. The second is to use selected_real_kind or selected_int_kind and with the functions of the previous section. The third is to declare a variable that is known to be the same size on all architectures (e.g., selected_real_kind(12) on almost all compilers will result in an 8-byte representation). The fourth is to carefully check representation size before communication. This may require explicit conversion to a variable of size that can be communicated and handshaking between sender and receiver to agree on a size.

Note finally that using the "external32" representation for I/O requires explicit attention to the representation sizes. Consider the following code:

```
Example 19.4. Unsafe heterogeneous MPI file I/O due to the use of MPI_TYPE_MATCH_SIZE.

real(selected_real_kind(5)) x(100)
```
size = storage_size(x) / 8
call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then
 call MPI_FILE_OPEN(MPI_COMM_SELF, 'foo',
 MPI_MODE_CREATE+MPI_MODE_WRONLY,
 MPI_INFO_NULL, fh, ierror)
 call MPI_FILE_SET_VIEW(fh, zero, xtype, xtype, 'external32',&
 MPI_INFO_NULL, ierror)
 call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)
 call MPI_FILE_CLOSE(fh, ierror)
endif

call MPI_BARRIER(MPI_COMM_WORLD, ierror)

if (myrank .eq. 1) then
 call MPI_FILE_OPEN(MPI_COMM_SELF, 'foo', MPI_MODE_RDONLY, &
 MPI_INFO_NULL, fh, ierror)
 call MPI_FILE_SET_VIEW(fh, zero, xtype, xtype, 'external32',&
 MPI_INFO_NULL, ierror)
 call MPI_FILE_READ(fh, x, 100, xtype, status, ierror)
 call MPI_FILE_CLOSE(fh, ierror)
endif

If the MPI processes with ranks 0 and 1 are on different machines, this code may not work as expected if the size is different on the two machines. (End of advice to users.)

19.1.10 Problems With Fortran Bindings for MPI

This section discusses a number of problems that may arise when using MPI in a Fortran program. It is intended as advice to users, and clarifies how MPI interacts with Fortran. It is intended to clarify, not add to, this standard.

As noted in the original MPI specification, the interface violates the Fortran standard in several ways. While these may cause few problems for Fortran 77 programs, they become more significant for Fortran 90 programs, so that users must exercise care when using new Fortran 90 features. With Fortran 2008 and the semantics defined in TS 29113, most violations are resolved, and this is hinted at in an addendum to each item. The violations were originally adopted and have been retained because they are important for the usability of MPI. The rest of this section describes the potential problems in detail.

The following MPI features are inconsistent with Fortran 90 and Fortran 77.

1. An MPI subroutine with a choice argument may be called with different argument types. When using the mpi_f08 module together with a compiler that supports Fortran 2008 with TS 29113, this problem is resolved.

2. An MPI subroutine with an assumed-size dummy argument may be passed an actual scalar argument. This is only solved for choice buffers through the use of DIMENSION(..).

3. Nonblocking and split-collective MPI routines assume that actual arguments are passed by address or descriptor and that arguments and the associated data are not copied
on entrance to or exit from the subroutine. This problem is solved with the use of the
\texttt{ASYNCHRONOUS} attribute.

4. An MPI implementation may read or modify user data (e.g., communication buffers
used by nonblocking communications) concurrently with a user program that is ex-
ecuting outside of MPI calls. This problem is resolved by relying on the extended
semantics of the \texttt{ASYNCHRONOUS} attribute as specified in TS 29113.

5. Several named “constants,” such as \texttt{MPI_BOTTOM}, \texttt{MPI_IN_PLACE},
\texttt{MPI_STATUS_IGNORE}, \texttt{MPI_STATUSES_IGNORE}, \texttt{MPI_ERRCODES_IGNORE},
\texttt{MPI_UNWEIGHTED}, \texttt{MPI_WEIGHTS_EMPTY}, \texttt{MPI_ARGV_NULL}, and \texttt{MPI_ARGVS_NULL}
are not ordinary Fortran constants and require a special implementation. See Sec-
tion 2.5.4 for more information.

6. The memory allocation routine \texttt{MPI_ALLOC_MEM} cannot be used from
Fortran 77/90/95 without a language extension (for example, Cray pointers) that
allows the allocated memory to be associated with a Fortran variable. Therefore,
address sized integers were used in MPI-2.0 – MPI-2.2. In Fortran 2003,
\texttt{TYPE(C_PTR)} entities were added, which allow a standard-conforming implementation
of the semantics of \texttt{MPI_ALLOC_MEM}. In MPI-3.0 and later, \texttt{MPI_ALLOC_MEM} has
an additional, overloaded interface to support this language feature. The use of Cray
pointers is deprecated. The \texttt{mpi_f08} module only supports \texttt{TYPE(C_PTR)} pointers.

Additionally, MPI is inconsistent with Fortran 77 in a number of ways, as noted below.

- MPI identifiers exceed 6 characters.
- MPI identifiers may contain underscores after the first character.
- MPI requires an include file, \texttt{mpif.h} (deprecated). On systems that do not support
include files, the implementation should specify the values of named constants.
- Many routines in MPI have \texttt{KIND}-parameterized integers (e.g., \texttt{MPI_ADDRESS_KIND} and
\texttt{MPI_OFFSET_KIND}) that hold address information. On systems that do not support
Fortran 90-style parameterized types, \texttt{INTEGER*8} or \texttt{INTEGER} should be used instead.

MPI-1 contained several routines that take address-sized information as input or return
address-sized information as output. In C such arguments were of type
\texttt{MPI_Aint} and in Fortran of type \texttt{INTEGER}. On machines where integers are smaller than
addresses, these routines can lose information. In MPI-2 the use of these functions has
been deprecated and they have been replaced by routines taking \texttt{INTEGER} arguments of
\texttt{KIND=\texttt{MPI_ADDRESS_KIND}}. A number of MPI-2 functions also take \texttt{INTEGER} arguments of
nondefault \texttt{KIND}. See Section 2.6 and Section 5.1.1 for more information.

Sections 19.1.11 through 19.1.19 describe several problems in detail that concern the
interaction of MPI and Fortran as well as their solutions. Some of these solutions require special
capabilities from the compilers. Major requirements are summarized in Section 19.1.7.

19.1.11 Problems Due to Strong Typing

All MPI functions with choice arguments associate actual arguments of different Fortran
datatypes with the same dummy argument. This is not allowed by Fortran 77, and in
Fortran 90, it is technically only allowed if the function is overloaded with a different function for each type (see also Section 19.1.6). In C, the use of void* formal arguments avoids these problems. Similar to C, with Fortran 2008 with TS 29113 (and later) together with the mpi_f08 module, the problem is avoided by declaring choice arguments with TYPE(*), DIMENSION(..), i.e., as assumed-type and assumed-rank dummy arguments.

Using INCLUDE 'mpif.h' (deprecated), the following code fragment is technically invalid and may generate a compile-time error.

```fortran
integer i(5)
real x(5)
... call mpi_send(x, 5, MPI_REAL, ...)
call mpi_send(i, 5, MPI_INTEGER, ...)
```

In practice, it is rare for compilers to do more than issue a warning. When using either the mpi_f08 or mpi module, the problem is usually resolved through the assumed-type and assumed-rank declarations of the dummy arguments, or with a compiler-dependent mechanism that overrides type checking for choice arguments.

It is also technically invalid in Fortran to pass a scalar actual argument to an array dummy argument that is not a choice buffer argument. Thus, when using the mpi_f08 or mpi module, the following code fragment usually generates an error since the dims and periods arguments to MPI_CART_CREATE are declared as assumed size arrays INTEGER :: DIMS(*) and LOGICAL :: PERIODS(*)

Example 19.5. It is erroneous to pass a variable instead of an array with one element.

```fortran
! ---------------- THIS EXAMPLE IS ERRONEOUS ----------------
USE mpi_f08 ! or USE mpi
INTEGER size
CALL MPI_Cart_create(comm_old, 1, size, .TRUE., .TRUE., comm_cart, ierror)
```

Although this is a nonconforming MPI call, compiler warnings are not expected (but may occur) when using INCLUDE 'mpif.h' (deprecated) and this include file does not use Fortran explicit interfaces.

19.1.12 Problems Due to Data Copying and Sequence Association with Subscript Triplets

Arrays with subscript triplets describe Fortran subarrays with or without strides, e.g.,

Example 19.6. Fortran subarrays as actual buffer in MPI procedures.

```fortran
REAL a(100,100,100)
CALL MPI_Send(a(11:17, 12:99:3, 1:100), 7*30*100, MPI_REAL, ...)
```

The handling of subscript triplets depends on the value of the constant MPI_SUBARRAYS_SUPPORTED:

- If MPI_SUBARRAYS_SUPPORTED equals .TRUE.:

 Choice buffer arguments are declared as TYPE(*), DIMENSION(..). For example, consider the following code fragment:
Example 19.7. Fortran subarrays without restrictions if MPI_SUBARRAYS_SUPPORTED equals .TRUE.

REAL s(100), r(100)
CALL MPI_Isend(s(1:100:5), 3, MPI_REAL, ..., rq, ierror)
CALL MPI_Wait(rq, status, ierror)
CALL MPI_Irecv(r(1:100:5), 3, MPI_REAL, ..., rq, ierror)
CALL MPI_Wait(rq, status, ierror)

In this case, the individual elements s(1), s(6), and s(11) are sent between the start of MPI_Isend and the end of MPI_Wait even though the compiled code will not copy s(1:100:5) to a real contiguous temporary scratch buffer. Instead, the compiled code will pass a descriptor to MPI_Isend that allows MPI to operate directly on s(1), s(6), s(11), ..., s(96). The called MPI_Isend routine will take only the first three of these elements due to the type signature “3, MPI_REAL”.

All nonblocking MPI functions (e.g., MPI_Isend, MPI_Put, MPI_File_Write_All_Begin) behave as if the user-specified elements of choice buffers are copied to a contiguous scratch buffer in the MPI runtime environment. All datatype descriptions (in the example above, “3, MPI_REAL”) read and store data from and to this virtual contiguous scratch buffer. Displacements in MPI derived datatypes are relative to the beginning of this virtual contiguous scratch buffer. Upon completion of a nonblocking receive operation (e.g., when MPI_Wait on a corresponding MPI_Request returns), it is as if the received data has been copied from the virtual contiguous scratch buffer back to the noncontiguous application buffer. In the example above, r(1), r(6), and r(11) are guaranteed to be defined with the received data when MPI_Wait returns.

Note that the above definition does not supercede restrictions about buffers used with nonblocking operations (e.g., those specified in Section 3.7.2).

Advice to implementors. The Fortran descriptor for TYPE(*), DIMENSION(...) arguments contains enough information that, if desired, the MPI library can make a real contiguous copy of noncontiguous user buffers when the nonblocking operation is started, and release this buffer not before the nonblocking communication has completed (e.g., the MPI_Wait routine). Efficient implementations may avoid such additional memory-to-memory data copying. (End of advice to implementors.)

Rationale. If MPI_SUBARRAYS_SUPPORTED equals .TRUE., non-contiguous buffers are handled inside the MPI library instead of by the compiler through argument association conventions. Therefore, the scope of MPI library scratch buffers can be from the beginning of a nonblocking operation until the completion of the operation although beginning and completion are implemented in different routines. (End of rationale.)

• If MPI_SUBARRAYS_SUPPORTED equals .FALSE.:

In this case, the use of Fortran arrays with subscript triplets as actual choice buffer arguments in any nonblocking MPI operation (which also includes persistent request, and split collectives) may cause undefined behavior. They may, however, be used in blocking MPI operations.
Implicit in MPI is the idea of a contiguous chunk of memory accessible through a linear address space. MPI copies data to and from this memory. An MPI program specifies the location of data by providing memory addresses and offsets. In the C language, sequence association rules plus pointers provide all the necessary low-level structure.

In Fortran, array data is not necessarily stored contiguously. For example, the array section \(A(1:N:2) \) involves only the elements of \(A \) with indices 1, 3, 5, \ldots. The same is true for a pointer array whose target is such a section. Most compilers ensure that an array that is a dummy argument is held in contiguous memory if it is declared with an explicit shape (e.g., \(B(N) \)) or is of assumed size (e.g., \(B(*) \)). If necessary, they do this by making a copy of the array into contiguous memory.\(^1\)

Because MPI dummy buffer arguments are assumed-size arrays if \(\text{MPI_SUBARRAYS_SUPPORTED} \) equals .FALSE., this leads to a serious problem for a nonblocking call: the compiler copies the temporary array back on return but MPI continues to copy data to the memory that held it. For example, consider the following code fragment:

```fortran
Example 19.8.  Fortran subarrays cannot be used if \text{MPI\_SUBARRAYS\_SUPPORTED} equals .FALSE..!

```

```fortran
! -- THIS EXAMPLE IS ERRONEOUS if \text{MPI\_SUBARRAYS\_SUPPORTED}==.FALSE. --
real a(100)
call MPI\_IRECV(a(1:100:2), MPI\_REAL, 50, ...)
```

Since the first dummy argument to MPI_IRECV is an assumed-size array (<\text{type}> buf(*)), the array section \(a(1:100:2) \) is copied to a temporary before being passed to MPI_IRECV, so that it is contiguous in memory. MPI_IRECV returns immediately, and data is copied from the temporary back into the array \(a \). Sometime later, MPI may write to the address of the deallocated temporary. Copying is also a problem for MPI_ISEND since the temporary array may be deallocated before the data has all been sent from it.

Most Fortran 90 compilers do not make a copy if the actual argument is the whole of an explicit-shape or assumed-size array or is a “simply contiguous” section such as \(A(1:N) \) of such an array. (“Simply contiguous” is defined in the next paragraph.) Also, many compilers treat allocatable arrays the same as they treat explicit-shape arrays in this regard (though we know of one that does not). However, the same is not true for assumed-shape and pointer arrays; since they may be discontiguous, copying is often done. It is this copying that causes problems for MPI as described in the previous paragraph.

According to the Fortran 2008 Standard, Section 6.5.4, a “simply contiguous” array section is

```fortran
name ( [:,]... ([<\text{subscript}>]:[<\text{subscript}>] [,<\text{subscript}>]... )
```

That is, there are zero or more dimensions that are selected in full, then one dimension selected without a stride, then zero or more dimensions that are selected with a simple

\(^1\)Technically, the Fortran standard is worded to allow noncontiguous storage of any array data, unless the dummy argument has the \text{CONTIGUOUS} attribute.
subscript. The compiler can detect from analyzing the source code that the array is contiguous. Examples are

\[A(1:N), A(:,N), A(:,1:N,1), A(1:6,N), A(:,:,1:N) \]

Because of Fortran’s column-major ordering, where the first index varies fastest, a “simply contiguous” section of a contiguous array will also be contiguous.

The same problem can occur with a scalar argument. A compiler may make a copy of scalar dummy arguments within a called procedure when passed as an actual argument to a choice buffer routine. That this can cause a problem is illustrated by the example

Example 19.9. Problem with scalar arguments.

```fortran
real :: a
call user1(a,rq)
call MPI_WAIT(rq,status,ierr)
write (*,*) a

subroutine user1(buf,request)
call MPI_Irecv(buf,...,request,...)
end
```

If \(a \) is copied, MPI_Irecv will alter the copy when it completes the communication and will not alter \(a \) itself.

Note that copying will almost certainly occur for an argument that is a nontrivial expression (one with at least one operator or function call), a section that does not select a contiguous part of its parent (e.g., \(A(1:n:2) \)), a pointer whose target is such a section, or an assumed-shape array that is (directly or indirectly) associated with such a section.

If a compiler option exists that inhibits copying of arguments, in either the calling or called procedure, this must be employed.

If a compiler makes copies in the calling procedure of arguments that are explicit-shape or assumed-size arrays, “simply contiguous” array sections of such arrays, or scalars, and if no compiler option exists to inhibit such copying, then the compiler cannot be used for applications that use MPI_GET_ADDRESS, or any nonblocking MPI routine. If a compiler copies scalar arguments in the called procedure and there is no compiler option to inhibit this, then this compiler cannot be used for applications that use memory references across subroutine calls as in the example above.

19.1.13 Problems Due to Data Copying and Sequence Association with Vector Subscripts

Fortran arrays with **vector** subscripts describe subarrays containing a possibly irregular set of elements

Example 19.10. Fortran irregular subarrays through using vector subscripts.

```fortran
REAL a(100)
call MPI_Send(a(7:9,23,81,82)), 5, MPI_REAL, ...
```
Fortran arrays with a vector subscript must not be used as actual choice buffer arguments in any nonblocking or split collective MPI operations. They may, however, be used in blocking MPI operations.

19.1.14 Special Constants

MPI requires a number of special “constants” that cannot be implemented as normal Fortran constants, e.g., MPI_BOTTOM. The complete list can be found in Section 2.5.4. In C, these are implemented as constant pointers, usually as NULL and are used where the function prototype calls for a pointer to a variable, not the variable itself.

In Fortran, using special values for the constants (e.g., by defining them through parameter statements) is not possible because an implementation cannot distinguish these values from valid data. Typically these constants are implemented as predefined static variables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that the target compiler passes data by address. Inside the subroutine, the address of the actual choice buffer argument can be compared with the address of such a predefined static variable.

These special constants also cause an exception with the usage of Fortran INTENT: with USE mpi_f08, the attributes INTENT(IN), INTENT(OUT), and INTENT(INOUT) are used in the Fortran interface. In most cases, INTENT(IN) is used if the C interface uses call-by-value. For all buffer arguments and for dummy arguments that may be modified and allow one of these special constants as input, an INTENT is not specified.

19.1.15 Fortran Derived Types

MPI supports passing Fortran entities of BIND(C) and SEQUENCE derived types to choice dummy arguments, provided no type component has the ALLOCATABLE or POINTER attribute.

The following code fragment shows some possible ways to send scalars or arrays of interoperable derived types in Fortran. The example assumes that all data is passed by address.

Example 19.11. Fortran array of derived Fortran types: the struct MPI derived type should be resized.

```fortran
  type, BIND(C) :: mytype
    integer :: i
    real :: x
    double precision :: d
    logical :: l
  end type mytype

  type(mytype) :: foo, fooarr(5)
  integer :: blocklen(4), dtype(4)
  integer(KIND=MPI_ADDRESS_KIND) :: disp(4), base, lb, extent

  call MPI_GET_ADDRESS(foo %i, disp(1), ierr)
  call MPI_GET_ADDRESS(foo %x, disp(2), ierr)
  call MPI_GET_ADDRESS(foo %d, disp(3), ierr)
  call MPI_GET_ADDRESS(foo %l, disp(4), ierr)

  base = disp(1)
  disp(1) = disp(1) - base
```
disp(2) = disp(2) - base
disp(3) = disp(3) - base
disp(4) = disp(4) - base

blocklen(1) = 1
blocklen(2) = 1
blocklen(3) = 1
blocklen(4) = 1
dtype(1) = MPI_INTEGER
dtype(2) = MPI_REAL
dtype(3) = MPI_DOUBLE_PRECISION
dtype(4) = MPI_LOGICAL

call MPI_TYPE_CREATE_STRUCT(4, blocklen, disp, dtype, newtype, ierr)
call MPI_TYPE_COMMIT(newtype, ierr)
call MPI_SEND(foo%i, 1, newtype, dest, tag, comm, ierr)
! or
call MPI_SEND(foo, 1, newtype, dest, tag, comm, ierr)
! expects that base == address(foo%i) == address(foo)
call MPI_GET_ADDRESS(fooarr(1), disp(1), ierr)
call MPI_GET_ADDRESS(fooarr(2), disp(2), ierr)
extent = disp(2) - disp(1)
lb = 0
call MPI_TYPE_CREATE_RESIZED(newtype, lb, extent, newarrtype, ierr)
call MPI_TYPE_COMMIT(newarrtype, ierr)
call MPI_SEND(fooarr, 5, newarrtype, dest, tag, comm, ierr)

Using the derived type variable foo instead of its first basic type element foo%i may be impossible if the MPI library implements choice buffer arguments through overloading instead of using TYPE(*), DIMENSION(..), or through a nonstandardized extension such as !$PRAGMA IGNORE_TKR; see Section 19.1.6.

To use a derived type in an array requires a correct extent of the datatype handle to take care of the alignment rules applied by the compiler. These alignment rules may imply that there are gaps between the components of a derived type, and also between the subsequent elements of an array of a derived type. The extent of an interoperable derived type (i.e., defined with BIND(C)) and a SEQUENCE derived type with the same content may be different because C and Fortran may apply different alignment rules. As recommended in the advice to users in Section 5.1.6, one should add an additional fifth structure element with one numerical storage unit at the end of this structure to force in most cases that the array of structures is contiguous. Even with such an additional element, one should keep this resizing due to the special alignment rules that can be used by the compiler for structures, as also mentioned in this advice.

Using the extended semantics defined in TS 29113, it is also possible to use entities or derived types without either the BIND(C) or the SEQUENCE attribute as choice buffer arguments; some additional constraints must be observed, e.g., no ALLOCATABLE or POINTER type components may exist. In this case, the base address in the example must be changed to become the address of foo instead of foo%i, because the Fortran compiler may rearrange
type components or add padding. Sending the structure foo should then also be performed by providing it (and not foo%i) as actual argument for MPI_Send.

19.1.16 Optimization Problems, an Overview

MPI provides operations that may be hidden from the user code and run concurrently with it, accessing the same memory as user code. Examples include the data transfer for an MPI_Irecv. The optimizer of a compiler will assume that it can recognize periods when a copy of a variable can be kept in a register without reloading from or storing to memory. When the user code is working with a register copy of some variable while the hidden operation reads or writes the memory copy, problems occur. These problems are independent of the Fortran support method; i.e., they occur with the mpi_f08 module, the mpi module, and the (deprecated) mpif.h include file.

This section shows four problematic usage areas (the abbreviations in parentheses are used in the table below):

- Use of nonblocking routines or persistent requests (*Nonbl.*).
- Use of one-sided routines (*1-sided*).
- Use of MPI parallel file I/O split collective operations (*Split*).
- Use of MPI_BOTTOM together with absolute displacements in MPI datatypes, or relative displacements between two variables in such datatypes (*Bottom*).

The following compiler optimization strategies (valid for serial code) may cause problems in MPI applications:

- Code movement and register optimization problems; see Section 19.1.17.
- Temporary data movement and temporary memory modifications; see Section 19.1.18.
- Permanent data movement (e.g., through garbage collection); see Section 19.1.19.

Table 19.2 shows the only usage areas where these optimization problems may occur.

The solutions in the following sections are based on compromises:

- to minimize the burden for the application programmer, e.g., as shown in Sections Solutions through The (Poorly Performing) Fortran VOLATILE Attribute on pages 824–828,

<table>
<thead>
<tr>
<th>Optimization ...</th>
<th>... may cause a problem in following usage areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonbl.</td>
</tr>
<tr>
<td>Code movement and register optimization</td>
<td>yes</td>
</tr>
<tr>
<td>Temporary data movement</td>
<td>yes</td>
</tr>
<tr>
<td>Permanent data movement</td>
<td>yes</td>
</tr>
</tbody>
</table>
• to minimize the drawbacks on compiler based optimization, and
• to minimize the requirements defined in Section 19.1.7.

19.1.17 Problems with Code Movement and Register Optimization

Nonblocking Operations

If a variable is local to a Fortran subroutine (i.e., not in a module or a COMMON block), the compiler will assume that it cannot be modified by a called subroutine unless it is an actual argument of the call. In the most common linkage convention, the subroutine is expected to save and restore certain registers. Thus, the optimizer will assume that a register that held a valid copy of such a variable before the call will still hold a valid copy on return.

<table>
<thead>
<tr>
<th>Source</th>
<th>compiled as</th>
<th>or compiled as</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL :: buf, b1</td>
<td>REAL :: buf, b1</td>
<td>REAL :: buf, b1</td>
</tr>
<tr>
<td>call MPI_IRECV(buf,...req)</td>
<td>call MPI_IRECV(buf,...req)</td>
<td>call MPI_IRECV(buf,...req)</td>
</tr>
<tr>
<td>register = buf</td>
<td>b1 = buf</td>
<td>b1 = buf</td>
</tr>
<tr>
<td>call MPI_WAIT(req,...)</td>
<td>call MPI_WAIT(req,...)</td>
<td>call MPI_WAIT(req,...)</td>
</tr>
<tr>
<td>b1 = buf</td>
<td>b1 = register</td>
<td></td>
</tr>
</tbody>
</table>

Example 19.12 shows extreme, but allowed, possibilities. MPI_WAIT on a concurrent thread modifies buf between the invocation of MPI_Irecv and the completion of MPI_WAIT. But the compiler cannot see any possibility that buf can be changed after MPI_Irecv has returned, and may schedule the load of buf earlier than typed in the source. The compiler has no reason to avoid using a register to hold buf across the call to MPI_WAIT. It also may reorder the instructions as illustrated in the rightmost column.

Example 19.13. Similar example with MPI_ISEND

<table>
<thead>
<tr>
<th>Source</th>
<th>compiled as</th>
<th>with a possible MPI-internal execution sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL :: buf, copy</td>
<td>REAL :: buf, copy</td>
<td>REAL :: buf, copy</td>
</tr>
<tr>
<td>buf = val</td>
<td>buf = val</td>
<td>buf = val</td>
</tr>
<tr>
<td>call MPI_ISEND(buf,...req)</td>
<td>call MPI_ISEND(buf,...req)</td>
<td>addr = &buf</td>
</tr>
<tr>
<td>copy = buf</td>
<td>copy = buf</td>
<td>copy = buf</td>
</tr>
<tr>
<td>call MPI_WAIT(req,...)</td>
<td>call MPI_WAIT(req,...)</td>
<td>call send(*addr) ! within</td>
</tr>
<tr>
<td>buf = val_overwrite</td>
<td>buf = val_overwrite</td>
<td>! MPI_WAIT</td>
</tr>
</tbody>
</table>

buf = val_overwrite

Due to valid compiler code movement optimizations in Example 19.13, the content of buf may already have been overwritten by the compiler when the content of buf is sent. The code movement is permitted because the compiler cannot detect a possible access to buf in MPI_WAIT (or in a second thread between the start of MPI_ISEND and the end of MPI_WAIT).

Such register optimization is based on moving code; here, the access to buf was moved from after MPI_WAIT to before MPI_WAIT. Note that code movement may also occur across subroutine boundaries when subroutines or functions are inlined.

This register optimization/code movement problem for nonblocking operations does not occur with MPI parallel file I/O split collective operations, because in the MPI_XXX_BEGIN and MPI_XXX_END calls, the same buffer has to be provided as an actual
argument. The register optimization / code movement problem for MPI_BOTTOM and derived MPI datatypes may occur in each blocking and nonblocking communication call, as well as in each parallel file I/O operation.

Persistent Operations

With persistent requests, the buffer argument is hidden from the MPI_START and MPI_STARTALL calls, i.e., the Fortran compiler may move buffer accesses across the MPI_START or MPI_STARTALL call, similar to the MPI_WAIT call as described in the Nonblocking Operations subsection in Section 19.1.17.

One-sided Communication

An example with instruction reordering due to register optimization can be found in Section 12.7.4.

MPI_BOTTOM and Combining Independent Variables in Datatypes

This section is only relevant if the MPI program uses a buffer argument to an MPI_SEND, MPI_RECV, etc., that hides the actual variables involved in the communication. MPI_BOTTOM with an MPI_Datatype containing absolute addresses is one example. Creating a datatype that uses one variable as an anchor and brings along others by using MPI_GET_ADDRESS to determine their offsets from the anchor is another. The anchor variable would be the only one referenced in the call. Also attention must be paid if MPI operations are used that run in parallel with the user’s application.

Example 19.14 shows what Fortran compilers are allowed to do.

Example 19.14. Fortran 90 register optimization.

<table>
<thead>
<tr>
<th>This source</th>
<th>can be compiled as</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>call MPI_GET_ADDRESS(buf,bufaddr,ierror)</code></td>
<td><code>call MPI_GET_ADDRESS(buf,...)</code></td>
</tr>
<tr>
<td><code>call MPI_TYPE_CREATE_STRUCT(1,1,bufaddr,MPI_REAL,dtype,ierror)</code></td>
<td><code>call MPI_TYPE_CREATE_STRUCT(...)</code></td>
</tr>
<tr>
<td><code>call MPI_TYPE_COMMIT(dtype,ierror)</code></td>
<td><code>call MPI_TYPE_COMMIT(...)</code></td>
</tr>
<tr>
<td><code>val_old = buf</code></td>
<td><code>register = buf</code></td>
</tr>
<tr>
<td><code>val_new = buf</code></td>
<td><code>val_old = register</code></td>
</tr>
<tr>
<td><code>call MPI_RECV(MPI_BOTTOM,1,dtype,...)</code></td>
<td><code>call MPI_RECV(MPI_BOTTOM,...)</code></td>
</tr>
<tr>
<td><code>! with buf as a displacement in dtype</code></td>
<td><code>! i.e., val_old is sent</code></td>
</tr>
</tbody>
</table>

In Example 19.14, the compiler does not invalidate the register because it cannot see that MPI_RECV changes the value of buf. The access to buf is hidden by the use of MPI_GET_ADDRESS and MPI_BOTTOM.

Example 19.15. Similar example with MPI_SEND

<table>
<thead>
<tr>
<th>This source</th>
<th>can be compiled as</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>! buf contains val_old</code></td>
<td><code>! buf contains val_old</code></td>
</tr>
<tr>
<td><code>buf = val_new</code></td>
<td><code>call MPI_SEND(...)</code></td>
</tr>
<tr>
<td><code>call MPI_SEND(MPI_BOTTOM,1,dtype,...)</code></td>
<td><code>! with buf as a displacement in dtype</code></td>
</tr>
<tr>
<td><code>! with buf as a displacement in dtype</code></td>
<td><code>! i.e., val_old is sent</code></td>
</tr>
</tbody>
</table>
In Example 19.15, several successive assignments to the same variable `buf` can be combined in a way such that only the last assignment is executed. “Successive” means that no interfering load access to this variable occurs between the assignments. The compiler cannot detect that the call to `MPI_SEND` statement is interfering because the load access to `buf` is hidden by the usage of `MPI_BOTTOM`.

Solutions

The following sections show in detail how the problems with code movement and register optimization can be portably solved. Application writers can partially or fully avoid these compiler optimization problems by using one or more of the special Fortran declarations with the send and receive buffers used in nonblocking operations, or in operations in which `MPI_BOTTOM` is used, or if datatype handles that combine several variables are used:

- Use of the Fortran `ASYNCHRONOUS` attribute.
- Use of the helper routine `MPI_F_SYNC_REG`, or an equivalent user-written dummy routine.
- Declare the buffer as a Fortran module variable or within a Fortran common block.
- Use of the Fortran `VOLATILE` attribute.

Example 19.16. Protecting nonblocking communication with the `ASYNCHRONOUS` attribute.

```fortran
USE mpi_f08
REAL, ASYNCHRONOUS :: b(0:101) ! elements 0 and 101 are halo cells
REAL :: bnew(0:101) ! elements 1 and 100 are newly computed
TYPE(MPI_Request) :: req(4)
INTEGER :: left, right, i
CALL MPI_Cart_shift(...,left,right,...)
CALL MPI_Irecv(b( 0),,..., left, ..., req(1), ...)
CALL MPI_Irecv(b(101),,..., right, ..., req(2), ...)
CALL MPI_Isend(b( 1),,..., left, ..., req(3), ...)
CALL MPI_Isend(b(100),,..., right, ..., req(4), ...)

#ifdef WITHOUT_OVERLAPPING_COMMUNICATION_AND_COMPUTATION
! Case (a)
  CALL MPI_Waitall(4, req, ...)
  DO i=1,100 ! compute all new local data
    bnew(i) = function(b(i-1), b(i), b(i+1))
  END DO
#endif

#ifdef WITH_OVERLAPPING_COMMUNICATION_AND_COMPUTATION
```

Each of these methods solves the problems of code movement and register optimization, but may incur various degrees of performance impact, and may not be usable in every application context. These methods may not be guaranteed by the Fortran standard, but they must be guaranteed by a MPI-3.0 (and later) compliant MPI library and associated compiler suite according to the requirements listed in Section 19.1.7. The performance impact of using MPI_F_SYNC_REG is expected to be low, that of using module variables or the ASYNCHRONOUS attribute is expected to be low to medium, and that of using the VOLATILE attribute is expected to be high or very high. Note that there is one attribute that cannot be used for this purpose: the Fortran TARGET attribute does not solve code movement problems in MPI applications.

The Fortran ASYNCHRONOUS Attribute

Declaring an actual buffer argument with the ASYNCHRONOUS Fortran attribute in a scoping unit (or BLOCK) informs the compiler that any statement in the scoping unit may be executed while the buffer is affected by a pending asynchronous Fortran input/output operation (since Fortran 2003) or by an asynchronous communication (TS 29113 extension). Without the extensions specified in TS 29113, a Fortran compiler may totally ignore this attribute if the Fortran compiler implements asynchronous Fortran input/output operations with blocking I/O. The ASYNCHRONOUS attribute protects the buffer accesses from optimizations through code movements across routine calls, and the buffer itself from temporary and permanent data movements. If the choice buffer dummy argument of a nonblocking MPI routine is declared with ASYNCHRONOUS (which is mandatory for the mpi_f08 module, with allowable exceptions listed in Section 19.1.6), then the compiler has to guarantee call by reference and should report a compile-time error if call by reference is impossible, e.g., if vector subscripts are used. The MPI_ASYNC_PROTECTS_NONBLOCKING is set to .TRUE. if both the protection of the actual buffer argument through ASYNCHRONOUS according to the TS 29113 extension and the declaration of the dummy argument with ASYNCHRONOUS in the Fortran support method is guaranteed for all nonblocking routines, otherwise it is set to .FALSE..

The ASYNCHRONOUS attribute has some restrictions. Section 5.4.2 of the TS 29113 specifies:

“Asyncynchronous communication for a Fortran variable occurs through the action of procedures defined by means other than Fortran. It is initiated by execution of an asynchronous communication initiation procedure and completed by execution of an asynchronous communication completion procedure. Between the execution of the initiation and completion procedures, any variable of which any part is associated with any part of the asynchronous communication variable is
pending communication affector. Whether a procedure is an asynchronous communication initiation or completion procedure is processor dependent.

Asynchronous communication is either input communication or output communication. For input communication, a pending communication affector shall not be referenced, become defined, become undefined, become associated with a dummy argument that has the VALUE attribute, or have its pointer association status changed. For output communication, a pending communication affector shall not be redefined, become undefined, or have its pointer association status changed.”

In Example 19.16 Case (a) on page 824, the read accesses to \(b \) within \(\text{function}(b(i-1), b(i), b(i+1)) \) cannot be moved by compiler optimizations to before the wait call because \(b \) was declared as ASYNCHRONOUS. Note that only the elements 0, 1, 100, and 101 of \(b \) are involved in asynchronous communication but by definition, the total variable \(b \) is the pending communication affector and is usable for input and output asynchronous communication between the \(ext{MPI}_{-}1XXX \) routines and \(ext{MPI}_{-}\text{Waitall} \). Case (a) works fine because the read accesses to \(b \) occur after the communication has completed.

In Case (b), the read accesses to \(b(1:100) \) in the loop \(i=2,99 \) are read accesses to a pending communication affector while input communication (i.e., the two \(ext{MPI}_{-}\text{Irecv} \) calls) is pending. This is a contradiction to the rule that for input communication, a pending communication affector shall not be referenced. The problem can be solved by using separate variables for the halos and the inner array, or by splitting a common array into disjoint subarrays that are passed through different dummy arguments into a subroutine, as shown in Example 19.21.

If one does not overlap communication and computation on the same variable, then all optimization problems can be solved through the ASYNCHRONOUS attribute.

The problems with \(ext{MPI}_{-}\text{BOTTOM} \), as shown in Example 19.14 and Example 19.15, can also be solved by declaring the buffer \(buf \) with the ASYNCHRONOUS attribute.

In some \(ext{MPI} \) routines, a buffer dummy argument is defined as ASYNCHRONOUS to guarantee passing by reference, provided that the actual argument is also defined as ASYNCHRONOUS.

Calling \(ext{MPI}_{-}\text{F}_{-}\text{SYNC}_{-}\text{REG} \)

The compiler may be prevented from moving a reference to a buffer across a call to an \(ext{MPI} \) subroutine by surrounding the call by calls to an external subroutine with the buffer as an actual argument. The \(ext{MPI} \) library provides the \(ext{MPI}_{-}\text{F}_{-}\text{SYNC}_{-}\text{REG} \) routine for this purpose; see Section 19.1.8.

- The problems illustrated by the Examples 19.12 and 19.13 can be solved by calling \(ext{MPI}_{-}\text{F}_{-}\text{SYNC}_{-}\text{REG}(buf) \) once immediately after \(ext{MPI}_{-}\text{WAIT} \).

Example 19.12 can be solved with

\[
\begin{align*}
\text{call } & \text{MPI}_{-}\text{IRECV}(buf,,\text{...req}) \\
\text{call } & \text{MPI}_{-}\text{WAIT}(\text{req},,\text{...}) \\
\text{call } & \text{MPI}_{-}\text{F}_{-}\text{SYNC}_{-}\text{REG}(buf) \\
b1 & = \text{buf}
\end{align*}
\]

Example 19.13 can be solved with

\[
\begin{align*}
\text{buf} & = \text{val} \\
\text{call } & \text{MPI}_{-}\text{ISEND}(buf,,\text{...req}) \\
\text{copy} & = \text{buf} \\
\text{call } & \text{MPI}_{-}\text{WAIT}(\text{req},,\text{...}) \\
\text{call } & \text{MPI}_{-}\text{F}_{-}\text{SYNC}_{-}\text{REG}(buf) \\
\text{buf} & = \text{val}_{\text{overwrite}}
\end{align*}
\]

\[
\begin{align*}
\text{call } & \text{MPI}_{-}\text{IRECV}(buf,,\text{...req}) \\
\text{call } & \text{MPI}_{-}\text{WAIT}(\text{req},,\text{...}) \\
\text{call } & \text{MPI}_{-}\text{F}_{-}\text{SYNC}_{-}\text{REG}(buf) \\
b1 & = \text{buf}
\end{align*}
\]
The call to `MPI_F_SYNC_REG(buf)` prevents moving the last line before the `MPI_WAIT` call. Further calls to `MPI_F_SYNC_REG(buf)` are not needed because it is still correct if the additional read access `copy=buf` is moved below `MPI_WAIT` and before `buf=val_overwrite`.

- The problems illustrated by the Examples 19.14 and 19.15 can be solved with two additional `MPI_F_SYNC_REG(buf)` statements; one directly before `MPI_RECV/MPI_SEND`, and one directly after this communication operation.

Example 19.14 can be solved with

```fortran
  call MPI_F_SYNC_REG(buf)
call MPI_RECV(MPI_BOTTOM,...)
call MPI_F_SYNC_REG(buf)
```

Example 19.15 can be solved with

```fortran
  call MPI_F_SYNC_REG(buf)
call MPI_SEND(MPI_BOTTOM,...)
call MPI_F_SYNC_REG(buf)
```

The first call to `MPI_F_SYNC_REG(buf)` is needed to finish all load and store references to `buf` prior to `MPI_RECV/MPI_SEND`; the second call is needed to assure that any subsequent access to `buf` is not moved before `MPI_RECV/MPI_SEND`.

- In the Example 12.14 in Section 12.7.4, two asynchronous accesses must be protected: in Process 1, the access to `bbbb` must be protected similar to Example 19.12, i.e., a call to `MPI_F_SYNC_REG(bbbb)` is needed after the second `MPI_WIN_FENCE` to guarantee that further accesses to `bbbb` are not moved ahead of the call to `MPI_WIN_FENCE`. In Process 2, both calls to `MPI_WIN_FENCE` together act as a communication call with `MPI_BOTTOM` as the buffer. That is, before the first fence and after the second fence, a call to `MPI_F_SYNC_REG(buf)` is needed to guarantee that accesses to `buff` are not moved after or ahead of the calls to `MPI_WIN_FENCE`. Using `MPI_GET` instead of `MPI_PUT`, the same calls to `MPI_F_SYNC_REG` are necessary.

<table>
<thead>
<tr>
<th>Source of Process 1</th>
<th>Source of Process 2</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bbbb = 777</code></td>
<td><code>buff = 999</code></td>
</tr>
<tr>
<td><code>call MPI_WIN_FENCE</code></td>
<td><code>call MPI_F_SYNC_REG(buf)</code></td>
</tr>
<tr>
<td><code>call MPI_PUT(bbbb</code></td>
<td><code>call MPI_WIN_FENCE</code></td>
</tr>
<tr>
<td>into buff of process 2)</td>
<td></td>
</tr>
<tr>
<td><code>call MPI_WIN_FENCE</code></td>
<td><code>call MPI_WIN_FENCE</code></td>
</tr>
<tr>
<td><code>call MPI_F_SYNC_REG(bbbb)</code></td>
<td><code>call MPI_F_SYNC_REG(buf)</code></td>
</tr>
<tr>
<td><code>ccc = buff</code></td>
<td></td>
</tr>
</tbody>
</table>

- The temporary memory modification problem, i.e., Example 19.18, can **not** be solved with this method.

A User Defined Routine Instead of `MPI_F_SYNC_REG`

Instead of `MPI_F_SYNC_REG`, one can also use a user defined external subroutine, which is separately compiled:
subroutine DD(buf)
 integer buf
end

Note that if the INTENT is declared in an explicit interface for the external subroutine, it must be OUT or INOUT. The subroutine itself may have an empty body, but the compiler does not know this and has to assume that the buffer may be altered. For example, a call to MPI_RECV with MPI_BOTTOM as buffer might be replaced by

```fortran
  call DD(buf)
  call MPI_RECV(MPI_BOTTOM,...)
  call DD(buf)
```

Such a user-defined routine was introduced in MPI-2.0 and is still included here to document such usage in existing application programs although new applications should prefer MPI_F_SYNC_REG or one of the other possibilities. In an existing application, calls to such a user-written routine should be substituted by a call to MPI_F_SYNC_REG because the user-written routine may not be implemented in accordance with the rules specified in Section 19.1.7.

Module Variables and COMMON Blocks

An alternative to the previously mentioned methods is to put the buffer or variable into a module or a common block and access it through a USE or COMMON statement in each scope where it is referenced, defined or appears as an actual argument in a call to an MPI routine. The compiler will then have to assume that the MPI procedure may alter the buffer or variable, provided that the compiler cannot infer that the MPI procedure does not reference the module or common block.

- This method solves problems of instruction reordering, code movement, and register optimization related to nonblocking and one-sided communication, or related to the usage of MPI_BOTTOM and derived datatype handles.
- Unfortunately, this method does not solve problems caused by asynchronous accesses between the start and end of a nonblocking or one-sided communication. Specifically, problems caused by temporary memory modifications are not solved.

The (Poorly Performing) Fortran VOLATILE Attribute

The VOLATILE attribute gives the buffer or variable the properties needed to avoid register optimization or code movement problems, but it may inhibit optimization of any code containing references or definitions of the buffer or variable. On many modern systems, the performance impact will be large because not only register, but also cache optimizations will not be applied. Therefore, use of the VOLATILE attribute to enforce correct execution of MPI programs is discouraged.

The Fortran TARGET Attribute

The TARGET attribute does not solve the code movement problem because it is not specified for the choice buffer dummy arguments of nonblocking routines. If the compiler detects that the application program specifies the TARGET attribute for an actual buffer argument used
in the call to a nonblocking routine, the compiler may ignore this attribute if no pointer reference to this buffer exists.

Rationale. The Fortran standardization body decided to extend the `ASYNCHRONOUS` attribute within the TS 29113 to protect buffers in nonblocking calls from all kinds of optimization, instead of extending the `TARGET` attribute. *(End of rationale.)*

19.1.18 Temporary Data Movement and Temporary Memory Modification

The compiler is allowed to temporarily modify data in memory. Normally, this problem may occur only when overlapping communication and computation, as in Example 19.16, Case (b) on page 824. Example 19.18 also shows a possibility that could be problematic.

Example 19.18. Overlapping Communication and Computation.

```fortran
USE mpi_f08
REAL :: buf (100,100)
CALL MPI_Irecv(buf(1,1:100),..., req,...)
DO j=1,100
  DO i=2,100
    buf(i,j)=...
  END DO
END DO
CALL MPI_Wait(req,...)
```

Example 19.19. The compiler may substitute the nested loops through loop fusion.

```fortran
REAL :: buf(100,100), buf_1dim(10000)
EQUIVALENCE (buf(1,1), buf_1dim(1))
CALL MPI_Irecv(buf(1,1:100),..., req,...)
tmp(1:100) = buf(1,1:100)
DO j=1,10000
  buf_1dim(h)=...
END DO
buf(1,1:100) = tmp(1:100)
CALL MPI_Wait(req,...)
```

Example 19.20. Another optimization is based on the usage of a separate memory storage area, e.g., in a GPU.

```fortran
REAL :: buf(100,100), local_buf(100,100)
CALL MPI_Irecv(buf(1,1:100),..., req,...)
local_buf = buf
DO j=1,100
  DO i=2,100
    local_buf(i,j)=...
  END DO
END DO
buf = local_buf ! may overwrite asynchronously received
  ! data in buf(1,1:100)
CALL MPI_Wait(req,...)
```
In the compiler-generated, possible optimization in Example 19.19, \(\text{buf}(100,100) \) from Example 19.18 is equivalenced with the 1-dimensional array \(\text{buf}_1 \text{ldim}(10000) \). The non-blocking receive may asynchronously receive the data in the boundary \(\text{buf}(1,1:100) \) while the fused loop is temporarily using this part of the buffer. When the \(\text{tmp} \) data is written back to \(\text{buf} \), the previous data of \(\text{buf}(1,1:100) \) is restored and the received data is lost. The principle behind this optimization is that the receive buffer data \(\text{buf}(1,1:100) \) was temporarily moved to \(\text{tmp} \).

Example 19.20 shows a second possible optimization. The whole array is temporarily moved to \(\text{local_buf} \). When storing \(\text{local_buf} \) back to the original location \(\text{buf} \), then this implies overwriting the section of \(\text{buf} \) that serves as a receive buffer in the nonblocking MPI call, i.e., this storing back of \(\text{local_buf} \) is therefore likely to interfere with asynchronously received data in \(\text{buf}(1,1:100) \).

Note that this problem may also occur:

- With the local buffer at the origin process, between an RMA communication call and the ensuing synchronization call; see Chapter 12.
- With the window buffer at the target process between two ensuing RMA synchronization calls.
- With the local buffer in MPI parallel file I/O split collective operations between the \text{MPI}_\text{XXX}_\text{BEGIN} and \text{MPI}_\text{XXX}_\text{END} calls; see Section 14.4.5.

As already mentioned in Section The Fortran ASYNCHRONOUS Attribute on page 825 of Section 19.1.17, the ASYNCHRONOUS attribute can prevent compiler optimization with temporary data movement, but only if the receive buffer and the local references are separated into different variables, as shown in Example 19.21 and in Example 19.22.

Note also that the methods

- calling \text{MPI}_F_SYNC_REG (or such a user-defined routine),
- using module variables and \text{COMMON} blocks, and
- the \text{TARGET} attribute

cannot be used to prevent such temporary data movement. These methods influence compiler optimization when library routines are called. They cannot prevent the optimizations of the code fragments shown in Example 19.18 and 19.19.

Note also that compiler optimization with temporary data movement should \textbf{not} be prevented by declaring \(\text{buf} \) as \text{VOLATILE} because the \text{VOLATILE} implies that all accesses to any storage unit (word) of \(\text{buf} \) must be directly done in the main memory exactly in the sequence defined by the application program. The \text{VOLATILE} attribute prevents all register and cache optimizations. Therefore, \text{VOLATILE} may cause a huge performance degradation.

Instead of solving the problem, it is better to \textbf{prevent} the problem: when overlapping communication and computation, the nonblocking communication (or nonblocking or split collective I/O) and the computation should be executed on different variables, and the communication should be \textit{protected} with the ASYNCHRONOUS attribute. In this case, the temporary memory modifications are done only on the variables used in the computation and cannot have any side effect on the data used in the nonblocking MPI operations.
19.1 Support for Fortran

Rationale. This is a strong restriction for application programs. To weaken this restriction, a new or modified asynchronous feature in the Fortran language would be necessary: an asynchronous attribute that can be used on parts of an array and together with asynchronous operations outside the scope of Fortran. If such a feature becomes available in a future edition of the Fortran standard, then this restriction also may be weakened in a later version of the MPI standard. (End of rationale.)

In Example 19.21 (which is a solution for the problem shown in Example 19.16 and in Example 19.22 (which is a solution for the problem shown in Example 19.20), the array is split into inner and halo part and both disjoint parts are passed to a subroutine separated_sections. This routine overlaps the receiving of the halo data and the calculations on the inner part of the array. In a second step, the whole array is used to do the calculation on the elements where inner+halo is needed. Note that the halo and the inner area are strided arrays. Those can be used in nonblocking communication only with a Fortran 2018 (or TS 29113) based MPI library.

19.1.19 Permanent Data Movement

A Fortran compiler may implement permanent data movement during the execution of a Fortran program. This would require that pointers to such data are appropriately updated. An implementation with automatic garbage collection is one use case. Such permanent data movement is in conflict with MPI in several areas:

- MPI datatype handles with absolute addresses in combination with MPI_BOTTOM.
- All nonblocking MPI operations if the internally used pointers to the buffers are not updated by the Fortran runtime, or if within an MPI process, the data movement is executed in parallel with the MPI operation.

This problem can be also solved by using the ASYNCHRONOUS attribute for such buffers. This MPI standard requires that the problems with permanent data movement do not occur by imposing suitable restrictions on the MPI library together with the compiler used; see Section 19.1.7.

Example 19.21. Using separated variables for overlapping communication and computation to allow the protection of nonblocking communication with the ASYNCHRONOUS attribute.

USE mpi_f08
REAL :: b(0:101) ! elements 0 and 101 are halo cells
REAL :: bnew(0:101) ! elements 1 and 100 are newly computed
INTEGER :: i
CALL separated_sections(b(0), b(1:100), b(101), bnew(0:101))
i=1 ! compute leftmost element
 bnew(i) = function(b(i-1), b(i), b(i+1))
i=100 ! compute rightmost element
 bnew(i) = function(b(i-1), b(i), b(i+1))
END

SUBROUTINE separated_sections(b_lefthalo, b_inner, b_righthalo, bnew)
USE mpi_f08
REAL, ASYNCHRONOUS :: b_lefthalo(0:0), b_inner(1:100), b_righthalo(101:101)
REAL :: bnew(0:101) ! elements 1 and 100 are newly computed
TYPE(MPI_Request) :: req(4)

Chapter 19 Language Bindings

19.1.20 Comparison with C

In C, subroutines that modify variables that are not in the argument list will not cause register optimization problems. This is because taking pointers to storage objects by using the & operator and later referencing the objects by indirection on the pointer is an integral part of the language. A C compiler understands the implications, so that the problem should not occur, in general. However, some compilers do offer optional aggressive optimization levels that may not be safe. Problems due to temporary memory modifications can also occur in C. As above, the best advice is to avoid the problem: use different variables for buffers in nonblocking MPI operations and computation that is executed while a nonblocking communication operation is pending.

Example 19.22. Protecting GPU optimizations with the ASYNCHRONOUS attribute.

```
USE mpi_f08
REAL :: buf(100,100)
CALL separated_sections(buf(1:1,1:100), buf(2:100,1:100))
END

SUBROUTINE separated_sections(buf_halo, buf_inner)
REAL, ASYNCHRONOUS :: buf_halo(1:1,1:100)
REAL :: buf_inner(2:100,1:100)
REAL :: local_buf(2:100,100)
CALL MPI_Irecv(buf_halo(1,1:100),..., req,...)
local_buf = buf_inner
DO j=1,100
   DO i=2,100
      local_buf(i,j)=...
   END DO
END DO
buf_inner = local_buf ! buf_halo is not touched!!!
CALL MPI_Wait(req,...)
```
19.2 Support for Large Count and Large Byte Displacement in MPI Language Bindings

The following types, which were used prior to MPI-4.0, have been deemed too small to hold values that applications wish to use:

- The C int type and the Fortran INTEGER type were used for count parameters.
- The C int type and the Fortran INTEGER type were used for some parameters that represent byte displacement in memory.
- The C MPI_Aint type and the Fortran INTEGER(KIND=MPI_ADDRESS_KIND) type were used for some parameters that represent byte displacement in files (e.g., in constructors of MPI datatypes that can be used with files).

In order to avoid breaking backwards compatibility, this version of MPI supports larger types via separate additional MPI procedures in C (suffixed with "_c") and via interface polymorphism in Fortran when using USE mpi_f08. For better readability, all Fortran large count procedure declarations are marked with a comment "!(_c)". No polymorphic support for larger types is provided in Fortran when using mpif.h and use mpi.

For the large count versions of three datatype constructors, MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HINDEXED_BLOCK, and MPI_TYPE_CREATE_STRUCT, absolute addresses shall not be used to specify byte displacements since the parameter is of type MPI_COUNT instead of type MPI_AINT (see Section 2.5.8).

In addition, the functions MPI_TYPE_GET_ENVELOPE and MPI_TYPE_GET_CONTENTS also support large count types in separate additional MPI procedures in C (suffixed with "_c") and interface polymorphism in Fortran when using USE mpi_f08 (see Section 5.1.13).

Further, the callbacks of type MPI_User_function and MPI_Datarep_conversion_function also support large count types via separate additional callback prototypes in C (suffixed with "_c") and multiple abstract interfaces in Fortran when using USE mpi_f08 (see Sections 6.9.5 and 14.5.3, respectively). An additional large count predefined callback function MPI_CONVERSION_FN_NULL_C is provided within each of these two language bindings.

In C bindings, for each MPI procedure that had at least one count or byte displacement parameter that used the int and/or MPI_Aint types prior to MPI-4.0, an additional MPI procedure is provided, with the same name but suffixed by "_c". The MPI procedure without the "_c" token has the same name and parameter types as versions prior to MPI-4.0. The "_c" suffixed MPI procedure has MPI_Count for all count parameters, MPI_Aint for parameters that represent byte displacement in memory, MPI_Offset for parameters that represent byte displacement in files, and MPI_Count for parameters that may represent byte displacement in both memory and files.

In Fortran, when using USE mpi_f08, for each MPI procedure that had at least one count or byte displacement parameter that used the INTEGER or INTEGER(KIND=MPI_ADDRESS_KIND) types prior to MPI-4.0, a polymorphic interface containing two specific procedures is provided. One of the specific procedures has the same name and dummy parameter types as in versions prior to MPI-4.0. INTEGER and/or INTEGER(KIND=MPI_ADDRESS_KIND) for count and byte displacement parameters. The other specific procedure has the same name followed by "_c", and then suffixed by the token specified in Table 19.1 for USE mpi_f08.
It also has INTEGER(KIND=MPI_COUNT_KIND) for all count parameters, INTEGER(KIND=MPI_ADDRESS_KIND) for parameters that represent byte displacement in memory, INTEGER(KIND=MPI_OFFSET_KIND) for parameters that represent byte displacement in files, and INTEGER(KIND=MPI_COUNT_KIND) for parameters that may represent byte displacement in both memory and files (for more details on specific Fortran procedure names and related calling conventions, refer to Table 19.1 in Section 19.1.5). There is one exception: if the type signatures of the two specific procedures are identical (e.g., if INTEGER(KIND=MPI_COUNT_KIND) is the same type as INTEGER(KIND=MPI_ADDRESS_KIND)), then the implementation shall not provide the "_c" specific procedure.

It is erroneous to directly invoke the "_c" specific procedures in the Fortran mpi_f08 module with the exception of the following procedures: MPI_Op_create_c and MPI_Register_datarep_c.

In older Fortran bindings (mpif.h (deprecated) and use mpi), no new interfaces and no new specific procedures for larger types are provided beyond what existed in MPI-3.1; all MPI procedures have the same types as in the versions prior to MPI-4.0.

19.3 Language Interoperability

19.3.1 Introduction

It is not uncommon for library developers to use one language to develop an application library that may be called by an application program written in a different language. MPI currently supports ISO (previously ANSI) C and Fortran bindings. It should be possible for applications in any of the supported languages to call MPI-related functions in another language.

Moreover, MPI allows the development of client-server code, with MPI communication used between a parallel client and a parallel server. It should be possible to code the server in one language and the clients in another language. To do so, communications should be possible between applications written in different languages.

There are several issues that need to be addressed in order to achieve interoperability.

Initialization: We need to specify how the MPI environment is initialized for all languages.

Interlanguage passing of MPI opaque objects: We need to specify how MPI object handles are passed between languages. We also need to specify what happens when an MPI object is accessed in one language, to retrieve information (e.g., attributes) set in another language.

Interlanguage communication: We need to specify how messages sent in one language can be received in another language.

It is highly desirable that the solution for interlanguage interoperability be extensible to new languages, should MPI bindings be defined for such languages.

19.3.2 Assumptions

We assume that conventions exist for programs written in one language to call routines written in another language. These conventions specify how to link routines in different languages into one program, how to call functions in a different language, how to pass arguments between languages, and the correspondence between basic datatypes in different
languages. In general, these conventions will be implementation dependent. Furthermore, not every basic datatype may have a matching type in other languages. For example, C character strings may not be compatible with Fortran CHARACTER variables. However, we assume that a Fortran INTEGER, as well as a (sequence associated) Fortran array of INTEGERS, can be passed to a C program. We also assume that Fortran and C have address-sized integers. This does not mean that the default-size integers are the same size as default-sized pointers, but only that there is some way to hold (and pass) a C address in a Fortran integer. It is also assumed that INTEGER(KIND=MPI_OFFSET_KIND) can be passed from Fortran to C as MPI_Offset.

19.3.3 Initialization

Two approaches are available for initializing MPI: the World Model(Section 11.2), and the Sessions Model(Section 11.3).

Concerns specific to the World Model

A call to MPI_INIT or MPI_INIT_THREAD, from any language, initializes MPI for execution in all languages.

Advice to users. Certain implementations use the (inout) argc, argv arguments of the C version of MPI_INIT in order to propagate values for argc and argv to all executing MPI processes. Use of the Fortran version of MPI_INIT to initialize MPI may result in a loss of this ability. (End of advice to users.)

The function MPI_INITIALIZED returns the same answer in all languages. The function MPI_FINALIZE finalizes the MPI environments for all languages. The function MPI_FINALIZED returns the same answer in all languages. The MPI environment is initialized in the same manner for all languages by MPI_INIT. E.g., MPI_COMM_WORLD carries the same information regardless of language: same MPI processes, same environmental attributes, same error handlers.

Advice to users. The use of several languages in one MPI program may require the use of special options at compile and/or link time. (End of advice to users.)

Advice to implementors. Implementations may selectively link language specific MPI libraries only to codes that need them, so as not to increase the size of binaries for codes that use only one language. The MPI initialization code needs to perform initialization for a language only if that language library is loaded. (End of advice to implementors.)

Concerns specific to the Sessions Model

A call to MPI_SESSION_INIT from any language initializes a session that can be used from all languages.

A call to MPI_SESSION_FINALIZE from any language finalizes the session for all languages.
Concerns common to both the World Model and the Sessions Model

The function MPI_ABORT kills MPI processes in the group of the supplied communicator, irrespective of the language used by the caller or by the MPI processes killed.

Information can be added to info objects in one language and retrieved in another.

19.3.4 Transfer of Handles

Handles are passed between Fortran and C by using an explicit C wrapper to convert Fortran handles to C handles. There is no direct access to C handles in Fortran.

The type definition MPI_Fint is provided in C for an integer of the size that matches a Fortran INTEGER; usually, MPI_Fint will be equivalent to int. With the Fortran mpi module or the (deprecated) mpif.h include file, a Fortran handle is a Fortran INTEGER value that can be used in the following conversion functions. With the Fortran mpi_f08 module, a Fortran handle is a BIND(C) derived type that contains an INTEGER component named MPI_VAL. This INTEGER value can be used in the following conversion functions.

The following functions are provided in C to convert from a Fortran communicator handle (which is an integer) to a C communicator handle, and vice versa.

C binding

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

If comm is a valid Fortran handle to a communicator, then MPI_Comm_f2c returns a valid C handle to that same communicator; if comm = MPI_COMM_NULL (Fortran value), then MPI_Comm_f2c returns a null C handle; if comm is an invalid Fortran handle, then MPI_Comm_f2c returns an invalid C handle.

MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

The function MPI_Comm_c2f translates a C communicator handle into a Fortran handle to the same communicator; it maps a null handle into a null handle and an invalid handle into an invalid handle.

Similar functions are provided for the other types of opaque objects.

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)
MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)
MPI_Group MPI_Group_f2c(MPI_Fint group)
MPI_Fint MPI_Group_c2f(MPI_Group group)
MPI_Request MPI_Request_f2c(MPI_Fint request)
MPI_Fint MPI_Request_c2f(MPI_Request request)
MPI_File MPI_File_f2c(MPI_Fint file)
MPI_Fint MPI_File_c2f(MPI_File file)
MPI_Win MPI_Win_f2c(MPI_Fint win)
MPI_Fint MPI_Win_c2f(MPI_Win win)
MPI_Op MPI_Op_f2c(MPI_Fint op)
MPI_Fint MPI_Op_c2f(MPI_Op op)
Example 19.23. The example below illustrates how the Fortran MPI function `MPI_TYPE_COMMIT` can be implemented by wrapping the C MPI function `MPI_Type_commit` with a C wrapper to do handle conversions. In this example a Fortran-C interface is assumed where a Fortran function is all upper case when referred to from C and arguments are passed by addresses.

```c
/* C wrapper */
void MPI_X_TYPE_COMMIT(MPI_Fint *f_handle, MPI_Fint *ierr)
{
    MPI_Datatype datatype;
    datatype = MPI_Type_f2c(*f_handle);
    *ierr = (MPI_Fint)MPI_Type_commit(&datatype);
    *f_handle = MPI_Type_c2f(datatype);
    return;
}
```

The same approach can be used for all other MPI functions. The call to `MPI_XXX_f2c` (resp. `MPI_XXX_c2f`) can be omitted when the handle is an OUT (resp. IN) argument, rather than INOUT.

Rationale. The design here provides a convenient solution for the prevalent case, where a C wrapper is used to allow Fortran code to call a C library, or C code to call a Fortran library. The use of C wrappers is much more likely than the use of Fortran wrappers, because it is much more likely that a variable of type `INTEGER` can be passed to C, than a C handle can be passed to Fortran. Returning the converted value as a function value rather than through the argument list allows the generation of efficient inlined code when these functions are simple (e.g., the identity). The conversion function in the wrapper does not catch an invalid handle argument. Instead, an invalid handle is passed below to the library function, which, presumably, checks its input arguments. (End of rationale.)
19.3.5 Status

The following two procedures are provided in C to convert from a Fortran (with the mpi module or deprecated mpif.h) status (which is an array of integers) to a C status (which is a structure), and vice versa. The conversion occurs on all the information in status, including that which is hidden. That is, no status information is lost in the conversion.

```c
int MPI_Status_f2c(const MPI_Fint *f_status, MPI_Status *c_status)
```

If `f_status` is a valid Fortran status, but not the Fortran value of `MPI_STATUS_IGNORE` or `MPI_STATUSES_IGNORE`, then `MPI_Status_f2c` returns in `c_status` a valid C status with the same content. If `f_status` is the Fortran value of `MPI_STATUS_IGNORE` or `MPI_STATUSES_IGNORE`, or if `f_status` is not a valid Fortran status, then the call is erroneous.

In C, such an `f_status` array can be defined with `MPI_Fint f_status[MPI_F_STATUS_SIZE]`. Within this array, one can use in C the indexes `MPI_F_SOURCE`, `MPI_F_TAG`, and `MPI_F_ERROR`, to access the same elements as in Fortran with `MPI_SOURCE`, `MPI_TAG` and `MPI_ERROR`. The C indexes are 1 less than the corresponding indexes in Fortran due to the different default array start indexes in both languages.

The C status has the same source, tag and error code values as the Fortran status, and returns the same answers when queried for count, elements, and cancellation. The conversion function may be called with a Fortran status argument that has an undefined error field, in which case the value of the error field in the C status argument is undefined.

Two global variables of type `MPI_Fint*`, `MPI_F_STATUS_IGNORE` and `MPI_F_STATUSES_IGNORE` are declared in `mpi.h`. They can be used to test, in C, whether `f_status` is the Fortran value of `MPI_STATUS_IGNORE` or `MPI_STATUSES_IGNORE` defined in the `mpi` module or (deprecated) `mpif.h`. These are global variables, not C constant expressions and cannot be used in places where C requires constant expressions. Their value is defined only between the calls to `MPI_INIT` and `MPI_FINALIZE` and should not be changed by user code.

To do the conversion in the other direction, we have the following:

```c
int MPI_Status_c2f(const MPI_Status *c_status, MPI_Fint *f_status)
```

This call converts a C status into a Fortran status, and has a behavior similar to `MPI_Status_f2c`. That is, the value of `c_status` must not be either `MPI_STATUS_IGNORE` or `MPI_STATUSES_IGNORE`.

Advice to users. There exists no separate conversion function for arrays of statuses, since one can simply loop through the array, converting each status with the routines in Figure 19.1. (End of advice to users.)

Rationale. The handling of `MPI_STATUS_IGNORE` is required in order to layer libraries with only a C wrapper: if the Fortran call has passed `MPI_STATUS_IGNORE`, then the C wrapper must handle this correctly. Note that this constant need not have the same value in Fortran and C. If `MPI_Status_f2c` were to handle `MPI_STATUS_IGNORE`, then the type of its result would have to be `MPI_Status**`, which was considered an inferior solution. (End of rationale.)

Using the `mpi_f08` Fortran module, a status is declared as `TYPE(MPI_Status)`. The C type `MPI_F08_status` can be used to pass a Fortran `TYPE(MPI_Status)` argument into a C routine. Figure 19.1 illustrates all status conversion routines. Some are only available in
C, some in both C and the Fortran mpi and mpi_f08 interfaces (but not in the deprecated mpif.h include file).

```c

int MPI_Status_f082c(const MPI_F08_status *f08_status, MPI_Status *c_status)

This C routine converts a Fortran mpi_f08 TYPE(MPI_Status) into a C MPI_Status.

int MPI_Status_c2f08(const MPI_Status *c_status, MPI_F08_status *f08_status)

This C routine converts a C MPI_Status into a Fortran mpi_f08 TYPE(MPI_Status). Two
global variables of type MPI_F08_status*, MPI_F08_STATUS_IGNORE and
MPI_F08_STATUSES_IGNORE are declared in mpif.h. They can be used to test, in C, whether
f_status is the Fortran value of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE defined in
the mpi_f08 module. These are global variables, not C constant expressions and cannot be
used in places where C requires constant expressions. Their value is defined only between
the calls to MPI_INIT and MPI_FINALIZE and should not be changed by user code.

Conversion between the two Fortran versions of a status can be done with:

MPI_STATUS_F2F08(f_status, f08_status)

IN f_status status object declared as array (status)
OUT f08_status status object declared as named type (status)

C binding
int MPI_Status_f2f08(const MPI_Fint *f_status, MPI_F08_status *f08_status)
```

Figure 19.1: Status conversion routines
Chapter 19 Language Bindings

Fortran 2008 binding

```fortran
MPI_Status_f2f08(f_status, f08_status, ierror)
   INTEGER, INTENT(IN) :: f_status(MPI_STATUS_SIZE)
   TYPE(MPI_Status), INTENT(OUT) :: f08_status
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding (the following procedure is not available with mpif.h)

```fortran
MPI_STATUS_F2F08(F_STATUS, F08_STATUS, IERROR)
   INTEGER :: F_STATUS(MPI_STATUS_SIZE), IERROR
   TYPE(MPI_Status) :: F08_STATUS
```

This routine converts a Fortran INTEGER, DIMENSION(MPI_STATUS_SIZE) status array into a Fortran mpi_f08 TYPE(MPI_Status).

```fortran
MPI_STATUS_F082F(f08_status, f_status)
   IN  f08_status status object declared as named type (status)
   OUT f_status status object declared as array (status)
```

C binding

```c
int MPI_Status_f082f(const MPI_F08_status *f08_status, MPI_Fint *f_status)
```

Fortran 2008 binding

```fortran
MPI_Status_f082f(f08_status, f_status, ierror)
   TYPE(MPI_Status), INTENT(IN) :: f08_status
   INTEGER, INTENT(OUT) :: f_status(MPI_STATUS_SIZE)
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

Fortran binding (the following procedure is not available with mpif.h)

```fortran
MPI_STATUS_F082F(F08_STATUS, F_STATUS, IERROR)
   TYPE(MPI_Status) :: F08_STATUS
   INTEGER :: F_STATUS(MPI_STATUS_SIZE), IERROR
```

This routine converts a Fortran mpi_f08 TYPE(MPI_Status) into a Fortran INTEGER, DIMENSION(MPI_STATUS_SIZE) status array.

19.3.6 MPI Opaque Objects

Unless said otherwise, opaque objects are “the same” in all languages: they carry the same information, and have the same meaning in both languages. The mechanism described in the previous section can be used to pass references to MPI objects from language to language. An object created in one language can be accessed, modified or freed in another language.

We examine below in more detail issues that arise for each type of MPI object.

Datatypes

Datatypes encode the same information in all languages. E.g., a datatype accessor like `MPI_TYPE_GET_EXTENT` will return the same information in all languages. If a datatype defined in one language is used for a communication call in another language, then the message sent will be identical to the message that would be sent from the first language:
the same communication buffer is accessed, and the same representation conversion is performed, if needed. All predefined datatypes can be used in datatype constructors in any language. If a datatype is committed, it can be used for communication in any language.

The function MPI_GET_ADDRESS returns the same value in all languages. Note that we do not require that the constant MPI_BOTTOM have the same value in all languages (see Section 19.3.9).

Example 19.24. Absolute addresses and the conversion of datatype handles in a mixed Fortran/C program.

```fortran
! FORTRAN CODE
REAL :: R(5)
INTEGER :: DTYPE, IERR, AOBLEN(1), AOTYPE(1)
INTEGER(KIND=MPI\_ADDRESS\_KIND) :: AODISP(1)

! create an absolute datatype for array R
AOBLEN(1) = 5
CALL MPI\_GET\_ADDRESS(R, AODISP(1), IERR)
AOTYPE(1) = MPI\_REAL
CALL MPI\_TYPE\_CREATE\_STRUCT(1, AOBLEN, AODISP, AOTYPE, DTYPE, IERR)
CALL C\_ROUTINE(DTYPE)
```

```c
/* C code */

void C\_ROUTINE(MPI\_Fint *ftype)
{
    int count = 5;
    int lens[2] = {1,1};
    MPI\_Aint displs[2];
    MPI\_Datatypetypes[2], newtype;

    /* create an absolute datatype for buffer that consists */
    /* of count, followed by R(5) */
    MPI\_Get\_address(&count, &displs[0]);
    displs[1] = 0;
    types[0] = MPI\_INT;
    types[1] = MPI\_Type\_f2c(*ftype);
    MPI\_Type\_create\_struct(2, lens, displs, types, &newtype);
    MPI\_Type\_commit(&newtype);

    MPI\_Send(MPI\_BOTTOM, 1, newtype, 1, 0, MPI\_COMM\_WORLD);
    /* the message sent contains an int count of 5, followed */
    /* by the 5 REAL entries of the Fortran array R. */
}
```

Advice to implementors. The following implementation can be used: MPI addresses, as returned by MPI_GET_ADDRESS, will have the same value in all languages. One obvious choice is that MPI addresses be identical to regular addresses. The address is stored in the datatype, when datatypes with absolute addresses are constructed. When a send or receive operation is performed, then addresses stored in a datatype are interpreted as displacements that are all augmented by a base address. This base
address is (the address of) buf, or zero, if buf = MPI_BOTTOM. Thus, if MPI_BOTTOM is zero then a send or receive call with buf = MPI_BOTTOM is implemented exactly as a call with a regular buffer argument: in both cases the base address is buf. On the other hand, if MPI_BOTTOM is not zero, then the implementation has to be slightly different. A test is performed to check whether buf = MPI_BOTTOM. If true, then the base address is zero, otherwise it is buf. In particular, if MPI_BOTTOM does not have the same value in Fortran and C, then an additional test for buf = MPI_BOTTOM is needed in at least one of the languages.

It may be desirable to use a value other than zero for MPI_BOTTOM even in C, so as to distinguish it from a NULL pointer. If MPI_BOTTOM = c then one can still avoid the test buf = MPI_BOTTOM, by using the displacement from MPI_BOTTOM, i.e., the regular address - c, as the MPI address returned by MPI_GET_ADDRESS and stored in absolute datatypes. (End of advice to implementors.)

Callback Functions

MPI calls may associate callback functions with MPI objects: error handlers are associated with communicators, files, windows, and sessions; attribute copy and delete functions are associated with attribute keys; reduce operations are associated with operation objects, etc. In a multilanguage environment, a function passed in an MPI call in one language may be invoked by an MPI call in another language. MPI implementations must make sure that such invocation will use the calling convention of the language the function is bound to.

Advice to implementors. Callback functions need to have a language tag. This tag is set when the callback function is passed in by the library function (which is presumably different for each language and language support method), and is used to generate the right calling sequence when the callback function is invoked. (End of advice to implementors.)

Advice to users. If a subroutine written in one language or Fortran support method wants to pass a callback routine including the predefined Fortran functions (e.g., MPI_COMM_NULL_COPY_FN) to another application routine written in another language or Fortran support method, then it must be guaranteed that both routines use the callback interface definition that is defined for the argument when passing the callback to an MPI routine (e.g., MPI_COMM_CREATE_KEYVAL); see also the advice to users on page 364. (End of advice to users.)

Error Handlers

Advice to implementors. Error handlers, have, in C, a variable length argument list. It might be useful to provide to the handler information on the language environment where the error occurred. (End of advice to implementors.)

Reduce Operations

All predefined named and unnamed datatypes as listed in Section 6.9.2 can be used in the listed predefined operations independent of the programming language from which the MPI routine is called.
Advice to users. Reduce operations receive as one of their arguments the datatype of the operands. Thus, one can define “polymorphic” reduce operations that work for C and Fortran datatypes. (End of advice to users.)

19.3.7 Attributes

Attribute keys can be allocated in one language and freed in another. Similarly, attribute values can be set in one language and accessed in another. To achieve this, attribute keys will be allocated in an integer range that is valid all languages. The same holds true for system-defined attribute values (such as MPI_TAG_UB, MPI_WTIME_IS_GLOBAL, etc.).

Attribute keys declared in one language are associated with copy and delete functions in that language (the functions provided by the MPI_NULL_CREATE_KEYVAL call). When a communicator is duplicated, for each attribute, the corresponding copy function is called, using the right calling convention for the language of that function; and similarly, for the delete callback function.

Advice to implementors. This requires that attributes be tagged either as “C” or “Fortran” and that the language tag be checked in order to use the right calling convention for the callback function. (End of advice to implementors.)

The attribute manipulation functions described in Section 7.7 defines attributes arguments to be of type void* in C, and of type INTEGER in Fortran. On some systems, INTEGERs will have 32 bits, while C pointers will have 64 bits. This is a problem if communicator attributes are used to move information from a Fortran caller to a C callee, or vice-versa.

mpi behaves as if it stores, internally, address sized attributes. If Fortran INTEGERs are smaller, then the (deprecated) Fortran function MPI_ATTR_GET will return the least significant part of the attribute word; the (deprecated) Fortran function MPI_ATTR_PUT will set the least significant part of the attribute word, which will be sign extended to the entire word. (These two functions may be invoked explicitly by user code, or implicitly, by attribute copying callback functions.)

As for addresses, new functions are provided that manipulate Fortran address sized attributes, and have the same functionality as the old functions in C. These functions are described in Section 7.7. Users are encouraged to use these new functions.

MPI supports two types of attributes: address-valued (pointer) attributes, and integer-valued attributes. C attribute functions put and get address-valued attributes. Fortran attribute functions put and get integer-valued attributes. When an integer-valued attribute is accessed from C, then MPI_ATTR_get_attr will return the address of (a pointer to) the integer-valued attribute, which is a pointer to MPI_Aint if the attribute was stored with Fortran MPI_ATTR_SET_ATTR, and a pointer to int if it was stored with the deprecated Fortran MPI_ATTR_PUT. When an address-valued attribute is accessed from Fortran, then MPI_ATTR_get_attr will convert the address into an integer and return the result of this conversion. This conversion is lossless if new style attribute functions are used, and an integer of kind MPI_ADDRESS_KIND is returned. The conversion may cause truncation if deprecated attribute functions are used. In C, the deprecated routines MPI_Attr_put and MPI_Attr_get behave identical to MPI_Comm_set_attr and MPI_Comm_get_attr.

Example 19.25. Setting an attribute in C and reading in C or Fortran.
A. Setting an attribute value in C
```c
int set_val = 3;
struct foo set_struct;

/* Set a value that is a pointer to an int */
MPI_Comm_set_attr(MPI_COMM_WORLD, keyval1, &set_val);
/* Set a value that is a pointer to a struct */
MPI_Comm_set_attr(MPI_COMM_WORLD, keyval2, &set_struct);
/* Set an integer value */
MPI_Comm_set_attr(MPI_COMM_WORLD, keyval3, (void *) 17);

B. Reading the attribute value in C

int flag, *get_val;
struct foo *get_struct;

/* Upon successful return, get_val == &set_val 
   (and therefore *get_val == 3) */
MPI_Comm_get_attr(MPI_COMM_WORLD, keyval1, &get_val, &flag);
/* Upon successful return, get_struct == &set_struct */
MPI_Comm_get_attr(MPI_COMM_WORLD, keyval2, &get_struct, &flag);
/* Upon successful return, get_val == (void*) 17 */
/* i.e., (MPI_Aint) get_val == 17 */
MPI_Comm_get_attr(MPI_COMM_WORLD, keyval3, &get_val, &flag);

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

LOGICAL FLAG
INTEGER IERR, GET_VAL, GET_STRUCT

! Upon successful return, GET_VAL == &set_val, possibly truncated
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL1, GET_VAL, FLAG, IERR)
! Upon successful return, GET_STRUCT == &set_struct, possibly truncated
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL2, GET_STRUCT, FLAG, IERR)
! Upon successful return, GET_VAL == 17
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL3, GET_VAL, FLAG, IERR)

D. Reading the attribute value with Fortran MPI-2 calls

LOGICAL FLAG
INTEGER IERR
INTEGER(KIND=MPI_ADDRESS_KIND) GET_VAL, GET_STRUCT

! Upon successful return, GET_VAL == &set_val
CALL MPI_COMM_ATTR_GET(MPI_COMM_WORLD, KEYVAL1, GET_VAL, FLAG, IERR)
! Upon successful return, GET_STRUCT == &set_struct
CALL MPI_COMM_ATTR_GET(MPI_COMM_WORLD, KEYVAL2, GET_STRUCT, FLAG, IERR)
! Upon successful return, GET_VAL == 17
CALL MPI_COMM_ATTR_GET(MPI_COMM_WORLD, KEYVAL3, GET_VAL, FLAG, IERR)
```

Example 19.26. Setting an attribute in Fortran and reading in C or Fortran.
A. Setting an attribute value with the (deprecated) Fortran MPI-1 call

```
INTEGER IERR, VAL
```
19.3 Language Interoperability

Example 19.27. Setting an attribute in Fortran and reading in C or Fortran.

A. Setting an attribute value via a Fortran MPI-2 call

```fortran
INTEGER IERR
INTEGER(KIND=MPI_ADDRESS_KIND) VALUE1
INTEGER(KIND=MPI_ADDRESS_KIND) VALUE2
VALUE1 = 42
VALUE2 = INT(2, KIND=MPI_ADDRESS_KIND)**40
CALL MPI_COMM_SET_ATTR(MPI_COMM_WORLD, KEYVAL1, VALUE1, IERR)
CALL MPI_COMM_SET_ATTR(MPI_COMM_WORLD, KEYVAL2, VALUE2, IERR)
```

B. Reading the attribute value in C

```c
int flag;
MPI_Aint *value1, *value2;
/* Upon successful return, value1 points to internal MPI storage and */
/* value1 == 42 */
MPI_Comm_get_attr(MPI_COMM_WORLD, keyval1, &value1, &flag);
/* Upon successful return, value2 points to internal MPI storage and */
/* value2 == 2**40 */
MPI_Comm_get_attr(MPI_COMM_WORLD, keyval2, &value2, &flag);
```

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

```fortran
LOGICAL FLAG
INTEGER IERR
INTEGER(value)
! Upon successful return, VALUE == 7
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL, VALUE, FLAG, IERR)
```

Example 19.27. Setting an attribute in Fortran and reading in C or Fortran.

A. Setting an attribute value via a Fortran MPI-2 call

```fortran
INTEGER IERR
INTEGER(KIND=MPI_ADDRESS_KIND) VALUE1
INTEGER(KIND=MPI_ADDRESS_KIND) VALUE2
VALUE1 = 42
VALUE2 = INT(2, KIND=MPI_ADDRESS_KIND)**40
CALL MPI_COMM_SET_ATTR(MPI_COMM_WORLD, KEYVAL1, VALUE1, IERR)
CALL MPI_COMM_SET_ATTR(MPI_COMM_WORLD, KEYVAL2, VALUE2, IERR)
```

B. Reading the attribute value in C

```c
int flag;
MPI_Aint *value1, *value2;
/* Upon successful return, value1 points to internal MPI storage and */
/* value1 == 42 */
MPI_Comm_get_attr(MPI_COMM_WORLD, keyval1, &value1, &flag);
/* Upon successful return, value2 points to internal MPI storage and */
/* value2 == 2**40 */
MPI_Comm_get_attr(MPI_COMM_WORLD, keyval2, &value2, &flag);
```

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

```fortran
LOGICAL FLAG
INTEGER IERR
INTEGER(value)
! Upon successful return, VALUE == 7
CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL, VALUE, FLAG, IERR)
```
The predefined MPI attributes can be integer valued or address-valued. Predefined integer valued attributes, such as MPI_TAG_UB, behave as if they were put by a call to the deprecated Fortran routine MPI_ATTR_PUT, i.e., in Fortran, MPI_COMM_GET_ATTR(MPI_COMM_WORLD, MPI_TAG_UB, val, flag, ierr) will return in val the upper bound for tag value; in C, MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_TAG_UB, &p, &flag) will return in p a pointer to an int containing the upper bound for tag value.

Address-valued predefined attributes, such as MPI_WIN_BASE behave as if they were put by a C call, i.e., in Fortran, MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, val, flag, ierror) will return in val the base address of the window, converted to an integer. In C, MPI_Win_get_attr(win, MPI_WIN_BASE, &p, &flag) will return in p a pointer to the window base, cast to (void *).

Rationale. The design is consistent with the behavior specified for predefined attributes, and ensures that no information is lost when attributes are passed from language to language. Because the language interoperability for predefined attributes was defined based on MPI_ATTR_PUT, this definition is kept for compatibility reasons although the routine itself is now deprecated. (End of rationale.)

Advice to implementors. Implementations should tag attributes either as (1) address attributes, (2) as INTEGER(KIND=MPI_ADDRESS_KIND) attributes or (3) as INTEGER attributes, according to whether they were set in (1) C (with MPI_Attr_put or MPI_XXX_set_attr), (2) in Fortran with MPI_XXX_SET_ATTR or (3) with the deprecated Fortran routine MPI_ATTR_PUT. Thus, the right choice can be made when the attribute is retrieved. (End of advice to implementors.)

19.3.8 Extra-State

Extra-state should not be modified by the copy or delete callback functions. (This is obvious from the C binding, but not obvious from the Fortran binding). However, these functions may update state that is indirectly accessed via extra-state. E.g., in C, extra-state can be a pointer to a data structure that is modified by the copy or callback functions; in Fortran,
extra-state can be an index into an entry in a **COMMON** array that is modified by the copy or callback functions. In a multithreaded environment, users should be aware that distinct threads may invoke the same callback function concurrently: if this function modifies state associated with extra-state, then mutual exclusion code must be used to protect updates and accesses to the shared state.

19.3.9 Constants

MPI constants have the same value in all languages, unless specified otherwise. This does not apply to constant handles (MPI_INT, MPI_COMM_WORLD, MPI_ERRORS_RETURN, MPI_SUM, etc.) These handles need to be converted, as explained in Section 19.3.4. Constants that specify maximum lengths of strings (see Section A.1.1 for a listing) have a value one less in Fortran than C since in C the length includes the null terminating character. Thus, these constants represent the amount of space that must be allocated to hold the largest possible such string, rather than the maximum number of printable characters the string could contain.

Advice to users. This definition means that it is safe in C to allocate a buffer to receive a string using a declaration like

```c
char name [MPI_MAX_OBJECT_NAME];
```

(End of advice to users.)

Also constant “addresses,” i.e., special values for reference arguments that are not handles, such as MPI_BOTTOM or MPI_STATUS_IGNORE may have different values in different languages.

Rationale. The current MPI standard specifies that MPI_BOTTOM can be used in initialization expressions in C, but not in Fortran. Since Fortran does not normally support call by value, then MPI_BOTTOM in Fortran must be the name of a predefined static variable, e.g., a variable in an MPI declared **COMMON** block. On the other hand, in C, it is natural to take MPI_BOTTOM = 0 (Caveat: Defining MPI_BOTTOM = 0 implies that NULL pointer cannot be distinguished from MPI_BOTTOM; it may be that MPI_BOTTOM = 1 is better. See the advice to implementors in the Datatypes subsection in Section 19.3.6) Requiring that the Fortran and C values be the same will complicate the initialization process. *(End of rationale.)*

19.3.10 Interlanguage Communication

The type matching rules for communication in MPI are not changed: the datatype specification for each item sent should match, in type signature, the datatype specification used to receive this item (unless one of the types is MPI_PACKED). Also, the type of a message item should match the type declaration for the corresponding communication buffer location, unless the type is MPI_BYTE or MPI_PACKED. Interlanguage communication is allowed if it complies with these rules.

Example 19.28. In the example below, a Fortran array is sent from Fortran and received in C.

```fortran
! FORTRAN CODE
```
SUBROUTINE MYEXAMPLE()
USE mpi_f08
REAL :: R(5)
INTEGER :: IERR, MYRANK, AOBLEN(1)
TYPE(MPI_Datatype) :: DTYPE, AOTYPE(1)
INTEGER(KIND=MPI_ADDRESS_KIND) :: AODISP(1)
! create an absolute datatype for array R
AOBLEN(1) = 5
CALL MPI_GET_ADDRESS(R, AODISP(1), IERR)
AOTYPE(1) = MPI_REAL
CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN, AODISP, AOTYPE, DTYPE, IERR)
CALL MPI_TYPE_COMMIT(DTYPE, IERR)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, MYRANK, IERR)
IF (MYRANK .EQ. 0) THEN
 CALL MPI_SEND(MPI_BOTTOM, 1, DTYPE, 1, 0, MPI_COMM_WORLD, IERR)
ELSE
 CALL C_ROUTINE(DTYPE%MPI_VAL)
END IF
END SUBROUTINE
/* C code */
void C_ROUTINE(MPI_Fint *fhandle)
{
 MPI_Datatype type;
 MPI_Status status;
 type = MPI_Type_f2c(*fhandle);
 MPI_Recv(MPI_BOTTOM, 1, type, 0, 0, MPI_COMM_WORLD, &status);
}

MPI implementors may weaken these type matching rules, and allow messages to be sent with Fortran types and received with C types, and vice versa, when those types match. I.e., if the Fortran type INTEGER is identical to the C type int, then an MPI implementation may allow data to be sent with datatype MPI_INTEGER and be received with datatype MPI_INT. However, such code is not portable.
Appendix A

Language Bindings Summary

In this section we summarize the specific bindings for C and Fortran. First we present the constants, type definitions, info values and keys. Then we present the routine prototypes separately for each binding. Listings are alphabetical within chapter.

A.1 Defined Values and Handles

A.1.1 Defined Constants

The C and Fortran names are listed below. Constants described as “integer constant expression” may be implemented as literal integer constants of the specified integer type substituted by the preprocessor or (where possible) as enum members.

<table>
<thead>
<tr>
<th>Error classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C type: integer constant expression of type int</td>
</tr>
<tr>
<td>Fortran type: INTEGER</td>
</tr>
<tr>
<td>MPI_SUCCESS</td>
</tr>
<tr>
<td>MPI_ERR_BUFFER</td>
</tr>
<tr>
<td>MPI_ERR_COUNT</td>
</tr>
<tr>
<td>MPI_ERR_TYPE</td>
</tr>
<tr>
<td>MPI_ERR_TAG</td>
</tr>
<tr>
<td>MPI_ERR_COMM</td>
</tr>
<tr>
<td>MPI_ERR_RANK</td>
</tr>
<tr>
<td>MPI_ERR_REQUEST</td>
</tr>
<tr>
<td>MPI_ERR_ROOT</td>
</tr>
<tr>
<td>MPI_ERR_GROUP</td>
</tr>
<tr>
<td>MPI_ERR_OP</td>
</tr>
<tr>
<td>MPI_ERR_TOPOLOGY</td>
</tr>
<tr>
<td>MPI_ERR_DIMS</td>
</tr>
<tr>
<td>MPI_ERR_ARG</td>
</tr>
<tr>
<td>MPI_ERR_UNKNOWN</td>
</tr>
<tr>
<td>MPI_ERR_TRUNCATE</td>
</tr>
<tr>
<td>MPI_ERR_OTHER</td>
</tr>
<tr>
<td>MPI_ERRTERN</td>
</tr>
<tr>
<td>MPI_ERR_PENDING</td>
</tr>
</tbody>
</table>

(Continued on next page)
Appendix A Language Bindings Summary

Error classes (continued)

C type: integer constant expression of type int
Fortran type: INTEGER

MPI_ERR_IN_STATUS
MPI_ERR_ACCESS
MPI_ERR_AMODE
MPI_ERR_ASSERT
MPI_ERR_BAD_FILE
MPI_ERR_BASE
MPI_ERR_CONVERSION
MPI_ERR_DISP
MPI_ERR_DUP_DATAREP
MPI_ERR_ERRHANDLER
MPI_ERR_FILE_EXISTS
MPI_ERR_FILE_IN_USE
MPI_ERR_FILE
MPI_ERR_INFO_KEY
MPI_ERR_INFO_NOKEY
MPI_ERR_INFO_VALUE
MPI_ERR_INFO
MPI_ERR_IO
MPI_ERR_KEYVAL
MPI_ERR_LOCKTYPE
MPI_ERR_NAME
MPI_ERR_NO_MEM
MPI_ERR_NOTSAME
MPI_ERR_NO_SPACE
MPI_ERR_NO_SUCH_FILE
MPI_ERR_PORT
MPI_ERR_PROC_ABORTED
MPI_ERR QUOTA
MPI_ERR_READ ONLY
MPI_ERR RMA_ATTACH
MPI_ERR_RMA_CONFLICT
MPI_ERR RMA_RANGE
MPI_ERR_RMA_SHARED
MPI_ERR_RMA_SYNC
MPI_ERR RMA FLAVOR
MPI_ERR SERVICE
MPI_ERR SESSION
MPI_ERR_SIZE
MPI_ERR SPAWN
MPI_ERR_UNSUPPORTED_DATAREP
MPI_ERR_UNSUPPORTED_OPERATION
MPI_ERR_VALUE_TOO_LARGE
MPI_ERR_WIN

(Continued on next page)
Error classes (continued)

C type: integer constant expression of type int
Fortran type: INTEGER

- MPI_T_ERR_CANNOT_INIT
- MPI_T_ERR_NOT_ACCESSIBLE
- MPI_T_ERR_NOT_INITIALIZED
- MPI_T_ERR_NOT_SUPPORTED
- MPI_T_ERR_MEMORY
- MPI_T_ERR_INVALID
- MPI_T_ERR_INVALID_INDEX
- MPI_T_ERR_INVALID_ITEM
- MPI_T_ERR_INVALID_SESSION
- MPI_T_ERR_INVALID_HANDLE
- MPI_T_ERR_INVALID_NAME
- MPI_T_ERR_OUT_OF_HANDLES
- MPI_T_ERR_OUT_OF_SESSIONS
- MPI_T_ERR_CVAR_SET_NOT_NOW
- MPI_T_ERR_CVAR_SET_NEVER
- MPI_T_ERR_PVAR_NO_WRITE
- MPI_T_ERR_PVAR_NO_STARTSTOP
- MPI_T_ERR_PVAR_NO_ATOMIC
- MPI_ERR_LASTCODE

Buffer Address Constants

C type: void * const
Fortran type: (predefined memory location)

- MPI_BOTTOM
- MPI_BUFFER_AUTOMATIC
- MPI_IN_PLACE

1 Note that in Fortran these constants are not usable for initialization expressions or assignment. See Section 2.5.4.

Assorted Constants

C type: integer constant expression of type int
Fortran type: INTEGER

- MPI_PROC_NULL
- MPI_ANY_SOURCE
- MPI_ANY_TAG
- MPI_UNDEFINED
- MPI_BSEND_OVERHEAD
- MPI_KEYVAL_INVALID
- MPI_LOCK_EXCLUSIVE
- MPI_LOCK_SHARED
- MPI_ROOT
No Process Message Handle

C type: MPI_Message
Fortran type: INTEGER or TYPE(MPI_Message)
MPI_MESSAGE_NO_PROC

Fortran Support Method Specific Constants

Fortran type: LOGICAL
MPI_SUBARRAYS_SUPPORTED (Fortran only)
MPI_ASYNC_PROTECTS_NONBLOCKING (Fortran only)

Status array size and reserved index values (Fortran only)

Fortran type: INTEGER
MPI_STATUS_SIZE
MPI_SOURCE
MPI_TAG
MPI_ERROR

Fortran status array size and reserved index values (C only)

C type: integer constant expression of type int
MPI_F_STATUS_SIZE
MPI_F_SOURCE
MPI_F_TAG
MPI_F_ERROR

Variable Address Size (Fortran only)

Fortran type: INTEGER
MPI_ADDRESS_KIND
MPI_COUNT_KIND
MPI_INTEGER_KIND
MPI_OFFSET_KIND

Error-handling specifiers

C type: MPI_Errhandler
Fortran type: INTEGER or TYPE(MPI_Errhandler)
MPI_ERRORS_ARE_FATAL
MPI_ERRORS_ABORT
MPI_ERRORS_RETURN
Maximum Sizes for Strings

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C type: integer constant expression of type <code>int</code></td>
<td></td>
</tr>
<tr>
<td>Fortran type: <code>INTEGER</code></td>
<td></td>
</tr>
<tr>
<td><code>MPI_MAX_DATAREP_STRING</code></td>
<td></td>
</tr>
<tr>
<td><code>MPI_MAX_ERROR_STRING</code></td>
<td></td>
</tr>
<tr>
<td><code>MPI_MAX_INFO_KEY</code></td>
<td></td>
</tr>
<tr>
<td><code>MPI_MAX_INFO_VAL</code></td>
<td></td>
</tr>
<tr>
<td><code>MPI_MAX_LIBRARY_VERSION_STRING</code></td>
<td></td>
</tr>
<tr>
<td><code>MPI_MAX_OBJECT_NAME</code></td>
<td></td>
</tr>
<tr>
<td><code>MPI_MAX_PORT_NAME</code></td>
<td></td>
</tr>
<tr>
<td><code>MPI_MAX_PROCESSOR_NAME</code></td>
<td></td>
</tr>
<tr>
<td><code>MPI_MAX_STRINGTAG_LEN</code></td>
<td></td>
</tr>
<tr>
<td><code>MPI_MAX_PSET_NAME_LEN</code></td>
<td></td>
</tr>
<tr>
<td>Named Predefined Datatypes</td>
<td>C types</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>C type: MPIDatatype</td>
<td>char</td>
</tr>
<tr>
<td>Fortran type: INTEGER</td>
<td>(treated as printable character)</td>
</tr>
<tr>
<td>or TYPE(MPI_Datatype)</td>
<td></td>
</tr>
<tr>
<td>MPI_CHAR</td>
<td>signed short int</td>
</tr>
<tr>
<td>MPI_SHORT</td>
<td>signed int</td>
</tr>
<tr>
<td>MPI_INT</td>
<td>signed long</td>
</tr>
<tr>
<td>MPI_LONG</td>
<td>signed long long</td>
</tr>
<tr>
<td>MPI_LONG_LONG_INT</td>
<td>signed long long</td>
</tr>
<tr>
<td>MPI_LONG_LONG (as a synonym)</td>
<td>signed char</td>
</tr>
<tr>
<td>MPI_SIGNED_CHAR</td>
<td>(treated as integral value)</td>
</tr>
<tr>
<td>MPI_UNSIGNED_CHAR</td>
<td>unsigned char</td>
</tr>
<tr>
<td>MPI_UNSIGNED_SHORT</td>
<td>(treated as integral value)</td>
</tr>
<tr>
<td>MPI_UNSIGNED</td>
<td>unsigned short</td>
</tr>
<tr>
<td>MPI_UNSIGNED_LONG</td>
<td>unsigned int</td>
</tr>
<tr>
<td>MPI_UNSIGNED_LONG_LONG</td>
<td>unsigned long long</td>
</tr>
<tr>
<td>MPI_FLOAT</td>
<td>float</td>
</tr>
<tr>
<td>MPI_DOUBLE</td>
<td>double</td>
</tr>
<tr>
<td>MPI_LONG_DOUBLE</td>
<td>long double</td>
</tr>
<tr>
<td>MPI_WCHAR</td>
<td>wchar_t</td>
</tr>
<tr>
<td></td>
<td>(defined in <code><stddef.h></code>)</td>
</tr>
<tr>
<td></td>
<td>(treated as printable character)</td>
</tr>
<tr>
<td>MPI_C_BOOL</td>
<td>_Bool</td>
</tr>
<tr>
<td>MPI_INT8_T</td>
<td>int8_t</td>
</tr>
<tr>
<td>MPI_INT16_T</td>
<td>int16_t</td>
</tr>
<tr>
<td>MPI_INT32_T</td>
<td>int32_t</td>
</tr>
<tr>
<td>MPI_INT64_T</td>
<td>int64_t</td>
</tr>
<tr>
<td>MPI_UINT8_T</td>
<td>uint8_t</td>
</tr>
<tr>
<td>MPI_UINT16_T</td>
<td>uint16_t</td>
</tr>
<tr>
<td>MPI_UINT32_T</td>
<td>uint32_t</td>
</tr>
<tr>
<td>MPI_UINT64_T</td>
<td>uint64_t</td>
</tr>
<tr>
<td>MPI_AINT</td>
<td>MPI_Aint</td>
</tr>
<tr>
<td>MPI_COUNT</td>
<td>MPI_Count</td>
</tr>
<tr>
<td>MPI_OFFSET</td>
<td>MPI_Offset</td>
</tr>
<tr>
<td>MPI_C_COMPLEX</td>
<td>float _Complex</td>
</tr>
<tr>
<td>MPI_C_FLOAT_COMPLEX</td>
<td>float _Complex</td>
</tr>
<tr>
<td>(as a synonym)</td>
<td></td>
</tr>
<tr>
<td>MPI_C_DOUBLE_COMPLEX</td>
<td>double _Complex</td>
</tr>
<tr>
<td>MPI_C_LONG_DOUBLE_COMPLEX</td>
<td>long double _Complex</td>
</tr>
<tr>
<td>MPI_BYTE</td>
<td>(any C type)</td>
</tr>
<tr>
<td>MPI_PACKED</td>
<td>(any C type)</td>
</tr>
</tbody>
</table>
A.1 Defined Values and Handles

Named Predefined Datatypes

<table>
<thead>
<tr>
<th>C type: MPI_Datatype</th>
<th>Fortran types</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_INTEGER</td>
<td>INTEGER</td>
</tr>
<tr>
<td>MPI_REAL</td>
<td>REAL</td>
</tr>
<tr>
<td>MPI_DOUBLE_PRECISION</td>
<td>DOUBLE PRECISION</td>
</tr>
<tr>
<td>MPI_COMPLEX</td>
<td>COMPLEX</td>
</tr>
<tr>
<td>MPI_LOGICAL</td>
<td>LOGICAL</td>
</tr>
<tr>
<td>MPI_CHARACTER</td>
<td>CHARACTER(1)</td>
</tr>
<tr>
<td>MPI_AINT</td>
<td>INTEGER(KIND=MPI_ADDRESS_KIND)</td>
</tr>
<tr>
<td>MPI_COUNT</td>
<td>INTEGER(KIND=MPI_COUNT_KIND)</td>
</tr>
<tr>
<td>MPI_OFFSET</td>
<td>INTEGER(KIND=MPI_OFFSET_KIND)</td>
</tr>
<tr>
<td>MPI_BYTE</td>
<td>(any Fortran type)</td>
</tr>
<tr>
<td>MPI_PACKED</td>
<td>(any Fortran type)</td>
</tr>
</tbody>
</table>

Named Predefined Datatypes

<table>
<thead>
<tr>
<th>C++ types</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_CXX_BOOL</td>
</tr>
<tr>
<td>MPI_CXX_FLOAT_COMPLEX</td>
</tr>
<tr>
<td>MPI_CXX_DOUBLE_COMPLEX</td>
</tr>
<tr>
<td>MPI_CXX_LONG_DOUBLE_COMPLEX</td>
</tr>
</tbody>
</table>

1 If an accompanying C++ compiler is missing, then the MPI datatypes in this table are not defined.

Optional datatypes (Fortran)

<table>
<thead>
<tr>
<th>Fortran types</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_DOUBLE_COMPLEX</td>
</tr>
<tr>
<td>MPI_INTEGER1</td>
</tr>
<tr>
<td>MPI_INTEGER2</td>
</tr>
<tr>
<td>MPI.INTEGER4</td>
</tr>
<tr>
<td>MPI.INTEGER8</td>
</tr>
<tr>
<td>MPI_INTEGER16</td>
</tr>
<tr>
<td>MPI_REAL2</td>
</tr>
<tr>
<td>MPI_REAL4</td>
</tr>
<tr>
<td>MPI_REAL8</td>
</tr>
<tr>
<td>MPI-REAL16</td>
</tr>
<tr>
<td>MPI_COMPLEX4</td>
</tr>
<tr>
<td>MPI_COMPLEX8</td>
</tr>
<tr>
<td>MPI_COMPLEX16</td>
</tr>
<tr>
<td>MPI_COMPLEX32</td>
</tr>
</tbody>
</table>
Datatypes for reduction functions (C)

<table>
<thead>
<tr>
<th>C type</th>
<th>Fortran type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_DATATYPE</td>
<td>INTEGER or TYPE(MPI_DATATYPE)</td>
</tr>
<tr>
<td>MPI_FLOAT_INT</td>
<td></td>
</tr>
<tr>
<td>MPI_DOUBLE_INT</td>
<td></td>
</tr>
<tr>
<td>MPI_LONG_INT</td>
<td></td>
</tr>
<tr>
<td>MPI_2INT</td>
<td></td>
</tr>
<tr>
<td>MPI_SHORT_INT</td>
<td></td>
</tr>
<tr>
<td>MPI_LONG_DOUBLE_INT</td>
<td></td>
</tr>
</tbody>
</table>

Datatypes for reduction functions (Fortran)

<table>
<thead>
<tr>
<th>C type</th>
<th>Fortran type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_DATATYPE</td>
<td>INTEGER or TYPE(MPI_DATATYPE)</td>
</tr>
<tr>
<td>MPI_2REAL</td>
<td></td>
</tr>
<tr>
<td>MPI_2DOUBLE_PRECISION</td>
<td></td>
</tr>
<tr>
<td>MPI_2INTEGER</td>
<td></td>
</tr>
</tbody>
</table>

Reserved communicators

<table>
<thead>
<tr>
<th>C type</th>
<th>Fortran type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_COMM_WORLD</td>
<td>INTEGER or TYPE(MPI_COMM_WORLD)</td>
</tr>
<tr>
<td>MPI_COMM_SELF</td>
<td></td>
</tr>
</tbody>
</table>

Communicator split type constants

<table>
<thead>
<tr>
<th>C type</th>
<th>Fortran type</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER</td>
<td></td>
</tr>
<tr>
<td>MPI_COMM_TYPE_SHARED</td>
<td></td>
</tr>
<tr>
<td>MPI_COMM_TYPE_HW_UNGUIDED</td>
<td></td>
</tr>
<tr>
<td>MPI_COMM_TYPE_HW_GUIDED</td>
<td></td>
</tr>
<tr>
<td>MPI_COMM_TYPE_RESOURCE_GUIDED</td>
<td></td>
</tr>
</tbody>
</table>

Results of communicator and group comparisons

<table>
<thead>
<tr>
<th>C type</th>
<th>Fortran type</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER</td>
<td></td>
</tr>
<tr>
<td>MPI_IDENT</td>
<td></td>
</tr>
<tr>
<td>MPI_CONGRUENT</td>
<td></td>
</tr>
<tr>
<td>MPI_SIMILAR</td>
<td></td>
</tr>
<tr>
<td>MPI_UNEQUAL</td>
<td></td>
</tr>
</tbody>
</table>

Environmental inquiry info key

<table>
<thead>
<tr>
<th>C type</th>
<th>Fortran type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_INFO</td>
<td>INTEGER or TYPE(MPI_INFO)</td>
</tr>
<tr>
<td>MPI_INFO_ENV</td>
<td></td>
</tr>
</tbody>
</table>
Environmental inquiry keys

<table>
<thead>
<tr>
<th>C type: integer constant expression of type int</th>
<th>Fortran type: INTEGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_TAG_UB</td>
<td></td>
</tr>
<tr>
<td>MPI_IO</td>
<td></td>
</tr>
<tr>
<td>MPI_HOST (deprecated)</td>
<td></td>
</tr>
<tr>
<td>MPI_WTIME_IS_GLOBAL</td>
<td></td>
</tr>
</tbody>
</table>

Collective Operations

<table>
<thead>
<tr>
<th>C type: MPI_Op</th>
<th>Fortran type: INTEGER or TYPE(MPI_Op)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_MAX</td>
<td></td>
</tr>
<tr>
<td>MPI_MIN</td>
<td></td>
</tr>
<tr>
<td>MPI_SUM</td>
<td></td>
</tr>
<tr>
<td>MPI_PROD</td>
<td></td>
</tr>
<tr>
<td>MPI_MAXLOC</td>
<td></td>
</tr>
<tr>
<td>MPI_MINLOC</td>
<td></td>
</tr>
<tr>
<td>MPI_BAND</td>
<td></td>
</tr>
<tr>
<td>MPI_BOR</td>
<td></td>
</tr>
<tr>
<td>MPI_BXOR</td>
<td></td>
</tr>
<tr>
<td>MPI_LAND</td>
<td></td>
</tr>
<tr>
<td>MPI_LOR</td>
<td></td>
</tr>
<tr>
<td>MPI_LXOR</td>
<td></td>
</tr>
<tr>
<td>MPI_REPLACE</td>
<td></td>
</tr>
<tr>
<td>MPI_NO_OP</td>
<td></td>
</tr>
</tbody>
</table>
Null Handles

<table>
<thead>
<tr>
<th>C/Fortran name</th>
<th>C type / Fortran type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_GROUP_NULL</td>
<td>MPI_Group / INTEGER or TYPE(MPI_Group)</td>
</tr>
<tr>
<td>MPI_COMM_NULL</td>
<td>MPI_Comm / INTEGER or TYPE(MPI_Comm)</td>
</tr>
<tr>
<td>MPI_DATATYPE_NULL</td>
<td>MPI_Datatype / INTEGER or TYPE(MPI_Datatype)</td>
</tr>
<tr>
<td>MPI_REQUEST_NULL</td>
<td>MPI_Request / INTEGER or TYPE(MPI_Request)</td>
</tr>
<tr>
<td>MPI_OP_NULL</td>
<td>MPI_Op / INTEGER or TYPE(MPI_Op)</td>
</tr>
<tr>
<td>MPI_ERRHANDLER_NULL</td>
<td>MPI_Errhandler / INTEGER or TYPE(MPI_Errhandler)</td>
</tr>
<tr>
<td>MPI_FILE_NULL</td>
<td>MPI_File / INTEGER or TYPE(MPI_File)</td>
</tr>
<tr>
<td>MPI_INFO_NULL</td>
<td>MPI_Info / INTEGER or TYPE(MPI_Info)</td>
</tr>
<tr>
<td>MPI_SESSION_NULL</td>
<td>MPI_Session / INTEGER or TYPE(MPI_Session)</td>
</tr>
<tr>
<td>MPI_WIN_NULL</td>
<td>MPI_Win / INTEGER or TYPE(MPI_Win)</td>
</tr>
<tr>
<td>MPI_MESSAGE_NULL</td>
<td>MPI_Message / INTEGER or TYPE(MPI_Message)</td>
</tr>
</tbody>
</table>

Empty group

<table>
<thead>
<tr>
<th>C type: MPI_Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran type: INTEGER or TYPE(MPI_Group)</td>
</tr>
</tbody>
</table>

Topologies

<table>
<thead>
<tr>
<th>C type: integer constant expression of type int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran type: INTEGER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MPI_GRAPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_CART</td>
</tr>
<tr>
<td>MPI_DIST_GRAPH</td>
</tr>
</tbody>
</table>
Predefined functions

<table>
<thead>
<tr>
<th>C/Fortran name</th>
<th>C type</th>
<th>Fortran type with mpi module</th>
<th>Fortran type with mpi_f08 module</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_COMM_NULL_COPY_FN</td>
<td>MPI_Comm_copy_attr_function</td>
<td>/ COMM_COPY_ATTR_FUNCTION</td>
<td>/ PROCEDURE(MPI_Comm_copy_attr_function)</td>
</tr>
<tr>
<td>MPI_COMM_DUP_FN</td>
<td>MPI_Comm_copy_attr_function</td>
<td>/ COMM_COPY_ATTR_FUNCTION</td>
<td>/ PROCEDURE(MPI_Comm_copy_attr_function)</td>
</tr>
<tr>
<td>MPI_COMM_NULL_DELETE_FN</td>
<td>MPI_Comm_delete_attr_function</td>
<td>/ COMM_DELETE_ATTR_FUNCTION</td>
<td>/ PROCEDURE(MPI_Comm_delete_attr_function)</td>
</tr>
<tr>
<td>MPI_WIN_NULL_COPY_FN</td>
<td>MPI_Win_copy_attr_function</td>
<td>/ WIN_COPY_ATTR_FUNCTION</td>
<td>/ PROCEDURE(MPI_Win_copy_attr_function)</td>
</tr>
<tr>
<td>MPI_WIN_DUP_FN</td>
<td>MPI_Win_copy_attr_function</td>
<td>/ WIN_COPY_ATTR_FUNCTION</td>
<td>/ PROCEDURE(MPI_Win_copy_attr_function)</td>
</tr>
<tr>
<td>MPI_WIN_NULL_DELETE_FN</td>
<td>MPI_Win_delete_attr_function</td>
<td>/ WIN_DELETE_ATTR_FUNCTION</td>
<td>/ PROCEDURE(MPI_Win_delete_attr_function)</td>
</tr>
<tr>
<td>MPI_TYPE_NULL_COPY_FN</td>
<td>MPI_Type_copy_attr_function</td>
<td>/ TYPE_COPY_ATTR_FUNCTION</td>
<td>/ PROCEDURE(MPI_Type_copy_attr_function)</td>
</tr>
<tr>
<td>MPI_TYPE_DUP_FN</td>
<td>MPI_Type_copy_attr_function</td>
<td>/ TYPE_COPY_ATTR_FUNCTION</td>
<td>/ PROCEDURE(MPI_Type_copy_attr_function)</td>
</tr>
<tr>
<td>MPI_TYPE_NULL_DELETE_FN</td>
<td>MPI_Type_delete_attr_function</td>
<td>/ TYPE_DELETE_ATTR_FUNCTION</td>
<td>/ PROCEDURE(MPI_Type_delete_attr_function)</td>
</tr>
<tr>
<td>MPI_CONVERSION_FN_NULL</td>
<td>MPI_Datarep_conversion_function</td>
<td>/ DATAREP_CONVERSION_FUNCTION</td>
<td>/ PROCEDURE(MPI_Datarep_conversion_function)</td>
</tr>
<tr>
<td>MPI_CONVERSION_FN_NULL_C</td>
<td>MPI_Datarep_conversion_function_c</td>
<td>/ (n/a)</td>
<td>/ PROCEDURE(MPI_Datarep_conversion_function_c)</td>
</tr>
</tbody>
</table>

1 See the advice to implementors (on page 363) and advice to users (on page 364) on the predefined Fortran functions MPI_COMM_NULL_COPY_FN, ... in Section 7.7.2.
Deprecated predefined functions

<table>
<thead>
<tr>
<th>C/Fortran name</th>
<th>C type / Fortran type with mpi module</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_NULL_COPY_FN</td>
<td>MPI_Copy_function / COPY_FUNCTION</td>
</tr>
<tr>
<td>MPI_DUP_FN</td>
<td>MPI_Copy_function / COPY_FUNCTION</td>
</tr>
<tr>
<td>MPI_NULL_DELETE_FN</td>
<td>MPI_Delete_function / DELETE_FUNCTION</td>
</tr>
</tbody>
</table>

Predefined Attribute Keys

<table>
<thead>
<tr>
<th>C type: integer constant expression of type int</th>
<th>Fortran type: INTEGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_APPNUM</td>
<td>MPI_LASTUSED_CODE</td>
</tr>
<tr>
<td>MPI_UNIVERSE_SIZE</td>
<td>MPI_WIN_BASE</td>
</tr>
<tr>
<td>MPI_WIN_DISP_UNIT</td>
<td>MPI_WIN_SIZE</td>
</tr>
<tr>
<td>MPI_WIN_CREATE_FLAVOR</td>
<td>MPI_WIN_CREATE_FLAVOR</td>
</tr>
<tr>
<td>MPI_WIN_MODEL</td>
<td>MPI_WIN_MODEL</td>
</tr>
</tbody>
</table>

MPI Window Create Flavors

<table>
<thead>
<tr>
<th>C type: integer constant expression of type int</th>
<th>Fortran type: INTEGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_WIN_FLAVOR_CREATE</td>
<td>MPI_WIN_FLAVOR_CREATE</td>
</tr>
<tr>
<td>MPI_WIN_FLAVOR_ALLOCATE</td>
<td>MPI_WIN_FLAVOR_ALLOCATE</td>
</tr>
<tr>
<td>MPI_WIN_FLAVOR_DYNAMIC</td>
<td>MPI_WIN_FLAVOR_DYNAMIC</td>
</tr>
<tr>
<td>MPI_WIN_FLAVOR_SHARED</td>
<td>MPI_WIN_FLAVOR_SHARED</td>
</tr>
</tbody>
</table>

MPI Window Models

<table>
<thead>
<tr>
<th>C type: integer constant expression of type int</th>
<th>Fortran type: INTEGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_WIN_SEPARATE</td>
<td>MPI_WIN_SEPARATE</td>
</tr>
<tr>
<td>MPI_WIN_UNIFIED</td>
<td>MPI_WIN_UNIFIED</td>
</tr>
</tbody>
</table>
Mode Constants

<table>
<thead>
<tr>
<th>C type: integer constant expression of type int</th>
<th>Fortran type: INTEGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_MODE_APPEND</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_CREATE</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_DELETE_ON_CLOSE</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_EXCL</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_NOCHECK</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_NOPRECEDE</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_NOPUT</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_NOSTORE</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_NOSUCCEED</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_RDONLY</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_RDWR</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_SEQUENTIAL</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_UNIQUE_OPEN</td>
<td></td>
</tr>
<tr>
<td>MPI_MODE_WRONLY</td>
<td></td>
</tr>
</tbody>
</table>

Datatype Decoding Constants

<table>
<thead>
<tr>
<th>C type: integer constant expression of type int</th>
<th>Fortran type: INTEGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_COMBINER_CONTIGUOUS</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_DARRAY</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_DUP</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_F90_COMPLEX</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_F90_INTEGER</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_F90_REAL</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_HINDEXED</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_HVECTOR</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_INDEXED_BLOCK</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_INDEXED_BLOCK</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_INDEXED</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_NAMED</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_RESIZED</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_STRUCT</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_SUBARRAY</td>
<td></td>
</tr>
<tr>
<td>MPI_COMBINER_VECTOR</td>
<td></td>
</tr>
</tbody>
</table>

Threads Constants

<table>
<thead>
<tr>
<th>C type: integer constant expression of type int</th>
<th>Fortran type: INTEGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_THREAD_FUNNELED</td>
<td></td>
</tr>
<tr>
<td>MPI_THREAD_MULTIPLE</td>
<td></td>
</tr>
<tr>
<td>MPI_THREAD_SERIALIZE</td>
<td></td>
</tr>
<tr>
<td>MPI_THREAD_SINGLE</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A Language Bindings Summary

File Operation Constants, Part 1

C type: integer constant expression of type MPI_Offset
Fortran type: INTEGER(KIND=MPI_OFFSET_KIND)

MPI_DISPLACEMENT_CURRENT

File Operation Constants, Part 2

C type: integer constant expression of type int
Fortran type: INTEGER

MPI_DISTRIBUTE_BLOCK
MPI_DISTRIBUTE_CYCLIC
MPI_DISTRIBUTE_DEFAULT_DARG
MPI_DISTRIBUTE_NONE
MPI_ORDER_C
MPI_ORDER_FORTRAN
MPI_SEEK_CUR
MPI_SEEK_END
MPI_SEEK_SET

F90 Datatype Matching Constants

C type: integer constant expression of type int
Fortran type: INTEGER

MPI_TYPECLASS_COMPLEX
MPI_TYPECLASS_INTEGER
MPI_TYPECLASS_REAL

Constants Specifying Empty or Ignored Input

C/Fortran name
 C type / Fortran type

MPI_ARGVS_NULL
 char*** / 2-dim. array of CHARACTER(*)
MPI_ARGV_NULL
 char** / array of CHARACTER(*)

MPI_ERRCODES_IGNORE
 int* / INTEGER array

MPI_STATUSES_IGNORE
 MPI_Status* / INTEGER, DIMENSION(MPI_STATUS_SIZE,*)
 or TYPE(MPI_Status). DIMENSION(*)

MPI_STATUS_IGNORE
 MPI_Status* / INTEGER, DIMENSION(MPI_STATUS_SIZE)
 or TYPE(MPI_Status)

MPI_UNWEIGHTED
 int* / INTEGER array

MPI_WEIGHTS_EMPTY
 int* / INTEGER array

1 Note that in Fortran these constants are not usable for initialization expressions or assignment. See Section 2.5.4.
C Constants Specifying Ignored Input (no Fortran)

<table>
<thead>
<tr>
<th>C constant (type: MPI_Fint*)</th>
<th>is equivalent to the Fortran constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_F_STATUSES_IGNORE</td>
<td>MPI_STATUSES_IGNORE in mpi / mpif.h</td>
</tr>
<tr>
<td>MPI_F_STATUS_IGNORE</td>
<td>MPI_STATUS_IGNORE in mpi / mpif.h</td>
</tr>
</tbody>
</table>

C preprocessor Constants and Fortran Parameters

C type: C-preprocessor macro that expands to an `int` value
Fortran type: `INTEGER`

- MPI_SUBVERSION
- MPI_VERSION

Null handles used in the MPI tool information interface

- MPI_T_ENUM_NULL
 - MPI_T_enum
- MPI_T_CVAR_HANDLE_NULL
 - MPI_T_cvar_handle
- MPI_T_PVAR_HANDLE_NULL
 - MPI_T_pvar_handle
- MPI_T_PVAR_SESSION_NULL
 - MPI_T_pvar_session

Verbosity Levels in the MPI tool information interface

C type: integer constant expression of type `int`

- MPI_T_VERBOSITY_USER_BASIC
- MPI_T_VERBOSITY_USER_DETAIL
- MPI_T_VERBOSITY_USER_ALL
- MPI_T_VERBOSITY_TUNER_BASIC
- MPI_T_VERBOSITY_TUNER_DETAIL
- MPI_T_VERBOSITY_TUNER_ALL
- MPI_T_VERBOSITY_MPIDEV_BASIC
- MPI_T_VERBOSITY_MPIDEV_DETAIL
- MPI_T_VERBOSITY_MPIDEV_ALL
Appendix A Language Bindings Summary

Constants to identify associations of variables in the MPI tool information interface

C type: integer constant expression of type int

- MPI_T_BIND_NO_OBJECT
- MPI_T_BIND_MPI_COMM
- MPI_T_BIND_MPI_DATATYPE
- MPI_T_BIND_MPI_ERRHANDLER
- MPI_T_BIND_MPI_FILE
- MPI_T_BIND_MPI_GROUP
- MPI_T_BIND_MPI_OP
- MPI_T_BIND_MPI_REQUEST
- MPI_T_BIND_MPI_WIN
- MPI_T_BIND_MPI_MESSAGE
- MPI_T_BIND_MPI_INFO
- MPI_T_BIND_MPI_SESSION

Constants describing the scope of a control variable in the MPI tool information interface

C type: integer constant expression of type int

- MPI_T_SCOPE_CONSTANT
- MPI_T_SCOPE_READONLY
- MPI_T_SCOPE_LOCAL
- MPI_T_SCOPE_GROUP
- MPI_T_SCOPE_GROUP_EQ
- MPI_T_SCOPE_ALL
- MPI_T_SCOPE_ALL_EQ

Additional constants used by the MPI tool information interface

C type: MPI_T_pvar_handle

- MPI_T_PVAR_ALL_HANDLES

Performance variables classes used by the MPI tool information interface

C type: integer constant expression of type int

- MPI_T_PVAR_CLASS_STATE
- MPI_T_PVAR_CLASS_LEVEL
- MPI_T_PVAR_CLASS_SIZE
- MPI_T_PVAR_CLASS_PERCENTAGE
- MPI_T_PVAR_CLASS_HIGHWATERMARK
- MPI_T_PVAR_CLASS_LOWWATERMARK
- MPI_T_PVAR_CLASS_COUNTER
- MPI_T_PVAR_CLASS_AGGREGATE
- MPI_T_PVAR_CLASS_TIMER
- MPI_T_PVAR_CLASS_GENERIC
A.1 Defined Values and Handles

Source event ordering guarantees in the MPI tool information interface

C type: MPI_T_source_order

MPI_T_SOURCE_ORDERED
MPI_T_SOURCE_UNORDERED

Callback safety requirement levels used in the MPI tool information interface

C type: MPI_T_cb_safety

MPI_T_CB_REQUIRE_NONE
MPI_T_CB_REQUIRE_MPI_RESTRICTED
MPI_T_CB_REQUIRE_THREAD_SAFE
MPI_T_CB_REQUIRE_ASYNC_SIGNAL_SAFE

A.1.2 Types

The following are defined C type definitions included in the file mpi.h.

/* C opaque types */
MPI_Aint
MPI_Count
MPI_Fint
MPI_Offset
MPI_Status
MPI_F08_status

/* C handles to assorted structures */
MPI_Comm
MPI_Datatype
MPI_Errhandler
MPI_File
MPI_Group
MPI_Info
MPI_Message
MPI_Op
MPI_Request
MPI_Session
MPI_Win

/* Types for the MPI_T interface */
MPI_T_enum
MPI_T_cvar_handle
MPI_T_pvar_handle
MPI_T_pvar_session
MPI_T_event_instance
MPI_T_event_registration
MPI_T_source_order
MPI_T_cb_safety
The following are defined Fortran type definitions included in the mpi_f08 and mpi modules.

! Fortran opaque types in the mpi_f08 and mpi modules
TYPE(MPI_Status)

! Fortran handles in the mpi_f08 and mpi modules
TYPE(MPI_Comm)
TYPE(MPI_Datatype)
TYPE(MPI_Errhandler)
TYPE(MPI_File)
TYPE(MPI_Group)
TYPE(MPI_Info)
TYPE(MPI_Message)
TYPE(MPI_Op)
TYPE(MPI_Request)
TYPE(MPI_Session)
TYPE(MPI_Win)

A.1.3 Prototype Definitions

C Bindings

The following are defined C typedefs for user-defined functions, also included in the file mpi.h.

/* prototypes for user-defined functions */
typedef void MPI_User_function(void *invec, void *inoutvec, int *len,
 MPI_Datatype *datatype);
typedef void MPI_User_function_c(void *invec, void *inoutvec, MPI_Count *len,
 MPI_Datatype *datatype);
typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm, int comm_keyval,
 void *extra_state, void *attribute_val_in,
 void *attribute_val_out, int *flag);
typedef int MPI_Comm_delete_attr_function(MPI_Comm comm, int comm_keyval,
 void *attribute_val, void *extra_state);
typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,
 void *extra_state, void *attribute_val_in,
 void *attribute_val_out, int *flag);
typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,
 void *attribute_val, void *extra_state);
typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype, int type_keyval,
 void *extra_state, void *attribute_val_in,
 void *attribute_val_out, int *flag);
typedef int MPI_Type_delete_attr_function(MPI_Datatype datatype,
 int type_keyval, void *attribute_val, void *extra_state);

typedef void MPI_Comm_errhandler_function(MPI_Comm *comm, int *error_code,
 ...);

typedef void MPI_Win_errhandler_function(MPI_Win *win, int *error_code,
 ...);

typedef void MPI_File_errhandler_function(MPI_File *file, int *error_code,
 ...);

typedef void MPI_Session_errhandler_function(MPI_Session *session,
 int *error_code, ...);

typedef int MPI_Grequest_query_function(void *extra_state, MPI_Status *status);

typedef int MPI_Grequest_free_function(void *extra_state);

typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,
 MPI_Aint *extent, void *extra_state);

typedef int MPI_Datarep_conversion_function(void *userbuf,
 MPI_Datatype datatype, int count, void *filebuf,
 MPI_Offset position, void *extra_state);

typedef int MPI_Datarep_conversion_function_c(void *userbuf,
 MPI_Datatype datatype, MPI_Count count, void *filebuf,
 MPI_Offset position, void *extra_state);

typedef void MPI_T_event_cb_function(MPI_T_event_instance event_instance,
 MPI_T_event_registration event_registration,
 MPI_T_cb_safety cb_safety, void *user_data);

typedef void MPI_T_event_free_cb_function(
 MPI_T_event_registration event_registration,
 MPI_T_cb_safety cb_safety, void *user_data);

typedef void MPI_T_event_dropped_cb_function(MPI_Count count,
 MPI_T_event_registration event_registration, int source_index,
 MPI_T_cb_safety cb_safety, void *user_data);

Fortran 2008 Bindings with the mpi_f08 Module

The callback prototypes when using the Fortran mpi_f08 module are shown below:

The user-function argument to `MPI_Op_create` and `MPI_Op_create_c` should be declared according to:

```
ABSTRACT INTERFACE
    SUBROUTINE MPI_User_function(invec, inoutvec, len, datatype)
      USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
      TYPE(C_PTR), VALUE :: invec, inoutvec
      INTEGER :: len
      TYPE(MPI_Datatype) :: datatype

    ABSTRACT INTERFACE
```
SUBROUTINE MPI_User_function_c(invec, inoutvec, len, datatype) !(_c)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(C_PTR), VALUE :: invec, inoutvec
INTEGER(KIND=MPI_COUNT_KIND) :: len
TYPE(MPI_Datatype) :: datatype

The copy and delete function arguments to MPI_Comm_create_keyval should be declared according to:

ABSTRACT INTERFACE
SUBROUTINE MPI_Comm_copy_attr_function(oldcomm, comm_keyval, extra_state,
 attribute_val_in, attribute_val_out, flag, ierror)
 TYPE(MPI_Comm) :: oldcomm
 INTEGER :: comm_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
 attribute_val_out
 LOGICAL :: flag

ABSTRACT INTERFACE
SUBROUTINE MPI_Comm_delete_attr_function(comm, comm_keyval, attribute_val,
 extra_state, ierror)
 TYPE(MPI_Comm) :: comm
 INTEGER :: comm_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

The copy and delete function arguments to MPI_Win_create_keyval should be declared according to:

ABSTRACT INTERFACE
SUBROUTINE MPI_Win_copy_attr_function(oldwin, win_keyval, extra_state,
 attribute_val_in, attribute_val_out, flag, ierror)
 TYPE(MPI_Win) :: oldwin
 INTEGER :: win_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
 attribute_val_out
 LOGICAL :: flag

ABSTRACT INTERFACE
SUBROUTINE MPI_Win_delete_attr_function(win, win_keyval, attribute_val,
 extra_state, ierror)
 TYPE(MPI_Win) :: win
 INTEGER :: win_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

The copy and delete function arguments to MPI_Type_create_keyval should be declared according to:

ABSTRACT INTERFACE
SUBROUTINE MPI_Type_copy_attr_function(oldtype, type_keyval, extra_state,
 attribute_val_in, attribute_val_out, flag, ierror)
 TYPE(MPI_Datatype) :: oldtype
 INTEGER :: type_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
 attribute_val_out
LOGICAL :: flag

ABSTRACT INTERFACE
SUBROUTINE MPI_Type_delete_attr_function(datatype, type_keyval, attribute_val, extra_state, ierror)
 TYPE(MPI_Datatype) :: datatype
 INTEGER :: type_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

The handler-function argument to MPI_Comm_create_errhandler should be declared like this:
ABSTRACT INTERFACE
SUBROUTINE MPI_Comm_errhandler_function(comm, error_code)
 TYPE(MPI_Comm) :: comm
 INTEGER :: error_code

The handler-function argument to MPI_Win_create_errhandler should be declared like this:
ABSTRACT INTERFACE
SUBROUTINE MPI_Win_errhandler_function(win, error_code)
 TYPE(MPI_Win) :: win
 INTEGER :: error_code

The handler-function argument to MPI_File_create_errhandler should be declared like this:
ABSTRACT INTERFACE
SUBROUTINE MPI_File_errhandler_function(file, error_code)
 TYPE(MPI_File) :: file
 INTEGER :: error_code

The handler-function argument to MPI_Session_create_errhandler should be declared like this:
ABSTRACT INTERFACE
SUBROUTINE MPI_Session_errhandler_function(session, error_code)
 TYPE(MPI_Session) :: session
 INTEGER :: error_code

The query, free, and cancel function arguments to MPI_Grequest_start should be declared according to:
ABSTRACT INTERFACE
SUBROUTINE MPI_Grequest_query_function(extra_state, status, ierror)
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state
 TYPE(MPI_Status) :: status
 INTEGER :: ierror

ABSTRACT INTERFACE
SUBROUTINE MPI_Grequest_free_function(extra_state, ierror)
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state
 INTEGER :: ierror

ABSTRACT INTERFACE
SUBROUTINE MPI_Grequest_cancel_function(extra_state, complete, ierror)
INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state
LOGICAL :: complete
INTEGER :: ierror

The extent and conversion function arguments to MPI_Register_datarep and
MPI_Register_datarep_c should be declared according to:

ABSTRACT INTERFACE
 SUBROUTINE MPI_Datarep_extent_function(datatype, extent, extra_state, ierror)
 TYPE(MPI_Datatype) :: datatype
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extent, extra_state
 INTEGER :: ierror
 END SUBROUTINE

ABSTRACT INTERFACE
 SUBROUTINE MPI_Datarep_conversion_function(userbuf, datatype, count, filebuf,
 position, extra_state, ierror)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 TYPE(C_PTR), VALUE :: userbuf, filebuf
 TYPE(MPI_Datatype) :: datatype
 INTEGER :: count, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state
 INTO INTEGER(KIND=MPI_OFFSET_KIND) :: position
 END SUBROUTINE

Fortran Bindings with mpif.h or the mpi Module

With the Fortran mpi module or (deprecated) mpif.h, here are examples of how each of the
user-defined subroutines should be declared.

The user-function argument to MPI_OP_CREATE should be declared like this:

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, DATATYPE)
 <type> INVEC(LEN), INOUTVEC(LEN)
 INTEGER LEN, DATATYPE
END SUBROUTINE

The copy and delete function arguments to MPI_COMM_CREATE_KEYVAL should be
 declared like these:

SUBROUTINE COMM_COPY_ATTR_FUNCTION(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,
 ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
 INTEGER OLDCOMM, COMM_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
 ATTRIBUTE_VAL_OUT
 LOGICAL FLAG
The copy and delete function arguments to \texttt{MPI_WIN_CREATE_KEYVAL} should be declared like these:

\begin{verbatim}
SUBROUTINE WIN_COPY_ATTR_FUNCTION(OLDWIN, WIN_KEYVAL, EXTRA_STATE,
 ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
 INTEGER OLDWIN, WIN_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
 ATTRIBUTE_VAL_OUT
 LOGICAL FLAG
\end{verbatim}

The copy and delete function arguments to \texttt{MPI_TYPE_CREATE_KEYVAL} should be declared like these:

\begin{verbatim}
SUBROUTINE TYPE_COPY_ATTR_FUNCTION(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,
 ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
 INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
 ATTRIBUTE_VAL_OUT
 LOGICAL FLAG
\end{verbatim}

The handler-function argument to \texttt{MPI_COMM_CREATE_ERRHANDLER} should be declared like this:

\begin{verbatim}
SUBROUTINE COMM_ERRHANDLER_FUNCTION(COMM, ERROR_CODE)
 INTEGER COMM, ERROR_CODE
\end{verbatim}

The handler-function argument to \texttt{MPI_WIN_CREATE_ERRHANDLER} should be declared like this:

\begin{verbatim}
SUBROUTINE WIN_ERRHANDLER_FUNCTION(WIN, ERROR_CODE)
 INTEGER WIN, ERROR_CODE
\end{verbatim}

The handler-function argument to \texttt{MPI_FILE_CREATE_ERRHANDLER} should be declared like this:

\begin{verbatim}
SUBROUTINE FILE_ERRHANDLER_FUNCTION(FILE, ERROR_CODE)
 INTEGER FILE, ERROR_CODE
\end{verbatim}

The handler-function argument to \texttt{MPI_SESSION_CREATE_ERRHANDLER} should be declared like this:

\begin{verbatim}
SUBROUTINE SESSION_ERRHANDLER_FUNCTION(SESSION, ERROR_CODE)
 INTEGER SESSION, ERROR_CODE
\end{verbatim}
The query, free, and cancel function arguments to \texttt{MPI_REQUEST_START} should be declared like these:

```fortran
SUBROUTINE GREQUEST\_QUERY\_FUNCTION(EXTRA\_STATE, STATUS, IERROR)
  INTEGER(KIND=MPI\_ADDRESS\_KIND) EXTRA\_STATE
  INTEGER STATUS(MPI\_STATUS\_SIZE), IERROR
SUBROUTINE GREQUEST\_FREE\_FUNCTION(EXTRA\_STATE, IERROR)
  INTEGER(KIND=MPI\_ADDRESS\_KIND) EXTRA\_STATE
  INTEGER IERROR
SUBROUTINE GREQUEST\_CANCEL\_FUNCTION(EXTRA\_STATE, COMPLETE, IERROR)
  INTEGER(KIND=MPI\_ADDRESS\_KIND) EXTRA\_STATE
  LOGICAL COMPLETE
  INTEGER IERROR
```

The extent and conversion function arguments to \texttt{MPI_REGISTER_DATAREP} should be declared like these:

```fortran
SUBROUTINE DATAREP\_EXTENT\_FUNCTION(DATATYPE, EXTENT, EXTRA\_STATE, IERROR)
  INTEGER DATATYPE, IERROR
  INTEGER(KIND=MPI\_ADDRESS\_KIND) EXTENT, EXTRA\_STATE
SUBROUTINE DATAREP\_CONVERSION\_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,
  POSITION, EXTRA\_STATE, IERROR)
  \texttt{<TYPE>} USERBUF(*), FILEBUF(*)
  INTEGER DATATYPE, COUNT, IERROR
  INTEGER(KIND=MPI\_OFFSET\_KIND) POSITION
  INTEGER(KIND=MPI\_ADDRESS\_KIND) EXTRA\_STATE
```

A.1.4 Deprecated Prototype Definitions

The following are defined C typedefs for deprecated user-defined functions, also included in the file \texttt{mpi.h}.

```c
/* prototypes for user-defined functions */
typedef int MPI\_Copy\_function(MPI\_Comm oldcomm, int keyval, void *extra\_state,
  void *attribute\_val\_in, void *attribute\_val\_out, int *flag);
typedef int MPI\_Delete\_function(MPI\_Comm comm, int keyval, void *attribute\_val,
  void *extra\_state);
```

The following are deprecated Fortran user-defined callback subroutine prototypes. The deprecated copy and delete function arguments to \texttt{MPI_KEYVAL_CREATE} should be declared like these:

```fortran
SUBROUTINE COPY\_FUNCTION(OLDCOMM, KEYVAL, EXTRA\_STATE, ATTRIBUTE\_VAL\_IN,
  ATTRIBUTE\_VAL\_OUT, FLAG, IERR)
  INTEGER OLDCOMM, KEYVAL, EXTRA\_STATE, ATTRIBUTE\_VAL\_IN, ATTRIBUTE\_VAL\_OUT,
  IERR
  LOGICAL FLAG
SUBROUTINE DELETE\_FUNCTION(COMM, KEYVAL, ATTRIBUTE\_VAL, EXTRA\_STATE, IERR)
  INTEGER COMM, KEYVAL, ATTRIBUTE\_VAL, EXTRA\_STATE, IERR
```
A.1 Defined Values and Handles

A.1.5 String Values

Default Communicator Names
The following default communicator names are defined by MPI.
"MPI_COMM_WORLD"
"MPI_COMM_SELF"
"MPI_COMM_PARENT"
"MPI_COMM_NULL"

Default Datatype Names
Named predefined datatypes have the default names of the datatype name. In addition, the following default datatype name is defined by MPI.
"MPI_DATATYPE_NULL"

Default Window Names
The following default window name is defined by MPI.
"MPI_WIN_NULL"

Reserved Data Representations
The following data representations are supported by MPI.
"native"
"internal"
"external32"

Process Set Names

<table>
<thead>
<tr>
<th>Process set name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>"mpi://"</td>
<td>reserved namespace</td>
</tr>
<tr>
<td>"mpi://SELF"</td>
<td>mandatory process set name</td>
</tr>
<tr>
<td>"mpi://WORLD"</td>
<td>mandatory process set name</td>
</tr>
</tbody>
</table>

Info Keys
The following info keys are reserved. They are strings.
"access_style"
"accumulate_ops"
"accumulate_ordering"
"alloc_shared_noncontig"
"appnum"
"arch"
"argv"
"cb_block_size"
"cb_buffer_size"
"cb_nodes"
"chunked_item"
"chunked_size"
"chunked"
"collective_buffering"
"command"
"file"
"file_perm"
"filename"
"host"
"io_node_list"
"ip_address"
"ip_port"
"maxprocs"
"mpi_accumulate_granularity"
"mpi_assert_allow_overtaking"
"mpi_assert_exact_length"
"mpi_assert_memory_alloc_kinds"
"mpi_assert_no_any_source"
"mpi_assert_no_any_tag"
"mpi_hw_resource_type"
"mpi_initial_errhandler"
"mpi_memory_alloc_kinds"
"mpi_minimum_memory_alignment"
"mpi_pset_name"
"mpi_size"
"nb_proc"
"no_locks"
"num_io_nodes"
"path"
"same_disp_unit"
"same_size"
"soft"
"striping_factor"
"striping_unit"
"thread_level"
"wdir"

Info Values

The following info values are reserved. They are strings.

"alloc_mem"
"false"
"mpi"
"mpi_errors_abort"
"mpi_errors_are_fatal"
"mpi_errors_return"
"mpi_shared_memory"
"MPI_THREAD_FUNNELED"
"MPI_THREAD_MULTIPLE"
A.2 Summary of the Semantics of all Operation-Related MPI Procedures

This annex provides the list of MPI procedures that are associated with an MPI operation, or inquiry procedures providing information about an operation.

In many cases, the MPI procedures and their properties are listed under certain constraints, e.g., a call to MPI_WAIT that completes either a nonblocking or a persistent operation, or RMA calls in combination with various synchronization methods.

Table Legend:

- **Stages**: i=initialization, s=starting, c=completion, f=freeing. The procedure does at least part of the indicated stage(s).
- **Cpl**: ic=incomplete procedure, c=completing procedure, f=freeing procedure
- **Loc**: l=local procedure, nl=non-local procedure
- ***: exceptions, e.g., ic+nl = incomplete+non-local, and c+l = completing+local (both are defined as blocking)
- **Blk**: b=blocking procedure, nb=nonblocking procedure. Note that from a user’s view point, this column is only a hint. Relevant is, whether a routine is local or not and which resources are blocked until when. See both previous and last columns.
- **‡**: exceptions, e.g., nonblocking procedures without prefix l, or that prefix l only marks immediate return.
- **Op**: part of operation type: b-op = blocking operation, nb-op = nonblocking operation, p-op = persistent operation, pp-op = persistent partitioned operation
- **Collective procedures**:

"MPI_THREAD_SERIALIZED"
"MPI_THREAD_SINGLE"
"none"
"random"
"rar"
"raw"
"read_mostly"
"read_once"
"reverse_sequential"
"same_op"
"same_op_no_op"
"sequential"
"system"
"true"
"war"
"waw"
"win_allocate"
"win_allocate_shared"
"write_mostly"
"write_once"
Appendix A Language Bindings Summary

- C = all processes of the group must call the procedure
- sq = in the same sequence
- S1 = blocking synchronization, i.e., no process shall return from this procedure until all processes on the associated process group called this procedure
- W1 = the implementation is permitted to do S1 but not required to do S1
- S2 = start-complete-synchronization, i.e., no process shall complete the associated operation until all processes on the associated process group have called the associated starting procedure
- W2 = the implementation is permitted to do S2 but not required to do S2

• Blocked resources: They are blocked after the call until the end of the subsequent stage where this resource is not mentioned further in the table.

Table Remarks:

1. Must not return before the corresponding MPI receive operation is started.
2. Not related to an MPI operation. Prior to MPI-4.0, MPI_PROBE and MPI_IPROBE were also described as blocking and nonblocking. From MPI-4.0 onwards, only non-local and local are used to describe these procedures.
3. Usually, MPI_WAIT is non-local, but in this case it is local.
4. In case of a MPI_(I)BARRIER on an intra-communicator, the S1/S2 synchronization is required (instead of W1/W2).
5. Collective: all processes must complete, but with the free choice of using MPI_WAIT or MPI_TEST returning flag = TRUE.
6. It also may not return until MPI_INIT was called in the children.
7. Addresses are cached on the request handle.
8. One of the rare cases that an incomplete call is non-local and therefore blocking.
9. One shall not free or deallocate the buffer before the operation is freed, that is MPI_REQUEST_FREE returned.
10. For MPI_WAIT and MPI_TEST, see corresponding lines for a) MPI_BSEND, or b) MPI_IBCAST.
11. The prefix I marks only that this procedure returns immediately.
12. One of the exceptions that a completing and therefore blocking operation-related procedure is local.
13. MPI_(I)MPROBE initializes the operation through generating the message handle whereas MPI_(I)MRECV initializes the receive buffer (i.e., two MPI procedures together implement the initialization stage).
15. Initialization stage ("i") only if flag = TRUE is returned else no operation is progressed.
16. Collective: all processes must start, but with the free choice of using MPI_START or MPI_STARTALL for a given persistent request handle (i.e., if one process starts a persistent request handle then all processes of the associated process group must start their corresponding request handle, and if any process starts then all processes must complete their handles).
17. In a correct MPI program, a call to MPI_(I)RSEND requires that the receiver has already started the corresponding receive. Under this assumption, the call to MPI_RSEND and the call to MPI_WAIT with an (active) ready send request handle are local.
18. Based on their semantics, when called using an intra-communicator, MPI_ALLGATHER, MPI_ALLTOALL, and their V and W variants, MPI_ALLREDUCE, MPI_REDUCE_SCATTER, and MPI_REDUCE_SCATTER_BLOCK must synchronize (i.e., S1/S2 instead of W1/W2) provided that all counts and the size of all datatypes are larger than zero.

19. MPI_COMM_FREE may return before any pending communication has finished and the communicator is deallocated. In contrast, MPI_COMM_DISCONNECT waits for pending communication to finish and deallocates the communicator before it returns.

20. The request handle is in the “active” state after MPI_START, i.e., MPI_REQUEST_FREE is now forbidden. But the starting stage is not yet finished, and the contents of the buffer are not yet “blocked.” An additional MPI_PREADY and variants MPI_PREADY_RANGE, MPI_PREADY_LIST are required to activate each partition of the send buffer to finish the starting stage.

21. As part of the completion stage, the user is allowed to read part of the output buffer after returning from MPI_PARRIVED with flag = TRUE before completing the whole operation with a MPI_WAIT/MPI_TEST procedure.

22. It initializes the attached buffer as completely free.

23. It uses the attached buffer and performs all four stages on the send buffer. It occupies the needed part of the attached buffer.

24. It waits until the attached buffer is empty, i.e., all messages have been transmitted, and then releases the attached buffer.

25. Although in case of flag = TRUE the operation is completed, a subsequent call to test, wait, or free must be executed for deallocating or inactivating the request handle as final part of the stages c and f. It is listed only in this scenario, but can be used everywhere, where MPI_TEST can be called.

26. It frees the request handle. If the related communication operation is still ongoing then the completion and freeing stage can take place after the procedure returned.

27. Cancelling a send request is deprecated.

28. Can also be applied to activ persistent requests.

29. As an exception, MPI_WAIT is local and MPI_TEST repeatedly called will eventually return flag=true. The cancelled send or receive operation is completed and the buffer can be reused. Whether the message is sent out from the buffer or received in the buffer, this part of the completion stage is only executed if a subsequent MPI_TEST_CANCELL for the returned status would return flag = FALSE. The freeing stage will be performed only for non-persistent requests.

30. In some cases, more than one MPI procedure may be needed to implement one stage of an MPI one-sided operation. For details on the semantics of one-sided operations, see Chapter 12.

31. Local completion only (at origin).

32. Local completion only (at target).

33. Completion at target and locally at origin.

34. Return from MPI_WIN_START and these subsequent procedures at the origin process may be delayed until MPI_WIN_POST has been called at the target process (see Section 12.5 and Example 12.4).

35. Return from MPI_WIN_LOCK and these subsequent procedures may be delayed until other origin processes have released their lock (see Section 12.5 and Example 12.5).

36. The init and freeing stages and the buffer address of the target window only apply to MPI processes in the role of a target of an RMA operation.
37. The freeing stage applies to operations only and does not apply to any request.

38. The same procedure call may serve different stages for different operations, i.e., the completion of a previous RMA and/or exposure epoch and/or the start of a next RMA and/or exposure epoch.

39. In addition to the completion and freeing of the RMA operations prior the the flush call (stages “c+f”), this call initializes the next RMA epoch (stage “i”).

40. The stages represent the invocation as part of an RMA operation. As collective procedure itself, it is a blocking procedure with all stages.
Chapter 3: Point-to-Point Communication

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Stages</th>
<th>Cpl</th>
<th>Loc</th>
<th>Blk</th>
<th>Op</th>
<th>Collective</th>
<th>C/Sq</th>
<th>W</th>
<th>Blocked resources and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_SEND</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_SEND</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_RECV</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_REQUEST_GET_STATUS</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_REQUEST_GET_STATUS</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_TEST</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_REQUEST_FREE</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Chapter 4: Partitioned Point-to-Point Communication

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Stages</th>
<th>Cpl</th>
<th>Loc</th>
<th>Blk</th>
<th>Op</th>
<th>Collective</th>
<th>C/Sq</th>
<th>W</th>
<th>Blocked resources and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_SEND</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_RECV</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_REQUEST_GET_STATUS</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_REQUEST_GET_STATUS</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_TEST</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MPI_REQUEST_FREE</td>
<td>c-c-f c-f-1 ai b b-op</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

879
A.2 Summary of the Semantics of all Op.-Related Routines
Appendix A Language Bindings Summary

Chapter 6: Collective Communication

| Procedure | Stages | Cpl | Loc | Blk | Op | Collective | C | sq | S/W | Blocked resources
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_BCAST, MPI_BARRIER, MPI_GATHER, MPI_GATHERV, MPI_SCATTER, MPI_SCATTERV, MPI_ALLGATHER, MPI_ALLGATHERV, MPI_ALLGATHER, MPI_ALLGATHERV, MPI_ALLTOALL, MPI_ALLTOALLV, MPI_ALLREDUCE, MPI_ALLREDUCEV, MPI_ALLSCATTER, MPI_ALLSCATTERBLOCK, MPI_ALLREDUCE_SCATTER, MPI_SCAN, MPI_EXSCAN</td>
<td>i-s-c-f</td>
<td>c+r</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>C</td>
<td>sq</td>
<td>W1 (4, 18)</td>
<td>buffer arguments</td>
<td></td>
</tr>
<tr>
<td>MPI_IBCAST, MPI_IBARRIER, MPI_IGATHER, MPI_ISCATTER, MPI_IALLGATHER, MPI_IALLGATHERV, MPI_IALLTOALL, MPI_IREDUCE, MPI_IALLREDUCE, MPI_IREDUCE_SCATTER_BLOCK, MPI_ISCAN, MPI_IEXSCAN</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>buffer, array arguments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_TEST returning flag=FALSE</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>buffer, array arguments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_WAIT</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>buffer, array arguments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_IBCAST_INIT, MPI_IBARRIER_INIT, MPI_IGATHER_INIT, MPI_ISCATTER_INIT, MPI_IALLGATHER_INIT, MPI_IALLGATHERV_INIT, MPI_IALLTOALL_INIT, MPI_IREDUCE_INIT, MPI_IALLREDUCE_INIT, MPI_IREDUCE_SCATTER_BLOCK_INIT, MPI_ISCAN_INIT, MPI_IEXSCAN_INIT</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>buffer address 8) (9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_GATHERV, MPI_ISCATTERV, MPI_IALLGATHERV, MPI_IALLTOALLV, MPI_IREDUCE_SCATTER</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>buffer address, array arguments 8) (9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_TEST returning flag=FALSE</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>buffer address, array arguments 8) (9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_WAIT</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>buffer address, array arguments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_REQUEST_FREE</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>buffer address, array arguments cached on the request handle 4) (5) (7) (9) (18)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 7: Groups, Contexts, Communicators, and Caching

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Stages</th>
<th>Cpl</th>
<th>Loc</th>
<th>Blk</th>
<th>Op</th>
<th>Collective</th>
<th>C</th>
<th>sq</th>
<th>S/W</th>
<th>Blocked resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_COMM_CREATE, MPI_COMM_DUP, MPI_COMM_DUP_WITH_INFO, MPI_COMM_SPLIT, MPI_COMM_SPLIT_TYPE, MPI_COMM_SET_INFO</td>
<td>i-s-c-f</td>
<td>c+r</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>C</td>
<td>sq</td>
<td>W1</td>
<td>coll. over comm arg.</td>
<td></td>
</tr>
<tr>
<td>MPI_COMM_CREATE_GROUP</td>
<td>i-s-c-f</td>
<td>c+r</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>C</td>
<td>sq</td>
<td>W1</td>
<td>coll. over comm arg.</td>
<td></td>
</tr>
<tr>
<td>MPI_INTERCOMM_CREATE, MPI_INTERCOMM_MERGE</td>
<td>i-s-c-f</td>
<td>c+r</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>C</td>
<td>sq</td>
<td>W1</td>
<td>coll. over comm arg.</td>
<td></td>
</tr>
<tr>
<td>MPI_COMM_IDUP</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>communicator handle.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_TEST returning flag=FALSE</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>W1</td>
<td>coll. over comm arg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_WAIT</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>W1</td>
<td>coll. over comm arg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_REQUEST_FREE</td>
<td>i-s--c-f</td>
<td>i-c</td>
<td>l</td>
<td>nb-op</td>
<td>C</td>
<td>sq</td>
<td>W1</td>
<td>coll. over comm arg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_COMM_DISCONNECT</td>
<td>i-s-c-f</td>
<td>c+r</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>C</td>
<td>sq</td>
<td>W1</td>
<td>coll. over comm arg.</td>
<td></td>
</tr>
</tbody>
</table>
A.2 Summary of the Semantics of all Op.-Related Routines

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Stages</th>
<th>Cpl</th>
<th>Loc</th>
<th>Bnk</th>
<th>Op</th>
<th>Collective</th>
<th>Blocked resources and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 8: Process Topologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_CART_CREATE, MPI_CART_SUB,</td>
<td>is-c-f</td>
<td>c</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>eq</td>
<td>C</td>
</tr>
<tr>
<td>MPI_GRAPH_CREATE,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_DIST_GRAPH_CREATE_ADJACENT,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_DIST_GRAPH_CREATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_NEIGHBOR_ALLGATHER,</td>
<td>is-c-f</td>
<td>c-rf</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>eq</td>
<td>W1 (18)</td>
</tr>
<tr>
<td>MPI_NEIGHBOR_ALLGATHERV,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_NEIGHBOR_ALLTOALLV,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_NEIGHBOR_ALLTOALLW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_INEIGHBOR_ALLGATHER,</td>
<td>is---</td>
<td>ic</td>
<td>l</td>
<td>nb</td>
<td>nb-op</td>
<td>eq</td>
<td>W1</td>
</tr>
<tr>
<td>MPI_INEIGHBOR_ALLGATHERV,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_INEIGHBOR_ALLTOALLV,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_INEIGHBOR_ALLTOALLW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_TEST returning flag=FALSE</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_TEST returning flag=TRUE</td>
<td>-----c-f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_WAIT</td>
<td>-----c-f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_NEIGHBOR_ALLGATHER_INIT,</td>
<td>is--</td>
<td>ic</td>
<td>nl</td>
<td>b</td>
<td>p-op</td>
<td>eq</td>
<td>W1</td>
</tr>
<tr>
<td>MPI_NEIGHBOR_ALLGATHERV_INIT,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_NEIGHBOR_ALLTOALLV_INIT,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_NEIGHBOR_ALLTOALLW_INIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_START, MPI_STARTALL</td>
<td>-----</td>
<td>ic</td>
<td>l</td>
<td>nb</td>
<td>p-op</td>
<td>C</td>
<td>W1</td>
</tr>
<tr>
<td>corresponding MPI_TEST returning flag=FALSE</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_TEST returning flag=TRUE</td>
<td>-----c-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_WAIT</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corresponding MPI_REQUEST_FREE</td>
<td>-----f</td>
<td>l</td>
<td></td>
<td></td>
<td>p-op</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ments cached on the request</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>handle 5) 7) 9) 18)</td>
<td></td>
</tr>
<tr>
<td>Chapter 11: Process Initialization, Creation, and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_INIT, MPI_INIT_THREAD</td>
<td>is-c-f</td>
<td>c-rf</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>eq</td>
<td>W1</td>
</tr>
<tr>
<td>MPI_FINALIZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_SESSION_INIT</td>
<td>is-c-f</td>
<td>c-rf</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>eq</td>
<td>W1</td>
</tr>
<tr>
<td>MPI_SESSION_FINALIZE</td>
<td>is-c-f</td>
<td>c-rf</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>eq</td>
<td>W1</td>
</tr>
<tr>
<td>MPI_COMM_SPAWN, MPI_MULTIPLE</td>
<td>is-c-f</td>
<td>c-rf</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>eq</td>
<td>W1</td>
</tr>
<tr>
<td>MPI_COMM_ACCEPT, MPI_COMM_CONNECT</td>
<td>is-c-f</td>
<td>c-rf</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>eq</td>
<td>W1</td>
</tr>
</tbody>
</table>
Appendix A Language Bindings Summary

Chapter 12: One-Sided Communication

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Stages</th>
<th>Cpl</th>
<th>Loc</th>
<th>Blk</th>
<th>Op</th>
<th>Collective</th>
<th>C</th>
<th>sq</th>
<th>S/W</th>
<th>Blocked resources and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window Allocation and Destruction</td>
<td></td>
</tr>
<tr>
<td>MPI_WIN_CREATE, MPI_WIN_ALLOCATE, MPI_WIN_ALLOCATE_SHARED, MPI_WIN_CREATE_DYNAMIC</td>
<td>(~)-----</td>
<td>al</td>
<td>C sq</td>
<td>W1</td>
<td></td>
<td>window buffer address 36) 40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_WIN_SET_INFO</td>
<td>(~)-----</td>
<td>al</td>
<td>C sq</td>
<td>W1</td>
<td></td>
<td>window buffer address 40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_WIN_FREE</td>
<td>(~)-----</td>
<td>f al</td>
<td>C sq</td>
<td>W1</td>
<td>(36) 40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With Fence Synchronization in the Role of an Origin Process

MPI_WIN_FENCE	\(~\)-----	- al	C sq	W1	(30) 38)	
MPI_PUT, MPI_GET, MPI_ACCUMULATE, MPI_GET_ACCUMULATE, MPI_COMPARE_AND_SWAP, MPI_FETCH_AND_OP	\(~\)-----	ic l	nb-	-	argument buffer 14) 30)	
MPI_WIN_FENCE	\(~\)-----	c+i	al	C sq	W1	(31) 38)

With Fence Synchronization in the Role of a Target Process

| MPI_WIN_FENCE | \(~\)----- | ic al | C sq | W1 | window buffer address+content 38) |
| MPI_WIN_FENCE | \(~\)----- | c al | C sq | W1 | window buffer address 42) 38) |

With General Active Target Synchronization in the Role of an Origin Process

MPI_WIN_START	\(~\)-----	al	-	(30) 34)	
MPI_PUT, MPI_GET, MPI_ACCUMULATE, MPI_GET_ACCUMULATE, MPI_COMPARE_AND_SWAP, MPI_FETCH_AND_OP	\(~\)-----	ic l	nb-	-	argument buffer 14) 30) 34)
MPI_WIN_COMPLETE	\(~\)-----	c+i	al	-	(41) 34)

With General Active Target Synchronization in the Role of a Target Process

MPI_WIN_POST	\(~\)-----	ic l	-	window buffer address+content
MPI_WIN_TEST returning iflag=FALSE	\(~\)-----	-	-	window buffer address 32)
MPI_WIN_WAIT	\(~\)-----	c l	-	window buffer address 32)

With Lock/Unlock Synchronization in the Role of an Origin Process

<p>| MPI_WIN_LOCK, MPI_WIN_LOCK_ALL | ()----- | al | - | (30) 35) |
| MPI_PUT, MPI_GET, MPI_ACCUMULATE, MPI_GET_ACCUMULATE, MPI_COMPARE_AND_SWAP, MPI_FETCH_AND_OP | ()----- | ic l | nb-| - | argument buffer 14) 30) 35) | |
| MPI_RPUT, MPI_RGET, MPI_RACCUMULATE, MPI_RGET_ACCUMULATE | ()----- | ic l | nb-| - | argument buffer 7) |
| corresponding MPI_TEST returning iflag=FALSE | ()----- | l | nb-| - | argument buffer 30) 31) |
| corresponding MPI_TEST returning iflag=TRUE | ()----- | c+i | l | nb-| - | (30) 31) 35) |
| corresponding MPI_WAIT | ()----- | c+i | l | nb-| - | (30) 31) 35) 37) 39) |
| MPI_WIN_FLUSH_LOCAL, MPI_WIN_FLUSH_ALL_LOCAL | ()----- | c+i | l | - | (30) 33) 35) 37) 39) |
| MPI_WIN_FLUSH, MPI_WIN_FLUSH_ALL | ()----- | c+i | l | - | (30) 33) 35) 37) 39) |
| MPI_WIN_UNLOCK, MPI_WIN_UNLOCK_ALL | (~)----- | c+i | l | - | (30) 33) 35) 37) 39) |</p>
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Stages</th>
<th>Cpl</th>
<th>Loc</th>
<th>Blk</th>
<th>Op</th>
<th>Collective C</th>
<th>sq</th>
<th>S/W</th>
<th>Blocked resources and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 14: I/O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_READ,WRITE[AT]_SHARED,</td>
<td>i-s-c-f</td>
<td>c+f</td>
<td>f</td>
<td>b</td>
<td>b-op</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_DELETE,SEEK,GET,VIEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_READ,WRITE_AT_ALL,</td>
<td>i-s-c-f</td>
<td>c+f</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>C sq W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_OPEN,CLOSE,SEEK,SHARED,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_PREALLOCATE,SYNC,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_SET_VIEW,SIZE,INFO,ATOMICITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_READ,WRITE[AT]_SHARED</td>
<td>i-s----</td>
<td>ic</td>
<td>l</td>
<td>nb</td>
<td>ab-op</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_READ,WRITE[AT]_ALL</td>
<td>i-s----</td>
<td>ic</td>
<td>l</td>
<td>nb</td>
<td>ab-op</td>
<td>C sq buffer 10a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_READ,WRITE[AT]_BEGIN</td>
<td>i-s----</td>
<td>ic</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>C sq WI buffer 8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_READ,WRITE[AT]_ORDERED_BEGIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_READ,WRITE[AT]_ALL_END</td>
<td>----c-f</td>
<td>c+f</td>
<td>nl</td>
<td>b</td>
<td>b-op</td>
<td>C sq WI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI_FILE_READ,WRITE.ORDERED_END</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.3 C Bindings

A.3.1 Point-to-Point Communication C Bindings

```c
int MPI_Bsend(const void *buf, int count, MPI_Datatype datatype, int dest,
               int tag, MPI_Comm comm)
int MPI_Bsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
                int dest, int tag, MPI_Comm comm)
int MPI_Bsend_init(const void *buf, int count, MPI_Datatype datatype, int dest,
                  int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Bsend_init_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
                    int dest, int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Buffer_attach(void *buffer, int size)
int MPI_Buffer_attach_c(void *buffer, MPI_Count size)
int MPI_Buffer_detach(void *buffer_addr, int *size)
int MPI_Buffer_detach_c(void *buffer_addr, MPI_Count *size)
int MPI_Buffer_flush(void)
int MPI_Buffer_iflush(MPI_Request *request)
int MPI_Cancel(MPI_Request *request)
int MPI_Comm_attach_buffer(MPI_Comm comm, void *buffer, int size)
int MPI_Comm_attach_buffer_c(MPI_Comm comm, void *buffer, MPI_Count size)
int MPI_Comm_detach_buffer(MPI_Comm comm, void *buffer_addr, int *size)
int MPI_Comm_detach_buffer_c(MPI_Comm comm, void *buffer_addr, MPI_Count *size)
int MPI_Comm_flush_buffer(MPI_Comm comm)
int MPI_Comm_iflush_buffer(MPI_Comm comm, MPI_Request *request)
int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype, int *count)
int MPI_Get_count_c(const MPI_Status *status, MPI_Datatype datatype,
                    MPI_Count *count)
int MPI_Ibsend(const void *buf, int count, MPI_Datatype datatype, int dest,
               int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Ibsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
                 int dest, int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Improbe(int source, int tag, MPI_Comm comm, int *flag,
                MPI_Message *message, MPI_Status *status)
int MPI_Imrecv(void *buf, int count, MPI_Datatype datatype,
               MPI_Message *message, MPI_Request *request)
int MPI_Imrecv_c(void *buf, MPI_Count count, MPI_Datatype datatype,
                 MPI_Message *message, MPI_Request *request)
```
int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
 MPI_Status *status)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
 MPI_Comm comm, MPI_Request *request)

int MPI_Irecv_c(void *buf, MPI_Count count, MPI_Datatype datatype, int source,
 int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irsend(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Isend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Isendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 int dest, int sendtag, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
 MPI_Request *request)

int MPI_Isendrecv_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
 MPI_Count recvcount, MPI_Datatype recvtype, int source, int recvtag,
 MPI_Comm comm, MPI_Request *request)

int MPI_Isendrecv_replace(void *buf, int count, MPI_Datatype datatype,
 int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
 MPI_Request *request)

int MPI_Isendrecv_replace_c(void *buf, MPI_Count count, MPI_Datatype datatype,
 int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
 MPI_Request *request)

int MPI_Issend(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Issend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Mprobe(int source, int tag, MPI_Comm comm, MPI_Message *message,
 MPI_Status *status)

int MPI_Mrecv(void *buf, int count, MPI_Datatype datatype,
 MPI_Message *message, MPI_Status *status)

int MPI_Mrecv_c(void *buf, MPI_Count count, MPI_Datatype datatype,
 MPI_Message *message, MPI_Status *status)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
 MPI_Comm comm, MPI_Status *status)
int MPI_Recv_c(void *buf, MPI_Count count, MPI_Datatype datatype, int source,
 int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Recv_init(void *buf, int count, MPI_Datatype datatype, int source,
 int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Recv_init_c(void *buf, MPI_Count count, MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Request_free(MPI_Request *request)

int MPI_Request_get_status(MPI_Request request, int *flag, MPI_Status *status)

int MPI_Request_get_status_all(int count,
 const MPI_Request array_of_requests[], int *flag,
 MPI_Status array_of_statuses[])

int MPI_Request_get_status_any(int count,
 const MPI_Request array_of_requests[], int *index, int *flag,
 MPI_Status *status)

int MPI_Request_get_status_some(int incount,
 const MPI_Request array_of_requests[], int *outcount,
 int array_of_indices[], MPI_Status array_of_statuses[])

int MPI_Rsend(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm)

int MPI_Rsend_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm)

int MPI_Rsend_init(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Rsend_init_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm)

int MPI_Send_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm)

int MPI_Send_init(const void *buf, int count, MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Send_init_c(const void *buf, MPI_Count count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 int dest, int sendtag, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
 MPI_Status *status)

int MPI_Sendrecv_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
 MPI_Count recvcount, MPI_Datatype recvtype, int source,
 int recvtag, MPI_Comm comm, MPI_Status *status)
int MPI_Sendrecv_replace(void *buf, int count, MPI_Datatype datatype, int dest, int sendtag, int source, int recvtag, MPI_Comm comm, MPI_Status *status)
int MPI_Sendrecv_replace_c(void *buf, MPI_Count count, MPI_Datatype datatype, int dest, int sendtag, int source, int recvtag, MPI_Comm comm, MPI_Status *status)
int MPI_Session_attach_buffer(MPI_Session session, void *buffer, int size)
int MPI_Session_attach_buffer_c(MPI_Session session, void *buffer,
 MPI_Count size)
int MPI_Session_detach_buffer(MPI_Session session, void *buffer_addr, int *size)
int MPI_Session_detach_buffer_c(MPI_Session session, void *buffer_addr,
 MPI_Count *size)
int MPI_Session_flush_buffer(MPI_Session session)
int MPI_Session_iflush_buffer(MPI_Session session, MPI_Request *request)

int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)
int MPI_Ssend_c(const void *buf, MPI_Count count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)
int MPI_Ssend_init(const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Ssend_init_c(const void *buf, MPI_Count count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)
int MPI_Start(MPI_Request *request)
int MPI_Startall(int count, MPI_Request array_of_requests[])
int MPI_Status_get_error(MPI_Status *status, int *err)
int MPI_Status_get_source(MPI_Status *status, int *source)
int MPI_Status_get_tag(MPI_Status *status, int *tag)
int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)
int MPI_Test_cancelled(const MPI_Status *status, int *flag)
int MPI_Testall(int count, MPI_Request array_of_requests[], int *flag,
 MPI_Status array_of_statuses[])
int MPI_Testany(int count, MPI_Request array_of_requests[], int *index,
 int *flag, MPI_Status *status)
int MPI_Testsome(int incount, MPI_Request array_of_requests[], int *outcount,
 int array_of_indices[], MPI_Status array_of_statuses[])
int MPI_Wait(MPI_Request *request, MPI_Status *status)
int MPI_Waitall(int count, MPI_Request array_of_requests[],
 MPI_Status array_of_statuses[])
int MPI_Waitany(int count, MPI_Request array_of_requests[], int *index,
 MPI_Status *status)
int MPI_Waitsome(int incount, MPI_Request array_of_requests[], int *outcount,
 int array_of_indices[], MPI_Status array_of_statuses[])

A.3.2 Partitioned Communication C Bindings
int MPI_Parrived(MPI_Request request, int partition, int *flag)
int MPI_Pready(int partition, MPI_Request request)
int MPI_Pready_list(int length, const int array_of_partitions[],
 MPI_Request request)
int MPI_Pready_range(int partition_low, int partition_high,
 MPI_Request request)
int MPI_Precv_init(void *buf, int partitions, MPI_Count count,
 MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)
int MPI_Psend_init(const void *buf, int partitions, MPI_Count count,
 MPI_Datatype datatype, int dest, int tag, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)

A.3.3 Datatypes C Bindings
MPI_Aint MPI_Aint_add(MPI_Aint base, MPI_Aint disp)
MPI_Aint MPI_Aint_diff(MPI_Aint addr1, MPI_Aint addr2)
int MPI_Get_address(const void *location, MPI_Aint *address)
int MPI_Get_elements(const MPI_Status *status, MPI_Datatype datatype,
 int *count)
int MPI_Get_elements_c(const MPI_Status *status, MPI_Datatype datatype,
 MPI_Count *count)
int MPI_Pack(const void *inbuf, int incount, MPI_Datatype datatype,
 void *outbuf, int outsize, int *position, MPI_Comm comm)
int MPI_Pack_c(const void *inbuf, MPI_Count incount, MPI_Datatype datatype,
 void *outbuf, MPI_Count outsize, MPI_Count *position,
 MPI_Comm comm)
int MPI_Pack_external(const char datarep[], const void *inbuf, int incount,
 MPI_Datatype datatype, void *outbuf, MPI_Aint outsize,
 MPI_Aint *position)
int MPI_Pack_external_c(const char datarep[], const void *inbuf,
 MPI_Count incount, MPI_Datatype datatype, void *outbuf,
 MPI_Count outsize, MPI_Count *position)
A.3 C Bindings

```c
int MPI_Pack_external_size(const char datarep[], int incount,
    MPI_Datatype datatype, MPI_Aint *size)

int MPI_Pack_external_size_c(const char datarep[], MPI_Count incount,
    MPI_Datatype datatype, MPI_Count *size)

int MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm, int *size)

int MPI_Pack_size_c(MPI_Count incount, MPI_Datatype datatype, MPI_Comm comm,
    MPI_Count *size)

int MPI_Type_commit(MPI_Datatype *datatype)

int MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_contiguous_c(MPI_Count count, MPI_Datatype oldtype,
    MPI_Datatype *newtype)

int MPI_Type_create_darray(int size, int rank, int ndims,
    const int array_of_gsizes[], const int array_of_distsizes[],
    const int array_of_dargs[], const int array_of_psizes[],
    int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_darray_c(int size, int rank, int ndims,
    const MPI_Count array_of_gsizes[], const int array_of_distsizes[],
    const int array_of_dargs[], const int array_of_psizes[],
    int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_hindexed(int count, const int array_of_blocklengths[],
    const MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
    MPI_Datatype *newtype)

int MPI_Type_create_hindexed_block(int count, int blocklength,
    const MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
    MPI_Datatype *newtype)

int MPI_Type_create_hindexed_block_c(MPI_Count count, MPI_Count blocklength,
    const MPI_Count array_of_displacements[], MPI_Datatype oldtype,
    MPI_Datatype *newtype)

int MPI_Type_create_hindexed_c(MPI_Count count,
    const MPI_Count array_of_blocklengths[],
    const MPI_Count array_of_displacements[], MPI_Datatype oldtype,
    MPI_Datatype *newtype)

int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,
    MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_hvector_c(MPI_Count count, MPI_Count blocklength,
    MPI_Count stride, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_indexed_block(int count, int blocklength,
    const int array_of_displacements[], MPI_Datatype oldtype,
    MPI_Datatype *newtype)

int MPI_Type_create_indexed_block_c(MPI_Count count, MPI_Count blocklength,
    const MPI_Count array_of_displacements[], MPI_Datatype oldtype,
    MPI_Datatype *newtype)

int MPI_Type_create_indexed_block_c(MPI_Count count, MPI_Count blocklength,
    const MPI_Count array_of_displacements[], MPI_Datatype oldtype,
    MPI_Datatype *newtype)
```

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb, MPI_Aint extent,
 MPI_Datatype *newtype)

int MPI_Type_create_resized_c(MPI_Datatype oldtype, MPI_Count lb,
 MPI_Count extent, MPI_Datatype *newtype)

int MPI_Type_create_struct(int count, const int array_of_blocklengths[],
 const MPI_Aint array_of_displacements[],
 const MPI_Datatype array_of_types[], MPI_Datatype *newtype)

int MPI_Type_create_struct_c(MPI_Count count,
 const MPI_Count array_of_blocklengths[],
 const MPI_Count array_of_displacements[],
 const MPI_Datatype array_of_types[], MPI_Datatype *newtype)

int MPI_Type_create_subarray(int ndims, const int array_of_sizes[],
 const int array_of_subsizes[], const int array_of_starts[],
 int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_subarray_c(int ndims, const MPI_Count array_of_sizes[],
 const MPI_Count array_of_subsizes[],
 const MPI_Count array_of_starts[], int order,
 MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_dup(MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_free(MPI_Datatype *datatype)

int MPI_Type_get_contents(MPI_Datatype datatype, int max_integers,
 int max_addresses, int max_datatypes, int array_of_integers[],
 MPI_Aint array_of_addresses[], MPI_Datatype array_of_datatypes[])

int MPI_Type_get_contents_c(MPI_Datatype datatype, MPI_Count max_integers,
 MPI_Count max_addresses, MPI_Count max_large_counts,
 MPI_Count max_datatypes, int array_of_integers[],
 MPI_Aint array_of_addresses[], MPI_Count array_of_large_counts[],
 MPI_Datatype array_of_datatypes[])

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,
 int *num_addresses, int *num_datatypes, int *combiner)

int MPI_Type_get_envelope_c(MPI_Datatype datatype, MPI_Count *num_integers,
 MPI_Count *num_addresses, MPI_Count *num_large_counts,
 MPI_Count *num_datatypes, int *combiner)

int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb, MPI_Aint *extent)

int MPI_Type_get_extent_c(MPI_Datatype datatype, MPI_Count *lb,
 MPI_Count *extent)

int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,
 MPI_Aint *true_extent)

int MPI_Type_get_true_extent_c(MPI_Datatype datatype, MPI_Count *true_lb,
 MPI_Count *true_extent)
int MPI_Type_indexed(int count, const int array_of_blocklengths[],
 const int array_of_displacements[], MPI_Datatype oldtype,
 MPI_Datatype *newtype)

int MPI_Type_indexed_c(MPI_Count count,
 const MPI_Count array_of_blocklengths[],
 const MPI_Count array_of_displacements[], MPI_Datatype oldtype,
 MPI_Datatype *newtype)

int MPI_Type_size(MPI_Datatype datatype, int *size)
int MPI_Type_size_c(MPI_Datatype datatype, MPI_Count *size)

int MPI_Type_vector(int count, int blocklength, int stride,
 MPI_Datatype oldtype, MPI_Datatype *newtype)
int MPI_Type_vector_c(MPI_Count count, MPI_Count blocklength, MPI_Count stride,
 MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Unpack(const void *inbuf, int insize, int *position, void *outbuf,
 int outcount, MPI_Datatype datatype, MPI_Comm comm)
int MPI_Unpack_c(const void *inbuf, MPI_Count insize, MPI_Count *position,
 void *outbuf, MPI_Count outcount, MPI_Datatype datatype,
 MPI_Comm comm)

int MPI_Unpack_external(const char datarep[], const void *inbuf,
 MPI_Aint insize, MPI_Aint *position, void *outbuf, int outcount,
 MPI_Datatype datatype)
int MPI_Unpack_external_c(const char datarep[], const void *inbuf,
 MPI_Count insize, MPI_Count *position, void *outbuf,
 MPI_Count outcount, MPI_Datatype datatype)

A.3.4 Collective Communication C Bindings

int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 MPI_Comm comm)
int MPI_Allgather_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allgather_init(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)
int MPI_Allgather_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)
int MPI_Allgatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void **recvbuf, const int recvcounts[], const int displs[],
 MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allgatherv_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint displs[],
 MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allgatherv_init(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],
 const int displs[], MPI_Datatype recvtype, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)

int MPI_Allgatherv_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint displs[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Allreduce_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Allreduce_init(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Allreduce_init_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 MPI_Comm comm)

int MPI_Alltoall_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Alltoall_init(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Alltoall_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Alltoallv(const void *sendbuf, const int sendcounts[],
 const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
const int recvcounts[], const int rdispls[],
MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Alltoally_c(const void *sendbuf, const MPI_Count sendcounts[],
const MPI_Aint sdispls[], MPI_Datatype sendtype, void *recvbuf,
const MPI_Count recvcounts[], const MPI_Aint rdispls[],
MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Alltoally_init(const void *sendbuf, const int sendcounts[],
const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
const int recvcounts[], const int rdispls[],
MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_Alltoally_init_c(const void *sendbuf, const MPI_Count sendcounts[],
const MPI_Aint sdispls[], MPI_Datatype sendtype, void *recvbuf,
const MPI_Count recvcounts[], const MPI_Aint rdispls[],
MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_Alltoallyw(const void *sendbuf, const int sendcounts[],
const int sdispls[], const MPI_Datatype sendtypes[],
void *recvbuf, const int recvcounts[], const int rdispls[],
const MPI_Datatype recvtypes[], MPI_Comm comm)

int MPI_Alltoallyw_c(const void *sendbuf, const MPI_Count sendcounts[],
const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
void *recvbuf, const MPI_Count recvcounts[],
const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],
MPI_Comm comm)

int MPI_Alltoallyw_init(const void *sendbuf, const int sendcounts[],
const int sdispls[], const MPI_Datatype sendtypes[],
void *recvbuf, const int recvcounts[], const int rdispls[],
const MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_Alltoallyw_init_c(const void *sendbuf, const MPI_Count sendcounts[],
const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
void *recvbuf, const MPI_Count recvcounts[],
const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],
MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Barrier(MPI_Comm comm)

int MPI_Barrier_init(MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)

int MPI_Bcast_c(void *buffer, MPI_Count count, MPI_Datatype datatype, int root,
MPI_Comm comm)

int MPI_Bcast_init(void *buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm, MPI_Info info, MPI_Request *request)
int MPI_Bcast_init_c(void *buffer, MPI_Count count, MPI_Datatype datatype,
 int root, MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Exscan(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Exscan_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Exscan_init(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Exscan_init_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm)

int MPI_Gather_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Gather_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Gather_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, const int recvcounts[], const int displs[],
 MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Gatherv_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint displs[],
 MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Gatherv_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, const int recvcounts[], const int displs[],
 MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Gatherv_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint displs[],
 MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)
int MPI_Iallgather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 MPI_Comm comm, MPI_Request *request)

int MPI_Iallgather_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Iallgatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, const int recvcounts[], const int displs[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Iallgatherv_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, const MPI_Count recvcounts[],
 const MPI_Aint displs[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Iallreduce(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
 MPI_Request *request)

int MPI_Iallreduce_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
 MPI_Request *request)

int MPI_Ialltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 MPI_Comm comm, MPI_Request *request)

int MPI_Ialltoall_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ialltoallv(const void *sendbuf, const int sendcounts[],
 const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const int recvcounts[], const int rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ialltoallv_c(const void *sendbuf, const MPI_Count sendcounts[],
 const MPI_Aint sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ialltoallw(const void *sendbuf, const int sendcounts[],
 const int sdispls[], const MPI_Datatype sendtypes[],
 void *recvbuf, const int recvcounts[],
 const int rdispls[], const MPI_Datatype recvtypes[],
 MPI_Comm comm, MPI_Request *request)

int MPI_Ialltoallw_c(const void *sendbuf, const MPI_Count sendcounts[],
 const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
 void *recvbuf, const MPI_Count recvcounts[],
 const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],
 MPI_Comm comm, MPI_Request *request)
int MPI_Ibarrier(MPI_Comm comm, MPI_Request *request)
int MPI_Ibcast(void *buffer, int count, MPI_Datatype datatype, int root,
 MPI_Comm comm, MPI_Request *request)
int MPI_Ibcast_c(void *buffer, MPI_Count count, MPI_Datatype datatype,
 int root, MPI_Comm comm, MPI_Request *request)
int MPI_Iexscan(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
 MPI_Request *request)
int MPI_Iexscan_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
 MPI_Request *request)
int MPI_Igather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm, MPI_Request *request)
int MPI_Igather_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, int root, MPI_Comm comm,
 MPI_Request *request)
int MPI_Igatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, const int recvcounts[], const int displs[],
 MPI_Datatype recvtype, int root, MPI_Comm comm,
 MPI_Request *request)
int MPI_Igatherv_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint displs[],
 MPI_Datatype recvtype, int root, MPI_Comm comm,
 MPI_Request *request)
int MPI_Ireduce(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
 MPI_Request *request)
int MPI_Ireduce_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
 MPI_Request *request)
int MPI_Ireduce_scatter(const void *sendbuf, void *recvbuf,
 const int recvcounts[], MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm, MPI_Request *request)
int MPI_Ireduce_scatter_block(const void *sendbuf, void *recvbuf,
 int recvcount, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
 MPI_Request *request)
int MPI_Ireduce_scatter_block_c(const void *sendbuf, void *recvbuf,
 MPI_Count recvcount, MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm, MPI_Request *request)
A.3 C Bindings

int MPI_Ireduce_scatter_c(const void *sendbuf, void *recvbuf,
 const MPI_Count recvcounts[], MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm, MPI_Request *request)

int MPI_Iscan(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
 MPI_Request *request)

int MPI_Iscan_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
 MPI_Request *request)

int MPI_Iscatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm, MPI_Request *request)

int MPI_Iscatter_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, int root, MPI_Comm comm,
 MPI_Request *request)

int MPI_Iscatterv(const void *sendbuf, const int sendcounts[],
 const int displs[], MPI_Datatype sendtype, void *recvbuf,
 int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm,
 MPI_Request *request)

int MPI_Iscatterv_c(const void *sendbuf, const MPI_Count sendcounts[],
 const MPI_Aint displs[], MPI_Datatype sendtype, void *recvbuf,
 MPI_Count recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm, MPI_Request *request)

int MPI_Op_commutative(MPI_Op op, int *commute)

int MPI_Op_create(MPI_User_function *user_fn, int commute, MPI_Op *op)

int MPI_Op_create_c(MPI_User_function_c *user_fn, int commute, MPI_Op *op)

int MPI_Op_free(MPI_Op *op)

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Reduce_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Reduce_init(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)

int MPI_Reduce_init_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)

int MPI_Reduce_local(const void *inbuf, void *inoutbuf, int count,
 MPI_Datatype datatype, MPI_Op op)
int MPI_Reduce_local_c(const void *inbuf, void *inoutbuf, MPI_Count count, MPI_Datatype datatype, MPI_Op op)
int MPI_Reduce_scatter(const void *sendbuf, void *recvbuf,
 const int recvcounts[], MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm)
int MPI_Reduce_scatter_block(const void *sendbuf, void *recvbuf,
 int recvcount, MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm)
int MPI_Reduce_scatter_block_c(const void *sendbuf, void *recvbuf,
 MPI_Count recvcount, MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm)
int MPI_Reduce_scatter_block_init(const void *sendbuf, void *recvbuf,
 int recvcount, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)
int MPI_Reduce_scatter_block_init_c(const void *sendbuf, void *recvbuf,
 MPI_Count recvcount, MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm, MPI_Info info, MPI_Request *request)
int MPI_Reduce_scatter_c(const void *sendbuf, void *recvbuf,
 const MPI_Count recvcounts[], MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm)
int MPI_Reduce_scatter_init(const void *sendbuf, void *recvbuf,
 const int recvcounts[], MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm, MPI_Info info, MPI_Request *request)
int MPI_Reduce_scatter_init_c(const void *sendbuf, void *recvbuf,
 const MPI_Count recvcounts[], MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm, MPI_Info info, MPI_Request *request)
int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
int MPI_Scan_c(const void *sendbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
int MPI_Scan_init(const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)
int MPI_Scan_init_c(const void *sendbuf, void *recvbuf, MPI_Count count,
 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)
int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,
 MPI_Comm comm)
int MPI_Scatter_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, int root, MPI_Comm comm)
A.3 C Bindings

int MPI_Scatter_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Scatter_init_c(const void *sendbuf, MPI_Count sendcount, MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Scatterv(const void *sendbuf, const int sendcounts[], const int displs[], MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Scatterv_c(const void *sendbuf, const MPI_Count sendcounts[], const MPI_Aint displs[], MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Scatterv_init(const void *sendbuf, const int sendcounts[], const int displs[], MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Scatterv_init_c(const void *sendbuf, const MPI_Count sendcounts[], const MPI_Aint displs[], MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPI_Type_get_value_index(MPI_Datatype value_type, MPI_Datatype index_type, MPI_Datatype *pair_type)

A.3.5 Groups, Contexts, Communicators, and Caching C Bindings

int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm comm2, int *result)

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

int MPI_Comm_create_from_group(MPI_Group group, const char *stringtag, MPI_Info info, MPI_Errhandler errhandler, MPI_Comm *newcomm)

int MPI_Comm_create_group(MPI_Comm comm, MPI_Group group, int tag, MPI_Comm *newcomm)

int MPI_Comm_create_keyval(MPI_Comm_copy_attr_function *comm_copy_attr_fn, MPI_Comm_delete_attr_function *comm_delete_attr_fn, int *comm_keyval, void *extra_state)

int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

int MPI_COMM_DUP_FN(MPI_Comm oldcomm, int comm_keyval, void *extra_state, void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_Comm_dup_with_info(MPI_Comm comm, MPI_Info info, MPI_Comm *newcomm)
```c
int MPI_Comm_free(MPI_Comm *comm)
int MPI_Comm_free_keyval(int *comm_keyval)
int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void *attribute_val,
    int *flag)
int MPI_Comm_get_info(MPI_Comm comm, MPI_Info *info_used)
int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)
int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)
int MPI_Comm_idup(MPI_Comm comm, MPI_Comm *newcomm, MPI_Request *request)
int MPI_Comm_idup_with_info(MPI_Comm comm, MPI_Info info, MPI_Comm *newcomm,
    MPI_Request *request)
int MPI_COMM_NULL_COPY_FN(MPI_Comm oldcomm, int comm_keyval, void *extra_state,
    void *attribute_val_in, void *attribute_val_out, int *flag)
int MPI_COMM_NULL_DELETE_FN(MPI_Comm comm, int comm_keyval,
    void *attribute_val, void *extra_state)
int MPI_Comm_rank(MPI_Comm comm, int *rank)
int MPI_Comm_remote_group(MPI_Comm comm, MPI_Group *group)
int MPI_Comm_remote_size(MPI_Comm comm, int *size)
int MPI_Comm_set_attr(MPI_Comm comm, int comm_keyval, void *attribute_val)
int MPI_Comm_set_info(MPI_Comm comm, MPI_Info info)
int MPI_Comm_set_name(MPI_Comm comm, const char *comm_name)
int MPI_Comm_size(MPI_Comm comm, int *size)
int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)
int MPI_Comm_split_type(MPI_Comm comm, int split_type, int key, MPI_Info info,
    MPI_Comm *newcomm)
int MPI_Comm_test_inter(MPI_Comm comm, int *flag)
int MPI_Group_compare(MPI_Group group1, MPI_Group group2, int *result)
int MPI_Group_difference(MPI_Group group1, MPI_Group group2,
    MPI_Group *newgroup)
int MPI_Group_excl(MPI_Group group, int n, const int ranks[],
    MPI_Group *newgroup)
int MPI_Group_free(MPI_Group *group)
int MPI_Group_from_session_pset(MPI_Session session, const char *pset_name,
    MPI_Group *newgroup)
int MPI_Group_incl(MPI_Group group, int n, const int ranks[],
    MPI_Group *newgroup)
int MPI_Group_intersection(MPI_Group group1, MPI_Group group2,
    MPI_Group *newgroup)
```
int MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3],
 MPI_Group *newgroup)

int MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3],
 MPI_Group *newgroup)

int MPI_Group_rank(MPI_Group group, int *rank)

int MPI_Group_size(MPI_Group group, int *size)

int MPI_Group_translate_ranks(MPI_Group group1, int n, const int ranks1[],
 MPI_Group group2, int ranks2[])

int MPI_Group_union(MPI_Group group1, MPI_Group group2, MPI_Group *newgroup)

int MPI_Intercomm_create(MPI_Comm local_comm, int local_leader,
 MPI_Comm peer_comm, int remote_leader, int tag,
 MPI_Comm *newintercomm)

int MPI_Intercomm_create_from_groups(MPI_Group local_group, int local_leader,
 MPI_Group remote_group, int remote_leader, const char *stringtag,
 MPI_Info info, MPI_Errhandler errhandler, MPI_Comm *newintercomm)

int MPI_Intercomm_merge(MPI_Comm intercomm, int high, MPI_Comm *newintracomm)

int MPI_Type_create_keyval(MPI_Type_copy_attr_function *type_copy_attr_fn,
 MPI_Type_delete_attr_function *type_delete_attr_fn,
 int *type_keyval, void *extra_state)

int MPI_Type_delete_attr(MPI_Datatype datatype, int type_keyval)

int MPI_TYPE_DUP_FN(MPI_Datatype oldtype, int type_keyval,
 void *extra_state, void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_Type_free_keyval(int *type_keyval)

int MPI_Type_get_attr(MPI_Datatype datatype, int type_keyval,
 void *attribute_val, int *flag)

int MPI_Type_get_name(MPI_Datatype datatype, char *type_name, int *resultlen)

int MPI_TYPE_NULL_COPY_FN(MPI_Datatype oldtype, int type_keyval,
 void *extra_state, void *attribute_val_in,
 void *attribute_val_out, int *flag)

int MPI_TYPE_NULL_DELETE_FN(MPI_Datatype datatype, int type_keyval,
 void *attribute_val, void *extra_state)

int MPI_Type_set_attr(MPI_Datatype datatype, int type_keyval,
 void *attribute_val)

int MPI_Type_set_name(MPI_Datatype datatype, const char *type_name)

int MPI_Win_create_keyval(MPI_Win_copy_attr_function *win_copy_attr_fn,
 MPI_Win_delete_attr_function *win_delete_attr_fn,
 int *win_keyval, void *extra_state)

int MPI_Win_delete_attr(MPI_Win win, int win_keyval)
Appendix A Language Bindings Summary

int MPI_WIN_DUP_FN(MPI_Win oldwin, int win_keyval, void *extra_state,
 void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_Win_free_keyval(int *win_keyval)

int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val,
 int *flag)

int MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)

int MPI_WIN_NULL_COPY_FN(MPI_Win oldwin, int win_keyval, void *extra_state,
 void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_WIN_NULL_DELETE_FN(MPI_Win win, int win_keyval, void *attribute_val,
 void *extra_state)

int MPI_Win_set_attr(MPI_Win win, int win_keyval, void *attribute_val)

int MPI_Win_set_name(MPI_Win win, const char *win_name)

A.3.6 Virtual Topologies for MPI Processes C Bindings

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int coords[])

int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[],
 const int periods[], int reorder, MPI_Comm *comm_cart)

int MPI_Cart_get(MPI_Comm comm, int maxdims, int dims[], int periods[],
 int coords[])

int MPI_Cart_map(MPI_Comm comm, int ndims, const int dims[],
 const int periods[], int *newrank)

int MPI_Cart_rank(MPI_Comm comm, const int coords[], int *rank)

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp, int *rank_source,
 int *rank_dest)

int MPI_Cart_sub(MPI_Comm comm, const int remain_dims[], MPI_Comm *newcomm)

int MPI_Cartdim_get(MPI_Comm comm, int *ndims)

int MPI_Dims_create(int nnodes, int ndims, int dims[])

int MPI_Dist_graph_create(MPI_Comm comm_old, int n, const int sources[],
 const int degrees[], const int destinations[],
 const int weights[], MPI_Info info, int reorder,
 MPI_Comm *comm_dist_graph)

int MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree,
 const int sources[], const int sourceweights[], int outdegree,
 const int destinations[], const int destweights[], MPI_Info info,
 int reorder, MPI_Comm *comm_dist_graph)

int MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree, int sources[],
 int sourceweights[], int maxoutdegree, int destinations[],
 int destweights[])
int MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree,
int *outdegree, int *weighted)

int MPI_Graph_create(MPI_Comm comm_old, int nnodes, const int index[],
const int edges[], int reorder, MPI_Comm *comm_graph)

int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int index[],
int edges[])

int MPI_Graph_map(MPI_Comm comm, int nnodes, const int index[],
const int edges[], int *newrank)

int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,
int neighbors[])

int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)

int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)

int MPI_Ineighbor_allgather(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ineighbor_allgather_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ineighbor_allgatherv(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],
const int displs[], MPI_Datatype recvtype, MPI_Comm comm,
MPI_Request *request)

int MPI_Ineighbor_allgatherv_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, void *recvbuf, const MPI_Count recvcounts[],
const MPI_Aint displs[], MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ineighbor_alltoall(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ineighbor_alltoall_c(const void *sendbuf, MPI_Count sendcount,
MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ineighbor_alltoallv(const void *sendbuf, const int sendcounts[],
const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
const int recvcounts[], const int rdispls[],
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ineighbor_alltoallv_c(const void *sendbuf, const MPI_Count sendcounts[],
const MPI_Aint sdispls[], MPI_Datatype sendtype, void *recvbuf,
const MPI_Count recvcounts[], const MPI_Aint rdispls[],
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)
int MPI_Ineighbor_alltoallw(const void *sendbuf, const int sendcounts[],
 const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
 void *recvbuf, const int recvcounts[], const MPI_Aint rdispls[],
 const MPI_Datatype recvtypes[], MPI_Comm comm,
 MPI_Request *request)

int MPI_Ineighbor_alltoallw_c(const void *sendbuf,
 const MPI_Count sendcounts[], const MPI_Aint sdispls[],
 const MPI_Datatype sendtypes[], void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint rdispls[],
 const MPI_Datatype recvtypes[], MPI_Comm comm,
 MPI_Request *request)

int MPI_Neighbor_allgather(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Neighbor_allgather_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Neighbor_allgather_init(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Neighbor_allgather_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Neighbor_allgatherv(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],
 const int displs[], MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Neighbor_allgatherv_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, const MPI_Count recvcounts[],
 const MPI_Aint displs[], MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Neighbor_allgatherv_init(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],
 const int displs[], MPI_Datatype recvtype, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)

int MPI_Neighbor_allgatherv_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, const MPI_Count recvcounts[],
 const MPI_Aint displs[], MPI_Datatype recvtype, MPI_Comm comm,
 MPI_Info info, MPI_Request *request)

int MPI_Neighbor_alltoall(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, MPI_Comm comm)
int MPI_Neighbor_alltoall_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Neighbor_alltoall_init(const void *sendbuf, int sendcount,
 MPI_Datatype sendtype, void *recvbuf, int recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Neighbor_alltoall_init_c(const void *sendbuf, MPI_Count sendcount,
 MPI_Datatype sendtype, void *recvbuf, MPI_Count recvcount,
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Neighbor_alltoallv(const void *sendbuf, const int sendcounts[],
 const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const int recvcounts[], const int rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Neighbor_alltoallv_c(const void *sendbuf, const MPI_Count sendcounts[],
 const MPI_Aint sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Neighbor_alltoallv_init(const void *sendbuf, const int sendcounts[],
 const int sdispls[], MPI_Datatype sendtype, void *recvbuf,
 const int recvcounts[], const int rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Neighbor_alltoallv_init_c(const void *sendbuf,
 const MPI_Count sendcounts[], const MPI_Aint sdispls[],
 MPI_Datatype sendtype, void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint rdispls[],
 MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Neighbor_alltoallw(const void *sendbuf, const int sendcounts[],
 const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
 void *recvbuf, const int recvcounts[], const MPI_Aint rdispls[],
 const MPI_Datatype recvtypes[], MPI_Comm comm)

int MPI_Neighbor_alltoallw_c(const void *sendbuf, const MPI_Count sendcounts[],
 const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
 void *recvbuf, const MPI_Count recvcounts[],
 const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],
 MPI_Comm comm)

int MPI_Neighbor_alltoallw_init(const void *sendbuf, const int sendcounts[],
 const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],
 void *recvbuf, const int recvcounts[], const MPI_Aint rdispls[],
 const MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Info info,
 MPI_Request *request)
int MPI_Neighbor_alltoallw_init_c(const void *sendbuf,
 const MPI_Count sendcounts[], const MPI_Aint sdispls[],
 const MPI_Datatype sendtypes[], void *recvbuf,
 const MPI_Count recvcounts[], const MPI_Aint rdispls[],
 const MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Info info,
 MPI_Request *request)

int MPI_Topo_test(MPI_Comm comm, int *status)

A.3.7 MPI Environmental Management C Bindings

int MPI_Add_error_class(int *errorclass)
int MPI_Add_error_code(int errorclass, int *errorcode)
int MPI_Add_error_string(int errorcode, const char *string)
int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)
int MPI_Comm_call_errhandler(MPI_Comm comm, int errorcode)

int MPI_Comm_create_errhandler(
 MPI_Comm_errhandler_function *comm_errhandler_fn,
 MPI_Errhandler *errhandler)

int MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhandler)
int MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhandler)

int MPI_Errhandler_free(MPI_Errhandler *errhandler)
int MPI_Error_class(int errorcode, int *errorclass)
int MPI_Error_string(int errorcode, char *string, int *resultlen)
int MPI_File_call_errhandler(MPI_File fh, int errorcode)

int MPI_File_create_errhandler(
 MPI_File_errhandler_function *file_errhandler_fn,
 MPI_Errhandler *errhandler)

int MPI_File_get_errhandler(MPI_File file, MPI_Errhandler *errhandler)
int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

int MPI_Free_mem(void *base)
int MPI_Get_hw_resource_info(MPI_Info *hw_info)
int MPI_Get_library_version(char *version, int *resultlen)
int MPI_Get_processor_name(char *name, int *resultlen)
int MPI_Get_version(int *version, int *subversion)
int MPI_Remove_error_class(int errorclass)
int MPI_Remove_error_code(int errorcode)
int MPI_Remove_error_string(int errorcode)
int MPI_Session_call_errhandler(MPI_Session session, int errorcode)
int MPI_Session_create_errhandler(
 MPI_Session_errhandler_function *session_errhandler_fn,
 MPI_Errhandler *errhandler)
int MPI_Session_get_errhandler(MPI_Session session, MPI_Errhandler *errhandler)
int MPI_Session_set_errhandler(MPI_Session session, MPI_Errhandler errhandler)
int MPI_Win_call_errhandler(MPI_Win win, int errorcode)
int MPI_Win_create_errhandler(MPI_Win_errhandler_function *win_errhandler_fn,
 MPI_Errhandler *errhandler)
int MPI_Win_get_errhandler(MPI_Win win, MPI_Errhandler *errhandler)
int MPI_Win_set_errhandler(MPI_Win win, MPI_Errhandler errhandler)
double MPI_Wtick(void)
double MPI_Wtime(void)

A.3.8 The Info Object C Bindings
int MPI_Info_create(MPI_Info *info)
int MPI_Info_create_env(int argc, char *argv[], MPI_Info *info)
int MPI_Info_delete(MPI_Info info, const char *key)
int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)
int MPI_Info_free(MPI_Info *info)
int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)
int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)
int MPI_Info_get_string(MPI_Info info, const char *key, int *buflen,
 char *value, int *flag)
int MPI_Info_set(MPI_Info info, const char *key, const char *value)

A.3.9 Process Creation and Management C Bindings
int MPI_Abort(MPI_Comm comm, int errorcode)
int MPI_Close_port(const char *port_name)
int MPI_Comm_accept(const char *port_name, MPI_Info info, int root,
 MPI_Comm comm, MPI_Comm *newcomm)
int MPI_Comm_connect(const char *port_name, MPI_Info info, int root,
 MPI_Comm comm, MPI_Comm *newcomm)
int MPI_Comm_disconnect(MPI_Comm *comm)
int MPI_Comm_get_parent(MPI_Comm *parent)
int MPI_Comm_join(int fd, MPI_Comm *intercomm)
Appendix A Language Bindings Summary

```c
int MPI_Comm_spawn(const char *command, char *argv[], int maxprocs,
                   MPI_Info info, int root, MPI_Comm comm, MPI_Comm *intercomm,
                   int array_of_errcodes[])

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],
                            char **array_of_argv[], const int array_of_maxprocs[],
                            const MPI_Info array_of_info[], int root, MPI_Comm comm,
                            MPI_Comm *intercomm, int array_of_errcodes[])

int MPI_Finalize(void)

int MPI_Finalized(int *flag)

int MPI_Init(int *argc, char ***argv)

int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

int MPI_Initialized(int *flag)

int MPI_Is_thread_main(int *flag)

int MPI_Lookup_name(const char *service_name, MPI_Info info, char *port_name)

int MPI_Open_port(MPI_Info info, char *port_name)

int MPI_Publish_name(const char *service_name, MPI_Info info,
                     const char *port_name)

int MPI_Query_thread(int *provided)

int MPI_Session_finalize(MPI_Session *session)

int MPI_Session_get_info(MPI_Session session, MPI_Info *info_used)

int MPI_Session_get_nth_pset(MPI_Session session, MPI_Info info, int n,
                             int *pset_len, char *pset_name)

int MPI_Session_get_num_psets(MPI_Session session, MPI_Info info,
                              int *npset_names)

int MPI_Session_get_pset_info(MPI_Session session, const char *pset_name,
                              MPI_Info *info)

int MPI_Session_init(MPI_Info info, MPI_Errhandler errhandler,
                     MPI_Session *session)

int MPI_Unpublish_name(const char *service_name, MPI_Info info,
                       const char *port_name)

A.3.10 One-Sided Communications C Bindings

int MPI_Accumulate(const void *origin_addr, int origin_count,
                    MPI_Datatype origin_datatype, int target_rank,
                    MPI_Aint target_disp, int target_count,
                    MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Accumulate_c(const void *origin_addr, MPI_Count origin_count,
                      const MPI_Datatype origin_datatype, int target_rank,
                      const char *port_name)
```

A.3.10 One-Sided Communications C Bindings

```c
int MPI_Accumulate(const void *origin_addr, int origin_count,
                    MPI_Datatype origin_datatype, int target_rank,
                    MPI_Aint target_disp, int target_count,
                    MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Accumulate_c(const void *origin_addr, MPI_Count origin_count,
                      MPI_Datatype origin_datatype, int target_rank,
                      const char *port_name)
```
A.3 C Bindings

MPI_Aint target_disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Compare_and_swap(const void *origin_addr, const void *compare_addr,
 void *result_addr, MPI_Datatype datatype, int target_rank,
 MPI_Aint target_disp, MPI_Win win)

int MPI_Fetch_and_op(const void *origin_addr, void *result_addr,
 MPI_Datatype datatype, int target_rank, MPI_Aint target_disp,
 MPI_Op op, MPI_Win win)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
 int target_rank, MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Win win)

int MPI_Get_accumulate(const void *origin_addr, int origin_count,
 MPI_Datatype origin_datatype, void *result_addr,
 int result_count, MPI_Datatype result_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Get_accumulate_c(const void *origin_addr, MPI_Count origin_count,
 MPI_Datatype origin_datatype, void *result_addr,
 MPI_Count result_count, MPI_Datatype result_datatype,
 int target_rank, MPI_Aint target_disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Get_c(void *origin_addr, MPI_Count origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Win win)

int MPI_Put(const void *origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Win win)

int MPI_Put_c(const void *origin_addr, MPI_Count origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Win win)

int MPI_Raccumulate(const void *origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win,
 MPI_Request *request)

int MPI_Raccumulate_c(const void *origin_addr, MPI_Count origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win,
 MPI_Request *request)
Appendix A Language Bindings Summary

int MPI_Rget(void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
 int target_rank, MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Win win, MPI_Request *request)

int MPI_Rget_accumulate(const void *origin_addr, int origin_count,
 MPI_Datatype origin_datatype, void *result_addr,
 int result_count, MPI_Datatype result_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win,
 MPI_Request *request)

int MPI_Rget_accumulate_c(const void *origin_addr, MPI_Count origin_count,
 MPI_Datatype origin_datatype, void *result_addr,
 MPI_Count result_count, MPI_Datatype result_datatype,
 int target_rank, MPI_Aint target_disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win,
 MPI_Request *request)

int MPI_Rget_c(void *origin_addr, MPI_Count origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Win win, MPI_Request *request)

int MPI_Rput(const void *origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Win win, MPI_Request *request)

int MPI_Rput_c(const void *origin_addr, MPI_Count origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, MPI_Count target_count,
 MPI_Datatype target_datatype, MPI_Win win, MPI_Request *request)

int MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,
 MPI_Comm comm, void *baseptr, MPI_Win *win)

int MPI_Win_allocate_c(MPI_Aint size, MPI_Aint disp_unit, MPI_Info info,
 MPI_Comm comm, void *baseptr, MPI_Win *win)

int MPI_Win_allocate_shared(MPI_Aint size, int disp_unit, MPI_Info info,
 MPI_Comm comm, void *baseptr, MPI_Win *win)

int MPI_Win_allocate_shared_c(MPI_Aint size, MPI_Aint disp_unit, MPI_Info info,
 MPI_Comm comm, void *baseptr, MPI_Win *win)

int MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size)

int MPI_Win_complete(MPI_Win win)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,
 MPI_Comm comm, MPI_Win *win)

int MPI_Win_create_c(void *base, MPI_Aint size, MPI_Aint disp_unit,
 MPI_Info info, MPI_Comm comm, MPI_Win *win)

int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, MPI_Win *win)
int MPI_Win_detach(MPI_Win win, const void *base)
int MPI_Win_fence(int assert, MPI_Win win)
int MPI_Win_flush(int rank, MPI_Win win)
int MPI_Win_flush_all(MPI_Win win)
int MPI_Win_flush_local(int rank, MPI_Win win)
int MPI_Win_flush_local_all(MPI_Win win)
int MPI_Win_free(MPI_Win *win)
int MPI_Win_get_group(MPI_Win win, MPI_Group *group)
int MPI_Win_get_info(MPI_Win win, MPI_Info *info_used)
int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)
int MPI_Win_lock_all(int assert, MPI_Win win)
int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)
int MPI_Win_set_info(MPI_Win win, MPI_Info info)
int MPI_Win_shared_query(MPI_Win win, int rank, MPI_Aint *size, int *disp_unit, void *baseptr)
int MPI_Win_shared_query_c(MPI_Win win, int rank, MPI_Aint *size, MPI_Aint *disp_unit, void *baseptr)
int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)
int MPI_Win_sync(MPI_Win win)
int MPI_Win_test(MPI_Win win, int *flag)
int MPI_Win_unlock(int rank, MPI_Win win)
int MPI_Win_unlock_all(MPI_Win win)
int MPI_Win_wait(MPI_Win win)

A.3.11 External Interfaces C Bindings

int MPI_Grequest_complete(MPI_Request request)
int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,
 MPI_Grequest_free_function *free_fn,
 MPI_Grequest_cancel_function *cancel_fn, void *extra_state,
 MPI_Request *request)
int MPI_Status_set_cancelled(MPI_Status *status, int flag)
int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,
 int count)
int MPI_Status_set_elements_c(MPI_Status *status, MPI_Datatype datatype,
 MPI_Count count)
int MPI_Status_set_error(MPI_Status *status, int err)
int MPI_Status_set_source(MPI_Status *status, int source)
int MPI_Status_set_tag(MPI_Status *status, int tag)
A.3.12 I/O C Bindings

```c
int MPI_CONVERSION_FN_NULL(void *userbuf, MPI_Datatype datatype, int count,
                             void *filebuf, MPI_Offset position, void *extra_state)
int MPI_CONVERSION_FN_NULL_C(void *userbuf, MPI_Datatype datatype,
                              MPI_Count count, void *filebuf, MPI_Offset position,
                              void *extra_state)
int MPI_File_close(MPI_File *fh)
int MPI_File_delete(const char *filename, MPI_Info info)
int MPI_File_get_amode(MPI_File fh, int *amode)
int MPI_File_get_atomicity(MPI_File fh, int *flag)
int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset, MPI_Offset *disp)
int MPI_File_get_group(MPI_File fh, MPI_Group *group)
int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)
int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)
int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)
int MPI_File_get_size(MPI_File fh, MPI_Offset *size)
int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,
                             MPI_Aint *extent)
int MPI_File_get_type_extent_c(MPI_File fh, MPI_Datatype datatype,
                                MPI_Count *extent)
int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,
                      MPI_Datatype *filetype, char *datarep)
int MPI_File_iread(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
                   MPI_Request *request)
int MPI_File_iread_all(MPI_File fh, void *buf, int count,
                       MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iread_all_c(MPI_File fh, void *buf, MPI_Count count,
                        MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
                     MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iread_at_all(MPI_File fh, MPI_Offset offset, void *buf, int count,
                         MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iread_at_all_c(MPI_File fh, MPI_Offset offset, void *buf,
                           MPI_Count count, MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iread_at_c(MPI_File fh, MPI_Offset offset, void *buf,
                 MPI_Count count, MPI_Datatype datatype, MPI_Request *request)
int MPI_File_iread_c(MPI_File fh, void *buf, MPI_Count count,
                      MPI_Datatype datatype, MPI_Request *request)
```
int MPI_File_iread_shared(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread_shared_c(MPI_File fh, void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_all(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_all_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, const void *buf,
 int count, MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_at_all(MPI_File fh, MPI_Offset offset, const void *buf,
 int count, MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_at_all_c(MPI_File fh, MPI_Offset offset, const void *buf,
 MPI_Count count, MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_shared(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_shared_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Request *request)

int MPI_File_open(MPI_Comm comm, const char *filename, int amode,
 MPI_Info info, MPI_File *fh)

int MPI_File_preallocate(MPI_File fh, MPI_Offset size)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
 MPI_Status *status)

int MPI_File_read_all(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
 MPI_Status *status)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype)

int MPI_File_read_all_begin_c(MPI_File fh, void *buf, MPI_Count count,
 MPI_Datatype datatype)

int MPI_File_read_all_c(MPI_File fh, void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)
int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf, int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf, int count, MPI_Datatype datatype)

int MPI_File_read_at_all_begin_c(MPI_File fh, MPI_Offset offset, void *buf, MPI_Count count, MPI_Datatype datatype)

int MPI_File_read_at_all_c(MPI_File fh, MPI_Offset offset, void *buf, MPI_Count count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_at_c(MPI_File fh, MPI_Offset offset, void *buf, MPI_Count count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_c(MPI_File fh, void *buf, MPI_Count count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count, MPI_Datatype datatype)

int MPI_File_read_ordered_begin_c(MPI_File fh, void *buf, MPI_Count count, MPI_Datatype datatype)

int MPI_File_read_ordered_c(MPI_File fh, void *buf, MPI_Count count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_shared_c(MPI_File fh, void *buf, MPI_Count count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_set_atomicity(MPI_File fh, int flag)

int MPI_File_set_info(MPI_File fh, MPI_Info info)

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype, MPI_Datatype filetype, const char *datarep, MPI_Info info)

int MPI_File_sync(MPI_File fh)

int MPI_File_write(MPI_File fh, const void *buf, int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_all(MPI_File fh, const void *buf, int count, MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_all_begin(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype)
int MPI_File_write_all_begin_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype)
int MPI_File_write_all_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_all_end(MPI_File fh, const void *buf, MPI_Status *status)
int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void *buf,
 int count, MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, const void *buf,
 int count, MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset,
 const void *buf, int count, MPI_Datatype datatype)
int MPI_File_write_at_all_begin_c(MPI_File fh, MPI_Offset offset,
 const void *buf, MPI_Count count, MPI_Datatype datatype)
int MPI_File_write_at_all_c(MPI_File fh, MPI_Offset offset, const void *buf,
 MPI_Count count, MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_at_all_end(MPI_File fh, const void *buf, MPI_Status *status)
int MPI_File_write_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_ordered(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_ordered_begin(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype)
int MPI_File_write_ordered_begin_c(MPI_File fh, const void *buf,
 MPI_Count count, MPI_Datatype datatype)
int MPI_File_write_ordered_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_ordered_end(MPI_File fh, const void *buf,
 MPI_Status *status)
int MPI_File_write_shared(MPI_File fh, const void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)
int MPI_File_write_shared_c(MPI_File fh, const void *buf, MPI_Count count,
 MPI_Datatype datatype, MPI_Status *status)
int MPI_Register_datarep(const char *datarep,
 MPI_Datarep_conversion_function *read_conversion_fn,
 MPI_Datarep_conversion_function *write_conversion_fn,
Appendix A Language Bindings Summary

MPI_Datarep_extent_function *dtype_file_extent_fn,
void *extra_state)

int MPI_Register_datarep_c(const char *datarep,
 MPI_Datarep_conversion_function_c *read_conversion_fn,
 MPI_Datarep_conversion_function_c *write_conversion_fn,
 MPI_Datarep_extent_function *dtype_file_extent_fn,
 void *extra_state)

A.3.13 Language Bindings C Bindings

MPI_Fint MPI_Comm_c2f(MPI_Comm comm)
MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)
MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)

MPI_Fint MPI_File_c2f(MPI_File file)
MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_Group_c2f(MPI_Group group)
MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Info_c2f(MPI_Info info)
MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Message_c2f(MPI_Message message)
MPI_Message MPI_Message_f2c(MPI_Fint message)

MPI_Fint MPI_Op_c2f(MPI_Op op)
MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Request_c2f(MPI_Request request)
MPI_Request MPI_Request_f2c(MPI_Fint request)

MPI_Fint MPI_Session_c2f(MPI_Session session)
MPI_Session MPI_Session_f2c(MPI_Fint session)

int MPI_Status_c2f(const MPI_Status *c_status, MPI_Fint *f_status)
int MPI_Status_c2f08(const MPI_Status *c_status, MPI_F08_status *f08_status)
int MPI_Status_f082c(const MPI_F08_status *f08_status, MPI_Status *c_status)
int MPI_Status_f082f(const MPI_F08_status *f08_status, MPI_Fint *f_status)
int MPI_Status_f2c(const MPI_Fint *f_status, MPI_Status *c_status)
int MPI_Status_f2f08(const MPI_Fint *f_status, MPI_F08_status *f08_status)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)
int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)
int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)
int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)
MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)
int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *datatype)
MPI_Fint MPI_Win_c2f(MPI_Win win)
MPI_Win MPI_Win_f2c(MPI_Fint win)

A.3.14 Tools / Profiling Interface C Bindings
int MPI_Pcontrol(const int level, ...)

A.3.15 Tools / MPI Tool Information Interface C Bindings
int MPI_T_category_changed(int *update_number)
int MPI_T_category_get_categories(int cat_index, int len, int indices[])
int MPI_T_category_get_cvars(int cat_index, int len, int indices[])
int MPI_T_category_get_events(int cat_index, int len, int indices[])
int MPI_T_category_get_index(const char *name, int *cat_index)
int MPI_T_category_get_info(int cat_index, char *name, int *name_len,
 char *desc, int *desc_len, int *num_cvars, int *num_pvars,
 int *num_categories)
int MPI_T_category_get_num(int *num_cat)
int MPI_T_category_get_num_events(int cat_index, int *num_events)
int MPI_T_category_get_pvars(int cat_index, int len, int indices[])
int MPI_T_cvar_get_index(const char *name, int *cvar_index)
int MPI_T_cvar_get_info(int cvar_index, char *name, int *name_len,
 int *verbosity, MPI_Datatype *datatype, MPI_T_enum *enumtype,
 char *desc, int *desc_len, int *bind, int *scope)
int MPI_T_cvar_get_num(int *num_cvar)
int MPI_T_cvar_handle_alloc(int cvar_index, void *obj_handle,
 MPI_T_cvar_handle *handle, int *count)
int MPI_T_cvar_handle_free(MPI_T_cvar_handle *handle)
int MPI_T_cvar_read(MPI_T_cvar_handle handle, void *buf)
int MPI_T_cvar_write(MPI_T_cvar_handle handle, const void *buf)
int MPI_T_enum_get_info(MPI_T_enum enumtype, int *num, char *name,
 int *name_len)
int MPI_T_enum_get_item(MPI_T_enum enumtype, int index, int *value, char *name,
 int *name_len)
int MPI_T_event_callback_get_info(MPI_T_event_registration event_registration,
 MPI_T_cb_safety cb_safety, MPI_Info *info_used)

int MPI_T_event_callback_set_info(MPI_T_event_registration event_registration,
 MPI_T_cb_safety cb_safety, MPI_Info info)

int MPI_T_event_copy(MPI_T_event_instance event_instance, void *buffer)

int MPI_T_event_get_index(const char *name, int *event_index)

int MPI_T_event_get_info(int event_index, char *name, int *name_len,
 int *verbosity, MPI_Datatype array_of_datatypes[],
 MPI_Aint array_of_displacements[], int *num_elements,
 MPI_T_enum *enumtype, MPI_Info *info, char *desc, int *desc_len,
 int *bind)

int MPI_T_event_get_num(int *num_events)

int MPI_T_event_get_source(MPI_T_event_instance event_instance,
 int *source_index)

int MPI_T_event_get_timestamp(MPI_T_event_instance event_instance,
 MPI_Count *event_timestamp)

int MPI_T_event_handle_alloc(int event_index, void *obj_handle, MPI_Info info,
 MPI_T_event_registration *event_registration)

int MPI_T_event_handle_free(MPI_T_event_registration event_registration,
 void *user_data, MPI_T_event_free_cb_function free_cb_function)

int MPI_T_event_handle_get_info(MPI_T_event_registration event_registration,
 MPI_Info *info_used)

int MPI_T_event_handle_set_info(MPI_T_event_registration event_registration,
 MPI_Info info)

int MPI_T_event_read(MPI_T_event_instance event_instance, int element_index,
 void *buffer)

int MPI_T_event_register_callback(MPI_T_event_registration event_registration,
 MPI_T_cb_safety cb_safety, MPI_Info info, void *user_data,
 MPI_T_event_cb_function event_cb_function)

int MPI_T_event_set_dropped_handler(
 MPI_T_event_registration event_registration,
 MPI_T_event_dropped_cb_function dropped_cb_function)

int MPI_T_finalize(void)

int MPI_T_init_thread(int required, int *provided)

int MPI_T_pvar_get_index(const char *name, int var_class, int *pvar_index)

int MPI_T_pvar_get_info(int pvar_index, char *name, int *name_len,
 int *verbosity, int *var_class, MPI_Datatype *datatype,
 MPI_T_enum *enumtype, char *desc, int *desc_len, int *bind,
 int *readonly, int *continuous, int *atomic)

int MPI_T_pvar_get_num(int *num_pvar)
int MPI_T_pvar_handle_alloc(MPI_T_pvar_session pe_session, int pvar_index,
 void *obj_handle, MPI_T_pvar_handle *handle, int *count)
int MPI_T_pvar_handle_free(MPI_T_pvar_session pe_session,
 MPI_T_pvar_handle *handle)
int MPI_T_pvar_read(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle,
 void *buf)
int MPI_T_pvar_readreset(MPI_T_pvar_session pe_session,
 MPI_T_pvar_handle handle, void *buf)
int MPI_T_pvar_reset(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle)
int MPI_T_pvar_session_create(MPI_T_pvar_session *pe_session)
int MPI_T_pvar_session_free(MPI_T_pvar_session *pe_session)
int MPI_T_pvar_start(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle)
int MPI_T_pvar_stop(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle)
int MPI_T_pvar_write(MPI_T_pvar_session pe_session, MPI_T_pvar_handle handle,
 const void *buf)
int MPI_T_source_get_info(int source_index, char *name, int *name_len,
 char *desc, int *desc_len, MPI_T_source_order *ordering,
 MPI_Count *ticks_per_second, MPI_Count *max_ticks,
 MPI_Info *info)
int MPI_T_source_get_num(int *num_sources)
int MPI_T_source_get_timestamp(int source_index, MPI_Count *timestamp)

A.3.16 Deprecated C Bindings
int MPI_Attr_delete(MPI_Comm comm, int keyval)
int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)
int MPI_Attr_put(MPI_Comm comm, int keyval, void *attribute_val)
int MPI_DUP_FN(MPI_Comm oldcomm, int keyval, void *extra_state,
 void *attribute_val_in, void *attribute_val_out, int *flag)
int MPI_Get_elements_x(const MPI_Status *status, MPI_Datatype datatype,
 MPI_Count *count)
int MPI_Info_get(MPI_Info info, const char *key, int valuelen, char *value,
 int *flag)
int MPI_Info_get_valuelen(MPI_Info info, const char *key, int *valuelen,
 int *flag)
int MPI_Keyval_create(MPI_Copy_function *copy_fn,
 MPI_Delete_function *delete_fn, int *keyval, void *extra_state)
int MPI_Keyval_free(int *keyval)
int MPI_NULL_COPY_FN(MPI_Comm oldcomm, int keyval, void *extra_state,
 void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_NULL_DELETE_FN(MPI_Comm comm, int keyval, void *attribute_val,
 void *extra_state)

int MPI_Status_set_elements_x(MPI_Status *status, MPI_Datatype datatype,
 MPI_Count count)

int MPI_Type_get_extent_x(MPI_Datatype datatype, MPI_Count *lb,
 MPI_Count *extent)

int MPI_Type_get_true_extent_x(MPI_Datatype datatype, MPI_Count *true_lb,
 MPI_Count *true_extent)

int MPI_Type_size_x(MPI_Datatype datatype, MPI_Count *size)
A.4 Fortran 2008 Bindings with the mpi_f08 Module

A.4.1 Point-to-Point Communication Fortran 2008 Bindings

MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: dest, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bsend_init(buf, count, datatype, dest, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bsend_init(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: dest, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Buffer_attach(buffer, size, ierror)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
 INTEGER, INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Buffer_attach(buffer, size, ierror) !(_c)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Buffer_detach(buffer_addr, size, ierror)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 TYPE(C_PTR), INTENT(OUT) :: buffer_addr
 INTEGER, INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Buffer_detach(buffer_addr, size, ierror) !(_c)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(C_PTR), INTENT(OUT) :: buffer_addr
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Buffer_flush(ierror)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Buffer_iflush(request, ierror)
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Cancel(request, ierror)
TYPE(MPI_Request), INTENT(IN) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Comm_attach_buffer(comm, buffer, size, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
INTEGER, INTENT(IN) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Comm_detach_buffer(comm, buffer_addr, size, ierror)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(C_PTR), INTENT(OUT) :: buffer_addr
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Comm_flush_buffer(comm, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Comm_iflush_buffer(comm, request, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Get_count(status, datatype, count, ierror)
A.4 Fortran 2008 Bindings with the mpi_f08 Module

```
TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(OUT) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_count(status, datatype, count, ierror) !(_c)
  TYPE(MPI_Status), INTENT(IN) :: status
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: count
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ibsend(buf, count, datatype, dest, tag, comm, request, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER, INTENT(IN) :: dest, tag
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Imrecv(buf, count, datatype, message, request, ierror)
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Message), INTENT(INOUT) :: message
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

MPI_Iprobe(source, tag, comm, flag, status, ierror)
 INTEGER, INTENT(IN) :: source, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 LOGICAL, INTENT(OUT) :: flag
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, source, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: source, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Irsend(buf, count, datatype, dest, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Irsend(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: dest, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
A.4 Fortran 2008 Bindings with the mpi_f08 Module

```
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, 
   recvtype, source, recvtag, comm, request, ierror)
   TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
   INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source, recvtag
   TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
   TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
   TYPE(MPI_Comm), INTENT(IN) :: comm
   TYPE(MPI_Request), INTENT(OUT) :: request
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, 
   recvtype, source, recvtag, comm, request, ierror) !(_c)
   TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
   INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
   TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
   INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag
   TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
   TYPE(MPI_Comm), INTENT(IN) :: comm
   TYPE(MPI_Request), INTENT(OUT) :: request
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag, 
   comm, request, ierror)
   TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
   INTEGER, INTENT(IN) :: count, dest, sendtag, source, recvtag
   TYPE(MPI_Datatype), INTENT(IN) :: datatype
   TYPE(MPI_Comm), INTENT(IN) :: comm
   TYPE(MPI_Request), INTENT(OUT) :: request
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag, 
   comm, request, ierror) !(_c)
   TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
   INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
   TYPE(MPI_Datatype), INTENT(IN) :: datatype
   INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag
   TYPE(MPI_Comm), INTENT(IN) :: comm
   TYPE(MPI_Request), INTENT(OUT) :: request
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Issend(buf, count, datatype, dest, tag, comm, request, ierror)
   TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
   INTEGER, INTENT(IN) :: count, dest, tag
```
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Issend(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Mprobe(source, tag, comm, message, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Message), INTENT(OUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Mrecv(buf, count, datatype, message, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Message), INTENT(INOUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Mrecv(buf, count, datatype, message, status, ierror) !(_c)
TYPE(*), DIMENSION(..) :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Message), INTENT(INOUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Probe(source, tag, comm, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror) !(_c)
A.4 Fortran 2008 Bindings with the mpi_f08 Module

```fortran
TYPE(*), DIMENSION(..) :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Recv_init(buf, count, datatype, source, tag, comm, request, ierror)
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
  INTEGER, INTENT(IN) :: count, source, tag
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  INTEGER, INTENT(IN) :: source, tag
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Request_free(request, ierror)
  TYPE(MPI_Request), INTENT(INOUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Request_get_status(request, flag, status, ierror)
  TYPE(MPI_Request), INTENT(IN) :: request
  LOGICAL, INTENT(OUT) :: flag
  TYPE(MPI_Status) :: status
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Request_get_status_all(count, array_of_requests, flag, array_of_statuses, ierror)
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Request), INTENT(IN) :: array_of_requests(count)
  LOGICAL, INTENT(OUT) :: flag
  TYPE(MPI_Status) :: array_of_statuses(*)
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Request_get_status_any(count, array_of_requests, index, flag, status, ierror)
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Request), INTENT(IN) :: array_of_requests(count)
  INTEGER, INTENT(OUT) :: index
  LOGICAL, INTENT(OUT) :: flag
  TYPE(MPI_Status) :: status
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
MPI_Request_get_status_some(incount, array_of_requests, outcount, array_of_indices, array_of_statuses, ierror)
 INTEGER, INTENT(IN) :: incount
 TYPE(MPI_Request), INTENT(IN) :: array_of_requests(incount)
 INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)
 TYPE(MPI_Status) :: array_of_statuses(*)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rsend(buf, count, datatype, dest, tag, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rsend(buf, count, datatype, dest, tag, comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rsend_init(buf, count, datatype, dest, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rsend_init(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Send(buf, count, datatype, dest, tag, comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: dest, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount,
 recvtype, source, recvtag, comm, status, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source, recvtag
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount,
 recvtype, source, recvtag, comm, status, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 INTEGER, INTENT(IN) :: dest, sendtag, source, recvtag
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Sendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
 comm, status, ierror)
 TYPE(*), DIMENSION(..) :: buf
 INTEGER, INTENT(IN) :: count, dest, sendtag, source, recvtag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_attach_buffer(session, buffer, size, ierror)
 TYPE(MPI_Session), INTENT(IN) :: session
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
 INTEGER, INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_detach_buffer(session, buffer_addr, size, ierror)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 TYPE(MPI_Session), INTENT(IN) :: session
 TYPE(C_PTR), INTENT(OUT) :: buffer_addr
 INTEGER, INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_flush_buffer(session, ierror)
 TYPE(MPI_Session), INTENT(IN) :: session
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_iflush_buffer(session, request, ierror)
 TYPE(MPI_Session), INTENT(IN) :: session
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: dest, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ssend_init(buf, count, datatype, dest, tag, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count, dest, tag
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: dest, tag
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Start(request, ierror)
 TYPE(MPI_Request), INTENT(INOUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Startall(count, array_of_requests, ierror)
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_get_error(status, err, ierror)
 TYPE(MPI_Status), INTENT(IN) :: status
 INTEGER, INTENT(OUT) :: err
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_get_source(status, source, ierror)
 TYPE(MPI_Status), INTENT(IN) :: status
 INTEGER, INTENT(OUT) :: source
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_get_tag(status, tag, ierror)
 TYPE(MPI_Status), INTENT(IN) :: status
 INTEGER, INTENT(OUT) :: tag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Test(request, flag, status, ierror)
 TYPE(MPI_Request), INTENT(INOUT) :: request
 LOGICAL, INTENT(OUT) :: flag
Appendix A Language Bindings Summary

```
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Test_cancelled(status, flag, ierror)
  TYPE(MPI_Status), INTENT(IN) :: status
  LOGICAL, INTENT(OUT) :: flag
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Testall(count, array_of_requests, flag, array_of_statuses, ierror)
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
  LOGICAL, INTENT(OUT) :: flag
  TYPE(MPI_Status) :: array_of_statuses(*)
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Testany(count, array_of_requests, index, flag, status, ierror)
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
  INTEGER, INTENT(OUT) :: index
  LOGICAL, INTENT(OUT) :: flag
  TYPE(MPI_Status) :: status
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Testsome(incount, array_of_requests, outcount, array_of_indices,
  array_of_statuses, ierror)
  INTEGER, INTENT(IN) :: incount
  TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)
  INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)
  TYPE(MPI_Status) :: array_of_statuses(*)
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Wait(request, status, ierror)
  TYPE(MPI_Request), INTENT(INOUT) :: request
  TYPE(MPI_Status) :: status
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
  TYPE(MPI_Status) :: array_of_statuses(*)
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Waitany(count, array_of_requests, index, status, ierror)
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
  INTEGER, INTENT(OUT) :: index
  TYPE(MPI_Status) :: status
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Waitsome(incount, array_of_requests, outcount, array_of_indices,
  array_of_statuses, ierror)
  INTEGER, INTENT(IN) :: incount
```
A.4 Fortran 2008 Bindings with the mpi_f08 Module

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)
INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierr

A.4.2 Partitioned Communication Fortran 2008 Bindings

MPI_Parrived(request, partition, flag, ierr)
 INTEGER, INTENT(IN) :: request
 INTEGER, INTENT(IN) :: partition
 LOGICAL, INTENT(OUT) :: flag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Pready(partition, request, ierr)
 INTEGER, INTENT(IN) :: partition
 TYPE(MPI_Request), INTENT(IN) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Pready_list(length, array_of_partitions, request, ierr)
 INTEGER, INTENT(IN) :: length
 INTEGER, DIMENSION(..), INTENT(IN) :: array_of_partitions(length)
 TYPE(MPI_Request), INTENT(IN) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Pready_range(partition_low, partition_high, request, ierr)
 INTEGER, INTENT(IN) :: partition_low, partition_high
 TYPE(MPI_Request), INTENT(IN) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Precv_init(buf, partitions, count, datatype, source, tag, comm, info,
request, ierr)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: partitions, source, tag
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Psend_init(buf, partitions, count, datatype, dest, tag, comm, info,
request, ierr)
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: partitions, dest, tag
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr
A.4.3 Datatypes Fortran 2008 Bindings

INTEGER(KIND=MPI_ADDRESS_KIND) MPI_Aint_add(base, disp)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: base, disp

INTEGER(KIND=MPI_ADDRESS_KIND) MPI_Aint_diff(addr1, addr2)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: addr1, addr2

MPI_Get_address(location, address, ierror)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: location
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: address
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_elements(status, datatype, count, ierror)
 TYPE(MPI_Status), INTENT(IN) :: status
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(OUT) :: count
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
 INTEGER, INTENT(IN) :: incount, outsize
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(*), DIMENSION(..) :: outbuf
 INTEGER, INTENT(INOUT) :: position
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
 INTEGER, INTENT(IN) :: incount, outsize
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(*), DIMENSION(..) :: outbuf
 INTEGER, INTENT(INOUT) :: position
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_external(datarep, inbuf, incount, datatype, outbuf, outsize, position,
 comm, ierror)
 CHARACTER(LEN=*) :: datarep
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: incount
 INTEGER, INTENT(IN) :: incount
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(*), DIMENSION(..) :: outbuf
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: outsize
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_external(datarep, inbuf, incount, datatype, outbuf, outsize, position, ierror) !(_c)
CHARACTER(LEN=*) :: datarep
TYPE(*), DIMENSION(..) :: inbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: incount, outsize
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(*), DIMENSION(..) :: outbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(INOUT) :: position
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_external_size(datarep, incount, datatype, size, ierror)
CHARACTER(LEN=*) :: datarep
INTEGER, INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_external_size(datarep, incount, datatype, size, ierror) !(_c)
CHARACTER(LEN=*) :: datarep
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_size(incount, datatype, comm, size, ierror)
INTEGER, INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_size(incount, datatype, comm, size, ierror) !(_c)
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_commit(datatype, ierror)
TYPE(MPI_Datatype), INTENT(INOUT) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_contiguous(count, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(INOUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_contiguous(count, oldtype, newtype, ierror) !(_c)
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_darray(size, rank, ndims, array_of_gsizes, array_of_distribs,
array_of_dargs, array_of_psizes, order, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: size, rank, ndims, array_of_gsizes(ndims),
array_of_distribs(ndims), array_of_dargs(ndims),
array_of_psizes(ndims), order
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_darray(size, rank, ndims, array_of_gsizes, array_of_distribs,
array_of_dargs, array_of_psizes, order, oldtype, newtype, ierror)
!(_c)
INTEGER, INTENT(IN) :: size, rank, ndims, array_of_distribs(ndims),
array_of_dargs(ndims), array_of_psizes(ndims), order
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: array_of_gsizes(ndims)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_hindexed(count, array_of_blocklengths, array_of_displacements,
oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_hindexed(count, array_of_blocklengths, array_of_displacements,
oldtype, newtype, ierror)
!(_c)
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count,
array_of_blocklengths(count), array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_hindexed_block(count, blocklength, array_of_displacements,
oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, blocklength
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_hindexed_block(count, blocklength, array_of_displacements,
oldtype, newtype, ierror)
!(_c)
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count, blocklength,
 array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Type_create_hvector(count, blocklength, stride, oldtype, newtype, ierr)
 INTEGER, INTENT(IN) :: count, blocklength,
 array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Type_create_indexed_block(count, blocklength, array_of_displacements,
 oldtype, newtype, ierr)
 INTEGER, INTENT(IN) :: count, blocklength,
 array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Type_create_resized(oldtype, lb, extent, newtype, ierr)
 TYPE(MPI_Datatype), INTENT(IN) :: oldtype
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: lb, extent
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Type_create_struct(count, array_of_blocklengths, array_of_displacements,
 array_of_types, newtype, ierr)
 INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: array_of_displacements(count)
 TYPE(MPI_Datatype), INTENT(IN) :: array_of_types(count)
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_struct(count, array_of_blocklengths, array_of_displacements,
array_of_types, newtype, ierror) !(_c)
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count,
array_of_blocklengths(count), array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: array_of_types(count)
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_subarray(ndims, array_of_sizes, array_of_subsizes,
array_of_starts, order, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: ndims, array_of_sizes(ndims),
array_of_subsizes(ndims), array_of_starts(ndims), order
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_subarray(ndims, array_of_sizes, array_of_subsizes,
array_of_starts, order, oldtype, newtype, ierror) !(_c)
INTEGER, INTENT(IN) :: ndims, order
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: array_of_sizes(ndims),
array_of_subsizes(ndims), array_of_starts(ndims)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_dup(oldtype, newtype, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_free(datatype, ierror)
TYPE(MPI_Datatype), INTENT(INOUT) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_contents(datatype, max_integers, max_addresses, max_datatypes,
array_of_integers, array_of_addresses, array_of_datatypes,
ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: max_integers, max_addresses, max_datatypes
INTEGER, INTENT(OUT) :: array_of_integers(max_integers)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) ::
array_of_addresses(max_addresses)
TYPE(MPI_Datatype), INTENT(OUT) :: array_of_datatypes(max_datatypes)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_contents(datatype, max_integers, max_addresses, max_large_counts,
max_datatypes, array_of_integers, array_of_addresses,
array_of_large_counts, array_of_datatypes, ierror) !(_c)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
A.4 Fortran 2008 Bindings with the mpi_f08 Module

```fortran
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: max_integers, max_addresses, max_large_counts, max_datatypes
INTEGER, INTENT(OUT) :: array_of_integers(max_integers)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: array_of_addresses(max_addresses)
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: array_of_large_counts(max_large_counts)
TYPE(MPI_Datatype), INTENT(OUT) :: array_of_datatypes(max_datatypes)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_envelope(datatype, num_integers, num_addresses, num_datatypes, combiner, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(OUT) :: num_integers, num_addresses, num_datatypes, combiner
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_envelope(datatype, num_integers, num_addresses, num_large_counts, num_datatypes, combiner, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: num_integers, num_addresses, num_large_counts, num_datatypes
INTEGER, INTENT(OUT) :: combiner
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_extent(datatype, lb, extent, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: lb, extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_extent(datatype, lb, extent, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: lb, extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_true_extent(datatype, true_lb, true_extent, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: true_lb, true_extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_true_extent(datatype, true_lb, true_extent, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: true_lb, true_extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_indexed(count, array_of_blocklengths, array_of_displacements, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, array_of_blocklengths(count), array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
MPI_Type_indexed(count, array_of_blocklengths, array_of_displacements, oldtype, newtype, ierror) !(_c)
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count,
 array_of_blocklengths(count), array_of_displacements(count)
 TYPE(MPI_Datatype), INTENT(IN) :: oldtype
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_size(datatype, size, ierror)
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_size(datatype, size, ierror) !(_c)
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_vector(count, blocklength, stride, oldtype, newtype, ierror)
 INTEGER, INTENT(IN) :: count, blocklength, stride
 TYPE(MPI_Datatype), INTENT(IN) :: oldtype
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_vector(count, blocklength, stride, oldtype, newtype, ierror) !(_c)
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count, blocklength, stride
 TYPE(MPI_Datatype), INTENT(IN) :: oldtype
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Unpack(inbuf, insize, position, outbuf, outcount, datatype, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
 INTEGER, INTENT(IN) :: insize, outcount
 INTEGER, INTENT(INOUT) :: position
 TYPE(*), DIMENSION(..) :: outbuf
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Unpack(inbuf, insize, position, outbuf, outcount, datatype, comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: insize, outcount
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(INOUT) :: position
 TYPE(*), DIMENSION(..) :: outbuf
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Unpack_external(datarep, inbuf, insize, position, outbuf, outcount, datatype, ierror)
 CHARACTER(LEN=*), INTENT(IN) :: datarep
A.4 Fortran 2008 Bindings with the mpi_f08 Module

TYPE(*), DIMENSION(...) :: inbuf
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: insize
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position
TYPE(*), DIMENSION(...) :: outbuf
INTEGER, INTENT(IN) :: outcount
Type(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Unpack_external(datarep, inbuf, insize, position, outbuf, outcount, datatype, ierror) !(_c)
CHARACTER(LEN=*), INTENT(IN) :: datarep

A.4.4 Collective Communication Fortran 2008 Bindings

MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, ierror)
TYPE(*), DIMENSION(...) :: sendbuf
INTEGER, INTENT(IN) :: sendcount, recvcount
Type(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(...) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, ierror) !(_c)
TYPE(*), DIMENSION(...) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
Type(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(...) :: recvbuf
Type(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allgather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, info, request, ierror)
TYPE(*), DIMENSION(...) :: sendbuf
INTEGER, INTENT(IN) :: sendcount, recvcount
Type(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(...) :: recvbuf
Type(MPI_Comm), INTENT(IN) :: comm
Type(MPI_Info), INTENT(IN) :: info
Type(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Allgather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
 comm, info, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
 recvtype, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allgatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
 recvtype, comm, info, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allgatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
 recvtype, comm, info, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcounts(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allgatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
 recvtype, comm, info, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
A.4 Fortran 2008 Bindings with the mpi_f08 Module

```fortran
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
  TYPE(*), DIMENSION(..) :: recvbuf
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm, ierror) !(_c)
  TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
  TYPE(*), DIMENSION(..) :: recvbuf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  TYPE(MPI_Comm), INTENT(IN) :: comm
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allreduce_init(sendbuf, recvbuf, count, datatype, op, comm, info, request, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
  INTEGER, INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Info), INTENT(IN) :: info
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allreduce_init(sendbuf, recvbuf, count, datatype, op, comm, info, request, ierror) !(_c)
  TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
  TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
  INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
  TYPE(MPI_Datatype), INTENT(IN) :: datatype
  TYPE(MPI_Op), INTENT(IN) :: op
  TYPE(MPI_Comm), INTENT(IN) :: comm
  TYPE(MPI_Info), INTENT(IN) :: info
  TYPE(MPI_Request), INTENT(OUT) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, ierror)
  TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
```
INTEGER, INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoall_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm, info, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoall_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm, info, request, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
rdispls, recvtype, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
rdispls, recvtype, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcounts(*), recvcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: sdispls(*), rdispls(*)
A.4 Fortran 2008 Bindings with the mpi_f08 Module

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype, comm, info, request, ierror)
```

```fortran
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)
```

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
```

```fortran
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: recvbuf
```

```fortran
TYPE(MPI_Comm), INTENT(IN) :: comm
```

```fortran
TYPE(MPI_Info), INTENT(IN) :: info
```

```fortran
TYPE(MPI_Request), INTENT(OUT) :: request
```

```fortran
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_Alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype, comm, info, request, ierror) !(_c)
```

```fortran
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)
```

```fortran
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*), rdispls(*)
```

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)
```

```fortran
TYPE(*), DIMENSION(..) :: recvbuf
```

```fortran
TYPE(MPI_Comm), INTENT(IN) :: comm
```

```fortran
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_Alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm, ierror)
```

```fortran
INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)
```

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)
```

```fortran
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: recvbuf
```

```fortran
TYPE(MPI_Comm), INTENT(IN) :: comm
```

```fortran
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_Alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm, ierror) !(_c)
```

```fortran
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)
```

```fortran
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*), rdispls(*)
```

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)
```

```fortran
TYPE(*), DIMENSION(..) :: recvbuf
```

```fortran
TYPE(MPI_Comm), INTENT(IN) :: comm
```

```fortran
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_Alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm, ierror) !(_c)
```

```fortran
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)
```

```fortran
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*), rdispls(*)
```

```fortran
TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)
```

```fortran
TYPE(*), DIMENSION(..) :: recvbuf
```

```fortran
TYPE(MPI_Comm), INTENT(IN) :: comm
```

```fortran
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
MPI_Alltoallw_init(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
 recvcounts, rdispls, recvtypes, comm, info, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
 recvcounts(*), rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoallw_init(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
 recvcounts, rdispls, recvtypes, comm, info, request, ierror)
 !(._c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*),
 recvcounts(*)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),
 rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Barrier(comm, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Barrier_init(comm, info, request, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bcast(buffer, count, datatype, root, comm, ierror)
 TYPE(*), DIMENSION(..) :: buffer
 INTEGER, INTENT(IN) :: count, root
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bcast(buffer, count, datatype, root, comm, ierror)
 !(._c)
 TYPE(*), DIMENSION(..) :: buffer
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: root
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Bcast_init(buffer, count, datatype, root, comm, info, request, ierror)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
 INTEGER, INTENT(IN) :: count, root
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bcast_init(buffer, count, datatype, root, comm, info, request, ierror)
 !(c)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: root
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Exscan(sendbuf, recvbuf, count, datatype, op, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 TYPE(*), DIMENSION(..) :: recvbuf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Exscan(sendbuf, recvbuf, count, datatype, op, comm, ierror)
 !(c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 TYPE(*), DIMENSION(..) :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Exscan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Exscan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount, root
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 INTEGER, INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, info, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount, root
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, info, request, ierror) !(_c)
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: root
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, ierror) !(_c)
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
A.4 Fortran 2008 Bindings with the mpi_f08 Module

```fortran
   TYPE(MPI_Info), INTENT(IN) :: info
   TYPE(MPI_Request), INTENT(OUT) :: request
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
            recvtype, root, comm, ierror)
   TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
   INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*), root
   TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
   TYPE(*), DIMENSION(..) :: recvbuf
   TYPE(MPI_Comm), INTENT(IN) :: comm
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
            recvtype, root, comm, ierror) !(_c)
   TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
   INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcounts(*)
   TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
   TYPE(*), DIMENSION(..) :: recvbuf
   INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: displs(*)
   INTEGER, INTENT(IN) :: root
   TYPE(MPI_Comm), INTENT(IN) :: comm
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
                 recvtype, root, comm, info, request, ierror)
   TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
   INTEGER, INTENT(IN) :: sendcount, root
   TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
   TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
   INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
   TYPE(MPI_Comm), INTENT(IN) :: comm
   TYPE(MPI_Info), INTENT(IN) :: info
   TYPE(MPI_Request), INTENT(OUT) :: request
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
                 recvtype, root, comm, info, request, ierror) !(_c)
   TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
   INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount
   TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
   TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
   INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
   INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: displs(*)
   INTEGER, INTENT(IN) :: root
   TYPE(MPI_Comm), INTENT(IN) :: comm
   TYPE(MPI_Info), INTENT(IN) :: info
   TYPE(MPI_Request), INTENT(OUT) :: request
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
MPI_Iallgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
 comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iallgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
 comm, request, ierror) (!_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iallgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
 recvtype, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iallgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
 recvtype, comm, request, ierror) (!_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iallreduce(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iallreduce(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)
 !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ialltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,
 request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ialltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls,
 recvtype, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
 recvcounts(*), rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ialltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls,
 recvtype, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
 recvcounts(*)
MPI_Ialltoallw

1. **INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),**
2. **rdispls(*)**
3. **TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype**
4. **TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf**
5. **TYPE(MPI_Comm), INTENT(IN) :: comm**
6. **TYPE(MPI_Request), INTENT(OUT) :: request**
7. **INTEGER, OPTIONAL, INTENT(OUT) :: ierror**

8. MPI_Ialltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm, request, ierror)
9. **TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf**
10. **INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)**
11. **TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)**
12. **TYPE(MPI_Comm), INTENT(IN) :: comm**
13. **TYPE(MPI_Request), INTENT(OUT) :: request**
14. **INTEGER, OPTIONAL, INTENT(OUT) :: ierror**

15. MPI_Ialltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm, request, ierror) !(_c)
16. **TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf**
17. **INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)**
18. **INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*), rdispls(*)**
19. **TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)**
20. **TYPE(MPI_Comm), INTENT(IN) :: comm**
21. **TYPE(MPI_Request), INTENT(OUT) :: request**
22. **INTEGER, OPTIONAL, INTENT(OUT) :: ierror**

23. MPI_Ibarrier(comm, request, ierror)
24. **TYPE(MPI_Comm), INTENT(IN) :: comm**
25. **TYPE(MPI_Request), INTENT(OUT) :: request**
26. **INTEGER, OPTIONAL, INTENT(OUT) :: ierror**

27. MPI_Ibcast(buffer, count, datatype, root, comm, request, ierror)
28. **TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer**
29. **INTEGER, INTENT(IN) :: count, root**
30. **TYPE(MPI_Datatype), INTENT(IN) :: datatype**
31. **TYPE(MPI_Comm), INTENT(IN) :: comm**
32. **TYPE(MPI_Request), INTENT(OUT) :: request**
33. **INTEGER, OPTIONAL, INTENT(OUT) :: ierror**

34. MPI_Ibcast(buffer, count, datatype, root, comm, request, ierror) !(_c)
35. **TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer**
36. **INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count**
37. **TYPE(MPI_Datatype), INTENT(IN) :: datatype**
38. **INTEGER, INTENT(IN) :: root**
39. **TYPE(MPI_Comm), INTENT(IN) :: comm**
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iexscan(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iexscan(sendbuf, recvbuf, count, datatype, op, comm, request, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Igather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN) :: sendcount, recvcount, root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Igather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, request, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Igatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN) :: sendcount, root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(IN) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Igatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, root, comm, request, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: displs(*)
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ireduce(sendbuf, recvbuf, count, datatype, op, root, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ireduce(sendbuf, recvbuf, count, datatype, op, root, comm, request, ierror)

MPI_Ireduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Ireduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ireduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN) :: recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ireduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iscan(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iscan(sendbuf, recvbuf, count, datatype, op, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iscatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
 comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount, root
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
 INTEGER, INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iscatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
 comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 INTEGER, INTENT(IN) :: root
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iscatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype,
 root, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), displs(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

MPI_Iscatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype,
 root, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcounts(*)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: displs(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 INTEGER, INTENT(IN) :: recvcount

MPI_Op_commutative(op, commute, ierror)
 TYPE(MPI_Op), INTENT(IN) :: op
LOGICAL, INTENT(OUT) :: commute
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Op_create(user_fn, commute, op, ierror)
PROCEDURE(MPI_User_function) :: user_fn
LOGICAL, INTENT(IN) :: commute
TYPE(MPI_Op), INTENT(OUT) :: op
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Op_create_c(user_fn, commute, op, ierror) !(_c)
PROCEDURE(MPI_User_function_c) :: user_fn
LOGICAL, INTENT(IN) :: commute
TYPE(MPI_Op), INTENT(OUT) :: op
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Op_free(op, ierror)
TYPE(MPI_Op), INTENT(INOUT) :: op
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_init(sendbuf, recvbuf, count, datatype, op, root, comm, info, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_init(sendbuf, recvbuf, count, datatype, op, root, comm, info, request, ierror) !(_c)
Appendix A Language Bindings Summary

```fortran
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
INTEGER, INTENT(IN) :: root
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_local(inbuf, inoutbuf, count, datatype, op, ierror)
```

```fortran
TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
TYPE(*), DIMENSION(..) :: inoutbuf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_Reduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm, ierror)
```

```fortran
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: recvcounts(*)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```

```fortran
MPI_Reduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm, ierror)
```

```fortran
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
```
INTEGER, INTENT(IN) :: recvcount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: recvcount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_scatter_block_init(sendbuf, recvbuf, recvcount, datatype, op, comm, info, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER, INTENT(IN) :: recvcount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_scatter_init(sendbuf, recvbuf, recvcounts, datatype, op, comm, info, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: recvcount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
Appendix A Language Bindings Summary

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPI_Reduce_scatter_init(sendbuf, recvbuf, recvcounts, datatype, op, comm, info,
 request, ierror) !(_c)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPI_Scan(sendbuf, recvbuf, count, datatype, op, comm, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 TYPE(*), DIMENSION(..) :: recvbuf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPI_Scan(sendbuf, recvbuf, count, datatype, op, comm, ierror) !(_c)

 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 TYPE(*), DIMENSION(..) :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPI_Scan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request,
 ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPI_Scan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request,
 ierror) !(_c)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
 comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount, root
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 INTEGER, INTENT(IN) :: root
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
 comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 INTEGER, INTENT(IN) :: root
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatter_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
 root, comm, info, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount, root
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatter_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
 root, comm, info, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN) :: root
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,
 comm, ierror)
Appendix A Language Bindings Summary

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER, INTENT(IN) :: sendcounts(*), displs(*), recvcnt, root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcnt, recvtype, root, comm, ierror) !(_c)

MPI_Scatterv_init(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcnt, recvtype, root, comm, info, request, ierror)

MPI_Type_get_value_index(value_type, index_type, pair_type, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: value_type, index_type
TYPE(MPI_Datatype), INTENT(OUT) :: pair_type
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
A.4.5 Groups, Contexts, Communicators, and Caching Fortran 2008 Bindings

MPI_Comm_compare(comm1, comm2, result, ierror)

 TYPE(MPI_Comm), INTENT(IN) :: comm1, comm2
 INTEGER, INTENT(OUT) :: result
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_create(comm, group, newcomm, ierror)

 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Group), INTENT(IN) :: group
 TYPE(MPI_Comm), INTENT(OUT) :: newcomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_create_from_group(group, stringtag, info, errhandler, newcomm, ierror)

 TYPE(MPI_Group), INTENT(IN) :: group
 CHARACTER(LEN=*), INTENT(IN) :: stringtag
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
 TYPE(MPI_Comm), INTENT(OUT) :: newcomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_create_group(comm, group, tag, newcomm, ierror)

 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Group), INTENT(IN) :: group
 INTEGER, INTENT(IN) :: tag
 TYPE(MPI_Comm), INTENT(OUT) :: newcomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_create_keyval(comm_copy_attr_fn, comm_delete_attr_fn, comm_keyval,

 extra_state, ierror)

 PROCEDURE(MPI_Comm_copy_attr_function) :: comm_copy_attr_fn
 PROCEDURE(MPI_Comm_delete_attr_function) :: comm_delete_attr_fn
 INTEGER, INTENT(OUT) :: comm_keyval
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_delete_attr(comm, comm_keyval, ierror)

 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: comm_keyval
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_dup(comm, newcomm, ierror)

 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Comm), INTENT(OUT) :: newcomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_DUP_FN(oldcomm, comm_keyval, extra_state, attribute_val_in,

 attribute_val_out, flag, ierror)

 TYPE(MPI_Comm) :: oldcomm
 INTEGER :: comm_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
 attribute_val_out
LOGICAL :: flag

MPI_Comm_dup_with_info(comm, info, newcomm, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(OUT) :: newcomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_free(comm, ierror)
 TYPE(MPI_Comm), INTENT(INOUT) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_free_keyval(comm_keyval, ierror)
 INTEGER, INTENT(INOUT) :: comm_keyval
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_get_attr(comm, comm_keyval, attribute_val, flag, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: comm_keyval
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val
 LOGICAL, INTENT(OUT) :: flag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_get_info(comm, info_used, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(OUT) :: info_used
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_get_name(comm, comm_name, resultlen, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: comm_name
 INTEGER, INTENT(OUT) :: resultlen
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_group(comm, group, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Group), INTENT(OUT) :: group
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_idup(comm, newcomm, request, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Comm), INTENT(OUT), ASYNCHRONOUS :: newcomm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_idup_with_info(comm, info, newcomm, request, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(OUT), ASYNCHRONOUS :: newcomm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_NULL_COPY_FN(oldcomm, comm_keyval, extra_state, attribute_val_in,
 attribute_val_out, flag, ierror)
TYPE(MPI_Comm) :: oldcomm
INTEGER :: comm_keyval, ierror
INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
 attribute_val_out
LOGICAL :: flag

MPI_COMM_NULL_DELETE_FN(comm, comm_keyval, attribute_val, extra_state, ierror)
 TYPE(MPI_Comm) :: comm
 INTEGER :: comm_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

MPI_Comm_rank(comm, rank, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(OUT) :: rank
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_remote_group(comm, group, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Group), INTENT(OUT) :: group
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_remote_size(comm, size, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_set_attr(comm, comm_keyval, attribute_val, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: comm_keyval
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_set_info(comm, info, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_set_name(comm, comm_name, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 CHARACTER(LEN=*) :: comm_name
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_size(comm, size, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_split(comm, color, key, newcomm, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: color, key
 TYPE(MPI_Comm), INTENT(OUT) :: newcomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_split_type(comm, split_type, key, info, newcomm, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(IN) :: split_type, key
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Comm), INTENT(OUT) :: newcomm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_test_inter(comm, flag, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_compare(group1, group2, result, ierror)
TYPE(MPI_Group), INTENT(IN) :: group1, group2
INTEGER, INTENT(OUT) :: result
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_difference(group1, group2, newgroup, ierror)
TYPE(MPI_Group), INTENT(IN) :: group1, group2
TYPE(MPI_Group), INTENT(OUT) :: newgroup
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_excl(group, n, ranks, newgroup, ierror)
TYPE(MPI_Group), INTENT(IN) :: group
INTEGER, INTENT(IN) :: n, ranks(n)
TYPE(MPI_Group), INTENT(OUT) :: newgroup
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_free(group, ierror)
TYPE(MPI_Group), INTENT(INOUT) :: group
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_from_session_pset(session, pset_name, newgroup, ierror)
TYPE(MPI_Session), INTENT(IN) :: session
CHARACTER(LEN=*) , INTENT(IN) :: pset_name
TYPE(MPI_Group), INTENT(OUT) :: newgroup
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_incl(group, n, ranks, newgroup, ierror)
TYPE(MPI_Group), INTENT(IN) :: group
INTEGER, INTENT(IN) :: n, ranks(n)
TYPE(MPI_Group), INTENT(OUT) :: newgroup
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_intersection(group1, group2, newgroup, ierror)
TYPE(MPI_Group), INTENT(IN) :: group1, group2
TYPE(MPI_Group), INTENT(OUT) :: newgroup
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_range_excl(group, n, ranges, newgroup, ierror)
TYPE(MPI_Group), INTENT(IN) :: group
INTEGER, INTENT(IN) :: n, ranges(3, n)
TYPE(MPI_Group), INTENT(OUT) :: newgroup
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Group_range_incl(group, n, ranges, newgroup, ierr)
 TYPE(MPI_Group), INTENT(IN) :: group
 INTEGER, INTENT(IN) :: n, ranges(3, n)
 TYPE(MPI_Group), INTENT(OUT) :: newgroup
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Group_rank(group, rank, ierr)
 TYPE(MPI_Group), INTENT(IN) :: group
 INTEGER, INTENT(OUT) :: rank
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Group_size(group, size, ierr)
 TYPE(MPI_Group), INTENT(IN) :: group
 INTEGER, INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Group_translate_ranks(group1, n, ranks1, group2, ranks2, ierr)
 TYPE(MPI_Group), INTENT(IN) :: group1, group2
 INTEGER, INTENT(IN) :: n, ranks1(n)
 INTEGER, INTENT(OUT) :: ranks2(n)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Group_union(group1, group2, newgroup, ierr)
 TYPE(MPI_Group), INTENT(IN) :: group1, group2
 TYPE(MPI_Group), INTENT(OUT) :: newgroup
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Intercomm_create(local_comm, local_leader, peer_comm, remote_leader, tag,
 newintercomm, ierr)
 TYPE(MPI_Comm), INTENT(IN) :: local_comm, peer_comm
 INTEGER, INTENT(IN) :: local_leader, remote_leader, tag
 TYPE(MPI_Comm), INTENT(OUT) :: newintercomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Intercomm_create_from_groups(local_group, local_leader, remote_group,
 remote_leader, stringtag, info, errhandler,
 newintercomm, ierr)
 TYPE(MPI_Group), INTENT(IN) :: local_group, remote_group
 INTEGER, INTENT(IN) :: local_leader, remote_leader
 CHARACTER(LEN=*) , INTENT(IN) :: stringtag
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
 TYPE(MPI_Comm), INTENT(OUT) :: newintercomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Intercomm_merge(intercomm, high, newintracomm, ierr)
 TYPE(MPI_Comm), INTENT(IN) :: intercomm
 LOGICAL, INTENT(IN) :: high
 TYPE(MPI_Comm), INTENT(OUT) :: newintracomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Type_create_keyval(type_copy_attr_fn, type_delete_attr_fn, type_keyval,
 extra_state, ierr)
PROCEDURE(MPI_Type_copy_attr_function) :: type_copy_attr_fn
PROCEDURE(MPI_Type_delete_attr_function) :: type_delete_attr_fn
INTEGER, INTENT(OUT) :: type_keyval
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Type_delete_attr(datatype, type_keyval, ierror)
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: type_keyval
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_TYPE_DUP_FN(oldtype, type_keyval, extra_state, attribute_val_in,
 attribute_val_out, flag, ierror)
 TYPE(MPI_Datatype) :: oldtype
 INTEGER :: type_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
 attribute_val_out
 LOGICAL :: flag
MPI_Type_free_keyval(type_keyval, ierror)
 INTEGER, INTENT(INOUT) :: type_keyval
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Type_get_attr(datatype, type_keyval, attribute_val, flag, ierror)
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: type_keyval
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val
 LOGICAL, INTENT(OUT) :: flag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Type_get_name(datatype, type_name, resultlen, ierror)
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: type_name
 INTEGER, INTENT(OUT) :: resultlen
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_TYPE_NULL_COPY_FN(oldtype, type_keyval, extra_state, attribute_val_in,
 attribute_val_out, flag, ierror)
 TYPE(MPI_Datatype) :: oldtype
 INTEGER :: type_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
 attribute_val_out
 LOGICAL :: flag
MPI_TYPE_NULL_DELETE_FN(datatype, type_keyval, attribute_val, extra_state,
 ierror)
 TYPE(MPI_Datatype) :: datatype
 INTEGER :: type_keyval
 INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state
 INTEGER, INTENT(OUT) :: ierror
MPI_Type_set_attr(datatype, type_keyval, attribute_val, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: type_keyval
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_set_name(datatype, type_name, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
CHARACTER(LEN=*), INTENT(IN) :: type_name
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_create_keyval(win_copy_attr_fn, win_delete_attr_fn, win_keyval,
extra_state, ierror)
PROCEDURE(MPI_Win_copy_attr_function) :: win_copy_attr_fn
PROCEDURE(MPI_Win_delete_attr_function) :: win_delete_attr_fn
INTEGER, INTENT(IN) :: win_keyval
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_delete_attr(win, win_keyval, ierror)
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, INTENT(IN) :: win_keyval
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_DUP_FN(oldwin, win_keyval, extra_state, attribute_val_in,
attribute_val_out, flag, ierror)
TYPE(MPI_Win) :: oldwin
INTEGER :: win_keyval, ierror
INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
attribute_val_out
LOGICAL :: flag

MPI_Win_free_keyval(win_keyval, ierror)
INTEGER, INTENT(INOUT) :: win_keyval
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_get_attr(win, win_keyval, attribute_val, flag, ierror)
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, INTENT(IN) :: win_keyval
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_get_name(win, win_name, resultlen, ierror)
TYPE(MPI_Win), INTENT(IN) :: win
CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: win_name
INTEGER, INTENT(OUT) :: resultlen
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_NULL_COPY_FN(oldwin, win_keyval, extra_state, attribute_val_in,
attribute_val_out, flag, ierror)
TYPE(MPI_Win) :: oldwin
INTEGER :: win_keyval, ierror
INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,
 attribute_val_out
LOGICAL :: flag

MPI_WIN_NULL_DELETE_FN(win, win_keyval, attribute_val, extra_state, ierror)
 TYPE(MPI_Win) :: win
 INTEGER :: win_keyval, ierror
 INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

MPI_Win_set_attr(win, win_keyval, attribute_val, ierror)
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, INTENT(IN) :: win_keyval
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_set_name(win, win_name, ierror)
 TYPE(MPI_Win), INTENT(IN) :: win
 CHARACTER(LEN=*) :: win_name
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.4.6 Virtual Topologies for MPI Processes Fortran 2008 Bindings

MPI_Cart_coords(comm, rank, maxdims, coords, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: rank, maxdims
 INTEGER, INTENT(OUT) :: coords(maxdims)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cart_create(comm_old, ndims, dims, periods, reorder, comm_cart, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm_old
 INTEGER, INTENT(IN) :: ndims, dims(ndims)
 LOGICAL, INTENT(IN) :: periods(ndims), reorder
 TYPE(MPI_Comm), INTENT(OUT) :: comm_cart
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cart_get(comm, maxdims, dims, periods, coords, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: maxdims
 INTEGER, INTENT(IN) :: dims(maxdims), coords(maxdims)
 LOGICAL, INTENT(OUT) :: periods(maxdims)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cart_map(comm, ndims, dims, periods, newrank, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: ndims, dims(ndims)
 LOGICAL, INTENT(IN) :: periods(ndims)
 INTEGER, INTENT(OUT) :: newrank
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cart_rank(comm, coords, rank, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: coords(*)
A.4 Fortran 2008 Bindings with the mpi_f08 Module

INTEGER, INTENT(OUT) :: rank
INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Cart_shift(comm, direction, disp, rank_source, rank_dest, ierr)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: direction, disp
 INTEGER, INTENT(OUT) :: rank_source, rank_dest
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Cart_sub(comm, remain_dims, newcomm, ierr)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 LOGICAL, INTENT(IN) :: remain_dims(*)
 TYPE(MPI_Comm), INTENT(OUT) :: newcomm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Cartdim_get(comm, ndims, ierr)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(OUT) :: ndims
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Dims_create(nnodes, ndims, dims, ierr)
 INTEGER, INTENT(IN) :: nnodes, ndims
 INTEGER, INTENT(INOUT) :: dims(ndims)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Dist_graph_create(comm_old, n, sources, degrees, destinations, weights, info, reorder, comm_dist_graph, ierr)
 TYPE(MPI_Comm), INTENT(IN) :: comm_old
 INTEGER, INTENT(IN) :: n, sources(n), degrees(n), destinations(*), weights(*)
 TYPE(MPI_Info), INTENT(IN) :: info
 LOGICAL, INTENT(IN) :: reorder
 TYPE(MPI_Comm), INTENT(OUT) :: comm_dist_graph
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Dist_graph_create_adjacent(comm_old, indegree, sources, sourceweights, outdegree, destinations, destweights, info, reorder, comm_dist_graph, ierr)
 TYPE(MPI_Comm), INTENT(IN) :: comm_old
 INTEGER, INTENT(IN) :: indegree, sources(indegree), sourceweights(*), outdegree, destinations(outdegree), destweights(*)
 TYPE(MPI_Info), INTENT(IN) :: info
 LOGICAL, INTENT(IN) :: reorder
 TYPE(MPI_Comm), INTENT(OUT) :: comm_dist_graph
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Dist_graph_neighbors(comm, maxindegree, sources, sourceweights, maxoutdegree, destinations, destweights, ierr)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: maxindegree, maxoutdegree
 INTEGER, INTENT(OUT) :: sources(maxindegree), destinations(maxoutdegree)
 INTEGER :: sourceweights(*), destweights(*)
Appendix A Language Bindings Summary

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Dist_graph_neighbors_count(comm, indegree, outdegree, weighted, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(OUT) :: indegree, outdegree
 LOGICAL, INTENT(OUT) :: weighted
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graph_create(comm_old, nnodes, index, edges, reorder, comm_graph, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm_old
 INTEGER, INTENT(IN) :: nnodes, index(nnodes), edges(*)
 LOGICAL, INTENT(IN) :: reorder
 TYPE(MPI_Comm), INTENT(OUT) :: comm_graph
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graph_get(comm, maxindex, maxedges, index, edges, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: maxindex, maxedges
 INTEGER, INTENT(OUT) :: index(maxindex), edges(maxedges)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graph_map(comm, nnodes, index, edges, newrank, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: nnodes, index(nnodes), edges(*)
 INTEGER, INTENT(OUT) :: newrank
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graph_neighbors(comm, rank, maxneighbors, neighbors, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: rank, maxneighbors
 INTEGER, INTENT(OUT) :: neighbors(maxneighbors)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graph_neighbors_count(comm, rank, nneighbors, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(IN) :: rank
 INTEGER, INTENT(OUT) :: nneighbors
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graphdims_get(comm, nnodes, nedges, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(OUT) :: nnodes, nedges
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
MODULE mpi_f08

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
Appendix A Language Bindings Summary

TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
 recvcounts, rdispls, recvtype, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),
 recvcounts(*), rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
 recvcounts, rdispls, recvtype, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*),
 recvcounts(*)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),
 rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
 recvcounts, rdispls, recvtypes, comm, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),
 rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
 recvcounts, rdispls, recvtypes, comm, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*),
 recvcounts(*)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),
 rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER, INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
 displs, recvtype, comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcounts(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Neighbor_allgatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
 displs, recvtype, comm, info, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, displs(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Neighbor_allgatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
 displs, recvtype, comm, info, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: recvcounts(*)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: displs(*)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Neighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,
 comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Neighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,
 comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Neighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,
 comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoall_init(sendbuf, sendcount, sendtype, recvbuf, recvcount,
 recvtype, comm, info, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoall_init(sendbuf, sendcount, sendtype, recvbuf, recvcount,
 recvtype, comm, info, request, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcount, recvcount
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
 recvcounts, rdispls, recvtype, comm, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
 recvcounts, rdispls, recvtype, comm, ierror) !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcounts(*), recvcounts(*)
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: sdispls(*), rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..) :: recvbuf
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
 recvcounts, rdispls, recvtype, comm, info, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: sendbuf
 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)
 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounds, rdispls, recvtype, comm, info, request, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*),
recvcounds(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),
rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
recvcounds, rdispls, recvtypes, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER, INTENT(IN) :: sendcounts(*), recvcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: sdispls(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
recvcounds, rdispls, recvtypes, comm, ierror) !(_c)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: sendcounts(*), recvcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: sdispls(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)
TYPE(*), DIMENSION(..) :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallw_init(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
recvcounds, rdispls, recvtypes, comm, info, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),
rdispls(*)
TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallw_init(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm, info, request, ierror)

!(_c)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*), rdispls(*)
TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

MPI_Topo_test(comm, status, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.4.7 MPI Environmental Management Fortran 2008 Bindings

DOUBLE PRECISION MPI_Wtick()

DOUBLE PRECISION MPI_Wtime()

MPI_Add_error_class(errorclass, ierror)
INTEGER, INTENT(OUT) :: errorclass
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Add_error_code(errorclass, errorcode, ierror)
INTEGER, INTENT(IN) :: errorclass
INTEGER, INTENT(OUT) :: errorcode
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Add_error_string(errorcode, string, ierror)
INTEGER, INTENT(IN) :: errorcode
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alloc_mem(size, info, baseptr, ierror)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(C_PTR), INTENT(OUT) :: baseptr
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_call_errhandler(comm, errorcode, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(IN) :: errorcode
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_create_errhandler(comm_errhandler_fn, errhandler, ierror)
 PROCEDURE(MPI_Comm_errhandler_function) :: comm_errhandler_fn
 TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_get_errhandler(comm, errhandler, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_set_errhandler(comm, errhandler, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Errhandler_free(errhandler, ierror)
 TYPE(MPI_Errhandler), INTENT(INOUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Error_class(errorcode, errorclass, ierror)
 INTEGER, INTENT(IN) :: errorcode
 INTEGER, INTENT(OUT) :: errorclass
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Error_string(errorcode, string, resultlen, ierror)
 INTEGER, INTENT(IN) :: errorcode
 CHARACTER(LEN=MPI_MAX_ERROR_STRING), INTENT(OUT) :: string
 INTEGER, INTENT(OUT) :: resultlen
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_call_errhandler(fh, errorcode, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER, INTENT(IN) :: errorcode
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_create_errhandler(file_errhandler_fn, errhandler, ierror)
 PROCEDURE(MPI_File_errhandler_function) :: file_errhandler_fn
 TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_errhandler(file, errhandler, ierror)
 TYPE(MPI_File), INTENT(IN) :: file
 TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_set_errhandler(file, errhandler, ierror)
 TYPE(MPI_File), INTENT(IN) :: file
 TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Free_mem(base, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: base
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_hw_resource_info(hw_info, ierror)
 TYPE(MPI_Info), INTENT(OUT) :: hw_info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_library_version(version, resultlen, ierror)
 CHARACTER(LEN=MPI_MAX_LIBRARY_VERSION_STRING), INTENT(OUT) :: version
 INTEGER, INTENT(OUT) :: resultlen
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_processor_name(name, resultlen, ierror)
 CHARACTER(LEN=MPI_MAX_PROCESSOR_NAME), INTENT(OUT) :: name
 INTEGER, INTENT(OUT) :: resultlen
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_version(version, subversion, ierror)
 INTEGER, INTENT(OUT) :: version, subversion
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Remove_error_class(errorclass, ierror)
 INTEGER, INTENT(IN) :: errorclass
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Remove_error_code(errorcode, ierror)
 INTEGER, INTENT(IN) :: errorcode
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Remove_error_string(errorcode, ierror)
 INTEGER, INTENT(IN) :: errorcode
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_call_errhandler(session, errorcode, ierror)
 TYPE(MPI_Session), INTENT(IN) :: session
 INTEGER, INTENT(IN) :: errorcode
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_create_errhandler(session_errhandler_fn, errhandler, ierror)
 PROCEDURE(MPI_Session_errhandler_function) :: session_errhandler_fn
 TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_get_errhandler(session, errhandler, ierror)
 TYPE(MPI_Session), INTENT(IN) :: session
 TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_set_errhandler(session, errhandler, ierror)
 TYPE(MPI_Session), INTENT(IN) :: session
 TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_call_errhandler(win, errorcode, ierror)
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, INTENT(IN) :: errorcode
INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Win_create_errhandler(win_errhandler_fn, errhandler, ierr)
 PROCEDURE(MPI_Win_errhandler_function) :: win_errhandler_fn
 TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Win_get_errhandler(win, errhandler, ierr)
 TYPE(MPI_Win), INTENT(IN) :: win
 TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Win_set_errhandler(win, errhandler, ierr)
 TYPE(MPI_Win), INTENT(IN) :: win
 TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

A.4.8 The Info Object Fortran 2008 Bindings

MPI_Info_create(info, ierr)
 TYPE(MPI_Info), INTENT(OUT) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Info_create_env(info, ierr)
 TYPE(MPI_Info), INTENT(OUT) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Info_delete(info, key, ierr)
 TYPE(MPI_Info), INTENT(IN) :: info
 CHARACTER(LEN=*), INTENT(IN) :: key
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Info_dup(info, newinfo, ierr)
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Info), INTENT(OUT) :: newinfo
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Info_free(info, ierr)
 TYPE(MPI_Info), INTENT(INOUT) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Info_get_nkeys(info, nkeys, ierr)
 TYPE(MPI_Info), INTENT(IN) :: info
 INTEGER, INTENT(OUT) :: nkeys
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Info_get_nthkey(info, n, key, ierr)
 TYPE(MPI_Info), INTENT(IN) :: info
 INTEGER, INTENT(IN) :: n
 CHARACTER(LEN=*) , INTENT(OUT) :: key
 INTEGER, OPTIONAL, INTENT(OUT) :: ierr

MPI_Info_get_string(info, key, buflen, value, flag, ierr)
A.4 Fortran 2008 Bindings with the mpi_f08 Module

```
TYPE(MPI_Info), INTENT(IN) :: info
CHARACTER(LEN=*) , INTENT(IN) :: key
INTEGER, INTENT(INOUT) :: buflen
CHARACTER(LEN=*) , INTENT(OUT) :: value
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Info_set(info, key, value, ierror)
```

A.4.9 Process Creation and Management Fortran 2008 Bindings

```
MPI_Abort(comm, errorcode, ierror)
   TYPE(MPI_Comm), INTENT(IN) :: comm
   INTEGER, INTENT(IN) :: errorcode
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Close_port(port_name, ierror)
   CHARACTER(LEN=*) , INTENT(IN) :: port_name
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_accept(port_name, info, root, comm, newcomm, ierror)
   CHARACTER(LEN=*) , INTENT(IN) :: port_name
   TYPE(MPI_Info), INTENT(IN) :: info
   INTEGER, INTENT(IN) :: root
   TYPE(MPI_Comm), INTENT(IN) :: comm
   TYPE(MPI_Comm), INTENT(OUT) :: newcomm
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_connect(port_name, info, root, comm, newcomm, ierror)
   CHARACTER(LEN=*) , INTENT(IN) :: port_name
   TYPE(MPI_Info), INTENT(IN) :: info
   INTEGER, INTENT(IN) :: root
   TYPE(MPI_Comm), INTENT(IN) :: comm
   TYPE(MPI_Comm), INTENT(OUT) :: newcomm
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_disconnect(comm, ierror)
   TYPE(MPI_Comm), INTENT(INOUT) :: comm
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_get_parent(parent, ierror)
   TYPE(MPI_Comm), INTENT(OUT) :: parent
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_join(fd, intercomm, ierror)
   INTEGER, INTENT(IN) :: fd
   TYPE(MPI_Comm), INTENT(OUT) :: intercomm
   INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
Appendix A Language Bindings Summary

```fortran
MPI_Comm_spawn(command, argv, maxprocs, info, root, comm, intercomm,
     array_of_errcodes, ierror)
   CHARACTER(LEN=*) :: command, argv(*)
   INTEGER :: maxprocs, root
   TYPE(MPI_Info) :: info
   TYPE(MPI_Comm) :: comm
   TYPE(MPI_Comm) :: intercomm
   INTEGER :: array_of_errcodes(*)
   INTEGER, OPTIONAL :: ierror

MPI_Comm_spawn_multiple(count, array_of_commands, array_of_argv,
     array_of_maxprocs, array_of_info, root, comm, intercomm,
     array_of_errcodes, ierror)
   INTEGER :: count, array_of_maxprocs(*), root
   CHARACTER(LEN=*) :: array_of_commands(*),
     array_of_argv(count, *)
   TYPE(MPI_Info) :: array_of_info(*)
   TYPE(MPI_Comm) :: comm
   TYPE(MPI_Comm) :: intercomm
   INTEGER :: array_of_errcodes(*)
   INTEGER, OPTIONAL :: ierror

MPI_Finalize(ierr)
   INTEGER, OPTIONAL :: ierr

MPI_Finalized(flag, ierr)
   LOGICAL :: flag
   INTEGER, OPTIONAL :: ierr

MPI_Init(ierr)
   INTEGER, OPTIONAL :: ierr

MPI_Init_thread(required, provided, ierr)
   INTEGER :: required
   INTEGER :: provided
   INTEGER, OPTIONAL :: ierr

MPI_Initialized(flag, ierr)
   LOGICAL :: flag
   INTEGER, OPTIONAL :: ierr

MPI_Is_thread_main(flag, ierr)
   LOGICAL :: flag
   INTEGER, OPTIONAL :: ierr

MPI_Lookup_name(service_name, info, port_name, ierr)
   CHARACTER(LEN=*) :: service_name
   TYPE(MPI_Info) :: info
   CHARACTER(LEN=MPI_MAX_PORT_NAME) :: port_name
   INTEGER, OPTIONAL :: ierr

MPI_Open_port(info, port_name, ierr)
   TYPE(MPI_Info) :: info
   CHARACTER(LEN=MPI_MAX_PORT_NAME) :: port_name
   INTEGER, OPTIONAL :: ierr
```

Compiled Language Bindings

```fortran
MPI_Comm_spawn(command, argv, maxprocs, info, root, comm, intercomm,
     array_of_errcodes, ierror)
   CHARACTER(LEN=*) :: command, argv(*)
   INTEGER :: maxprocs, root
   TYPE(MPI_Info) :: info
   TYPE(MPI_Comm) :: comm
   TYPE(MPI_Comm) :: intercomm
   INTEGER :: array_of_errcodes(*)
   INTEGER, OPTIONAL :: ierror

MPI_Comm_spawn_multiple(count, array_of_commands, array_of_argv,
     array_of_maxprocs, array_of_info, root, comm, intercomm,
     array_of_errcodes, ierror)
   INTEGER :: count, array_of_maxprocs(*), root
   CHARACTER(LEN=*) :: array_of_commands(*),
     array_of_argv(count, *)
   TYPE(MPI_Info) :: array_of_info(*)
   TYPE(MPI_Comm) :: comm
   TYPE(MPI_Comm) :: intercomm
   INTEGER :: array_of_errcodes(*)
   INTEGER, OPTIONAL :: ierror

MPI_Finalize(ierr)
   INTEGER, OPTIONAL :: ierr

MPI_Finalized(flag, ierr)
   LOGICAL :: flag
   INTEGER, OPTIONAL :: ierr

MPI_Init(ierr)
   INTEGER, OPTIONAL :: ierr

MPI_Init_thread(required, provided, ierr)
   INTEGER :: required
   INTEGER :: provided
   INTEGER, OPTIONAL :: ierr

MPI_Initialized(flag, ierr)
   LOGICAL :: flag
   INTEGER, OPTIONAL :: ierr

MPI_Is_thread_main(flag, ierr)
   LOGICAL :: flag
   INTEGER, OPTIONAL :: ierr

MPI_Lookup_name(service_name, info, port_name, ierr)
   CHARACTER(LEN=*) :: service_name
   TYPE(MPI_Info) :: info
   CHARACTER(LEN=MPI_MAX_PORT_NAME) :: port_name
   INTEGER, OPTIONAL :: ierr

MPI_Open_port(info, port_name, ierr)
   TYPE(MPI_Info) :: info
   CHARACTER(LEN=MPI_MAX_PORT_NAME) :: port_name
   INTEGER, OPTIONAL :: ierr
```
CHARACTER(LEN=MPI_MAX_PORT_NAME), INTENT(OUT) :: port_name
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Publish_name(service_name, info, port_name, ierror)
CHARACTER(LEN=*)) , INTENT(IN) :: service_name, port_name
TYPE(MPI_Info), INTENT(IN) :: info
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Query_thread(provided, ierror)
INTEGER, INTENT(OUT) :: provided
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_finalize(session, ierror)
TYPE(MPI_Session), INTENT(INOUT) :: session
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_get_info(session, info_used, ierror)
TYPE(MPI_Session), INTENT(IN) :: session
TYPE(MPI_Info), INTENT(OUT) :: info_used
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_get_nth_pset(session, info, n, pset_len, pset_name, ierror)
TYPE(MPI_Session), INTENT(IN) :: session
TYPE(MPI_Info), INTENT(IN) :: info
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(INOUT) :: pset_len
CHARACTER(LEN=*)) , INTENT(OUT) :: pset_name
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_get_num_psets(session, info, npset_names, ierror)
TYPE(MPI_Session), INTENT(IN) :: session
TYPE(MPI_Info), INTENT(IN) :: info
INTEGER, INTENT(OUT) :: npset_names
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_get_pset_info(session, pset_name, info, ierror)
TYPE(MPI_Session), INTENT(IN) :: session
CHARACTER(LEN=*)) , INTENT(IN) :: pset_name
TYPE(MPI_Info), INTENT(INOUT) :: info
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Session_init(info, errhandler, session, ierror)
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Errhandler), INTENT(IN) :: errhandler
TYPE(MPI_Session), INTENT(OUT) :: session
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Unpublish_name(service_name, info, port_name, ierror)
CHARACTER(LEN=*)) , INTENT(IN) :: service_name, port_name
TYPE(MPI_Info), INTENT(IN) :: info
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
A.4.10 One-Sided Communications Fortran 2008 Bindings

MPI_Accumulate(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, op, win, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
 INTEGER, INTENT(IN) :: origin_count, target_rank, target_count
 TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Accumulate(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, op, win, ierror)
 !(_c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: origin_count, target_count
 TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
 INTEGER, INTENT(IN) :: target_rank
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Compare_and_swap(origin_addr, compare_addr, result_addr, datatype, target_rank, target_disp, win, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr,
 compare_addr
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: target_rank
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Fetch_and_op(origin_addr, result_addr, datatype, target_rank, target_disp, op, win, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: target_rank
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count, target_datatype, win, ierror)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: origin_addr
 INTEGER, INTENT(IN) :: origin_count, target_rank, target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
 target_count, target_datatype, win, ierror) !(_c)

TYPE(*), DIMENSION(...), ASYNCHRONOUS :: origin_addr
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: origin_count, target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
INTEGER, INTENT(IN) :: target_rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_accumulate(origin_addr, origin_count, origin_datatype, result_addr,
 result_count, result_datatype, target_rank, target_disp,
 target_count, target_datatype, win, ierror) !(_c)

TYPE(*), DIMENSION(...), ASYNCHRONOUS :: origin_addr
INTEGER, INTENT(IN) :: origin_count, result_count, target_rank,
 target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, result_datatype,
 target_datatype
TYPE(*), DIMENSION(...), ASYNCHRONOUS :: result_addr
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_accumulate(origin_addr, origin_count, origin_datatype, result_addr,
 result_count, result_datatype, target_rank, target_disp,
 target_count, target_datatype, win, ierror) !(_c)

TYPE(*), DIMENSION(...), ASYNCHRONOUS :: origin_addr
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: origin_count, result_count,
 target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, result_datatype,
 target_datatype
INTEGER, INTENT(IN) :: target_rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Put(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
 target_count, target_datatype, win, ierror)

TYPE(*), DIMENSION(...), ASYNCHRONOUS :: origin_addr
INTEGER, INTENT(IN) :: origin_count, target_rank, target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Put(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, win, ierror) !(_c)

MPI_Raccumulate(origin_addr, origin_count, origin_datatype, target_rank,
target_disp, target_count, target_datatype, op, win, request, ierror)

MPI_Rget(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, win, request, ierror) !(_c)

MPI_Rrget(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, win, request, ierror) !(_c)
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: origin_count, target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
INTEGER, INTENT(IN) :: target_rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Win), INTENT(IN) :: win
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rget_accumulate(origin_addr, origin_count, origin_datatype, result_addr,
 result_count, result_datatype, target_rank, target_disp,
 target_count, target_datatype, op, win, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
 INTEGER, INTENT(IN) :: origin_count, result_count, target_rank,
 target_count
 TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, result_datatype,
 target_datatype
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Win), INTENT(IN) :: win
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rput(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
 target_count, target_datatype, win, request, ierror)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
 INTEGER, INTENT(IN) :: origin_count, target_rank, target_count
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
 TYPE(MPI_Op), INTENT(IN) :: op
 TYPE(MPI_Win), INTENT(IN) :: win
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_Rput(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
 target_count, target_datatype, win, request, ierror) !(c)
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: origin_count, target_count
 TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
 INTEGER, INTENT(IN) :: target_rank
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
 TYPE(MPI_Win), INTENT(IN) :: win
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_allocate(size, disp_unit, info, comm, baseptr, win, ierror)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size
 INTEGER, INTENT(IN) :: disp_unit
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(C_PTR), INTENT(OUT) :: baseptr
 TYPE(MPI_Win), INTENT(OUT) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_allocate(size, disp_unit, info, comm, baseptr, win, ierror) !(c)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size, disp_unit
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(C_PTR), INTENT(OUT) :: baseptr
 TYPE(MPI_Win), INTENT(OUT) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_allocate_shared(size, disp_unit, info, comm, baseptr, win, ierror)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size
 INTEGER, INTENT(IN) :: disp_unit
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(C_PTR), INTENT(OUT) :: baseptr
 TYPE(MPI_Win), INTENT(OUT) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_allocate_shared(size, disp_unit, info, comm, baseptr, win, ierror) !(c)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size, disp_unit
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(C_PTR), INTENT(OUT) :: baseptr
 TYPE(MPI_Win), INTENT(OUT) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_attach(win, base, size, ierror)
TYPE(MPI_Win), INTENT(IN) :: win
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_complete(win, ierror)
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_create(base, size, disp_unit, info, comm, win, ierror)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size
 INTEGER, INTENT(IN) :: disp_unit
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Win), INTENT(OUT) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_create(base, size, disp_unit, info, comm, win, ierror) !(_c)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base
 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size, disp_unit
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Win), INTENT(OUT) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_create_dynamic(info, comm, win, ierror)
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_Comm), INTENT(IN) :: comm
 TYPE(MPI_Win), INTENT(OUT) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_detach(win, base, ierror)
 TYPE(MPI_Win), INTENT(IN) :: win
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_fence(assert, win, ierror)
 INTEGER, INTENT(IN) :: assert
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_flush(rank, win, ierror)
 INTEGER, INTENT(IN) :: rank
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_flush_all(win, ierror)
 TYPE(MPI_Win), INTENT(IN) :: win
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_flush_local(rank, win, ierror)
 INTEGER, INTENT(IN) :: rank
Appendix A Language Bindings Summary

1. TYPE(MPI_Win), INTENT(IN) :: win
2. INTEGER, OPTIONAL, INTENT(OUT) :: ierror

3. MPI_Win_flush_local_all(win, ierror)
4. TYPE(MPI_Win), INTENT(IN) :: win
5. INTEGER, OPTIONAL, INTENT(OUT) :: ierror

6. MPI_Win_free(win, ierror)
7. TYPE(MPI_Win), INTENT(INOUT) :: win
8. INTEGER, OPTIONAL, INTENT(OUT) :: ierror

9. MPI_Win_get_group(win, group, ierror)
10. TYPE(MPI_Win), INTENT(IN) :: win
11. TYPE(MPI_Group), INTENT(OUT) :: group
12. INTEGER, OPTIONAL, INTENT(OUT) :: ierror

13. MPI_Win_get_info(win, info_used, ierror)
14. TYPE(MPI_Win), INTENT(IN) :: win
15. TYPE(MPI_Info), INTENT(OUT) :: info_used
16. INTEGER, OPTIONAL, INTENT(OUT) :: ierror

17. MPI_Win_lock(lock_type, rank, assert, win, ierror)
18. INTEGER, INTENT(IN) :: lock_type, rank, assert
19. TYPE(MPI_Win), INTENT(IN) :: win
20. INTEGER, OPTIONAL, INTENT(OUT) :: ierror

21. MPI_Win_lock_all(assert, win, ierror)
22. INTEGER, INTENT(IN) :: assert
23. TYPE(MPI_Win), INTENT(IN) :: win
24. INTEGER, OPTIONAL, INTENT(OUT) :: ierror

25. MPI_Win_post(group, assert, win, ierror)
26. TYPE(MPI_Group), INTENT(IN) :: group
27. INTEGER, INTENT(IN) :: assert
28. TYPE(MPI_Win), INTENT(IN) :: win
29. INTEGER, OPTIONAL, INTENT(OUT) :: ierror

30. MPI_Win_set_info(win, info, ierror)
31. TYPE(MPI_Win), INTENT(IN) :: win
32. TYPE(MPI_Info), INTENT(IN) :: info
33. INTEGER, OPTIONAL, INTENT(OUT) :: ierror

34. MPI_Win_shared_query(win, rank, size, disp_unit, baseptr, ierror)
35. USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
36. TYPE(MPI_Win), INTENT(IN) :: win
37. INTEGER, INTENT(IN) :: rank
38. INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size
39. INTEGER, INTENT(OUT) :: disp_unit
40. TYPE(C_PTR), INTENT(OUT) :: baseptr
41. INTEGER, OPTIONAL, INTENT(OUT) :: ierror

42. MPI_Win_shared_query(win, rank, size, disp_unit, baseptr, ierror) !(_c)
43. USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
A.4 Fortran 2008 Bindings with the mpi_f08 Module

```fortran
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, INTENT(IN) :: rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size, disp_unit
TYPE(C_PTR), INTENT(OUT) :: baseptr
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_start(group, assert, win, ierror)
  TYPE(MPI_Group), INTENT(IN) :: group
  INTEGER, INTENT(IN) :: assert
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_sync(win, ierror)
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_test(win, flag, ierror)
  TYPE(MPI_Win), INTENT(IN) :: win
  LOGICAL, INTENT(OUT) :: flag
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_unlock(rank, win, ierror)
  INTEGER, INTENT(IN) :: rank
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_unlock_all(win, ierror)
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_wait(win, ierror)
  TYPE(MPI_Win), INTENT(IN) :: win
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.4.11 External Interfaces Fortran 2008 Bindings

MPI_Grequest_complete(request, ierror)
  TYPE(MPI_Request), INTENT(IN) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Grequest_start(query_fn, free_fn, cancel_fn, extra_state, request, ierror)
  PROCEDURE(MPI_Grequest_query_function) :: query_fn
  PROCEDURE(MPI_Grequest_free_function) :: free_fn
  PROCEDURE(MPI_Grequest_cancel_function) :: cancel_fn
  INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state
  TYPE(MPI_Request), INTENT(IN) :: request
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_set_cancelled(status, flag, ierror)
  TYPE(MPI_Status), INTENT(INOUT) :: status
  LOGICAL, INTENT(IN) :: flag
  INTEGER, OPTIONAL, INTENT(OUT) :: ierror
```
Appendix A Language Bindings Summary

MPI_Status_set_elements(status, datatype, count, ierror)
 TYPE(MPI_Status), INTENT(INOUT) :: status
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, INTENT(IN) :: count
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_set_elements(status, datatype, count, ierror) !(_c)
 TYPE(MPI_Status), INTENT(INOUT) :: status
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_set_error(status, err, ierror)
 TYPE(MPI_Status), INTENT(INOUT) :: status
 INTEGER, INTENT(IN) :: err
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_set_source(status, source, ierror)
 TYPE(MPI_Status), INTENT(INOUT) :: status
 INTEGER, INTENT(IN) :: source
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_set_tag(status, tag, ierror)
 TYPE(MPI_Status), INTENT(INOUT) :: status
 INTEGER, INTENT(IN) :: tag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.4.12 I/O Fortran 2008 Bindings

MPI_CONVERSION_FN_NULL(userbuf, datatype, count, filebuf, position,
 extra_state, ierror)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 TYPE(C_PTR), VALUE :: userbuf, filebuf
 TYPE(MPI_Datatype) :: datatype
 INTEGER :: count, ierror
 INTEGER(KIND=MPI_OFFSET_KIND) :: position
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

MPI_CONVERSION_FN_NULL_C(userbuf, datatype, count, filebuf, position,
 extra_state, ierror) !(_c)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 TYPE(C_PTR), VALUE :: userbuf, filebuf
 TYPE(MPI_Datatype) :: datatype
 INTEGER(KIND=MPI_COUNT_KIND) :: count
 INTEGER(KIND=MPI_OFFSET_KIND) :: position
 INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state
 INTEGER :: ierror

MPI_File_close(fh, ierror)
 TYPE(MPI_File), INTENT(INOUT) :: fh
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_File_delete(filename, info, ierror)
 CHARACTER(LEN=*) , INTENT(IN) :: filename
 TYPE(MPI_Info) , INTENT(IN) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_amode(fh, amode, ierror)
 TYPE(MPI_File) , INTENT(IN) :: fh
 INTEGER, INTENT(OUT) :: amode
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_atomicity(fh, flag, ierror)
 TYPE(MPI_File) , INTENT(IN) :: fh
 LOGICAL, INTENT(OUT) :: flag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_byte_offset(fh, offset, disp, ierror)
 TYPE(MPI_File) , INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND) , INTENT(IN) :: offset
 INTEGER(KIND=MPI_OFFSET_KIND) , INTENT(OUT) :: disp
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_group(fh, group, ierror)
 TYPE(MPI_File) , INTENT(IN) :: fh
 TYPE(MPI_Group) , INTENT(OUT) :: group
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_info(fh, info_used, ierror)
 TYPE(MPI_File) , INTENT(IN) :: fh
 TYPE(MPI_Info) , INTENT(OUT) :: info_used
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_position(fh, offset, ierror)
 TYPE(MPI_File) , INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND) , INTENT(OUT) :: offset
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_position_shared(fh, offset, ierror)
 TYPE(MPI_File) , INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND) , INTENT(OUT) :: offset
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_size(fh, size, ierror)
 TYPE(MPI_File) , INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND) , INTENT(OUT) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_type_extent(fh, datatype, extent, ierror)
 TYPE(MPI_File) , INTENT(IN) :: fh
 TYPE(MPI_Datatype) , INTENT(IN) :: datatype
 INTEGER(KIND=MPI_ADDRESS_KIND) , INTENT(OUT) :: extent
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_type_extent(fh, datatype, extent, ierror) !(_c)
Appendix A Language Bindings Summary

```fortran
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_view(fh, disp, etype, filetype, datarep, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: disp
TYPE(MPI_Datatype), INTENT(OUT) :: etype, filetype
CHARACTER(LEN=*)) INTENT(OUT) :: datarep
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread(fh, buf, count, datatype, request, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread_all(fh, buf, count, datatype, request, ierror) !(_c)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread_at(fh, offset, buf, count, datatype, request, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Request), INTENT(OUT) :: request
```
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread_at(fh, offset, buf, count, datatype, request, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread_at_all(fh, offset, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread_shared(fh, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite(fh, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite(fh, buf, count, datatype, request, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_all(fh, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_at(fh, offset, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_at_all(fh, offset, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_at_all(fh, offset, buf, count, datatype, request, ierror) {c}
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_shared(fh, buf, count, datatype, request, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_shared(fh, buf, count, datatype, request, ierror) {c}
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Request), INTENT(OUT) :: request
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_open(comm, filename, amode, info, fh, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 CHARACTER(LEN=*) :: filename
 INTEGER, INTENT(IN) :: amode
 TYPE(MPI_Info), INTENT(IN) :: info
 TYPE(MPI_File), INTENT(OUT) :: fh
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_preallocate(fh, size, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read(fh, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read(fh, buf, count, datatype, status, ierror) {c}
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
Appendix A Language Bindings Summary

TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_all(fh, buf, count, datatype, status, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_all(fh, buf, count, datatype, status, ierror) !(_c)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..) :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_all_begin(fh, buf, count, datatype, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_all_begin(fh, buf, count, datatype, ierror) !(_c)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_all_end(fh, buf, status, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at(fh, offset, buf, count, datatype, status, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at(fh, offset, buf, count, datatype, status, ierror) !(_c)
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
TYPE(*), DIMENSION(..) :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at_all(fh, offset, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at_all(fh, offset, buf, count, datatype, status, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at_all_begin(fh, offset, buf, count, datatype, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at_all_begin(fh, offset, buf, count, datatype, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at_all_end(fh, buf, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_ordered(fh, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_ordered(fh, buf, count, datatype, status, ierror) !(_c)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..) :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_ordered_begin(fh, buf, count, datatype, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_ordered_end(fh, buf, status, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_shared(fh, buf, count, datatype, status, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_shared(fh, buf, count, datatype, status, ierror) !(_c)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..) :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_seek(fh, offset, whence, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
INTEGER, INTENT(IN) :: whence
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_File_seek_shared(fh, offset, whence, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 INTEGER, INTENT(IN) :: whence
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_set_atomicity(fh, flag, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 LOGICAL, INTENT(IN) :: flag
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_set_info(fh, info, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(MPI_Info), INTENT(IN) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_set_size(fh, size, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: size
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_set_view(fh, disp, etype, filetype, datarep, info, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: disp
 TYPE(MPI_Datatype), INTENT(IN) :: etype, filetype
 CHARACTER(LEN=*_), INTENT(IN) :: datarep
 TYPE(MPI_Info), INTENT(IN) :: info
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_sync(fh, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write(fh, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_all(fh, buf, count, datatype, status, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_all(fh, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPI_File_write_all(fh, buf, count, datatype, status, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPI_File_write_all_begin(fh, buf, count, datatype, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPI_File_write_all_end(fh, buf, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPI_File_write_at(fh, offset, buf, count, datatype, status, ierror)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER, INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPI_File_write_at_all(fh, offset, buf, count, datatype, status, ierror) !(_c)
 TYPE(MPI_File), INTENT(IN) :: fh
 INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
 TYPE(*), DIMENSION(..), INTENT(IN) :: buf
 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
 TYPE(MPI_Datatype), INTENT(IN) :: datatype
 TYPE(MPI_Status) :: status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_at_all(fh, offset, buf, count, datatype, status, ierror)!(_c)
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_at_all_begin(fh, offset, buf, count, datatype, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_at_all_end(fh, buf, status, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_ordered(fh, buf, count, datatype, status, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_ordered(fh, buf, count, datatype, status, ierror)!(_c)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_ordered_begin(fh, buf, count, datatype, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_ordered_end(fh, buf, status, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_shared(fh, buf, count, datatype, status, ierror)
TYPE(MPI_File), INTENT(IN) :: fh
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Register_datarep(datarep, read_conversion_fn, write_conversion_fn,
dtype_file_extent_fn, extra_state, ierror)
CHARACTER(LEN=*), INTENT(IN) :: datarep
PROCEDURE(MPI_Datarep_conversion_function) :: read_conversion_fn,
write_conversion_fn
PROCEDURE(MPI_Datarep_extent_function) :: dtype_file_extent_fn
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Register_datarep_c(datarep, read_conversion_fn, write_conversion_fn,
dtype_file_extent_fn, extra_state, ierror) !(_c)
CHARACTER(LEN=*), INTENT(IN) :: datarep
A.4 Fortran 2008 Bindings with the mpi_f08 Module

PROCEDURE(MPI_Datarep_conversion_function_c) :: read_conversion_fn,
 write_conversion_fn
PROCEDURE(MPI_Datarep_extent_function) :: dtype_file_extent_fn
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.4.13 Language Bindings Fortran 2008 Bindings

MPI_F_sync_reg(buf)
 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

MPI_Status_f082f(f08_status, f_status, ierror)
 TYPE(MPI_Status), INTENT(IN) :: f08_status
 INTEGER, INTENT(OUT) :: f_status(MPI_STATUS_SIZE)
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_f2f08(f_status, f08_status, ierror)
 INTEGER, INTENT(IN) :: f_status(MPI_STATUS_SIZE)
 TYPE(MPI_Status), INTENT(OUT) :: f08_status
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_f90_complex(p, r, newtype, ierror)
 INTEGER, INTENT(IN) :: p, r
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_f90_integer(r, newtype, ierror)
 INTEGER, INTENT(IN) :: r
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_f90_real(p, r, newtype, ierror)
 INTEGER, INTENT(IN) :: p, r
 TYPE(MPI_Datatype), INTENT(OUT) :: newtype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_match_size(typeclass, size, datatype, ierror)
 INTEGER, INTENT(IN) :: typeclass, size
 TYPE(MPI_Datatype), INTENT(OUT) :: datatype
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.4.14 Tools / Profiling Interface Fortran 2008 Bindings

MPI_Pcontrol(level)
 INTEGER, INTENT(IN) :: level
A.4.15 Deprecated Fortran 2008 Bindings

MPI_Get_elements_x(status, datatype, count, ierror)
TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Info_get(info, key, valuelen, value, flag, ierror)
TYPE(MPI_Info), INTENT(IN) :: info
CHARACTER(LEN=*), INTENT(IN) :: key
INTEGER, INTENT(IN) :: valuelen
CHARACTER(LEN=valuelen), INTENT(OUT) :: value
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Info_get_valuelen(info, key, valuelen, flag, ierror)
TYPE(MPI_Info), INTENT(IN) :: info
CHARACTER(LEN=*), INTENT(IN) :: key
INTEGER, INTENT(OUT) :: valuelen
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Sizeof(x, size, ierror)
TYPE(*), DIMENSION(..) :: x
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_set_elements_x(status, datatype, count, ierror)
TYPE(MPI_Status), INTENT(INOUT) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_extent_x(datatype, lb, extent, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: lb, extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_true_extent_x(datatype, true_lb, true_extent, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: true_lb, true_extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_size_x(datatype, size, ierror)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
A.5 Fortran Bindings with mpif.h or the mpi Module

A.5.1 Point-to-Point Communication Fortran Bindings

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)
 <type> BUFFER(*)
 INTEGER SIZE, IERROR

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)
 <type> BUFFER_ADDR(*)
 INTEGER SIZE, IERROR

MPI_BUFFER_FLUSH(IERROR)
 INTEGER IERROR

MPI_BUFFER_IFLUSH(REQUEST, IERROR)
 INTEGER REQUEST, IERROR

MPI_CANCEL(REQUEST, IERROR)
 INTEGER REQUEST, IERROR

MPI_COMM_ATTACH_BUFFER(COMM, BUFFER, SIZE, IERROR)
 INTEGER COMM, SIZE, IERROR
 <type> BUFFER(*)

MPI_COMM_DETACH_BUFFER(COMM, BUFFER_ADDR, SIZE, IERROR)
 INTEGER COMM, SIZE, IERROR
 <type> BUFFER_ADDR(*)

MPI_COMM_FLUSH_BUFFER(COMM, IERROR)
 INTEGER COMM, IERROR

MPI_COMM_IFLUSH_BUFFER(COMM, REQUEST, IERROR)
 INTEGER COMM, REQUEST, IERROR

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_IMPROBE(SOURCE, TAG, COMM, FLAG, MESSAGE, STATUS, IERROR)
 INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR
 LOGICAL FLAG

MPI_IMRECV(BUF, COUNT, DATATYPE, MESSAGE, REQUEST, IERROR)
 <type> BUF(*)
INTEGER COUNT, DATATYPE, MESSAGE, REQUEST, IERROR

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_IRecv(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_IRsend(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_Isend(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_Isendrecv(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF, RECVCOUNT,
RECVTYPE, SOURCE, RECVTAG, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE, SOURCE,
RECVTAG, COMM, REQUEST, IERROR

MPI_Isendrecv_replace(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM, REQUEST, IERROR

MPI_Isend(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_Mprobe(SOURCE, TAG, COMM, MESSAGE, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_Mrecv(BUF, COUNT, DATATYPE, MESSAGE, STATUS, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_Probe(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_Recv(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_Recv_init(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_Request_free(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_Request_get_status(REQUEST, FLAG, STATUS, IERROR)
A.5 Fortran Bindings with mpif.h or the mpi Module

```
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_REQUEST_GET_STATUS_ALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *), IERROR
LOGICAL FLAG

MPI_REQUEST_GET_STATUS_ANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_REQUEST_GET_STATUS_SOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES, ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *), IERROR)

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF, RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_SESSION_ATTACH_BUFFER(SESSION, BUFFER, SIZE, IERROR)
INTEGER SESSION, SIZE, IERROR
<type> BUFFER(*)

MPI_SESSION_DETACH_BUFFER(SESSION, BUFFER_ADDR, SIZE, IERROR)
INTEGER SESSION, SIZE, IERROR
<type> BUFFER_ADDR(*)
```
MPI_SESSION_FLUSH_BUFFER(SESSION, IERROR)
INTEGER SESSION, IERROR

MPI_SESSION_IFLUSH_BUFFER(SESSION, REQUEST, IERROR)
INTEGER SESSION, REQUEST, IERROR

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<Integer> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<Integer> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_START(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

MPI_STATUS_GET_ERROR(STATUS, ERR, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), ERR, IERROR

MPI_STATUS_GET_SOURCE(STATUS, SOURCE, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), SOURCE, IERROR

MPI_STATUS_GET_TAG(STATUS, TAG, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), TAG, IERROR

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *), IERROR
LOGICAL FLAG

MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_TESTSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES, ARRAY_OF_STATUSES, IERROR)
INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *), IERROR

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *),
IERROR
A.5 Fortran Bindings with mpif.h or the mpi Module

MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)
 INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE), IERROR

MPI_WAITSOME(INCOUN T, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
 ARRAY_OF_STATUSES, IERROR)
 INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
 ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *), IERROR

A.5.2 Partitioned Communication Fortran Bindings

MPI_PARRIVED(REQUEST, PARTITION, FLAG, IERROR)
 INTEGER REQUEST, PARTITION, IERROR
 LOGICAL FLAG

MPI_PREADY(PARTITION, REQUEST, IERROR)
 INTEGER PARTITION, REQUEST, IERROR

MPI_PREADY_LIST(LENGTH, ARRAY_OF_PARTITIONS, REQUEST, IERROR)
 INTEGER LENGTH, ARRAY_OF_PARTITIONS(*), REQUEST, IERROR

MPI_PREADY_RANGE(PARTITION_LOW, PARTITION_HIGH, REQUEST, IERROR)
 INTEGER PARTITION_LOW, PARTITION_HIGH, REQUEST, IERROR

MPI_PRECV_INIT(BUF, PARTITIONS, COUNT, DATATYPE, SOURCE, TAG, COMM, INFO,
 REQUEST, IERROR)
 <type> BUF(*)
 INTEGER PARTITIONS, DATATYPE, SOURCE, TAG, COMM, INFO, REQUEST, IERROR
 INTEGER(KIND=MPI_COUNT_KIND) COUNT

MPI_PSEND_INIT(BUF, PARTITIONS, COUNT, DATATYPE, DEST, TAG, COMM, INFO,
 REQUEST, IERROR)
 <type> BUF(*)
 INTEGER PARTITIONS, DATATYPE, DEST, TAG, COMM, INFO, REQUEST, IERROR
 INTEGER(KIND=MPI_COUNT_KIND) COUNT

A.5.3 Datatypes Fortran Bindings

INTEGER(KIND=MPI_ADDRESS_KIND) MPI_AINT_ADD(BASE, DISP)
 INTEGER(KIND=MPI_ADDRESS_KIND) BASE, DISP

INTEGER(KIND=MPI_ADDRESS_KIND) MPI_AINT_DIFF(ADDR1, ADDR2)
 INTEGER(KIND=MPI_ADDRESS_KIND) ADDR1, ADDR2

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)
 <type> LOCATION(*)
 INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS
 INTEGER IERROR

MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
 <type> INBUF(*), OUTBUF(*)
INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, IERROR)
CHARACTER(*) DATAREP
<type> INBUF(*), OUTBUF(*)
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION

MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)
CHARACTER(*) DATAREP
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

MPI_TYPE_COMMIT(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES, ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER, OLDTYPE, NEWTYPE, IERROR)
INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*), ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_HINDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE

MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)
INTEGER OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE, IERROR
A.5 Fortran Bindings with mpif.h or the mpi Module

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,
 ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)
 INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*), ARRAY_OF_STARTS(*),
 ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_DUP(OLDTYPE, NEWTYPE, IERROR)
 INTEGER OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_FREE(DATATYPE, IERROR)
 INTEGER DATATYPE, IERROR

MPI_TYPE_GET_CONTENTS(DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
 ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,
 IERROR)
 INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
 ARRAY_OF_INTEGERS(*), ARRAY_OF_ADDRESSES(*), IERROR

MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,
 COMBINER, IERROR)
 INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,
 IERROR

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)
 INTEGER DATATYPE, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_GET_TRUE_EXTENT(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
 INTEGER DATATYPE, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS, OLDTYPE,
 NEWTYPE, IERROR)
 INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
 OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)
 INTEGER DATATYPE, SIZE, IERROR

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
 INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM, IERROR)
 INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,
 DATATYPE, IERROR)
 CHARACTER(*) DATAREP
 INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE, POSITION
 INTEGER OUTCOUNT, DATATYPE, IERROR
A.5.4 Collective Communication Fortran Bindings

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR

MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, RECVTYPE, COMM, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM, IERROR

MPI_ALLGATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM, INFO, REQUEST, IERROR

MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_ALLREDUCE_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLTOALL_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR

MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*), RECVTYPE, COMM, IERROR

MPI_ALLTOALLV_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*), RDISPLS(*),
RECVTYPE(*), COMM, INFO, REQUEST, IERROR

MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPES, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*), RDISPLS(*),
RECVTYPES(*), COMM, IERROR

MPI_ALLTOALLW_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,
RECVCOUNTS, RDISPLS, RECVTYPES, COMM, INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*), RDISPLS(*),
RECVTYPES(*), COMM, INFO, REQUEST, IERROR

MPI_BARRIER(COMM, IERROR)
INTEGER COMM, IERROR

MPI_BARRIER_INIT(COMM, INFO, REQUEST, IERROR)
INTEGER COMM, INFO, REQUEST, IERROR

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI_BCAST_INIT(BUFFER, COUNT, DATATYPE, ROOT, COMM, INFO, REQUEST, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, INFO, REQUEST, IERROR

MPI_EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_EXSCAN_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT,
COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_GATHER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT,
COMM, INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR

MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT, COMM, IERROR

MPI_GATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR

MPI_IALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI_IALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, RECVTYPE, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM, REQUEST, IERROR

MPI_IALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR

MPI_IALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI_IALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)
<type> SENDBUF(*), SDISPLS(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*), RECVTYPES(*), COMM, REQUEST, IERROR

MPI_IALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)
<type> SENDBUF(*), SDISPLS(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*), RDISPLS(*), RECVTYPES(*), COMM, REQUEST, IERROR

MPI_IBARRIER(COMM, REQUEST, IERROR)
INTEGER COMM, REQUEST, IERROR

MPI_IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR

MPI_IEXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)
<type> SENDBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR

MPI_IGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST, IERROR)
1019 A.5 Fortran Bindings with mpif.h or the mpi Module

\begin{verbatim}
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST, IERROR
MPI_IGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
 RECVTYPE, ROOT, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
 COMM, REQUEST, IERROR
MPI_IREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR
MPI_IREDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM, REQUEST,
 IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, REQUEST, IERROR
MPI_IREDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, REVCOUNT, DATATYPE, OP, COMM,
 REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER RECVCOUNT, DATATYPE, OP, COMM, REQUEST, IERROR
MPI_ISCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR
MPI_ISCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT,
 COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST, IERROR
MPI_ISCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
 RECVTYPE, ROOT, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
 COMM, REQUEST, IERROR
MPI_OP_COMMUTATIVE(OP, COMMUTE, IERROR)
 INTEGER OP, IERROR
LOGICAL COMMUTE
MPI_OP_CREATE(USER_FN, COMMUTE, OP, IERROR)
 EXTERNAL USER_FN
 LOGICAL COMMUTE
 INTEGER OP, IERROR
MPI_OP_FREE(OP, IERROR)
 INTEGER OP, IERROR
MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
\end{verbatim}
Appendix A Language Bindings Summary

integer count, datatype, op, root, comm, ierror

MPI_REDUCE_INIT(sendbuf, recvbuf, count, datatype, op, root, comm, info,
 request, ierror)
 <type> sendbuf(*), recvbuf(*)
 integer count, datatype, op, root, comm, info, request, ierror

MPI_REDUCELOCAL(inbuf, inoutbuf, count, datatype, op, ierror)
 <type> inbuf(*), inoutbuf(*)
 integer count, datatype, op, ierror

MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm, ierror)
 <type> sendbuf(*), recvbuf(*)
 integer recvcounts(*), datatype, op, comm, ierror

MPI_REDUCE_SCATTER_BLOCK(sendbuf, recvbuf, recvcount, datatype, op, comm,
 ierror)
 <type> sendbuf(*), recvbuf(*)
 integer recvcount, datatype, op, comm, ierror

MPI_REDUCE_SCATTER_BLOCK_INIT(sendbuf, recvbuf, recvcount, datatype, op, comm,
 info, request, ierror)
 <type> sendbuf(*), recvbuf(*)
 integer recvcount, datatype, op, comm, info, request, ierror

MPI_REDUCE_SCATTER_INIT(sendbuf, recvbuf, recvcounts, datatype, op, comm, info,
 request, ierror)
 <type> sendbuf(*), recvbuf(*)
 integer recvcounts(*), datatype, op, comm, info, request, ierror

MPI_SCAN(sendbuf, recvbuf, count, datatype, op, comm, ierror)
 <type> sendbuf(*), recvbuf(*)
 integer count, datatype, op, comm, ierror

MPI_SCAN_INIT(sendbuf, recvbuf, count, datatype, op, comm, info, request, ierror)
 <type> sendbuf(*), recvbuf(*)
 integer count, datatype, op, comm, info, request, ierror

MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,
 comm, ierror)
 <type> sendbuf(*), recvbuf(*)
 integer sendcount, sendtype, recvcount, recvtype, root, comm, ierror

MPI_SCATTER_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
 root, comm, info, request, ierror)
 <type> sendbuf(*), recvbuf(*)
 integer sendcount, sendtype, recvcount, recvtype, root, comm, info, request, ierror

MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount,
 recvtype, root, comm, ierror)
 <type> sendbuf(*), recvbuf(*)
A.5 Fortran Bindings with mpif.h or the mpi Module

INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR
MPI_SCATTERV_INIT(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR
MPI_TYPE_GET_VALUE_INDEX(VALUE_TYPE, INDEX_TYPE, PAIR_TYPE, IERROR)
 INTEGER VALUE_TYPE, INDEX_TYPE, PAIR_TYPE, IERROR

A.5.5 Groups, Contexts, Communicators, and Caching Fortran Bindings

MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)
 INTEGER COMM1, COMM2, RESULT, IERROR
MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)
 INTEGER COMM, GROUP, NEWCOMM, IERROR
MPI_COMM_CREATE_FROM_GROUP(GROUP, STRINGTAG, INFO, ERRHANDLER, NEWCOMM, IERROR)
 INTEGER GROUP, INFO, ERRHANDLER, NEWCOMM, IERROR
 CHARACTER*(*) STRINGTAG
MPI_COMM_CREATE_GROUP(COMM, GROUP, TAG, NEWCOMM, IERROR)
 INTEGER COMM, GROUP, TAG, NEWCOMM, IERROR
MPI_COMM_CREATE_KEYVAL(COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL, EXTRA_STATE, IERROR)
 EXTERNAL COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN
 INTEGER COMM_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
MPI_COMM_DELETEATTR(COMM, COMM_KEYVAL, IERROR)
 INTEGER COMM, COMM_KEYVAL, IERROR
MPI_COMM_DUP(COMM, NEWCOMM, IERROR)
 INTEGER COMM, NEWCOMM, IERROR
MPI_COMM_DUP_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
 INTEGER OLDCOMM, COMM_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT
 LOGICAL FLAG
MPI_COMM_DUP_WITH_INFO(COMM, INFO, NEWCOMM, IERROR)
 INTEGER COMM, INFO, NEWCOMM, IERROR
MPI_COMM_FREE(COMM, IERROR)
 INTEGER COMM, IERROR
MPI_COMM_FREE_KEYVAL(COMM_KEYVAL, IERROR)
 INTEGER COMM_KEYVAL, IERROR
MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
LOGICAL FLAG

MPI_COMM_GET_INFO(COMM, INFO_USED, IERROR)
INTEGER COMM, INFO_USED, IERROR

MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR)
INTEGER COMM, RESULTLEN, IERROR
CHARACTER*(*) COMM_NAME

MPI_COMM_GROUP(COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

MPI_COMM_IDUP(COMM, NEWCOMM, REQUEST, IERROR)
INTEGER COMM, NEWCOMM, REQUEST, IERROR

MPI_COMM_IDUP_WITH_INFO(COMM, INFO, NEWCOMM, REQUEST, IERROR)
INTEGER COMM, INFO, NEWCOMM, REQUEST, IERROR

MPI_COMM_NULL_COPY_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDCOMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT
LOGICAL FLAG

MPI_COMM_NULL_DELETE_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER COMM, COMM_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_COMM_SET_INFO(COMM, INFO, IERROR)
INTEGER COMM, INFO, IERROR

MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)
INTEGER COMM, IERROR
CHARACTER*(*) COMM_NAME

MPI_COMM_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)
A.5 Fortran Bindings with mpi.f or the mpi Module

INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

MPI_COMM_SPLIT_TYPE(COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR)
 INTEGER COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR

MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)
 INTEGER COMM, IERROR
 LOGICAL FLAG

MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)
 INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)
 INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)
 INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_FREE(GROUP, IERROR)
 INTEGER GROUP, IERROR

MPI_GROUP_FROM_SESSION_PSET(SESSION, PSET_NAME, NEWGROUP, IERROR)
 INTEGER SESSION, NEWGROUP, IERROR
 CHARACTER(*) PSET_NAME

MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)
 INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)
 INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)
 INTEGER GROUP, N, RANGES(3, *), NEWGROUP, IERROR

MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)
 INTEGER GROUP, N, RANGES(3, *), NEWGROUP, IERROR

MPI_GROUP_RANK(GROUP, RANK, IERROR)
 INTEGER GROUP, RANK, IERROR

MPI_GROUP_SIZE(GROUP, SIZE, IERROR)
 INTEGER GROUP, SIZE, IERROR

MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)
 INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR

MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)
 INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_INTERCOMM_CREATE(LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,
 NEWINTERCOMM, IERROR)
 INTEGER LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,
 NEWINTERCOMM, IERROR

MPI_INTERCOMM_CREATE_FROM_GROUPS(LOCAL_GROUP, LOCAL_LEADER, REMOTE_GROUP,
 REMOTE_LEADER, STRINGTAG, INFO, ERRHANDLER, NEWINTERCOMM, IERROR)
 INTEGER LOCAL_GROUP, LOCAL_LEADER, REMOTE_GROUP, REMOTE_LEADER, INFO,
 ERRHANDLER, NEWINTERCOMM, IERROR
CHARACTER*(*) STRINGTAG

MPI_INTERCOMM_MERGE(INTERCOMM, HIGH, NEWINTRACOMM, IERROR)
INTEGER INTERCOMM, NEWINTRACOMM, IERROR
LOGICAL HIGH

MPI_TYPE_CREATE_KEYVAL(TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN, TYPE_KEYVAL,
EXTRA_STATE, IERROR)
EXTERNAL TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN
INTEGER TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_TYPE_DELETE_ATTR(DATATYPE, TYPE_KEYVAL, IERROR)
INTEGER DATATYPE, TYPE_KEYVAL, IERROR

MPI_TYPE_DUP_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT
LOGICAL FLAG

MPI_TYPE_FREE_KEYVAL(TYPE_KEYVAL, IERROR)
INTEGER TYPE_KEYVAL, IERROR

MPI_TYPE_GET_ATTR(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
INTEGER DATATYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
LOGICAL FLAG

MPI_TYPE_GET_NAME(DATATYPE, TYPE_NAME, RESULTLEN, IERROR)
INTEGER DATATYPE, RESULTLEN, IERROR
CHARACTER*(*) TYPE_NAME

MPI_TYPE_NULL_COPY_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, FLAG, IERROR)
INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT
LOGICAL FLAG

MPI_TYPE_NULL_DELETE_FN(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,
IERROR)
INTEGER DATATYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_TYPE_SET_ATTR(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)
INTEGER DATATYPE, TYPE_KEYVAL, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_TYPE_SET_NAME(DATATYPE, TYPE_NAME, IERROR)
INTEGER DATATYPE, IERROR
CHARACTER*(*) TYPE_NAME
A.5 Fortran Bindings with mpif.h or the mpi Module

MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL, EXTRA_STATE, IERROR)
 EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN
 INTEGER WIN_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)
 INTEGER WIN, WIN_KEYVAL, IERROR

MPI_WIN_DUP_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
 INTEGER OLDWIN, WIN_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT
 LOGICAL FLAG

MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)
 INTEGER WIN_KEYVAL, IERROR

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
 INTEGER WIN, WIN_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
 LOGICAL FLAG

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)
 INTEGER WIN, RESULTLEN, IERROR
 CHARACTER(*) WIN_NAME

MPI_WIN_NULL_COPY_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
 INTEGER OLDWIN, WIN_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT
 LOGICAL FLAG

MPI_WIN_NULL_DELETE_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)
 INTEGER WIN, WIN_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_WIN_SET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, IERROR)
 INTEGER WIN, WIN_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)
 INTEGER WIN, IERROR
 CHARACTER(*) WIN_NAME

A.5.6 Virtual Topologies for MPI Processes Fortran Bindings

MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)
 INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)
INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR
LOGICAL PERIODS(*), REORDER

MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)
INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR
LOGICAL PERIODS(*)

MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)
INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR
LOGICAL PERIODS(*)

MPI_CART_RANK(COMM, COORDS, RANK, IERROR)
INTEGER COMM, COORDS(*), RANK, IERROR

MPI_CARTSHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)
INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR
LOGICAL REMAIN_DIMS(*)

MPI_CARTDIM_GET(COMM, NDIMS, IERROR)
INTEGER COMM, NDIMS, IERROR

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)
INTEGER NNODES, NDIMS, DIMS(*), IERROR

MPI_DIST_GRAPH_CREATE(COMM_OLD, N, SOURCES, DEGREES, DESTINATIONS, WEIGHTS,
INFO, REORDER, COMM_DIST_GRAPH, IERROR)
INTEGER COMM_OLD, N, SOURCES(*), DEGREES(*), DESTINATIONS(*), WEIGHTS(*),
INFO, COMM_DIST_GRAPH, IERROR
LOGICAL REORDER

MPI_DIST_GRAPH_CREATE_ADJACENT(COMM_OLD, INDEGREE, SOURCES, SOURCEWEIGHTS,
OUTDEGREE, DESTINATIONS, DESTWEIGHTS, INFO, REORDER,
COMM_DIST_GRAPH, IERROR)
INTEGER COMM_OLD, INDEGREE, SOURCES(*), SOURCEWEIGHTS(*), OUTDEGREE,
DESTINATIONS(*), DESTWEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR
LOGICAL REORDER

MPI_DIST_GRAPH_NEIGHBORS(COMM, MAXINDEGREE, SOURCES, SOURCEWEIGHTS,
MAXOUTDEGREE, DESTINATIONS, DESTWEIGHTS, IERROR)
INTEGER COMM, MAXINDEGREE, SOURCES(*), SOURCEWEIGHTS(*), MAXOUTDEGREE,
DESTINATIONS(*), DESTWEIGHTS(*), IERROR

MPI_DIST_GRAPH_NEIGHBORS_COUNT(COMM, INDEGREE, OUTDEGREE, WEIGHTED, IERROR)
INTEGER COMM, INDEGREE, OUTDEGREE, IERROR
LOGICAL WEIGHTED

MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH, IERROR)
INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR
LOGICAL REORDER

MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)
INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR
A.5 Fortran Bindings with mpif.h or the mpi Module

MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)
 INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)
 INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)
 INTEGER COMM, RANK, NNEIGHBORS, IERROR

MPI_GRAPHDIMS_GET(COMM, NNODER, NEDGES, IERROR)
 INTEGER COMM, NNODER, NEDGES, IERROR

MPI_INEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR)
 TYPE SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI_INEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, RECVTYPE, COMM, REQUEST, IERROR)
 TYPE SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM, REQUEST, IERROR

MPI_INEIGHBOR_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR)
 TYPE SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI_INEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)
 TYPE SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*), RECVTYPE, COMM, REQUEST, IERROR

MPI_INEIGHBOR_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, REVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)
 TYPE SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), REVCOUNTS(*), RDISPLS(*), RECVTYPES(*), COMM, REQUEST, IERROR

MPI_NEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, REVCOUNT, RECVTYPE, COMM, IERROR)
 TYPE SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, REVCOUNT, RECVTYPE, COMM, IERROR

MPI_NEIGHBOR_ALLGATHER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, REVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR)
 TYPE SENDBUF(*), RECVBUF(*)
 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR

MPI_NEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, REVCOUNTS, DISPLS, RECVTYPE, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM, IERROR

MPI_NEIGHBOR_ALLGATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM, IERROR

MPI_NEIGHBOR_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, IERROR)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_NEIGHBOR_ALLTOALL_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*), RECVTYPE, COMM, IERROR

MPI_NEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*), RECVTYPE, COMM, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)

MPI_NEIGHBOR_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPES, COMM, IERROR)

INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)

MPI_NEIGHBOR_ALLTOALLW_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPES, COMM, INFO, REQUEST, IERROR)

INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)

MPI_TOPO_TEST(COMM, STATUS, IERROR)

INTEGER COMM, STATUS, IERROR
A.5.7 MPI Environmental Management Fortran Bindings

DOUBLE PRECISION MPI_WTICK()

DOUBLE PRECISION MPI_WTIME()

MPI_ADD_ERROR_CLASS(ERRORCLASS, IERROR)
 INTEGER ERRORCLASS, IERROR

MPI_ADD_ERROR_CODE(ERRORCLASS, ERRORCODE, IERROR)
 INTEGER ERRORCLASS, ERRORCODE, IERROR

MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR)
 INTEGER ERRORCODE, IERROR
 CHARACTER*(*) STRING

MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR
 INTEGER INFO, IERROR

If the Fortran compiler provides TYPE(C_PTR), then overloaded by:

INTERFACE MPI_ALLOC_MEM
 SUBROUTINE MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)
 IMPORT :: MPI_ADDRESS_KIND
 INTEGER :: INFO, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE, BASEPTR
 END SUBROUTINE

 SUBROUTINE MPI_ALLOC_MEM_CPTR(SIZE, INFO, BASEPTR, IERROR)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 IMPORT :: MPI_ADDRESS_KIND
 INTEGER :: INFO, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE
 TYPE(C_PTR) :: BASEPTR
 END SUBROUTINE
END INTERFACE

MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR)
 INTEGER COMM, ERRORCODE, IERROR

MPI_COMM_CREATE_ERRHANDLER(COMM_ERRHANDLER_FN, ERRHANDLER, IERROR)
 EXTERNAL COMM_ERRHANDLER_FN
 INTEGER ERRHANDLER, IERROR

MPI_COMM_GET_ERRHANDLER(COMM, ERRHANDLER, IERROR)
 INTEGER COMM, ERRHANDLER, IERROR

MPI_COMM_SET_ERRHANDLER(COMM, ERRHANDLER, IERROR)
 INTEGER COMM, ERRHANDLER, IERROR

MPI_ERRHANDLER_FREE(ERRHANDLER, IERROR)
 INTEGER ERRHANDLER, IERROR

MPI_ERROR_CLASS(ERRORCODE, ERRORCLASS, IERROR)
 INTEGER ERRORCODE, ERRORCLASS, IERROR

MPI_ERROR_STRING(ERRORCODE, STRING, RESULTLEN, IERROR)
INTEGER ERRORCODE, RESULTLEN, IERROR
CHARACTER(*) STRING

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)
INTEGER FH, ERRORCODE, IERROR

MPI_FILE_CREATE_ERRHANDLER(FILE_ERRHANDLER_FN, ERRHANDLER, IERROR)
EXTERNAL FILE_ERRHANDLER_FN
INTEGER ERRHANDLER, IERROR

MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
INTEGER FILE, ERRHANDLER, IERROR

MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)
INTEGER FILE, ERRHANDLER, IERROR

MPI_FREE_MEM(BASE, IERROR)
	<type> BASE(*)
INTEGER IERROR

MPI_GET_HW_RESOURCE_INFO(HW_INFO, IERROR)
INTEGER HW_INFO, IERROR

MPI_GET_LIBRARY_VERSION(VERSION, RESULTLEN, IERROR)
CHARACTER(*) VERSION
INTEGER RESULTLEN, IERROR

MPI_GET_PROCESSOR_NAME(NAME, RESULTLEN, IERROR)
CHARACTER(*) NAME
INTEGER RESULTLEN, IERROR

MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)
INTEGER VERSION, SUBVERSION, IERROR

MPI_REMOVE_ERROR_CLASS(ERRORCLASS, IERROR)
INTEGER ERRORCLASS, IERROR

MPI_REMOVE_ERROR_CODE(ERRORCODE, IERROR)
INTEGER ERRORCODE, IERROR

MPI_REMOVE_ERROR_STRING(ERRORCODE, IERROR)
INTEGER ERRORCODE, IERROR

MPI_SESSION_CALL_ERRHANDLER(SESSION, ERRORCODE, IERROR)
INTEGER SESSION, ERRORCODE, IERROR

MPI_SESSION_CREATE_ERRHANDLER(SESSION_ERRHANDLER_FN, ERRHANDLER, IERROR)
EXTERNAL SESSION_ERRHANDLER_FN
INTEGER ERRHANDLER, IERROR

MPI_SESSION_GET_ERRHANDLER(SESSION, ERRHANDLER, IERROR)
INTEGER SESSION, ERRHANDLER, IERROR

MPI_SESSION_SET_ERRHANDLER(SESSION, ERRHANDLER, IERROR)
INTEGER SESSION, ERRHANDLER, IERROR

MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR)
A.5 Fortran Bindings with mpif.h or the mpi Module

A.5.8 The Info Object Fortran Bindings

MPI_INFO_CREATE(INFO, IERROR)
 INTEGER INFO, IERROR

MPI_INFO_CREATE_ENV(INFO, IERROR)
 INTEGER INFO, IERROR

MPI_INFO_DELETE(INFO, KEY, IERROR)
 INTEGER INFO, IERROR
 CHARACTER*(*) KEY

MPI_INFO_DUP(INFO, NEWINFO, IERROR)
 INTEGER INFO, NEWINFO, IERROR

MPI_INFO_FREE(INFO, IERROR)
 INTEGER INFO, IERROR

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)
 INTEGER INFO, NKEYS, IERROR

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)
 INTEGER INFO, N, IERROR
 CHARACTER*(*) KEY

MPI_INFO_GET_STRING(INFO, KEY, BUFLEN, VALUE, FLAG, IERROR)
 INTEGER INFO, BUFLEN, IERROR
 CHARACTER*(*) KEY, VALUE
 LOGICAL FLAG

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)
 INTEGER INFO, IERROR
 CHARACTER*(*) KEY, VALUE

A.5.9 Process Creation and Management Fortran Bindings

MPI_ABORT(COMM, ERRORCODE, IERROR)
 INTEGER COMM, ERRORCODE, IERROR

MPI_CLOSE_PORT(PORT_NAME, IERROR)
 CHARACTE R*(*) PORT_NAME
 INTEGER IERROR
MPI_COMM_ACCEPT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
 CHARACTER*(*) PORT_NAME
 INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
 CHARACTER*(*) PORT_NAME
 INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_DISCONNECT(COMM, IERROR)
 INTEGER COMM, IERROR

MPI_COMM_GET_PARENT(PARENT, IERROR)
 INTEGER PARENT, IERROR

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)
 INTEGER FD, INTERCOMM, IERROR

MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,
 ARRAY_OF_ERRCODES, IERROR)
 CHARACTER*(*) COMMAND, ARGV(*)
 INTEGER MAXPROCS, INFO, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR

MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,
 ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,
 ARRAY_OF_ERRCODES, IERROR)
 INTEGER COUNT, ARRAY_OF_MAXPROCS(*), ARRAY_OF_INFO(*), ROOT, COMM,
 INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR
 CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)

MPI_FINALIZE(IERROR)
 INTEGER IERROR

MPI_FINALIZED(FLAG, IERROR)
 LOGICAL FLAG
 INTEGER IERROR

MPI_INIT(IERROR)
 INTEGER IERROR

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)
 INTEGER REQUIRED, PROVIDED, IERROR

MPI_INITIALIZED(FLAG, IERROR)
 LOGICAL FLAG
 INTEGER IERROR

MPI_IS_THREAD_MAIN(FLAG, IERROR)
 LOGICAL FLAG
 INTEGER IERROR

MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)
 CHARACTER*(*) SERVICE_NAME, PORT_NAME
 INTEGER INFO, IERROR

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)
 INTEGER INFO, IERROR
A.5 Fortran Bindings with mpif.h or the mpi Module

A.5.10 One-Sided Communications Fortran Bindings

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, ORIGIN_ADDR(*), ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

MPI_COMPARE_AND_SWAP(ORIGIN_ADDR, COMPARE_ADDR, RESULT_ADDR, DATATYPE, ORIGIN_ADDR(*), COMPARE_ADDR(*), RESULT_ADDR(*), DATATYPE, TARGET_RANK, TARGET_DISP, WIN, IERROR)

MPI_FETCH_AND_OP(ORIGIN_ADDR, RESULT_ADDR, DATATYPE, TARGET_RANK, ORIGIN_ADDR(*), RESULT_ADDR(*), DATATYPE, TARGET_RANK, TARGET_DISP, OP, WIN, IERROR)
MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_DISP,
 TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)
 <type> ORIGIN_ADDR(*)
 INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
 TARGET_DATATYPE, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

MPI_GET_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_ADDR,
 RESULT_COUNT, RESULT_DATATYPE, TARGET_RANK, TARGET_DISP,
 TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)
 <type> ORIGIN_ADDR(*), RESULT_ADDR(*)
 INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_COUNT, RESULT_DATATYPE,
 TARGET_RANK, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_DISP,
 TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)
 <type> ORIGIN_ADDR(*)
 INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
 TARGET_DATATYPE, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

MPI_RACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
 TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST,
 IERROR)
 <type> ORIGIN_ADDR(*)
 INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
 TARGET_DATATYPE, OP, WIN, REQUEST, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

MPI_RGET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_DISP,
 TARGET_COUNT, TARGET_DATATYPE, WIN, REQUEST, IERROR)
 <type> ORIGIN_ADDR(*)
 INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
 TARGET_DATATYPE, WIN, REQUEST, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

MPI_RGET_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_ADDR,
 RESULT_COUNT, RESULT_DATATYPE, TARGET_RANK, TARGET_DISP,
 TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST, IERROR)
 <type> ORIGIN_ADDR(*), RESULT_ADDR(*)
 INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_COUNT, RESULT_DATATYPE,
 TARGET_RANK, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

MPI_RPUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_DISP,
 TARGET_COUNT, TARGET_DATATYPE, WIN, REQUEST, IERROR)
 <type> ORIGIN_ADDR(*)
 INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
 TARGET_DATATYPE, WIN, REQUEST, IERROR
A.5 Fortran Bindings with mpif.h or the mpi Module

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR)
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR
 INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

If the Fortran compiler provides TYPE(C_PTR), then overloaded by:

INTERFACE MPI_WIN_ALLOCATE
 SUBROUTINE MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &
 WIN, IERROR)
 IMPORT :: MPI_ADDRESS_KIND
 INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE, BASEPTR
 END SUBROUTINE
 SUBROUTINE MPI_WIN_ALLOCATE_CPTR(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &
 WIN, IERROR)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 IMPORT :: MPI_ADDRESS_KIND
 INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE
 TYPE(C_PTR) :: BASEPTR
 END SUBROUTINE
END INTERFACE

MPI_WIN_ALLOCATE_SHARED(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR)
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

If the Fortran compiler provides TYPE(C_PTR), then overloaded by:

 INTERFACE MPI_WIN_ALLOCATE_SHARED
 SUBROUTINE MPI_WIN_ALLOCATE_SHARED(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &
 WIN, IERROR)
 IMPORT :: MPI_ADDRESS_KIND
 INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE, BASEPTR
 END SUBROUTINE
 SUBROUTINE MPI_WIN_ALLOCATE_SHARED_CPTR(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &
 WIN, IERROR)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 IMPORT :: MPI_ADDRESS_KIND
 INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE
 TYPE(C_PTR) :: BASEPTR
 END SUBROUTINE
END INTERFACE

MPI_WIN_ATTACH(WIN, BASE, SIZE, IERROR)
 INTEGER WIN, IERROR
 <type> BASE(*)
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
Appendix A Language Bindings Summary

MPI_WIN_COMPLETE(WIN, IERROR)
INTEGER WIN, IERROR

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)
 <type> BASE(*)
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
 INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

MPI_WIN_CREATE_DYNAMIC(INFO, COMM, WIN, IERROR)
 INTEGER INFO, COMM, WIN, IERROR

MPI_WIN_DETACH(WIN, BASE, IERROR)
 INTEGER WIN, IERROR
 <type> BASE(*)

MPI_WIN_FENCE(ASSERT, WIN, IERROR)
 INTEGER ASSERT, WIN, IERROR

MPI_WIN_FLUSH(RANK, WIN, IERROR)
 INTEGER RANK, WIN, IERROR

MPI_WIN_FLUSH_ALL(WIN, IERROR)
 INTEGER WIN, IERROR

MPI_WIN_FLUSH_LOCAL(RANK, WIN, IERROR)
 INTEGER RANK, WIN, IERROR

MPI_WIN_FLUSH_LOCAL_ALL(WIN, IERROR)
 INTEGER WIN, IERROR

MPI_WIN_FREE(WIN, IERROR)
 INTEGER WIN, IERROR

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)
 INTEGER WIN, GROUP, IERROR

MPI_WIN_GET_INFO(WIN, INFO_USED, IERROR)
 INTEGER WIN, INFO_USED, IERROR

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)
 INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

MPI_WIN_LOCK_ALL(ASSERT, WIN, IERROR)
 INTEGER ASSERT, WIN, IERROR

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)
 INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_SET_INFO(WIN, INFO, IERROR)
 INTEGER WIN, INFO, IERROR

MPI_WIN_SHARED_QUERY(WIN, RANK, SIZE, DISP_UNIT, BASEPTR, IERROR)
 INTEGER WIN, RANK, DISP_UNIT, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

If the Fortran compiler provides TYPE(C_PTR), then overloaded by:
A.5 Fortran Bindings with mpif.h or the mpi Module

INTERFACE MPI_WIN_SHARED_QUERY
 SUBROUTINE MPI_WIN_SHARED_QUERY(WIN, RANK, SIZE, DISP_UNIT, &
 BASEPTR, IERROR)
 IMPORT :: MPI_ADDRESS_KIND
 INTEGER :: WIN, RANK, DISP_UNIT, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE, BASEPTR
 END SUBROUTINE
 SUBROUTINE MPI_WIN_SHARED_QUERY_CPTR(WIN, RANK, SIZE, DISP_UNIT, &
 BASEPTR, IERROR)
 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
 IMPORT :: MPI_ADDRESS_KIND
 INTEGER :: WIN, RANK, DISP_UNIT, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE
 TYPE(C_PTR) :: BASEPTR
 END SUBROUTINE
END INTERFACE

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)
 INTEGER GROUP, ASSERT, WIN, IERROR
MPI_WIN_SYNC(WIN, IERROR)
 INTEGER WIN, IERROR
MPI_WIN_TEST(WIN, FLAG, IERROR)
 INTEGER WIN, IERROR
 LOGICAL FLAG
MPI_WIN_UNLOCK(RANK, WIN, IERROR)
 INTEGER RANK, WIN, IERROR
MPI_WIN_UNLOCK_ALL(WIN, IERROR)
 INTEGER WIN, IERROR
MPI_WIN_WAIT(WIN, IERROR)
 INTEGER WIN, IERROR

A.5.11 External Interfaces Fortran Bindings

MPI_GREQUEST_COMPLETE(REQUEST, IERROR)
 INTEGER REQUEST, IERROR
MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST, IERROR)
 EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
 INTEGER REQUEST, IERROR
MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), IERROR
 LOGICAL FLAG
MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR
MPI_STATUS_SET_ERROR(STATUS, ERR, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), ERR, IERROR
MPI_STATUS_SET_SOURCE(STATUS, SOURCE, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), SOURCE, IERROR
MPI_STATUS_SET_TAG(STATUS, TAG, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), TAG, IERROR

A.5.12 I/O Fortran Bindings

MPI_CONVERSION_FN_NULL(USERBUF, DATATYPE, COUNT, FILEBUF, POSITION,
 EXTRA_STATE, IERROR)
 <TYPE> USERBUF(*), FILEBUF(*)
 INTEGER DATATYPE, COUNT, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) POSITION
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
MPI_FILE_CLOSE(FH, IERROR)
 INTEGER FH, IERROR
MPI_FILE_DELETE(FILENAME, INFO, IERROR)
 CHARACTER*(*) FILENAME
 INTEGER INFO, IERROR
MPI_FILE_GET_AMODE(FH, AMODE, IERROR)
 INTEGER FH, AMODE, IERROR
MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)
 INTEGER FH, IERROR
 LOGICAL FLAG
MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP
MPI_FILE_GET_GROUP(FH, GROUP, IERROR)
 INTEGER FH, GROUP, IERROR
MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)
 INTEGER FH, INFO_USED, IERROR
MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
MPI_FILE_GET_SIZE(FH, SIZE, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) SIZE
MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)
INTEGER FH, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)
INTEGER FH, ETYPE, FILETYPE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) DISP
CHARACTER(*) DATAREP

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
<type> BUF(*)

MPI_FILE_IREAD_ALL(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
<type> BUF(*)

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
<type> BUF(*)

MPI_FILE_IREAD_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
<type> BUF(*)

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
<type> BUF(*)

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
<type> BUF(*)

MPI_FILE_IWRITE_ALL(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
<type> BUF(*)

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
<type> BUF(*)

MPI_FILE_IWRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
<type> BUF(*)

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)
INTEGER COMM, AMODE, INFO, FH, IERROR
CHARACTER(*) FILENAME
MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
 INTEGER FH, COUNT, DATATYPE, IERROR
 <type> BUF(*)

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
 INTEGER FH, COUNT, DATATYPE, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
 INTEGER FH, COUNT, DATATYPE, IERROR
 <type> BUF(*)

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)
A.5 Fortran Bindings with mpi.h or the mpi Module

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)
 INTEGER FH, WHENCE, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)
 INTEGER FH, WHENCE, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)
 INTEGER FH, IERROR
 LOGICAL FLAG

MPI_FILE_SET_INFO(FH, INFO, IERROR)
 INTEGER FH, INFO, IERROR

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)
 INTEGER FH, ETYPE, FILETYPE, INFO, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) DISP
 CHARACTER(*) DATAREP

MPI_FILE_SYNC(FH, IERROR)
 INTEGER FH, IERROR

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
 INTEGER FH, COUNT, DATATYPE, IERROR
 <type> BUF(*)

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
 <type> BUF(*)

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
 <type> BUF(*)

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
 INTEGER FH, COUNT, DATATYPE, IERROR
Appendix A Language Bindings Summary

A.5.13 Language Bindings Fortran Bindings

```fortran
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
<type> BUF(*)

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)
  INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
  <type> BUF(*)

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
  INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
  <type> BUF(*)

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
  INTEGER FH, COUNT, DATATYPE, IERROR
  <type> BUF(*)

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)
  INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
  <type> BUF(*)

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
  INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
  <type> BUF(*)

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,
  DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)
  CHARACTER(*) DATAREP
  EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN
  INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
  INTEGER IERROR

MPI_F_SYNC_REG(BUF)
  <type> BUF(*)

The following procedure is not available with mpif.h:

MPI_STATUS_F082F(F08_STATUS, F_STATUS, IERROR)
  TYPE(MPI_Status) :: F08_STATUS
  INTEGER :: F_STATUS(MPI_STATUS_SIZE), IERROR

The following procedure is not available with mpif.h:

MPI_STATUS_F2F08(F_STATUS, F08_STATUS, IERROR)
  INTEGER :: F_STATUS(MPI_STATUS_SIZE), IERROR
  TYPE(MPI_Status) :: F08_STATUS

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)
  INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)
  INTEGER R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)
  INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, DATATYPE, IERROR)
  INTEGER TYPECLASS, SIZE, DATATYPE, IERROR
```
A.5 Fortran Bindings with mpif.h or the mpi Module

A.5.14 Tools / Profiling Interface Fortran Bindings

MPI_PCONTROL(LEVEL)
 INTEGER LEVEL

A.5.15 Deprecated Fortran Bindings

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)
 INTEGER COMM, KEYVAL, IERROR

MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
 INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR
 LOGICAL FLAG

MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)
 INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

MPI_DUP_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT,
 FLAG, IERR)
 INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT,
 IERR
 LOGICAL FLAG

MPI_GET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR
 INTEGER(KIND=MPI_COUNT_KIND) COUNT

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)
 INTEGER INFO, VALUELEN, IERROR
 CHARACTER*(*) KEY, VALUE
 LOGICAL FLAG

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)
 INTEGER INFO, VALUELEN, IERROR
 CHARACTER*(*) KEY
 LOGICAL FLAG

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)
 EXTERNAL COPY_FN, DELETE_FN
 INTEGER KEYVAL, EXTRA_STATE, IERROR

MPI_KEYVAL_FREE(KEYVAL, IERROR)
 INTEGER KEYVAL, IERROR

MPI_NULL_COPY_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
 ATTRIBUTE_VAL_OUT, FLAG, IERR)
 INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT,
 IERR
 LOGICAL FLAG

MPI_NULL_DELETE_FN(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)
 INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR

MPI_SIZEOF(X, SIZE, IERROR)
<type> X
INTEGER SIZE, IERROR

MPI_STATUS_SET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR
 INTEGER(KIND=MPI_COUNT_KIND) COUNT

MPI_TYPE_GET_EXTENT_X(DATATYPE, LB, EXTENT, IERROR)
 INTEGER DATATYPE, IERROR
 INTEGER(KIND=MPI_COUNT_KIND) LB, EXTENT

MPI_TYPE_GET_TRUE_EXTENT_X(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
 INTEGER DATATYPE, IERROR
 INTEGER(KIND=MPI_COUNT_KIND) TRUE_LB, TRUE_EXTENT

MPI_TYPE_SIZE_X(DATATYPE, SIZE, IERROR)
 INTEGER DATATYPE, IERROR
 INTEGER(KIND=MPI_COUNT_KIND) SIZE
Appendix B
Change-Log

Annex B.1 summarizes changes from the previous version of the MPI standard to the version presented by this document. Only significant changes (i.e., clarifications and new features) that might either require implementation effort in the MPI libraries or change the understanding of MPI from a user’s perspective are presented. Editorial modifications, formatting, typo corrections and minor clarifications are not shown. If not otherwise noted, the section and page references refer to the locations of the change or new functionality in this version of the standard. Changes in Annexes B.2–B.6 were already introduced in the corresponding sections in previous versions of this standard.

B.1 Changes from Version 4.0 to Version 4.1

B.1.1 Fixes to Errata in Previous Versions of MPI

1. Sections 2.4.1, 3.5, 3.7, 3.8, 6.12, 7.1.2, 7.2.2, 7.4.2, 11.6.2, 14.2.5, 14.6.5, 19.1.17, 19.1.20, on pages 11, 55, 69, 94, 250, 305, 308, 321, 516, 644, 705, 822, 832 and MPI-4.0 Sections 2.4.1, 3.5, 3.7, 3.8, 6.12, 7.1.2, 7.2.2, 7.4.2, 11.6.2, 14.2.5, 14.6.5, 19.1.17, 19.1.20 on pages 13, 54, 60, 84, 250, 312, 314, 327, 518, 650, 713, 826, and 834.
 The term pending communication or I/O operation is defined as in the active operation state. If the phrase pending communication operation in MPI-1.1 to MPI-4.0 additionally includes decoupled MPI activities, then this has been added explicitly. If this phrase had a different meaning, it was replaced accordingly, see item 4 in this list and item 15 in Section B.1.2.

2. Sections 2.5.4 and A.1.1 on pages 19 and 849, and MPI-4.0 Sections 2.5.4 and A.1.1 on pages 20 and 857.
 The implementation of named MPI constants in C and Fortran and implied usage restrictions were clarified.

3. Section 2.5.4 on page 19, and MPI-4.0 Section 2.5.4 on page 20.
 Add MPI_MAX_PSET_NAME_LEN and MPI_MAX_STRINGTAG_LEN to list of named constants.

4. Sections 3.9, 11.2.2, 11.3.1 and 11.10.4 on pages 104, 488, 494 and 542 and MPI-4.0 Sections 3.9, 11.2.2, 11.3.1 and 11.10.4 on pages 94, 494, 501 and 546.
 The requirements for calling MPI_FINALIZE, MPI_SESSION_FINALIZE, and MPI_COMM_DISCONNECT and the outcome of MPI_COMM_DISCONNECT, especially for related inactive persistent request handles, were clarified.

5. Section 4.3 on page 121, and MPI-4.0 Section 4.3.3. on page 115. Example 4.4 on page 125, and MPI-4.0 Example 4.4 on page 115.
Fixed and simplified erroneous MPI-4.0 Example 4.4. The example could deadlock due to incorrect use of the flag variable in multiple MPI test procedure calls or thread concurrent access. The example was also simplified by removing unnecessary code and updated according to current best practice in OpenMP.

6. Section 4.3.1 on page 122, MPI-4 Section 4.3.1 on page 112.
Example 4.2 was corrected.

7. Section 5.1.9 on page 156 and MPI-4 Section 5.1.9 on page 150.
The relationship between MPI_TYPE_COMMIT and initialization/finalization of a session (or the World Model) with MPI_INIT, MPI_INIT_THREAD, MPI_FINALIZE, MPI_SESSION_INIT, and MPI_SESSION_FINALIZE was clarified.

8. Sections 7.4.2 on page 321 and 7.6.2 on page 353, and MPI-4.0 Section 7.4.2 on page 343 and Section 7.6.2 on page 360.
Use of the errhandler argument to MPI_COMM_CREATE_FROM_GROUP and MPI_INTERCOMM_CREATE_FROM_GROUPS is clarified. The error handler invoked when an error is encountered during invocation of these functions is also clarified.

9. Section 7.4.2 on page 321, MPI-3 Section 6.4.2 on page 237, MPI-3.1 Section 6.4.2 on page 237, and MPI-4 Section 7.4.2 on page 327.
The description of MPI_COMM_DUP now clarifies that error handlers are also copied in the output communicator produced when this procedure is called.

10. Section 8.5.5 on page 397 and MPI-4.0 Section 8.5.5 on page 403.
The unintended change in the specification of argument coords in MPI_CART_COORDS in MPI-4.0 is reverted to the original meaning in MPI-1.1 to MPI-3.1. It is clarified that the outcome of MPI_CART_GET and MPI_CART_COORDS is unspecified for the case that maxdims is less than ndims.

11. Section 9.3 on page 449 and MPI-4.0 Section 9.3 on page 458.
The fallback error-handler for the Sessions Model was clarified.

12. Section 9.5 on page 464 and MPI-4.0 Section 9.5 on page 473.
It was clarified that MPI_LASTUSED_CODE is only available in the World Model.

13. Sections 11.1 and 11.7 on pages 481 and 518, and MPI-4.0 Sections 11.1 and 11.7 on pages 487 and 521.
It was clarified that the usage of the Dynamic Process Model requires the World Model to be initialized.

14. Section 12.5.2 on page 593 and MPI-4 Section 12.5.2 on page 598.
The definition of MPI_WIN_TEST was clarified.

15. Section 12.5.4 on page 601, MPI-3 Section 11.5.4 on page 449, MPI-3.1 Section 11.5.4 on page 448, and MPI-4 Section 12.5.4 on page 605.
The description of MPI_WIN_SYNC was clarified to include its use for ordering load/store accesses to shared memory. A statement was added to highlight that a call to MPI_WIN_SYNC does not complete pending RMA operations and that a call to MPI_WIN_SYNC does not guarantee any progress of MPI operations.
B.1 Changes from Version 4.0 to Version 4.1

16. Section 13.3 on page 633, and MPI-4 Section 13.3 on page 640.
 Large count interface of MPI_STATUS_SET_ELEMENTS had been missing and was
 added.

17. Sections 15.3.6 and 15.3.7 on pages 729 and 736, MPI-3 Sections 14.3.6 and 14.3.7
 on pages 567 and 573, MPI-3.1 Sections 14.3.6 and 14.3.7 on pages 573 and 580, and
 MPI-4 Sections 15.3.6 and 15.3.7 on pages 738 and 744.
 The intent of handle arguments of the language independent definition of
 MPI_T_CVAR_WRITE, MPI_T_PVAR_HANDLE_ALLOC,
 MPI_T_PVAR_HANDLE_FREE, MPI_T_PVAR_START, MPI_T_PVAR_STOP,
 MPI_T_PVAR_WRITE, and MPI_T_PVAR_RESET were marked as INOUT in
 accordance with the special rule for handles described in Section 2.3.

B.1.2 Changes in MPI-4.1

1. Section 1.13 on page 6.
 Introduced the concept of side documents.

2. Sections 2.4.1 and 2.4.2 on pages 11 and 14.
 Added the definition of the enabled operation state.

3. Sections 2.5.5, 2.6.2, and 19.1 on pages 20, 23, and 787.
 The MPI standard now reflects that TS 29113 was superceded by Fortran 2018.

4. Sections 2.6.1, 5.1.5, 5.1.7, 5.1.8, 5.1.11, 13.3, and 16.4 on pages 22, 148, 153, 155,
 158, 633, and 777.
 MPI_TYPE_SIZE_X, MPI_TYPE_GET_EXTENT_X,
 MPI_TYPE_GET_TRUE_EXTENT_X, MPI_GET_ELEMENTS_X, and
 MPI_STATUS_SET_ELEMENTS_X were deprecated and may be removed in a future
 version of the MPI specification.

5. Sections 2.6.1, 7.2.4 and 9.1.2 on pages 22, 309 and 442.
 MPI_HOST has been deprecated, and a mention to host process has been removed.

 Deprecated the use of mpif.h.

7. Section 2.6.4 on page 25.
 Removed the functions MPI_WTIME, PMPI_WTIME, MPI_WTICK, and PMPI_WTICK
 from the list of functions that may be implemented as a macro.

8. Section 2.6.4 on page 25 and Section 19.3.4 on page 836.
 Removed the ability to implement MPI handle conversion functions as a macro.

9. Sections 2.9, 3.7.6, 12.5.2, and Example 12.13 on pages 27, 90, 593, and 617.
 The progress rules were clarified in general and for MPI_REQUEST_GET_STATUS and
 MPI_WIN_TEST. The terms strong and weak progress were introduced. An example
 showing restrictions on the use of MPI shared memory for synchronizing purposes was
 introduced.
10. Sections 3.2.5 and 13.3 on pages 39 and 633.
 Added procedures MPI_STATUS_GET_SOURCE, MPI_STATUS_GET_TAG, and
 MPI_STATUS_GET_ERROR to query MPI status fields and procedures
 MPI_STATUS_SET_SOURCE, MPI_STATUS_SET_TAG, and
 MPI_STATUS_SET_ERROR to set MPI status fields. Direct access to these fields
 remains available.

11. Section 3.6 on page 58.
 Automatic (unlimited) buffering is added, which can be enabled by using
 MPI_BUFFER_AUTOMATIC in any of the buffer attach procedures. New procedures
 MPI_COMM_ATTACH_BUFFER, MPI_SESSION_ATTACH_BUFFER,
 MPI_COMM_DETACH_BUFFER and MPI_SESSION_DETACH_BUFFER have been
 added. The buffers attached with the existing functions MPI_BUFFER_ATTACH and
 MPI_BUFFER_DETACH now only apply to communicators that have no buffer at-
 tached at the communicator or session level. New procedures
 MPI_COMM_FLUSH_BUFFER, MPI_SESSION_FLUSH_BUFFER, and
 MPI_BUFFER_FLUSH were added as a combination of detach and attach, as well as
 the corresponding nonblocking variants MPI_COMM_IFLUSH_BUFFER,
 MPI_SESSION_IFLUSH_BUFFER, and MPI_BUFFER_IFLUSH.

12. Subsection 3.7.6 on page 90
 Added new procedures MPI_REQUEST_GET_STATUS_ANY,
 MPI_REQUEST_GET_STATUS_SOME, and MPI_REQUEST_GET_STATUS_ALL to
 query the statuses of multiple requests without freeing them.

13. Section 5.1.13 and 6.9.4 on pages 162 and 229.
 Added procedure MPI_TYPE_GET_VALUE_INDEX to query predefined datatype han-
 dles for pairs of value and index types to be usable in conjunction with MPI_MINLOC
 and MPI_MAXLOC. Added combiner MPI_COMBINER_VALUE_INDEX for unnamed type
 handles returned by MPI_TYPE_GET_VALUE_INDEX.

14. Section 7.4.2 on page 321.
 MPI_COMM_TYPE_Resource_Guided was added as a new possible value for the
 split_type parameter of the MPI_COMM_SPLIT_TYPE procedure, as well as a new
 info key "mpi_pset_name".

15. Section 7.4.3 on page 339.
 The definition of MPI_COMM_FREE was clarified.

16. Section 7.4.4 on page 340.
 A new info key was added, namely "mpi_assert_strict_persistent_collective_ordering".

17. Sections 7.4.4, 11.2.1, 11.3, 11.4.3, 11.8.4, 12.2.1, and 14.2.8 on pages 340, 482, 493,
 508, 527, 548, and 646.
 Added the ability to request support for, query support of, and assert usage of memory
 allocation kinds via two new info keys, "mpi_memory_alloc_kinds" and
 "mpi_assert_memory_alloc_kinds".

18. Section 7.8 on page 376 was amended to allow MPI_COMM_NULL,
 MPI_DATATYPE_NULL, and MPI_WIN_NULL to be passed to MPI_COMM_GET_NAME,
 MPI_TYPE_GET_NAME and MPI_WIN_GET_NAME, respectively.
 Added new procedure MPI_GET_HW_RESOURCE_INFO.

20. Section 9.4 on page 460.
 Added new error class MPI_ERR_ERRHANDLER.

21. Section 9.5 on page 464.
 Add procedures MPI_REMOVE_ERROR_CLASS, MPI_REMOVE_ERROR_CODE, MPI_REMOVE_ERROR_STRING to complement the procedures adding error classes/-
 codes/strings.

22. Section 12.2 on page 548.
 Relaxed the constraints on the windows for which shared memory can be queried using
 MPI_WIN_SHARED_QUERY to allow windows with flavor MPI_WIN_FLAVOR_CREATE
 and MPI_WIN_FLAVOR_ALLOCATE.

23. Section 12.2.1 on page 548.
 Added new info key "mpi_accumulate_granularity" to specify a desired synchronization
 granularity of accumulate operations.

24. Section 12.2.5 on page 562.
 Implementations may avoid synchronization of processes in MPI_WIN_FREE if the
 "no_locks" info key is set to "true".

25. Section 12.5.2 on page 593.
 In Example 12.4, MPI_PUT has been removed from the list of procedures that may
 delay their return waiting for the call to MPI_WIN_POST to occur at the target.
 MPI RMA communication procedures are generally not intended to delay their return
 waiting for synchronization procedure calls to occur at the target.

26. Section 12.7 on page 606 and Section 12.8 on page 618.
 Clarified the use of MPI_WIN_SYNC for memory synchronization on shared memory.

27. Section 15.3.2 on page 724.
 The text specifying when entities of the MPI Tool Information Interface can be bound
 to objects during the object’s lifetime was clarified.

28. Section 15.3.8 on page 759 and Section 15.3.9 on page 767.
 Behavior specified when the count of dropped events or category changes overflow,
 respectively.

 The annex has been completed with the operation-related MPI procedures for one-
 sided communication and some other rarely used scenarios. It is now integrated into
 the MPI standard.

B.2 Changes from Version 3.1 to Version 4.0

B.2.1 Fixes to Errata in Previous Versions of MPI

1. Sections 8.6.1, 8.6.2 and 8.9 on pages 411, 415 and 436, and MPI-3.1 Sections 7.6.1,
 7.6.2 and 7.8 on pages 315, 318 and 329.
Appendix B Change-Log

1. Sections 19.3.5 on page 838, and MPI-3.1 Section 17.2.5 on page 657 line 11.
 Clarified that the MPI_STATUS_F2F08 and MPI_STATUS_F082F routines and the declaration for TYPE(MPI_Status) are not supposed to appear with mpif.h.

2. Sections 2.5.4, 19.3.5, and A.1.1 on pages 20, 838, and 852, and MPI-3.1 Sections 2.5.4, 17.2.5, and A.1.1 on pages 15, 656, and 669.
 Define the C constants MPI_F_STATUS_SIZE, MPI_F_SOURCE, MPI_F_TAG, and MPI_F_ERROR.

3. Section 19.3.5 on page 839, and MPI-3.1 Section 17.2.5 on page 658.
 Added missing const to IN parameters for MPI_STATUS_F2F08 and MPI_STATUS_F082F.

B.2.2 Changes in MPI-4.0

1. Sections 2.2, 18.2.2, and 19.1.5 on pages 9, 786, and 794.
 The limit for the maximum length of MPI identifiers was removed.

 The semantic terms were updated.

3. Sections 2.5.8 and 19.2 on pages 21 and 833, and throughout the entire document.
 New large count functions MPI{...}_c in C and through function overloading in the Fortran mpi_f08 module, (with the exception of the explicit Fortran procedures MPI_Op_create_c and MPI_Register_datarep_c) and the new large count callbacks MPI_User_function_c and MPI_Datarep_conversion_function_c together with the predefined function MPI_CONVERSION_FN_NULL_C were introduced to accomodate large buffers and/or datatypes.
 Clarifications were added to the behavior of INOUT/OUT parameters that cannot represent the value to be returned for the MPI_BUFFER_DETACH and MPI_FILE_GET_TYPE_EXTENT functions.
 A new error class MPI_ERR_VALUE_TOO_LARGE was introduced.

4. Sections 2.8, 9.3, 9.5, and 11.2.1 on pages 26, 449, 464, and 482.
 MPI calls that are not related to any objects are considered to be attached to the communicator MPI_COMM_SELF instead of MPI_COMM_WORLD. The definition of MPI_ERRORS_ARE_FATAL was clarified to cover all connected processes, and a new error handler, MPI_ERRORS_ABORT, was created to limit the scope of aborting.

5. Section 3.7 on page 69.
 The introduction of MPI nonblocking communication was changed to describe correctness and performance reasons for the use of nonblocking communication.

6. Section 3.7.2 on page 71.
 Addition of MPI_ISENDRECV and MPI_ISENDRECV_REPLACE.
7. Sections 3.7.3, 3.9, 6.13, 8.8, and 8.9 on pages 78, 104, 273, 429, and 436.
 Persistent collective communication MPI\{ALLGATHER\ldots\}_INIT including persistent collective neighborhood communication
 MPI_NEIGHBOR\{ALLGATHER\ldots\}_INIT was added to the standard.

8. Sections 3.8.4 and 16.3 on pages 102 and 774.
 Cancelling a send request by calling MPI_CANCEL has been deprecated and may be removed in a future version of the MPI specification.

9. Chapter 4 on page 113.
 A new chapter on partitioned communication with the new MPI procedures
 MPI\{PARRIVED\|READY\{\ldots\}\} and MPI\{PRECV\|PSEND\}_INIT was added.

10. Section 7.4.2 on page 321.
 MPI_COMM_TYPE_HW_UNGUIDED was added as a new possible value for the split_type parameter of the MPI_COMM_SPLIT_TYPE function.

11. Section 7.4.2 on page 321.
 MPI_COMM_TYPE_HW_GUIDED was added as a new possible value for the split_type parameter of the MPI_COMM_SPLIT_TYPE function, as well as a new info key "mpi_hw_resource_type". A specific value associated with this new info key is also defined: "mpi_shared_memory".

12. Section 7.4.2 on page 321.
 The functions MPI_COMM_DUP and MPI_COMM_IDUP were updated to no longer propagate info hints.
 This change may affect backward compatibility.

13. Section 7.4.2 on page 321.
 The MPI_COMM_IDUP_WITH_INFO function was added.

14. Sections 7.4.4, 12.2.7, and 14.2.8 on pages 340, 564, and 646.
 The definition of info hints was updated to allow applications to provide assertions regarding their usage of MPI objects and operations.

15. Section 7.4.4 on page 340.
 The new info hints "mpi_assert_no_any_tag", "mpi_assert_no_any_source", "mpi_assert_exact_length", and "mpi_assert_allow_overtaking" were added for use with communicators.

16. Sections 7.4.4, 12.2.7, and 14.2.8 on pages 340, 564, and 646.
 The semantics of the MPI_COMM_SET_INFO, MPI_COMM_GET_INFO, MPI_WIN_SET_INFO, MPI_WIN_GET_INFO, MPI_FILE_SET_INFO, and MPI_FILE_GET_INFO were clarified.

17. Section 8.5 on page 386.
 MPI_DIM_CREATE is now guaranteed to return MPI_SUCCESS if the number of dimensions passed to the routine is set to 0 and the number of nodes is set to 1.

18. Sections 9.2, 12.2.2, and 12.2.3 on pages 446, 552, and 554.
 Introduced alignment requirements for memory allocated through MPI_ALLOC_MEM, MPI_WIN_ALLOCATE, and MPI_WIN_ALLOCATE_SHARED and added a new info key "mpi_minimum_memory_alignment" to specify a desired alternative minimum alignment.
19. Sections 9.3 and 9.4 on pages 449 and 460.
 Clarified definition of errors to say that MPI should continue whenever possible and
 allow the user to recover from errors.

20. Section 9.4 on page 460.
 Added text to clarify what is implied about the status of MPI and user visible buffers
 when MPI functions return MPI_SUCCESS or other error codes.

21. Section 9.4 on page 462.
 The error class MPI_ERR_PROC_ABORTED has been added.

22. Section 10 on page 473.
 Added a new function MPI_INFO_GET_STRING that takes a buffer length argument
 for returning info value strings. This function returns the required buffer length for
 the requested string and guarantees null termination for C strings where buffer size
 is greater than 0.

23. Section 10 on page 473 and Section 16.3 on page 774.
 MPI_INFO_GET and MPI_INFO_GET_VALUELEN were deprecated.

24. Chapter 11, 3.2.3, 7.2.4, 7.3.2, 7.4.2, 7.6.2, 9.1.1, 9.1.2, 9.3, 9.3.4, 9.5, 11.6, 14.2.1,
 14.2.7, 14.7, 19.3.4, 19.3.6, and Annex A on pages 481, 35, 309, 312, 321, 353,
 The Sessions Model was added to the standard. New MPI procedures are
 MPI_SESSION_{INIT,FINALIZE}, MPI_SESSION_GET_{...},
 MPI_SESSION_{...}_ERRHANDLER, MPI_GROUP_FROM_SESSION_PSET,
 MPI_COMM_CREATE_FROM_GROUP,
 MPI_INTERCOMM_CREATE_FROM_GROUPS, and new conversion functions are
 MPI_SESSION_{C2F|F2C}. New declarations are MPI_Session in C and
 TYPE(MPI_Session) together with the related overloaded operators .EQ., .NE., == and
 /= in the Fortran mpi.f08 and mpi modules, and the callback function prototype
 MPI_Session_errhandler function. New constants are MPI_SESSION_NULL,
 MPI_ERR_SESSION, MPI_MAX_PSET_NAME_LEN, MPI_MAX_STRINGTAG_LEN,
 MPI_T_BIND_MPI_SESSION and the predefined info key "mpi_size".

25. Section 11.2.1 on page 482.
 A new function MPI_INFO_CREATE_ENV was added.

26. Sections 11.2.1 and 11.10.4 on pages 482 and 542.
 Clarified the semantic of failure and error reporting before (and during) MPI_INIT
 and after MPI_FINALIZE.

27. Section 11.8.4 on page 527.
 Added the "mpi_initial_errhandler" reserved info key with the reserved values
 "mpi_errors_abort", "mpi_errors_are_fatal", and "mpi_errors_return" to the launch keys in
 MPI_COMM_SPAWN, MPI_COMM_SPAWN_MULTIPLE, and mpiexec.

28. Section 12.5.3 on page 597.
 RMA passive target synchronization using locks can now be used portably in memory
 allocated via MPI_WIN_ALLOCATE_SHARED.
29. Section 13.3 on page 633.
 The mpi_f08 binding incorrectly had the dummy parameter flag in the MPI F08 binding for MPI_STATUS_SET_CANCELLED marked as INTENT(OUT). It has been fixed to be INTENT(IN).

30. Sections 15.3 and 15.3.8 on pages 722 and 748.
 A callback-driven event interface with the MPI_T_{SOURCE|EVENT}_{...} and MPI_T_CATEGORY_{GET|GET_NUM}_EVENTS routines, the declaration types MPI_T_cb_safety, MPI_T_event_{instance|registration}, MPI_T_source_order, and the callback function prototypes MPI_T_event_{cb|dropped_cb|free_cb}_function, were added to the MPI tool information interface.

31. Section 15.3.9 on page 767.
 The argument stamp (previously described as a virtual time stamp) from MPI_T_CATEGORY_CHANGED was renamed to update_number and its intended implementation and use was clarified.

32. Section 15.3.10, Table 15.7, and Section 16.3 on pages 768, 769, and 774.
 MPI_T_ERR_INVALID_ITEM is deprecated. MPI routines should return MPI_T_ERR_INVALID_INDEX instead of MPI_T_ERR_INVALID_ITEM.

33. Section 16.3 on page 777.
 MPI_SIZEOF was deprecated.

34. Section 19.1.5 on page 794.
 An exception was added for the specific Fortran names in the case of TS 29113 interface specifications in mpif.h for MPI_NEIGHBOR_ALLTOALLW_INIT, MPI_NEIGHBOR_ALLTOALLV_INIT, and MPI_NEIGHBOR_ALLGATHERV_INIT.

B.3 Changes from Version 3.0 to Version 3.1

B.3.1 Fixes to Errata in Previous Versions of MPI

 Within the mpi_f08 Fortran support method, BIND(C) was removed from all SUBROUTINE, FUNCTION, and ABSTRACT INTERFACE definitions.

2. Section 3.2.5 on page 39, and MPI-3.0 Section 3.2.5 on page 30.
 The three public fields MPI_SOURCE, MPI_TAG, and MPI_ERROR of the Fortran derived type TYPE(MPI_Status) must be of type INTEGER.

3. Section 3.8.2 on page 97, and MPI-3.0 Section 3.8.2 on page 67.
 The flag arguments of the Fortran interfaces of MPI_IMPROBE were originally incorrectly defined as INTEGER (instead as LOGICAL).

4. Section 7.4.2 on page 321, and MPI-3.0 Section 6.4.2 on page 237.
 In the mpi_f08 binding of MPI_COMM_IDUP, the output argument newcomm is declared as ASYNCHRONOUS.
5. Section 7.4.4 on page 340, and MPI-3.0 Section 6.4.4 on page 248.
 In the mpi_f08 binding of MPI_COMM_SET_INFO, the INTENT of comm is IN, and the
 optional output argument ierr was missing.

6. Section 8.6 on page 410, and MPI-3.0 Sections 7.6, on pages 314.
 In the case of virtual general graph topologies (created with MPI_CART_CREATE), the
 use of neighborhood collective communication is restricted to adjacency matrices with
 the number of edges between any two processes is defined to be the same for both
 processes (i.e., with a symmetric adjacency matrix).

7. Section 9.1.1 on page 441, and MPI-3.0 Section 8.1.1 on page 335.
 In the mpi_f08 binding of MPI_GET_LIBRARY_VERSION, a typo in the
 resultlen argument was corrected.

8. Sections 9.2 (MPI_ALLOC_MEM and MPI_ALLOC_MEM_CPTR),
 12.2.2 (MPI_WIN_ALLOCATE and MPI_WIN_ALLOCATE_CPTR),
 12.2.3 (MPI_WIN_ALLOCATE_SHARED and MPI_WIN_ALLOCATE_SHARED_CPTR),
 12.2.3 (MPI_WIN_ALLOCATE_QUERY and MPI_WIN_SHARED_QUERY_CPTR),
 15.2.1 and 15.2.6 (Profiling interface), and corresponding sections in MPI-3.0.
 The linker name concept was substituted by defining specific procedure names.

9. Section 12.2.1 on page 548, and MPI-3.0 Section 11.2.2 on page 407.
 The "same_size" info key can be used with all window flavors, and requires that all
 processes in the process group of the communicator have provided this info key with
 the same value.

10. Section 12.3.4 on page 573, and MPI-3.0 Section 11.3.4 on page 424.
 Origin buffer arguments to MPI_GET_ACCUMULATE are ignored when the
 MPI_NO_OP operation is used.

11. Section 12.3.4 on page 573, and MPI-3.0 Section 11.3.4 on page 424.
 Clarify the roles of origin, result, and target communication parameters in
 MPI_GET_ACCUMULATE.

12. Section 15.3 on page 722, and MPI-3.0 Section 14.3 on page 561
 New paragraph and advice to users clarifying intent of variable names in the tools
 information interface.

13. Section 15.3.3 on page 725, and MPI-3.0 Section 14.3.3 on page 563.
 New paragraph clarifying variable name equivalence in the tools information interface.

14. Sections 15.3.6, 15.3.7, and 15.3.9 on pages 729, 736, and 763, and
 MPI-3.0 Sections 14.3.6, 14.3.7, and 14.3.8 on pages 567, 573, and 584.
 In functions MPI_T_CVAR_GET_INFO, MPI_T_PVAR_GET_INFO, and
 MPI_T_CATEGORY_GET_INFO, clarification of parameters that must be identical for
 equivalent control variable / performance variable / category names across connected
 processes.

15. Section 15.3.7 on page 736, and MPI-3.0 Section 14.3.7 on page 573.
 Clarify return code of MPI_T_PVAR_{START,STOP,RESET} routines.
16. Section 15.3.7 on page 736, and MPI-3.0 Section 14.3.7 on page 579, line 7.
 Clarify the return code when bad handle is passed to an MPI_T_PVAR_* routine.
17. Section 19.1.4 on page 793, and MPI-3.0 Section 17.1.4 on page 603.
 The advice to implementors at the end of the section was rewritten and moved into
 the following section.
18. Section 19.1.5 on page 794, and MPI-3.0 Section 17.1.5 on page 605.
 The section was fully rewritten. The linker name concept was substituted by defining
 specific procedure names.
19. Section 19.1.6 on page 799, and MPI-3.0 Section 17.1.6 on page 611.
 The requirements on BIND(C) procedure interfaces were removed.
20. Annexes A.3, A.4, and A.5 on pages 884, 921, and 1009, and
 MPI-3.0 Annexes A.2, A.3, and A.4 on pages 685, 707, and 756.
 The predefined callback MPI_CONVERSION_FN_NULL was added to all three an-
 nexes.
 In the mpi_f08 binding of
 MPI_{COMM\|TYPE\|WIN\}_\{DUP\|NULL_COPY\|NULL_DELETE\}_FN, all INTENT(\ldots)
 information was removed.

B.3.2 Changes in MPI-3.1

1. Sections 2.6.4 and 5.1.5 on pages 25 and 148.
 The use of the intrinsic operators “+” and “-” for absolute addresses is substituted
 by MPI_AINT_ADD and MPI_AINT_DIFF. In C, they can be implemented as macros.
2. Sections 9.1.1, 11.2.1, and 11.6 on pages 441, 482, and 514.
 The routines MPI_INITIALIZED, MPI_FINALIZED, MPI_QUERY_THREAD,
 MPI_IS_THREAD_MAIN, MPI_GET_VERSION, and MPI_GET_LIBRARY_VERSION are
 callable from threads without restriction (in the sense of MPI_THREAD_MULTIPLE),
 irrespective of the actual level of thread support provided, in the case where the
 implementation supports threads.
3. Section 12.2.1 on page 548.
 The "same_disp_unit" info key was added for use in RMA window creation routines.
4. Sections 14.4.2 and 14.4.3 on pages 656 and 663.
 Added MPI_FILE_IREAD_AT_ALL, MPI_FILE_IWRITE_AT_ALL,
 MPI_FILE_IREAD_ALL, and MPI_FILE_IWRITE_ALL
5. Sections 15.3.6, 15.3.7, and 15.3.9 on pages 729, 736, and 763.
 Clarified that NULL parameters can be provided in
 MPI_T_{\{CVAR\|PVAR\|CATEGORY\}_GET_INFO routines.
6. Sections 15.3.6, 15.3.7, 15.3.9, and 15.3.10 on pages 729, 736, 763, and 768.
 New routines MPI_T_CVAR_GET_INDEX, MPI_T_PVAR_GET_INDEX,
 MPI_T_CATEGORY_GET_INDEX, were added to support retrieving indices of vari-
 ables and categories. The error codes MPI_T_ERR_INVALID and
 MPI_T_ERR_INVALID_NAME were added to indicate invalid uses of the interface.
B.4 Changes from Version 2.2 to Version 3.0

B.4.1 Fixes to Errata in Previous Versions of MPI

1. Sections 2.6.2 and 2.6.3 on pages 23 and 24, and MPI-2.2 Section 2.6.2 on page 17, lines 41–42, Section 2.6.3 on page 18, lines 15–16, and Section 2.6.4 on page 18, lines 40–41.
 This is an MPI-2 erratum: The scope for the reserved prefix \texttt{MPI} and the C++ namespace \texttt{MPI} is now any name as originally intended in \texttt{MPI-1}.

2. Sections 3.2.2, 6.9.2, 14.5.2 Table 14.2, and Annex A.1.1 on pages 33, 227, 695, and 849, and MPI-2.2 Sections 3.2.2, 5.9.2, 13.5.2 Table 13.2, 16.1.16 Table 16.1, and Annex A.1.1 on pages 27, 164, 433, 472, and 513.
 This is an MPI-2 erratum: New named predefined datatypes \texttt{MPI_CXX_BOOL}, \texttt{MPI_CXX_FLOAT_COMPLEX}, \texttt{MPI_CXX_DOUBLE_COMPLEX}, and \texttt{MPI_CXX_LONG_DOUBLE_COMPLEX} were added in C and Fortran corresponding to the C++ types \texttt{bool}, \texttt{std::complex<float>}, \texttt{std::complex<double>}, and \texttt{std::complex<long double>}. These datatypes also correspond to the deprecated C++ predefined datatypes \texttt{MPI::BOOL}, \texttt{MPI::COMPLEX}, \texttt{MPI::DOUBLE_COMPLEX}, and \texttt{MPI::LONG_DOUBLE_COMPLEX}, which were removed in MPI-3.0. The nonstandard C++ types \texttt{Complex<...>} were substituted by the standard types \texttt{std::complex<...>}

3. Sections 6.9.2 on pages 227 and MPI-2.2 Section 5.9.2, page 165, line 47.
 This is an MPI-2.2 erratum: \texttt{MPI_C_COMPLEX} was added to the “Complex” reduction group.

4. Section 8.5.5 on page 397, and MPI-2.2, Section 7.5.5 on page 257, C++ interface on page 264, line 3.
 This is an MPI-2.2 erratum: The argument \texttt{rank} was removed and \texttt{in/outdegree} are now defined as \texttt{int\& indegree} and \texttt{int\& outdegree} in the C++ interface of \texttt{MPI_DIST_GRAPH_NEIGHBORS_COUNT}.

5. Section 14.5.2, Table 14.2 on page 695, and MPI-2.2, Section 13.5.3, Table 13.2 on page 433.
 This was an MPI-2.2 erratum: The \texttt{MPI_C_BOOL} "external32" representation is corrected to a 1-byte size.

6. MPI-2.2 Section 16.1.16 on page 471, line 45.
 This is an MPI-2.2 erratum: The constant \texttt{MPI::LONG_LONG} should be \texttt{MPI::LONG_LONG}.

7. Annex A.1.1 on page 849, Table “Optional datatypes (Fortran),” and MPI-2.2, Annex A.1.1, Table on page 517, lines 34, and 37–41.
 This is an MPI-2.2 erratum: The C++ datatype handles \texttt{MPI::INTEGER16}, \texttt{MPI::REAL16}, \texttt{MPI::F_COMPLEX4}, \texttt{MPI::F_COMPLEX8}, \texttt{MPI::F_COMPLEX16}, \texttt{MPI::F_COMPLEX32} were added to the table.

B.4.2 Changes in MPI-3.0

1. Section 2.6.1 on page 22, Section 17.2 on page 784 and all other chapters.
 The C++ bindings were removed from the standard. See errata in Section B.4.1 on
page 1056 for the latest changes to the MPI C++ binding defined in MPI-2.2. This change may affect backward compatibility.

2. Section 2.6.1 on page 22, Section 16.1 on page 771 and Section 17.1 on page 783. The deprecated functions MPI_TYPE_HVECTOR, MPI_TYPE_HINDEXED, MPI_TYPE_STRUCT, MPI_ADDRESS, MPI_TYPE_EXTENT, MPI_TYPE_LB, MPI_TYPE_UB, MPI_ERRHANDLER_CREATE (and its callback function prototype MPI_Handler_function), MPI_ERRHANDLER_SET, MPI_ERRHANDLER_GET, the deprecated special datatype handles MPI_LB, MPI_UB, and the constants MPI_COMBINER_HINDEXED_INTEGER, MPI_COMBINER_HVECTOR_INTEGER, MPI_COMBINER_STRUCT_INTEGER were removed from the standard. This change may affect backward compatibility.

3. Section 2.3 on page 10. Clarified parameter usage for IN parameters. C bindings are now const-correct where backward compatibility is preserved.

4. Section 2.5.4 on page 19 and Section 8.5.4 on page 390. The recommended C implementation value for MPI_UNWEIGHTED changed from NULL to non-NULL. An additional weight array constant (MPI_WEIGHTS_EMPTY) was introduced.

5. Section 2.5.4 on page 19 and Section 9.1.1 on page 441. Added the new routine MPI_GET_LIBRARY_VERSION to query library specific versions, and the new constant MPI_MAX_LIBRARY_VERSION_STRING.

6. Sections 2.5.8, 3.2.2, 3.3, 6.9.2, on pages 21, 33, 35, 227, Sections 5.1, 5.1.7, 5.1.8, 5.1.11, 16.4 on pages 127, 153, 155, 158, 780, and Annex A.1.1 on page 849. New inquiry functions, MPI_TYPE_SIZE_X, MPI_TYPE_GET_EXTENT_X, MPI_TYPE_GET_TRUE_EXTENT_X, and MPI_GET_ELEMENTS_X, return their results as an MPI_Count value, which is a new type large enough to represent element counts in memory, file views, etc. A new function, MPI_STATUS_SET_ELEMENTS_X, modifies the opaque part of an MPI_Status object so that a call to MPI_GET_ELEMENTS_X returns the provided MPI_Count value (in Fortran, INTEGER(KIND=MPI_COUNT_KIND)). The corresponding predefined datatype is MPI_COUNT.

7. Chapter 3 on page 31 through Chapter 19 on page 787. In the C language bindings, the array-arguments’ interfaces were modified to consistently use [] instead of *.

Exceptions are MPI_INIT, which continues to use char ***argv (correct because of subtle rules regarding the use of the & operator with char *argv[]), and MPI_INIT_THREAD, which is changed to be consistent with MPI_INIT.

8. Sections 3.2.5, 5.1.5, 5.1.11, 5.2 on pages 39, 148, 158, 178. The functions MPI_GET_COUNT and MPI_GET_ELEMENTS were defined to set the count argument to MPI_UNDEFINED when that argument would overflow. The functions MPI_PACK_SIZE and MPI_TYPE_SIZE were defined to set the size argument...
1. to MPI_UNDEFINED when that argument would overflow. In all other MPI-2.2 routines, the type and semantics of the count arguments remain unchanged, i.e., int or INTEGER.

9. Section 3.2.6 on page 42, and Section 3.8 on page 94. MPI_STATUS_IGNORE can also be used in MPI_IPROBE, MPI_PROBE, MPI_IMPROBE, and MPI_MPROBE.

10. Section 3.8 on page 94 and Section 3.10 on page 111. The use of MPI_PROC_NULL in probe operations was clarified. A special predefined message MPI_MESSAGE_NO_PROC was defined for the use of matching probe (i.e., the new MPI_MPROBE and MPI_IMPROBE) with MPI_PROC_NULL.

11. Sections 3.8.2, 3.8.3, 19.3.4, A.1.1 on pages 97, 100, 836, 849. Like MPI_PROBE and MPI_IPROBE, the new MPI_MPROBE and MPI_IMPROBE operations allow incoming messages to be queried without actually receiving them, except that MPI_MPROBE and MPI_IMPROBE provide a mechanism to receive the specific message with the new routines MPI_MRECV and MPI_IMRECV regardless of other intervening probe or receive operations. The opaque object MPI_Message, the null handle MPI_MESSAGE_NULL, and the conversion functions MPI_Message_c2f and MPI_Message_f2c were defined.

12. Section 5.1.2 on page 129 and Section 5.1.13 on page 162. The routine MPI_TYPE_CREATE_HINDEXED_BLOCK and constant MPI_COMBINER_HINDEXED_BLOCK were added.

13. Chapter 6 on page 189 and Section 6.12 on page 250. Added nonblocking interfaces to all collective operations.

14. Sections 7.4.2, 7.4.4, 12.2.7, on pages 321, 340, 564. The new routines MPI_COMM_DUP_WITH_INFO, MPI_COMM_SET_INFO, MPI_COMM_GET_INFO, MPI_WIN_SET_INFO, and MPI_WIN_GET_INFO were added. The routine MPI_COMM_DUP must also duplicate info hints.

15. Section 7.4.2 on page 321. Added MPI_COMM_IDUP.

16. Section 7.4.2 on page 321. Added the new communicator construction routine MPI_COMM_CREATE_GROUP, which is invoked only by the processes in the group of the new communicator being constructed.

17. Section 7.4.2 on page 321. Added the MPI_COMM_SPLIT_TYPE routine and the communicator split type constant MPI_COMM_TYPE_SHARED.

18. Section 7.6.2 on page 353. In MPI-2.2, communication involved in an MPI_INTERCOMM_CREATE operation could interfere with point-to-point communication on the parent communicator with the same tag or MPI_ANY_TAG. This interference has been removed in MPI-3.0.
19. Section 7.8 on page 376.

Section 6.8 on page 238. The constant MPI_MAX_OBJECT_NAME also applies for type
and window names.

20. Section 8.5.8 on page 408.

MPI_CART_MAP can also be used for a zero-dimensional topologies.

21. Section 8.6 on page 410 and Section 8.7 on page 422.

The following neighborhood collective communication routines were added to sup-
port sparse communication on virtual topology grids: MPI_NEIGHBOR_ALLGATHER,
MPI_NEIGHBOR_ALLGATHERV, MPI_NEIGHBOR_ALLTOALL,
MPI_NEIGHBOR_ALLTOALLV, MPI_NEIGHBOR_ALLTOALLW and the nonblocking
variants MPI_INEIGHBOR_ALLGATHER, MPI_INEIGHBOR_ALLGATHERV,
MPI_INEIGHBOR_ALLTOALL, MPI_INEIGHBOR_ALLTOALLV, and
MPI_INEIGHBOR_ALLTOALLW. The displacement arguments in
MPI_NEIGHBOR_ALLTOALLW and MPI_INEIGHBOR_ALLTOALLW were defined as
address size integers. In MPI_DIST_GRAPH_NEIGHBORS, an ordering rule was added
for communicators created with MPI_DIST_GRAPH_CREATE_ADJACENT.

22. Section 11.2.1 on page 482 and Section 11.2.1 on page 485.

The use of MPI_INIT, MPI_INIT_THREAD and MPI_FINALIZE was clarified. After
MPI is initialized, the application can access information about the execution envi-
ronment by querying the new predefined info object MPI_INFO_ENV.

23. Section 11.2.1 on page 482.

Allow calls to MPI_T routines before MPI_INIT and after MPI_FINALIZE.

24. Chapter 12 on page 547.

Substantial revision of the entire One-sided chapter, with new routines for window
creation, additional synchronization methods in passive target communication, new
one-sided communication routines, a new memory model, and other changes.

25. Section 15.3 on page 722.

A new MPI Tool Information Interface was added.

The following changes are related to the Fortran language support.

The new mpi_f08 Fortran module was introduced.

27. Section 2.5.1 on page 17, and Sections 19.1.2, 19.1.3, 19.1.7 on pages 788, 791, and 803.

Handles to opaque objects were defined as named types within the mpi_f08 Fortran
module. The operators .EQ., .NE., ==, and /= were overloaded to allow the comparison
of these handles. The handle types and the overloaded operators are also available
through the mpi Fortran module.

28. Sections 2.5.4, 2.5.5 on pages 19, 20, Sections 19.1.1, 19.1.10, 19.1.11, 19.1.12, 19.1.13

on pages 787, 813, 814, 815, 818, and Sections 19.1.2, 19.1.3, 19.1.7 on pages 788, 791,
803.

Within the mpi_f08 Fortran module, choice buffers were defined as assumed-type
and assumed-rank according to Fortran 2008 with TS 29113 [47], and the compile-
time constant MPI_SUBARRAYS_SUPPORTED was set to .TRUE.. With this, Fortran
subscript triplets can be used in nonblocking MPI operations; vector subscripts are not
supported in nonblocking operations. If the compiler does not support this Fortran
TS 29113 feature, the constant is set to .FALSE.

29. Section 2.6.2 on page 23, Section 19.1.2 on page 788, and Section 19.1.7 on page 803.
The ierror dummy arguments are OPTIONAL within the mpi_f08 Fortran module.

30. Section 3.2.5 on page 39, Sections 19.1.2, 19.1.3, 19.1.7, on pages 788, 791, 803, and
Section 19.3.5 on page 838.
Within the mpi_f08 Fortran module, the status was defined as
TYPE(MPI_Status). Additionally, within both the mpi and the mpi_f08 modules, the
constants MPI_STATUS_SIZE, MPI_SOURCE, MPI_TAG, MPI_ERROR, and
TYPE(MPI_Status) are defined. New conversion routines were added:
MPI_STATUS_F2F08, MPI_STATUS_F082F, MPI_Status_c2f08, and
MPI_Status_f082c. In mpi.h, the new type MPI_F08_status, and the external variables
MPI_F08_STATUS_IGNORE and MPI_F08_STATUSUSES_IGNORE were added.

31. Section 3.6 on page 58.
In Fortran with the mpi module or mpi.f.h, the type of the buffer_addr argument of
MPI_BUFFER_DETACH is incorrectly defined and the argument is therefore unused.

32. Section 5.1 on page 127, Section 5.1.6 on page 151, and Section 19.1.15 on page 819.
The Fortran alignments of basic datatypes within Fortran derived types are implementa-
tion dependent; therefore it is recommended to use the BIND(C) attribute for
derived types in MPI communication buffers. If an array of structures (in C/C++)
or derived types (in Fortran) is to be used in MPI communication buffers, it is rec-
ommended that the user creates a portable datatype handle and additionally applies
MPI_TYPE_CREATE_RESIZED to this datatype handle.

33. Sections 5.1.10, 6.9.5, 6.9.7, 7.7.4, 7.8, 9.3.1, 9.3.2, 9.3.3, 16.1, 19.1.9 on pages 158,
235, 242, 370, 376, 452, 454, 456, 771, and 805. In some routines, the dummy argu-
ment names were changed because they were identical to the Fortran keywords
TYPE and FUNCTION. The new dummy argument names must be used because the
mpi and mpi_f08 modules guarantee keyword-based actual argument lists. The argu-
ment name type was changed in MPI_TYPE_DUP, the Fortran USER_FUNCTION of
MPI_OP_CREATE, MPI_TYPE_SET_ATTR, MPI_TYPE_GET_ATTR,
MPI_TYPE_DELETE_ATTR, MPI_TYPE_SET_NAME, MPI_TYPE_GET_NAME,
MPI_TYPE_MATCH_SIZE, the callback prototype definition
MPI_Type_delete_attr function, and the predefined callback function
MPI_TYPE_NULL_DELETE_FN; function was changed in MPI_OP_CREATE,
MPI_COMM_CREATE_ERRHANDLER, MPI_WIN_CREATE_ERRHANDLER,
MPI_FILE_CREATE_ERRHANDLER, and MPI_ERRHANDLER_CREATE. For consis-
tency reasons, INOUTBUF was changed to INOUTBUF in MPI_REDUCE_LOCAL, and
intracomm to newintracomm in MPI_INTERCOMM_MERGE.

34. Section 7.7.2 on page 361.
It was clarified that in Fortran, the flag values returned by a
comm_copy_attr_fn callback, including MPI_COMM_NULL_COPY_FN and
MPI_COMM_DUP_FN, are .FALSE. and .TRUE.; see MPI_COMM_CREATE_KEYVAL.
35. Section 9.2 on page 446.
 With the mpi and mpi_f08 Fortran modules, MPI_ALLOC_MEM now also supports
 TYPE(C_PTR) C-pointers instead of only returning an address-sized integer that may
 be usable together with a nonstandard Cray-pointer.

36. Section 19.1.15 on page 819, and Section 19.1.7 on page 803.
 Fortran SEQUENCE and BIND(C) derived application types can now be used as buffers
 in MPI operations.

37. Section 19.1.16 on page 821 to Section 19.1.19 on page 831, Section 19.1.7 on page 803,
 and Section 19.1.8 on page 804.
 The sections about Fortran optimization problems and their solutions were partially
 rewritten and new methods are added, e.g., the use of the ASYNCHRONOUS attribute. The
 constant MPI_ASYNC_PROTECTS_NONBLOCKING tells whether the semantics of the
 ASYNCHRONOUS attribute is extended to protect nonblocking operations. The Fortran
 routine MPI_F_SYNC_REG is added. MPI-3.0 compliance for an MPI library together
 with a Fortran compiler is defined in Section 19.1.7.

38. Section 19.1.2 on page 788.
 Within the mpi_f08 Fortran module, dummy arguments are now declared with
 INTENT=IN, OUT, or INOUT as defined in the mpi_f08 interfaces.

 The existing mpi Fortran module must implement compile-time argument checking.

40. Section 19.1.4 on page 793.
 The use of the mpif.h Fortran include file is now strongly discouraged.

41. Section A.1.1, Table Predefined functions on page 858, Section A.1.3 on page 866,
 and Section A.4.5 on page 963.
 Within the new mpi_f08 module, all callback prototype definitions are now defined
 with explicit interfaces PROCEDURE(MPI_...) that have the BIND(C) attribute; user-
 written callbacks must be modified if the mpi_f08 module is used.

42. Section A.1.3 on page 866.
 In some routines, the Fortran callback prototype names were changed from ..._FN to
 ..._FUNCTION to be consistent with the other language bindings.

B.5 Changes from Version 2.1 to Version 2.2

1. Section 2.5.4 on page 19.
 It is now guaranteed that predefined named constant handles (as other constants)
 can be used in initialization expressions or assignments, i.e., also before the call to
 MPI_INIT.

2. Section 2.6 on page 22, and Section 17.2 on page 784.
 The C++ language bindings have been deprecated and may be removed in a future
 version of the MPI specification.

3. Section 3.2.2 on page 33.
 MPI_CHAR for printable characters is now defined for C type char (instead of signed
Appendix B Change-Log

1. char). This change should not have any impact on applications nor on MPI libraries
(except some comment lines), because printable characters could and can be stored in
any of the C types char, signed char, and unsigned char, and MPI_CHAR is not allowed
for predefined reduction operations.

4. Section 3.2.2 on page 33.

MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_BOOL,
MPI_C_COMPLEX, MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, and
MPI_C_LONG_DOUBLE_COMPLEX are now valid predefined MPI datatypes.

5. Section 3.4 on page 50, Section 3.7.2 on page 71, Section 3.9 on page 104, and Sec-
tion 6.1 on page 189.

The read access restriction on the send buffer for blocking, non blocking and collective
API has been lifted. It is permitted to access for read the send buffer while the
operation is in progress.

6. Section 3.7 on page 69.

The Advice to users for IBSEND and IRSEND was slightly changed.

7. Section 3.7.3 on page 78.

The advice to free an active request was removed in the Advice to users for
MPI_REQUEST_FREE.

8. Section 3.7.6 on page 90.

MPI_REQUEST_GET_STATUS changed to permit inactive or null requests as input.

9. Section 6.8 on page 218.

“In place” option is added to MPI_ALLTOALL, MPI_ALLTOALLV, and
MPI_ALLTOALLW for intra-communicators.

10. Section 6.9.2 on page 227.

Predefined parameterized datatypes (e.g., returned by
MPI_TYPE_CREATE_F90_REAL) and optional named predefined datatypes (e.g.
MPI_REAL8) have been added to the list of valid datatypes in reduction operations.

MPI_(U)INT{8,16,32,64}_T are all considered C integer types for the purposes of the
predefined reduction operators. MPI_AINT and MPI_OFFSET are considered Fortran
integer types. MPI_C_BOOL is considered a Logical type.

MPI_C_COMPLEX, MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, and
MPI_C_LONG_DOUBLE_COMPLEX are considered Complex types.

The local routines MPI_REDUCE_LOCAL and MPI_OP_COMMUTATIVE have been
added.

13. Section 6.10.1 on page 243.

The collective function MPI_REDUCE_SCATTER_BLOCK is added to the MPI stan-
dard.

Added in place argument to MPI_EXSCAN.
15. Section 7.4.2 on page 321, and Section 7.6 on page 349.
Implementations that did not implement MPI COMM CREATE on inter-communicators will need to add that functionality. As the standard described the behavior of this operation on inter-communicators, it is believed that most implementations already provide this functionality. Note also that the C++ binding for both MPI COMM CREATE and MPI COMM SPLIT explicitly allow Intercomms.

16. Section 7.4.2 on page 321.
MPI COMM CREATE is extended to allow several disjoint subgroups as input if comm is an intra-communicator. If comm is an inter-communicator it was clarified that all processes in the same local group of comm must specify the same value for group.

17. Section 8.5.4 on page 390.
New functions for a scalable distributed graph topology interface has been added. In this section, the functions MPI DIST GRAPH CREATE ADJACENT and MPI DIST GRAPH CREATE, the constants MPI UNWEIGHTED, and the derived C++ class Distgraphcomm were added.

18. Section 8.5.5 on page 397.
For the scalable distributed graph topology interface, the functions MPI DIST GRAPH NEIGHBORS COUNT and MPI DIST GRAPH NEIGHBORS and the constant MPI DIST GRAPH were added.

19. Section 8.5.5 on page 397.
Remove ambiguity regarding duplicated neighbors with MPI GRAPH NEIGHBORS and MPI GRAPH NEIGHBORS COUNT.

20. Section 9.1.1 on page 441.
The subversion number changed from 1 to 2.

Changed function pointer typedef names MPI {Comm,File,Win} errhandler_fn to MPI {Comm,File,Win} errhandler_function. Deprecated old “_fn” names.

22. Section 11.2.4 on page 492.
Attribute deletion callbacks on MPI COMM SELF are now called in LIFO order. Implementors must now also register all implementation-internal attribute deletion callbacks on MPI COMM SELF before returning from MPI INIT/MPI INIT THREAD.

23. Section 12.3.4 on page 573.
The restriction added in MPI 2.1 that the operation MPI REPLACE in MPI ACCUMULATE can be used only with predefined datatypes has been removed. MPI REPLACE can now be used even with derived datatypes, as it was in MPI 2.0. Also, a clarification has been made that MPI REPLACE can be used only in MPI ACCUMULATE, not in collective operations that do reductions, such as MPI REDUCE and others.

24. Section 13.2 on page 627.
Add “*” to the query_fn, free_fn, and cancel_fn arguments to the C++ binding for MPI::Grequest::Start() for consistency with the rest of MPI functions that take function pointer arguments.
25. Section 14.5.2 on page 693, and Table 14.2 on page 695.

 MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_COMPLEX,
 MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX,
 MPI_C_LONG_DOUBLE_COMPLEX, and MPI_C_BOOL are added as predefined datatypes
 in the "external32" representation.

26. Section 19.3.7 on page 843.

 The description was modified that it only describes how an MPI implementation be-
 haves, but not how MPI stores attributes internally. The erroneous MPI-2.1 Example
 16.17 was replaced with three new examples 19.25, 19.26, and 19.27 on pages 843–845
 explicitly detailing cross-language attribute behavior. Implementations that matched
 the behavior of the old example will need to be updated.

27. Annex A.1.1 on page 849.

 Removed type MPI_Fint (compare MPI_Fint in Section A.1.2 on page 865).

 Added MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_BOOL,
 MPI_C_FLOAT_COMPLEX, MPI_C_COMPLEX, MPI_C_DOUBLE_COMPLEX, and
 MPI_C_LONG_DOUBLE_COMPLEX are added as predefined datatypes.

B.6 Changes from Version 2.0 to Version 2.1

1. Section 3.2.2 on page 33, and Annex A.1 on page 849.

 In addition, the MPI_LONG_LONG should be added as an optional type; it is a synonym
 for MPI_LONG_LONG_INT.

2. Section 3.2.2 on page 33, and Annex A.1 on page 849.

 MPI_LONG_LONG_INT, MPI_LONG_LONG (as synonym),
 MPI_UNSIGNED_LONG_LONG, MPI_SIGNED_CHAR, and MPI_WCHAR are moved from
 optional to official and they are therefore defined for all three language bindings.

3. Section 3.2.5 on page 39.

 MPI_GET_COUNT with zero-length datatypes: The value returned as the
 count argument of MPI_GET_COUNT for a datatype of length zero where zero bytes
 have been transferred is zero. If the number of bytes transferred is greater than zero,
 MPI_UNDEFINED is returned.

4. Section 5.1 on page 127.

 General rule about derived datatypes: Most datatype constructors have replication
 count or block length arguments. Allowed values are nonnegative integers. If the
 value is zero, no elements are generated in the type map and there is no effect on
 datatype bounds or extent.

5. Section 5.3 on page 185.

 MPI_BYTE should be used to send and receive data that is packed using
 MPI_PACK_EXTERNAL.

6. Section 6.9.6 on page 240.

 If comm is an inter-communicator in MPI_ALLREDUCE, then both groups should
provide count and datatype arguments that specify the same type signature (i.e., it is not necessary that both groups provide the same count value).

7. Section 7.3.1 on page 310.
 MPI_GROUP_TRANSLATE_RANKS and MPI_PROC_NULL: MPI_PROC_NULL is a valid rank for input to MPI_GROUP_TRANSLATE_RANKS, which returns MPI_PROC_NULL as the translated rank.

8. Section 7.7 on page 359.
 About the attribute caching functions:

 Advice to implementors. High-quality implementations should raise an error when a keyval that was created by a call to MPI_XXX_CREATE_KEYVAL is used with an object of the wrong type with a call to MPI_YYY_GET_ATTR, MPI_YYY_SET_ATTR, MPI_YYY_DELETE_ATTR, or MPI_YYY_FREE_KEYVAL. To do so, it is necessary to maintain, with each keyval, information on the type of the associated user function. (*End of advice to implementors.*)

9. Section 7.8 on page 376.
 In MPI_COMM_GET_NAME: In C, a null character is additionally stored at name[resultlen]. resultlen cannot be larger then MPI_MAX_OBJECT_NAME-1. In Fortran, name is padded on the right with blank characters. resultlen cannot be larger then MPI_MAX_OBJECT_NAME.

10. Section 8.4 on page 385.
 About MPI_GRAPH_CREATE and MPI_CART_CREATE: All input arguments must have identical values on all processes of the group of comm_old.

11. Section 8.5.1 on page 386.
 In MPI_CART_CREATE: If ndims is zero then a zero-dimensional Cartesian topology is created. The call is erroneous if it specifies a grid that is larger than the group size or if ndims is negative.

12. Section 8.5.3 on page 388.
 In MPI_GRAPH_CREATE: If the graph is empty, i.e., nnodes = 0, then MPI_COMM_NULL is returned in all processes.

13. Section 8.5.3 on page 388.
 In MPI_GRAPH_CREATE: A single process is allowed to be defined multiple times in the list of neighbors of a process (i.e., there may be multiple edges between two processes). A process is also allowed to be a neighbor to itself (i.e., a self loop in the graph). The adjacency matrix is allowed to be nonsymmetric.

 Advice to users. Performance implications of using multiple edges or a nonsymmetric adjacency matrix are not defined. The definition of a node-neighbor edge does not imply a direction of the communication. (*End of advice to users.*)

14. Section 8.5.5 on page 397.
 In MPI_CARTDIM_GET and MPI_CART_GET: If comm is associated with a zero-dimensional Cartesian topology, MPI_CARTDIM_GET returns ndims=0 and MPI_CART_GET will keep all output arguments unchanged.
15. Section 8.5.5 on page 397.
 In `MPI_CART_RANK`: If `comm` is associated with a zero-dimensional Cartesian topology, `coord` is not significant and 0 is returned in `rank`.

16. Section 8.5.5 on page 397.
 In `MPI_CART_COORDS`: If `comm` is associated with a zero-dimensional Cartesian topology, `coords` will be unchanged.

17. Section 8.5.6 on page 405.
 In `MPI_CART_SHIFT`: It is erroneous to call `MPI_CART_SHIFT` with a direction that is either negative or greater than or equal to the number of dimensions in the Cartesian communicator. This implies that it is erroneous to call `MPI_CART_SHIFT` with a `comm` that is associated with a zero-dimensional Cartesian topology.

18. Section 8.5.7 on page 407.
 In `MPI_CART_SUB`: If all entries in `remain_dims` are false or `comm` is already associated with a zero-dimensional Cartesian topology then `newcomm` is associated with a zero-dimensional Cartesian topology.

18.1. Section 9.1.1 on page 441.
 The subversion number changed from 0 to 1.

19. Section 9.1.2 on page 442.
 In `MPI_GET_PROCESSOR_NAME`: In C, a null character is additionally stored at `name[resultlen]`. `resultlen` cannot be larger than `MPI_MAX_PROCESSOR_NAME`. In Fortran, `name` is padded on the right with blank characters. `resultlen` cannot be larger than `MPI_MAX_PROCESSOR_NAME`.

20. Section 9.3 on page 449.
 `MPI_{COMM,WIN,FILE}_GET_ERRHANDLER` behave as if a new error handler object is created. That is, once the error handler is no longer needed, `MPI_ERRHANDLER_FREE` should be called with the error handler returned from `MPI_ERRHANDLER_GET` or `MPI_{COMM,WIN,FILE}_GET_ERRHANDLER` to mark the error handler for deallocation. This provides behavior similar to that of `MPI_COMM_GROUP` and `MPI_GROUP_FREE`.

21. Section 11.2.1 on page 482, see explanations to `MPI_FINALIZE`.
 `MPI_FINALIZE` is collective over all connected processes. If no processes were spawned, accepted or connected then this means over `MPI_COMM_WORLD`; otherwise it is collective over the union of all processes that have been and continue to be connected, as explained in Section 11.10.4 on page 542.

22. Section 11.2.1 on page 482.
 About `MPI_ABORT`:

 Advice to users. Whether the errorcode is returned from the executable or from the MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the MPI library but not mandatory. (*End of advice to users.*)

 Advice to implementors. Where possible, a high-quality implementation will try to return the errorcode from the MPI process startup mechanism (e.g. mpiexec or singleton init). (*End of advice to implementors.*)
23. Section 10 on page 473.
An implementation must support info objects as caches for arbitrary (key, value) pairs, regardless of whether it recognizes the key. Each function that takes hints in the form of an MPI_Info must be prepared to ignore any key it does not recognize. This description of info objects does not attempt to define how a particular function should react if it recognizes a key but not the associated value. MPI_INFO_GET_NKEYS, MPI_INFO_GET_NTHKEY, MPI_INFO_GET_VALUELEN, and MPI_INFO_GET must retain all (key,value) pairs so that layered functionality can also use the Info object.

24. Section 12.3 on page 566.
MPI_PROC_NULL is a valid target rank in the MPI RMA calls MPI_ACCUMULATE, MPI_GET, and MPI_PUT. The effect is the same as for MPI_PROC_NULL in MPI point-to-point communication. See also item 25 in this list.

25. Section 12.3 on page 566.
After any RMA operation with rank MPI_PROC_NULL, it is still necessary to finish the RMA epoch with the synchronization method that started the epoch. See also item 24 in this list.

26. Section 12.3.4 on page 573.
MPI_REPLACE in MPI_ACCUMULATE, like the other predefined operations, is defined only for the predefined MPI datatypes.

27. Section 14.2.8 on page 646.
About MPI_FILE_SET_VIEW and MPI_FILE_SET_INFO: When an info object that specifies a subset of valid hints is passed to MPI_FILE_SET_VIEW or MPI_FILE_SET_INFO, there will be no effect on previously set or defaulted hints that the info does not specify.

28. Section 14.2.8 on page 646.
About MPI_FILE_GET_INFO: If no hint exists for the file associated with fh, a handle to a newly created info object is returned that contains no key/value pair.

29. Section 14.3 on page 650.
If a file does not have the mode MPI_MODE_SEQUENTIAL, then MPI_DISPLACEMENT_CURRENT is invalid as disp in MPI_FILE_SET_VIEW.

30. Section 14.5.2 on page 693.
The bias of 16 byte doubles was defined with 10383. The correct value is 16383.

31. MPI-2.2, Section 16.1.4 (Section was removed in MPI-3.0).
In the example in this section, the buffer should be declared as const void* buf.

32. Section 19.1.9 on page 805.
About MPI_TYPE_CREATE_F90_XXX:
Advice to implementors. An application may often repeat a call to MPI_TYPE_CREATE_F90_XXX with the same combination of (XXX,p,r). The application is not allowed to free the returned predefined, unnamed datatype handles. To prevent the creation of a potentially huge amount of handles, the MPI implementation should return the same datatype handle for the same (REAL/COMPLEX/INTEGER,p,r) combination. Checking for the combination (
p,r) in the preceding call to MPI_TYPE_CREATE_F90_XXX and using a hash-
table to find formerly generated handles should limit the overhead of finding
a previously generated datatype with same combination of (XXX,p,r). (End of
advice to implementors.)

33. Section A.1.1 on page 849.
MPI_BOTTOM is defined as void * const MPI::BOTTOM.
Bibliography

[41] Torsten Hoefler and Marc Snir. Writing parallel libraries with MPI — common practice, issues, and extensions. In Cotronis et al. [16], pages 345–355. Citation on page 324.

[57] *4.4BSD Programmer’s Supplementary Documents (PSD)*. O’Reilly and Associates, 1994. Citation on page 545.

General Index

This index lists mainly terms of the MPI specification. The underlined page numbers refer to the definitions or parts of the definition of the terms. Bold face page numbers are used for entries appearing in a section or subsection title.

!(_c), 833
_c, 21, 22, 235, 833

a priori enabled, 13
absolute addresses, 21, 22, 235, 823
access epoch, 588
action
 in function names, 10
active, 79, 80, 81, 103, 109, 110, 381
 operation state, 12, 1045
active target communication, 587
addresses, 161
 absolute, 21, 22, 148, 823
 correct use, 161
 relative displacement, 21, 148
alignment, 447, 554, 556, 1051
all-reduce, 240
 nonblocking, 268
 persistent, 291
all-to-all, 218
 nonblocking, 262
 persistent, 285
array arguments, 19
assertions, 603
ASYNCHRONOUS
 Fortran attribute, 825
attribute, 306, 359, 843
caching, 306
automatic buffering
 buffer allocation, 58
barrier synchronization, 196
 nonblocking, 253
 persistent, 275
basic datatypes, 33
 additional host language, 34
 byte, 33
 C, 34
 C and Fortran, 35
 C++, 35
 Fortran, 33
 packed, 33
blocked
 procedure invocation, 27
 blocking, 15, 50, 54, 99, 653
 I/O, 654
 point-to-point, 32
 blocking I/O, 653
 blocking operation, 12
 blocking procedure, 15
 bounds of datatypes, 153
 broadcast, 196
 nonblocking, 253
 persistent, 276
 buffered mode send, 50, 54, 103, 106
 buffer allocation, 58
 nonblocking, 70, 71, 72
C
 language binding, 24
caching, 305, 306, 359
callback functions
 language interoperability, 842
 prototype definitions, 866
deprecated, 872
cancel, 24, 80, 94, 95, 102, 103, 104, 490,
 774, 1050, 1051
cancelled, 94, 95, 102–104
canonical pack and unpack, 185
Cartesian
topology, 385, 386
Chameleon, 2
change-log, 1045
Chimp, 2
choice, 20
class
 in function names, 10
clock synchronization, 444
collective, 15, 653
 split, 701
collective communication, 189
 correctness, 297
 file data access operations, 677
 neighborhood, 410
 nonblocking, 250
 progress, 251, 252, 301, 303
collective operation, 13
collective procedure, 15
commit, 156
COMMON blocks, 828
communication, 547
 collective, 189
 modes, 50
 one-sided, 547
 overlap with communication, 58, 69
 overlap with computation, 58, 69
 partitioned point-to-point, 113
 pending, 12, 18, 56, 70, 71, 83, 89, 94, 102,
 252, 306–308, 322, 516, 826, 832, 1045
 point-to-point, 31
RMA, 547
typed, untyped, and packed, 46
communication modes, 50
communicator, 36, 305, 306
 hidden, 192, 300, 596
complete operation, 11
complete operation state, 12
completing, 15
completing procedure, 15
completion, 50, 69, 78, 79, 80, 83, 104
 multiple, 83, 84–88, 91, 92
completion stage, 11
concurrent, 701, 702
conflict, 701
connected, 542
C integer constant expressions, 20
context, 305, 306, 308
control variable
tool information interface, 729
conversion, 48
 representation, 49
 type, 49
coordination, 653
counts, 21
Cray-pointers, 448
create
 in function names, 9
data, 33
data conversion, 48
datatype, 16
 derived, 16
 equivalent, 17
 named, 16
 portable, 16
 predefined, 16
 unnamed, 16
datatypes, 127, 840
deadlock, 28, 617
deadlock avoidance
cyclic shift, 43
lack of buffer space, 58
nonblocking communication, 60, 83
send modes, 58
decoupled MPI activities, 18, 27, 56, 306–308,
 322, 544, 1045
default file error, 711
delete
 in function names, 9
deprecated interfaces, 22, 771
derived datatype, 16, 127, 819
disconnected, 543
placement, 637, 651
distributed graph
topology, 385, 390
Dynamic Process Model, 481
dynamically attached memory, 559
elementary datatype, 637, 651
empty, 79, 80, 84
enabled operation state, 13, 16, 79, 1047
 a priori, 13
end of file, 638
envelope, 31, 32, 35, 35, 36, 38, 40, 49, 50, 68
data representation conversion, 49
environmental inquiries, 442
equivalent datatypes, 17
erroneous program, 38
freeing active request, 81
invalid matched receive, 101, 102
lack of buffer space, 56
ready mode before receive, 51
type matching, 46
error classes, 401
error handling, 26, 449
default file error handler, 639, 643, 711
error codes and classes, 460, 464
error handlers, 452, 464, 842
fatal after request free, 82
finalize, 26, 490, 491, 543
I/O, 711, 712
initial error handler, 26, 450, 451, 483,
 490, 527
multiple completions, 86, 88
one-sided communication, 605
process failure, 26, 543
program error, 26
resource error, 26
startup, 26, 483, 527
transmission failure, 26
establishing communication, 530
etype, 637, 651
event
tool information interface, 748
event types, 748
events, 736, 748
examples, 30
exclusive lock, 589, 597, 610, 611
exclusive scan
 nonblocking, 272
 persistent, 296
explicit offsets, 654, 656
exposure epoch, 588
extent of datatypes, 128, 152, 153
 true extent, 155
external32
 file data representation, 691
extra-state, 846
fairness
 not guaranteed, 56
 requirement, 89, 93
file, 637
 data access, 653
 collective operations, 677
 explicit offsets, 656
 individual file pointers, 663
 seek, 679
 shared file pointers, 673
 split collective, 681
 end of file, 638
 filetype, 637
 handle, 639
interoperability, 689
manipulation, 639
nonblocking collective
 progress, 705
offset, 21, 638
pointer, 639
progress, 704
size, 638
view, 637, 638, 650
file access
 concurrent, 701
 conflict, 701
 overlap, 701
file size, 706
finalize, 488
finished, 491
Fortran
 language binding, 23, 787
Fortran 2018, 20, 23, 787–792, 794, 796, 797, 800, 831, 1047
Fortran support, 787
freed operation state, 12
freeing procedure, 15
freeing stage, 11, 81, 90
gather, 198
 nonblocking, 255
 persistent, 277
gather-to-all, 214
 nonblocking, 260
 persistent, 282
general datatype, 127
generalized requests, 627, 627
 progress, 627
get
 in function names, 9
graph
 topology, 385, 388
group, 36, 305, 306, 308, 351
group objects, 308
 guarantee progress, 28
handles, 17, 836
hardware resource type, 333, 334, 336
host rank, 778
I/O
 blocking, 653
 nonblocking, 653
immediate, 15, 69, 71, 85, 88, 89, 92, 95, 102
inactive, 78, 79–81, 84, 85, 103, 109, 110
 operation state, 12
inclusive scan, 247
 nonblocking, 271
 persistent, 294
incomplete, 15, 71, 99, 100
incomplete procedure, 15
independent, 543
individual file pointers, 654, 663
info object, 473
 file info, 646
 keys, 873
 values, 874
initial error handler, 26
initialization, 98, 104, 109
initialization procedure, 14
initialization stage, 11
initialized operation state, 12
initiation, 11, 69, 71, 78, 82, 96
initiation procedure, 15
inter-communication, 307, 350
inter-communicator, 192, 307, 350
 collective operations, 193, 194
 point-to-point, 36, 38
interlanguage communication, 847
internal
 file data representation, 690
interoperability, 689
intra-communication, 307, 349
intra-communicator, 192, 306, 349
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>collective operations, 192</td>
</tr>
<tr>
<td>2</td>
<td>intra-communicator objects, 309</td>
</tr>
<tr>
<td>3</td>
<td>I/O, 637</td>
</tr>
<tr>
<td>4</td>
<td>IO rank, 443</td>
</tr>
<tr>
<td>5</td>
<td>is in function names, 9</td>
</tr>
<tr>
<td>6</td>
<td>language binding, 22, 787</td>
</tr>
<tr>
<td>7</td>
<td>interoperability, 834</td>
</tr>
<tr>
<td>8</td>
<td>summary, 849</td>
</tr>
<tr>
<td>9</td>
<td>large count, 22, 833</td>
</tr>
<tr>
<td>10</td>
<td>displacement, 833</td>
</tr>
<tr>
<td>11</td>
<td>large count, 22</td>
</tr>
<tr>
<td>12</td>
<td>lb_marker, 142, 143, 146, 152, 156</td>
</tr>
<tr>
<td>13</td>
<td>erased, 155</td>
</tr>
<tr>
<td>14</td>
<td>local, 14, 50, 69, 70, 79–81, 87, 89, 95, 98, 102, 104, 109, 497, 595</td>
</tr>
<tr>
<td>15</td>
<td>local group, 322</td>
</tr>
<tr>
<td>16</td>
<td>local procedure, 14, 27</td>
</tr>
<tr>
<td>17</td>
<td>call, under constraint, 16</td>
</tr>
<tr>
<td>18</td>
<td>logically concurrent, 55</td>
</tr>
<tr>
<td>19</td>
<td>loosely synchronous model, 380</td>
</tr>
<tr>
<td>20</td>
<td>lower bound, 152</td>
</tr>
<tr>
<td>21</td>
<td>lower-bound markers, 151</td>
</tr>
<tr>
<td>22</td>
<td>macros, 25</td>
</tr>
<tr>
<td>23</td>
<td>main thread, 516</td>
</tr>
<tr>
<td>24</td>
<td>matched probe</td>
</tr>
<tr>
<td>25</td>
<td>progress, 99</td>
</tr>
<tr>
<td>26</td>
<td>matched receive, 98, 100, 100</td>
</tr>
<tr>
<td>27</td>
<td>matching type, 159, 705</td>
</tr>
<tr>
<td>28</td>
<td>matching probe, 96, 97, 98–100</td>
</tr>
<tr>
<td>29</td>
<td>matching receive, 99</td>
</tr>
<tr>
<td>30</td>
<td>matching rules</td>
</tr>
<tr>
<td>31</td>
<td>blocking with nonblocking, 70</td>
</tr>
<tr>
<td>32</td>
<td>cancel, 103</td>
</tr>
<tr>
<td>33</td>
<td>envelope, 38</td>
</tr>
<tr>
<td>34</td>
<td>null process, 111</td>
</tr>
<tr>
<td>35</td>
<td>ordering, 55</td>
</tr>
<tr>
<td>36</td>
<td>persistent collective, 274</td>
</tr>
<tr>
<td>37</td>
<td>persistent point-to-point, 110</td>
</tr>
<tr>
<td>38</td>
<td>probe, 95, 97</td>
</tr>
<tr>
<td>39</td>
<td>send modes, 54</td>
</tr>
<tr>
<td>40</td>
<td>type, 46, 46</td>
</tr>
<tr>
<td>41</td>
<td>wildcard, 38</td>
</tr>
<tr>
<td>42</td>
<td>memory alignment, 447, 554, 556, 1051</td>
</tr>
<tr>
<td>43</td>
<td>allocation, 446, 552, 554</td>
</tr>
<tr>
<td>44</td>
<td>system, 17</td>
</tr>
<tr>
<td>45</td>
<td>memory model, 547, 586</td>
</tr>
<tr>
<td>46</td>
<td>separate, 547, 558</td>
</tr>
<tr>
<td>47</td>
<td>unified, 547, 558</td>
</tr>
<tr>
<td>48</td>
<td>message, 31, 97</td>
</tr>
<tr>
<td>49</td>
<td>buffer, 52</td>
</tr>
<tr>
<td>50</td>
<td>cancel, 80, 94, 95, 102–104</td>
</tr>
<tr>
<td>51</td>
<td>data, 31, 32, 33, 50, 52</td>
</tr>
<tr>
<td>52</td>
<td>envelope, 31, 32, 35, 37, 36, 38, 40, 49, 50, 68</td>
</tr>
<tr>
<td>53</td>
<td>handle, 97, 98, 101, 102</td>
</tr>
<tr>
<td>54</td>
<td>intermediate buffering, 46, 50</td>
</tr>
<tr>
<td>55</td>
<td>invalid handle, 99</td>
</tr>
<tr>
<td>56</td>
<td>predefined handle, 99</td>
</tr>
<tr>
<td>57</td>
<td>wildcard, 38</td>
</tr>
<tr>
<td>58</td>
<td>message handle, 97, 98, 101, 102</td>
</tr>
<tr>
<td>59</td>
<td>invalid, 99</td>
</tr>
<tr>
<td>60</td>
<td>predefined, 99</td>
</tr>
<tr>
<td>61</td>
<td>modes, 50</td>
</tr>
<tr>
<td>62</td>
<td>buffered, 50, 54</td>
</tr>
<tr>
<td>63</td>
<td>ready, 51, 54</td>
</tr>
<tr>
<td>64</td>
<td>standard, 50, 54</td>
</tr>
<tr>
<td>65</td>
<td>synchronous, 51, 54</td>
</tr>
<tr>
<td>66</td>
<td>module variables, 828</td>
</tr>
<tr>
<td>67</td>
<td>MPI datatype, 16</td>
</tr>
<tr>
<td>68</td>
<td>mpi module</td>
</tr>
<tr>
<td>69</td>
<td>Fortran support, 791</td>
</tr>
<tr>
<td>70</td>
<td>MPI operation, 11</td>
</tr>
<tr>
<td>71</td>
<td>MPI procedure, 14</td>
</tr>
<tr>
<td>72</td>
<td>MPI process initialization, 481</td>
</tr>
<tr>
<td>73</td>
<td>Dynamic Process Model, 481</td>
</tr>
<tr>
<td>74</td>
<td>Sessions Model, 309, 312, 443, 481, 516, 640</td>
</tr>
<tr>
<td>75</td>
<td>World Model, 309, 312, 442, 481, 516, 639, 711</td>
</tr>
<tr>
<td>76</td>
<td>MPI Session handle, 493</td>
</tr>
<tr>
<td>77</td>
<td>mpi_f08 module</td>
</tr>
<tr>
<td>78</td>
<td>Fortran support, 788</td>
</tr>
<tr>
<td>79</td>
<td>MPI_SIZEOF and storage_size(), 24, 777, 811–813</td>
</tr>
<tr>
<td>80</td>
<td>mpiexec, 484, 508, 512</td>
</tr>
<tr>
<td>81</td>
<td>mpi.h include file</td>
</tr>
<tr>
<td>82</td>
<td>Fortran support, 793</td>
</tr>
<tr>
<td>83</td>
<td>mpirun, 512</td>
</tr>
<tr>
<td>84</td>
<td>multiple completions, 83, 84–88, 91, 92</td>
</tr>
<tr>
<td>85</td>
<td>error handling, 86, 88</td>
</tr>
<tr>
<td>86</td>
<td>named datatype, 16</td>
</tr>
<tr>
<td>87</td>
<td>names, 530</td>
</tr>
<tr>
<td>88</td>
<td>name publishing, 535</td>
</tr>
<tr>
<td>89</td>
<td>naming objects, 376</td>
</tr>
<tr>
<td>90</td>
<td>native</td>
</tr>
<tr>
<td>91</td>
<td>file data representation, 690</td>
</tr>
<tr>
<td>92</td>
<td>neighborhood collective communication, 410</td>
</tr>
<tr>
<td>93</td>
<td>nonblocking, 422</td>
</tr>
<tr>
<td>94</td>
<td>periodic and dims=1 or 2, 1049</td>
</tr>
<tr>
<td>95</td>
<td>nonblocking, 15, 69, 81, 98, 102, 566, 653</td>
</tr>
</tbody>
</table>
communication, 69
completion, 78, 80
Fortran problems, 822
I/O, 654
initiation, 71
persistent
partitioned completion, 120
request objects, 70
nonblocking I/O, 653
nonblocking operation, 12
nonblocking procedure, 15
noncollective operation, 13
noncollective procedure, 16
nonlocal, 14, 50, 51, 70, 79, 96, 99, 100
nonlocal procedure, 14, 27
call, under constraint, 16
nonovertaking, 55, 82
null handle, 78, 84–86, 92
null handles, 87, 91, 92
null processes, 111
offset, 21, 638
one-sided communication, 547
Fortran problems, 823
progress, 615, 616, 617
opaque objects, 17, 840
operation, 11
blocking, 12
collective, 13
complete, 11
nonblocking, 12
noncollective, 13
operation-related, 14
partitioned receive, 12
partitioned send, 12
pending, 12, 18, 56, 70, 71, 83, 89, 94, 102, 252, 306–308, 322, 516, 705, 826, 832, 1045
persistent, 12
semantics, 11
stage, 11
completion, 11
freeing, 11
initialization, 11
starting, 11
state, 12
active, 12
complete, 12
enabled, 13, 16, 79, 1047
freed, 12
inactive, 12
initialized, 12
started, 12
ordered, 55, 82
origin, 548
overlap, 701
pack, 178
canonical, 185
packing unit, 181
parallel procedure, 380
partitioned completion, 120
partitioned point-to-point communication, 113
passive target communication, 588
pending (communication) operation, 12, 18, 56, 70, 71, 83, 89, 94, 102, 252, 306–308, 322, 516, 826, 832, 1045
pending communication affector (Fortran), 826
pending I/O operation, 12, 516, 705, 1045
performance variable
tool information interface, 736
persistent communication request, 78–81, 84–88, 103, 104, 104, 105–110
active, 79
completion, 80, 104
inactive, 78
freeing, 110
starting, 104, 109
persistent communication requests
collective persistent, 273, 429
Fortran problems, 823
persistent operation, 12
PICL, 2
PMPI, 717
point-to-point communication, 31
blocking, 32
buffer allocation, 58
cancel, 102
matched receive, 100
matching probe, 97
nonblocking, 69
persistent, 104
probe, 94
receive operation, 36
send modes, 50, 54
send operation, 32
send-receive operation, 43
status, 39
portable datatype, 16
ports, 530
positioning, 653
POSIX
environment, 470
FORTRAN, 18
I/O, 640, 641, 653, 690, 702
model, 637
predefined datatype, 16
predefined reduction operations, 227
private window copy, 586
probe, 94, 95, 98
matching, 97
progress, 96
procedure, 14
 blocking, 15
collective, 15
 completing, 15
freeing, 15
 immediate, 15
incomplete, 15
initialization, 14
 initiation, 15
local, 14, 27
 call, under constraint, 16
nonblocking, 15
noncollective, 16
nonlocal, 14, 27
 call, under constraint, 16
operation-related, 14
semantics, 14
specification, 10
 starting, 14
 synchronizing, 16
procedure specification, 10
process creation, 481
process failures, 26
process set names, 873
processes, 25
processor name, 444
profiling interface, 717
program error, 26
progress, 27, 704, 1047
 cancellation, 104
 file, 704
 nonblocking collective, 705
finalize, 490
 buffered data, 490
 session, 497
geneneralized requests, 627
 guarantee, 28
load/store access synchronization, 603, 1046
nonblocking collective communication, 251, 252, 301, 303
one-sided communication, 603, 615, 616, 617
partitioned point-to-point communication, 121
point-to-point communication, 55, 83, 91, 93, 96, 99, 1047
 strong, 28, 1047
 threads, 515
weak, 28, 1047
prototype definitions, 866
deprecated, 872
public window copy, 586
PVM, 2
raise an event, 748
rank, 308
ready mode send, 51, 54, 108, 109
 as standard mode send, 54
 nonblocking, 69, 71, 74
 persistent, 108
receive, 31, 32
 blocking, 36, 36
 buffer, 32, 100, 109
 complete, 69
 context, 351
 matched, 98, 100, 100
 nonblocking, 69, 75
 persistent, 109
 start, 69, 75
reduce, 224
 nonblocking, 267
 persistent, 289
reduce-scatter, 243
 nonblocking, 269, 270
 persistent, 292, 293
reduction operations, 224, 842
 predefined, 227
 process-local, 242
 scan, 247
 user-defined, 235
registration handle, 755
related, 181
relative displacement, 21, 148
remote group, 322
Remote Memory Access
 see RMA, 547
removed interfaces, 22, 783
representation
 conversion, 49
request complete
 I/O, 654
request objects, 70
 completion, 83
 freeing, 81, 110
 initiation, 82
 multiple completions, 83
null handle, 78, 84–86, 92
null handles, 87, 91, 92
 started, 50, 83, 99, 104, 109, 110
resource error, 26
return code
 tool information interface, 768
RMA, 547
communication calls, 566
 request-based, 580
 dynamic window, 559
memory model, 586
synchronization calls, 587
root, 190
scan, 247
 inclusive, 247
 segmented, 249
scatter, 208
 nonblocking, 257
 persistent, 279
seek, 679
segmented scan, 249
semantic changes, 785
semantics, 11, 1050
 collective communications, 190
 nonblocking progress, 252, 301, 303
data conversion, 48
deadlock
 buffer space, 57
 cyclic shift, 43
 send to self, 38
erroneous program
 freeing active request, 81
 invalid matched receive, 101, 102
 lack of buffer space, 56
 ready mode before receive, 51
 type matching, 46
exceptions
 completing and local, 52
 incomplete and nonlocal, 100
file
 collective, 705
 collective access, 677
 conflicting access, 702
 consistency, 701
 explicit offsets, 656
 nonblocking collective, 705
 progress, 704
 shared file pointer, 673
 split collective, 701
finalize
 buffered data, 490
generalized requests
 progress, 627
inter-communicator, 322
MPI_COMM_IDUP, 324
nonblocking communication operations, 82
nonblocking completion, 78
nonblocking partitioned communications, 121
operation, 11
overlap, 69
partitioned point-to-point communication, 114
 progress, 121
point-to-point communication, 55
 buffered mode send, 67
 cancel, 80, 94, 94, 95, 102, 103, 104
deterministic, 55
 fairness not guaranteed, 56
 fairness requirement, 89, 93
 logically concurrent, 55
 matched receive, 100
 matching probe, 97
 nonoverlapping, 55, 82
 ordered, 55, 82
 overflow error on truncation, 37
 persistent, 104
 probe, 94
 progress, 55, 83, 91, 93, 96, 99, 1047
 resource limitations, 56
send modes, 50, 54
 send-receive concurrency, 44
 wildcard receive, 38
procedure, 14
 process failure, 543
 terms, 11
 threads
 progress, 515
semantics and correctness
 one-sided communication, 606
 progress, 615, 616, 617
send, 31
 blocking, 32, 32
 buffer, 31
 complete, 69
 context, 351
 nonblocking, 69
 persistent, 105
 start, 69, 72–74
send-receive
 blocking, 43, 43
 nonblocking, 77, 78
 start, 77, 78
separate memory model, 547, 558, 586
sequential storage, 162
serialization, 69
 lack of buffer space, 58
Sessions Model, 309, 312, 443, 481, 516, 640
 set
 in function names, 9
 shared file pointers, 654, 673
 shared lock, 589, 597, 610
 shared memory, 553, 558, 600, 605, 609, 622
allocation, 556
contiguous, 553, 555, 556
domain, 25, 333, 551, 553, 555, 557, 600
loads/stores for synchronizing, 617, 1047
noncontiguous, 556
segment, 25, 333, 551, 553, 555, 556
window, 554, 558, 623
shared memory allocation, 554
signals, 29
singleton init, 541
size changing
I/O, 706
source, 351
split collective, 653, 681
stage, 11
 completion, 11
 freeing, 11
 initialization, 11
 starting, 11
standard mode send, 50, 54, 105
 as synchronous mode send, 54
 nonblocking, 70, 72
started, 491
 request objects, 50, 83, 99, 104, 109, 110
started operation state, 12
starting procedure, 14, 104
starting processes, 518, 519
starting stage, 11
startup, 482
portable, 512
state
 operation, 12
 active, 12
 complete, 12
 enabled, 13, 16, 79, 1047
 freed, 12
 inactive, 12
 initialized, 12
 started, 12
 type, 19
status, 39, 838
 array in Fortran, 39
 associating information, 633
 derived type in Fortran 2008, 39
 empty, 79, 80, 84–87, 91, 92
 error in status, 39
 for send operation, 79
 ignore, 42
 message length, 39
 structure in C, 39
 test, 90
 strong progress, 28, 617, 1047
 strong synchronization, 580
 synchronization, 653
synchronization, 547, 566
synchronization calls
 RMA, 587
synchronizing procedure, 16
synchronous mode send, 51, 54, 78, 99, 107
 nonblocking, 70, 71, 73
 persistent, 107
system memory, 17
tag values, 443
target, 548
target nodes, 649
thread compliant, 486, 514
thread-safe, 515
threads, 514
 progress, 515
 thread-safe, 2, 442, 460, 461, 464, 515, 751
timers and synchronization, 470
tool information interface, 722
 control variable, 729
 event, 748
 performance variable, 736
 return code, 768
 verbosity level, 724
tool support, 717
topologies, 383
topology
 Cartesian, 385, 386
 distributed graph, 385, 390
 graph, 385, 388
 virtual, 383, 384
transmission failures, 26
true extent of datatypes, 155
TS 29113, 23, 787–791, 794, 797, 800–804,
 813–815, 820, 825, 829, 831, 1047,
 1059, 1060
type
 conversion, 49
 matching rules, 46
type map, 128
type matching, 159
type signature, 128
types, 865
 ub_marker, 142, 143, 146, 147, 152, 156
 erased, 155
 unified memory model, 547, 558, 586
 universe size, 540
 unnamed datatype, 16
 unpack, 178
 canonical, 185
 upper bound, 152
 upper-bound markers, 151
 user functions at process termination, 492
user-defined data representations, 694
user-defined reduction operations, 235

verbosity level
 tool information interface, 724
version inquiries, 441
view, 637, 638, 650
virtual topology, 306, 383, 384

weak progress, 28, 1047
weak synchronization, 589
wildcard, 38
window
 allocation, 552
 creation, 548
 dynamically attached memory, 559
 shared memory
 window, 554
 shared memory allocation, 554
World Model, 309, 312, 442, 481, 516, 639, 711

XDR, 49

Zipcode, 2
Examples Index

This index lists code examples throughout the text. Some examples are referred to by content; others are listed by the major MPI function that they are demonstrating. MPI functions listed in all capital letter are Fortran examples; MPI functions listed in mixed case are C examples.

Accumulate in RMA
- MPI_ACCUMULATE, 574
- MPI_TYPE_GET_EXTENT, 574
- MPI_WIN_CREATE, 574
- MPI_WIN FENCE, 574
- MPI_WIN_FREE, 574

Actions after Finalize
- MPI_Finalize, 491

Active target and local reads in RMA
- MPI_BARRIER, 613
- MPI_PUT, 613
- MPI_win_complete, 613
- MPI_win_lock, 613
- MPI_win_post, 613
- MPI_win_start, 613
- MPI_win_unlock, 613
- MPI_win_wait, 613

Allgather
- MPI_GATHER, 217

Allreduce of a vector
- MPI_ALLREDUCE, 241

argv in C and Fortran
- MPI_COMM_SPAWN, 522
- MPI_Comm_spawn, 522

Array of argv in C and Fortran
- MPI_COMM_SPAWN_MULTIPLE, 527
- MPI_Comm_spawn_multiple, 527

ASYNCHRONOUS, 622, 824, 831

Attach and detach buffer
- MPI_Buffer_attach, 66
- MPI_Buffer_detach, 66

Attach and detach communicator-specific buffer
- MPI_Comm_buffer_attach, 66
- MPI_Comm_buffer_detach, 66

Attributes between languages, 843
- set in C
 - MPI_Comm_get_attr, 843
 - MPI_Comm_set_attr, 843
- set in Fortran
 - MPIATTR_GET, 844, 845
 - MPIATTR_PUT, 844
 - MPICOMM_GET_ATTR, 844, 845
- MPI_COMM_SET_ATTR, 845

Basic usage of performance variables
- MPI_T_finalize, 746
- MPI_T_init_thread, 746
- MPI_T_pvar_get_info, 746
- MPI_T_pvar_handle_alloc, 746
- MPI_T_pvar_handle_free, 746
- MPI_T_pvar_read, 746
- MPI_T_pvar_session_create, 746
- MPI_T_pvar_start, 746

Blocking/Nonblocking collectives do not match, 301

Broadcast
- MPI_Bcast, 197

C/Fortran handle conversion, 837
C/Fortran handle conversion and absolute addresses
- MPI_GET_ADDRESS, 841

Cartesian virtual topologies, 437

Client server code with waitsome
- MPI_Irecv, 90
- MPI_Isend, 90
- MPI_Iwait, 90
- MPI_Waitsome, 90

Client-server
- MPI_Comm_accept, 358, 539
- MPI_Comm_connect, 358, 539
- MPI_Irecv, 89
- MPI_Isend, 89
- MPI_Open_port, 538, 539
- MPI_Iwait, 89
- MPI_Waitsome, 89

Client-server (with error)
- MPI_Probe, 96
- MPI_RECV, 96
- MPI_SEND, 96

Client-server code, 89, 90
- with probe, 96
- with probe (wrong), 96

Client-server model
- MPI_Comm_remote_size, 330
- MPI_Comm_split, 330
Client-server with probe

MPI_PROBE, 96
MPI_RECV, 96
MPI_SEND, 96

Collective communication

MPI_Bcast, 344

Communication safety

MPI_Comm_create, 345
MPI_Group_free, 345
MPI_Group_incl, 345

Consistency by setting atomic mode

MPI_File_read_at, 707
MPI_File_set_atomicity, 707
MPI_File_set_view, 707
MPI_File_write_at, 707

Consistency for writing and reading files asynchronously

MPI_File, 709
MPI_File_iread_at, 709
MPI_File_iwrite_at, 709
MPI_File_read_all_begin, 709
MPI_File_read_all_end, 709
MPI_File_set_atomicity, 709
MPI_File_write_all_begin, 709
MPI_File_write_all_end, 709

Consistency using “sync-barrier-sync”

MPI_File_read_at, 708
MPI_File_set_view, 708
MPI_File_sync, 708
MPI_File_write_at, 708

Counting semaphore (nonscalable)

MPI_Accumulate, 621
MPI_Barrier, 621
MPI_Get_accumulate, 621
MPI_Win_flush, 621
MPI_Win_sync, 621

Creating a communicator using the Sessions Model

MPI_Comm_create_from_group, 501
MPI_Group_from_session_pset, 501
MPI_Info_create, 501
MPI_Info_set, 501
MPI_Session_finalize, 501
MPI_Session_init, 501

Critical region with Compare-and-Swap

MPI_Barrier, 622
MPI_Compare_and_swap, 622
MPI_Win_flush, 622
MPI_Win_sync, 622

Critical region with RMA

MPI_Accumulate, 621
MPI_Barrier, 621
MPI_Get_accumulate, 621
MPI_Win_flush, 621

Datatype

3D array, 170
absolute addresses, 175
array of structures, 172
elaborate example, 183, 184
matching type, 159
matrix transpose, 171, 172
union, 176

Datatype matching

MPI_RECV, 47
MPI_SEND, 47

Datatypes

matching, 47
MPI_BYTE, 47
MPI_RECV, 47
MPI_SEND, 47
not matching, 47
untyped, 47

Datatypes for distributed arrays

MPI_TYPE_CREATE_DARRAY, 148

Deadlock

if not buffered, 57
with MPI_Bcast, 297, 298
wrong message exchange, 57

Deadlock due to synchronization through shared memory

MPI_Bsend, 617
MPI_Buffer_attach, 617
MPI_Buffer_detach, 617
MPI_Recv, 617
MPI_Win_fence, 617
MPI_Win_shmem_query, 617

Decoding a datatype

MPI_Type_get_contents, 177
MPI_Type_get_envelope, 177

Decoding amode in Fortran 77

MPI_FILE_GET_AMODE, 646

Defining a user function

MPI_OP_CREATE, 240
MPI_REDUCE, 240
MPI_USER_FUNCTION, 240

Dims create

MPI_DIMS_CREATE, 388

dist graph creation

MPI_DIST_GRAPH_CREATE, 395
MPI_DIST_GRAPH_CREATE_ADJACENT, 395

Dist_graph_create

MPI_Dist_graph_create, 396

Double buffer in RMA

MPI_Barrier, 620
Examples Index

1. MPI·Get, 620
2. MPI·Win_complete, 620
3. MPI·Win_post, 620
4. MPI·Win_start, 620
5. MPI·Win_wait, 620
6. Errant message exchange
 MPI·RECV, 57
 MPI·SEND, 57
7. Erroneous attempt to achieve consistency
 MPI·File_read_at, 708
 MPI·File_set_view, 708
 MPI·File_sync, 708
 MPI·File_write_at, 708
8. Erroneous example fragment of concurrent split collective access on a file handle
 MPI·File_read_all, 682
 MPI·File_read_all_begin, 682
 MPI·File_read_all_end, 682
9. Erroneous matching of blocking and nonblocking collectives
 MPI·Alltoall, 301
 MPI·Ialltoall, 301
 MPI·Wait, 301
10. Erroneous matching of collectives
 MPI·Bcast, 300
 MPI·Ibarrier, 300
 MPI·Wait, 300
11. Erroneous use of Bcast
 MPI·Bcast, 297, 298
12. Example 3.1: Hello world, 31
13. Example 3.2: Datatype matching, 47
14. Example 3.3: Datatype matching, 47
15. Example 3.4: Datatypes, 47
16. Example 3.5: Fortran CHARACTER, 48
17. Example 3.6: Nonovertaking messages, 55
18. Example 3.7: Message matching, 56
19. Example 3.8: Message exchange, 57
20. Example 3.9: Errant message exchange, 57
21. Example 3.10: Exchange relies on buffering, 57
22. Example 3.11: Attach and detach buffer, 66
23. Example 3.12: Attach and detach communicator-specific buffer, 66
24. Example 3.13: Nonblocking point-to-point, 81
25. Example 3.14: Nonblocking send and receive with request free, 82
26. Example 3.15: Message ordering for nonblocking operations, 82
27. Example 3.16: Progress semantics, 83
28. Example 3.17: Client-server, 89
29. Example 3.18: Client server code with waitsome, 90
30. Example 3.19: Client-server with probe, 96
31. Example 3.20: Client-server (with error), 96
32. Example 4.1: Partitioned communication, 114
33. Example 4.2: Partitioned communication using threads, 122
34. Example 4.3: Partitioned communication with tasks, 123
35. Example 4.4: Partitioned communication with partial completion, 125
36. Example 5.1: Typemap, 129
37. Example 5.2: Typemap for contiguous, 130
38. Example 5.3: Typemap for vector, 131
39. Example 5.4: Typemap for vector, 131
40. Example 5.5: Typemap for indexed, 134
41. Example 5.6: Typemap for create struct, 140
42. Example 5.7: Datatypes for distributed arrays, 148
43. Example 5.8: Get_address, 149
44. Example 5.9: Typemap of nested datatypes, 152
45. Example 5.10: Type_commit, 157
46. Example 5.11: Matching type with datatypes, 159
47. Example 5.12: Using Get_count and Get_elements, 161
48. Example 5.13: Send/receive of a 3D array, 170
49. Example 5.14: Using indexed datatype, 171
50. Example 5.15: Nested vector datatypes, 171
51. Example 5.16: Transpose with datatypes, 172
52. Example 5.17: Using datatypes with array of structures, 172
53. Example 5.18: Using datatypes with array of structures with absolute addresses, 175
54. Example 5.19: Using datatypes with unions, 176
55. Example 5.20: Decoding a datatype, 177
56. Example 5.21: Using Pack, 183
57. Example 5.22: Pack/Unpack with struct datatype, 183
58. Example 5.23: Pack and Pack_size, 184
59. Example 6.1: Broadcast, 197
60. Example 6.2: Gather, 202
61. Example 6.3: Gather with allocation at the root, 202
62. Example 6.4: Gather with datatype, 202
63. Example 6.5: Gatherv, 203
64. Example 6.6: Gather with datatype, 203
65. Example 6.7: Gatherv with datatype, 204
66. Example 6.8: Gatherv with struct datatype, 205
67. Example 6.9: Gatherv with vector datatype, 206
68. Example 6.10: Gather and Gatherv, 207
69. Example 6.11: Scatter, 212
70. Example 6.12: Scattersv, 212
Example 6.13: Scatterv with vector datatype, 213
Example 6.14: Allgather, 217
Example 6.15: Reduction, 228
Example 6.16: Reduction of a vector, 229
Example 6.17: Retrieving an unnamed predefined value-index handle, 232
Example 6.18: Reduction with maxloc, 233
Example 6.19: Reduction with maxloc, 233
Example 6.20: Reduction with minloc, 234
Example 6.21: Reduction with user-defined op, 239
Example 6.22: Defining a user function, 240
Example 6.23: Allreduce of a vector, 241
Example 6.24: User-defined operation with Scan, 249
Example 6.25: Ibcast, 254
Example 6.26: Erroneous use of Bcast, 297
Example 6.27: Erroneous use of Bcast, 297
Example 6.28: Erroneous use of Bcast, 298
Example 6.29: Nondeterministic use of Bcast, 298
Example 6.30: Mixing blocking and nonblocking collective operations, 300
Example 6.31: Erroneous matching of collectives, 300
Example 6.32: Progress of nonblocking collectives, 301
Example 6.33: Erroneous matching of blocking and nonblocking collectives, 301
Example 6.34: Mixing collective and point-to-point, 302
Example 6.35: Pipelining nonblocking collectives, 302
Example 6.36: Overlapping communicators and collectives, 303
Example 6.37: Independence of nonblocking operations, 303
Example 7.1: Inter-communicator creation, 327
Example 7.2: Client-server model, 330
Example 7.3: Splitting into NUMANode subcommunicators, 334
Example 7.4: Recursive splitting of COMM_WORLD, 336
Example 7.5: Recursive splitting of COMM_WORLD, 336
Example 7.6: Parallel output of a message, 343
Example 7.7: Message exchange, 343
Example 7.8: Collective communication, 344
Example 7.9: Using Group_excl, 344
Example 7.10: Communication safety, 345
Example 7.11: Library Example #1, 346
Example 7.12: Library Example #2, 347
Example 7.13: Three-Group “Pipeline”, 356
Example 7.14: Three-Group “Ring”, 358
Example 8.1: Dims create, 388
Example 8.2: Graph create, 389
Example 8.3: Dist graph creation, 395
Example 8.4: Dist_graph_create, 396
Example 8.5: Graph creation and neighbors count, 402
Example 8.6: Graph creation, 402
Example 8.7: Using Cart_shift, 406
Example 8.8: Subgroup cart process topology, 407
Example 8.9: Neighbor allgather, 412
Example 8.10: Neighbor allover, 417
Example 8.11: Neighborhood collective communication, 437
Example 9.1: Use of Alloc_mem in Fortran, 448
Example 9.2: Use of Alloc_mem in Fortran with Cray pointers, 448
Example 9.3: Using Alloc_mem, 449
Example 9.4: Using MPL_Wtime, 470
Example 11.1: Initializing MPI, 483
Example 11.2: mpiexec and environment variables, 484
Example 11.3: Rules for finalize, 489
Example 11.4: Rules for finalize, 489
Example 11.5: Finalize and request free, 489
Example 11.6: Finalize and buffer attach, 490
Example 11.7: Finalize and cancel, 490
Example 11.8: Actions after Finalize, 491
Example 11.9: Finalize in the Sessions Model, 497
Example 11.10: Creating a communicator using the Sessions Model, 501
Example 11.11: Using process set query in group creation, 503
Example 11.12: Using process set query in group creation, 505
Example 11.13: Requesting and querying memory allocation kinds in the Sessions Model, 510
Example 11.14: Using mpiexec using -n, 513
Example 11.15: Using mpiexec using -host, 514
Example 11.16: Using mpiexec starting programs with separate argument lists, 514
Example 11.17: Using mpiexec using -arch, 514
Example 11.18: Using mpiexec using -configfile, 514
Example 11.19: Threads and MPI, 515
Example 11.20: argv in C and Fortran, 522
Example 11.21: Array of argv in C and Fortran, 527
Example 11.22: Manager-worker with Comm_spawn, 528
Example 11.23: Client-server, 538
Example 11.24: Name publishing, 538
Example 11.25: Client-server, 539
Example 12.1: Using Get with indexed datatype, 570
Example 12.2: Using Get, 572
Example 12.3: Accumulate in RMA, 574
Example 12.4: RMA Start and complete, 594
Example 12.5: RMA Lock and unlock, 600
Example 12.6: Update location in separate memory model, 610
Example 12.7: Update location in unified memory model, 610
Example 12.8: Read data in RMA, 611
Example 12.9: Read data in RMA (unsafe), 611
Example 12.10: Public and private memory in RMA, 612
Example 12.11: Public and private memory in RMA, 612
Example 12.12: Active target and local reads in RMA, 613
Example 12.13: Deadlock due to synchronization through shared memory, 617
Example 12.14: Register and Compiler Optimization, 618
Example 12.15: Put with Fence, 618
Example 12.16: Get with fence, 619
Example 12.17: Put with PSCW, 619
Example 12.18: Get with PSCW, 619
Example 12.19: Double buffer in RMA, 620
Example 12.20: Counting semaphore (nonscalable), 621
Example 12.21: Critical region with RMA, 621
Example 12.22: Critical region with Compare-and-Swap, 622
Example 12.23: Shared memory windows, 623
Example 12.24: Requests in RMA, 623
Example 12.25: Linked list in RMA, 624
Example 13.1: User-defined reduce, 631
Example 14.1: Decoding amode in Fortran 77, 646
Example 14.2: Read to end of file, 665
Example 14.3: File pointer update semantics, 668
Example 14.4: Erroneous example fragment of concurrent split collective access on a file handle, 682
Example 14.5: Consistency by setting atomic mode, 707
Example 14.6: Consistency using “sync-barrier-sync”, 708
Example 14.7: Erroneous attempt to achieve consistency, 708
Example 14.8: Consistency for writing and reading files asynchronously, 709
Example 14.9: Overlap computation and output, 712
Example 14.10: Local subarray for file output, 714
Example 14.11: Local subarray for file output in Fortran 90, 715
Example 15.1: Measurement wrapper, 720
Example 15.2: Profiling interface implementation using weak symbols, 720
Example 15.3: Profiling interface implementation using the C macro preprocessor, 720
Example 15.5: Listing names of control variables, 732
Example 15.6: Reading a control variable, 735
Example 15.7: Basic usage of performance variables, 746
Example 19.1: Fortran 90 selected KIND, 808
Example 19.2: MPI_TYPE_MATCH_SIZE implementation, 811
Example 19.3: Fortran 90 heterogeneous communication (unsafe), 812
Example 19.4: Fortran 90 heterogeneous MPI I/O (unsafe), 812
Example 19.5: Fortran 90 a scalar is not an array, 815
Example 19.6: Fortran 90 subarray as buffer, 815
Example 19.7: Fortran 90 subarray as buffer, 816
Example 19.8: Fortran 90 subarray as buffer, 817
Example 19.9: Fortran 90 scalars as buffer, 818
Example 19.10: Fortran 90 vector subscripts, 818
Example 19.11: Fortran 90 derived types, 819
Example 19.12: Fortran 90 register optimization, 822
Example 19.13: Fortran 90 register optimization, 822
Example 19.14: Fortran 90 register optimization, 823
Example 19.15: Fortran 90 register optimization, 823
Example 19.16: Protecting nonblocking communication with
Finalize in the Sessions Model

Example 19.17: Fortran 90 register optimization in RMA, 827
Example 19.18: Fortran 90 overlapping communication and computation, 829
Example 19.19: Fortran 90 overlapping communication and computation, 829
Example 19.20: Fortran 90 overlapping communication and computation, 829
Example 19.21: Using separated variables, 831
Example 19.22: Fortran 90 overlapping communication and computation, 832
Example 19.23: C/Fortran handle conversion, 837
Example 19.24: C/Fortran handle conversion and absolute addresses, 841
Example 19.25: Attributes between languages set in C, 843
Example 19.26: Attributes between languages set in Fortran, 844
Example 19.27: Attributes between languages set in Fortran, 845
Example 19.28: Interlanguage communication, 847
Exchange relies on buffering
MPL_RECV, 57
MPL_SEND, 57
False matching of collective operations, 300
File pointer update semantics
MPL_FILE_CLOSE, 668
MPL_FILE_IREAD, 668
MPL_FILE_OPEN, 668
MPL_FILE_SET_VIEW, 668
MPL_WAIT, 668
Finalize and buffer attach
MPL_Buffer_attach, 490
MPL_Finalize, 490
Finalize and cancel
MPL_BARRIER, 490
MPL_Cancel, 490
MPL_Finalize, 490
MPL_Iprobe, 490
MPL_Test_cancelled, 490
Finalize and request free
MPL_Finalize, 489
MPL_Request_free, 489
Finalize in the Sessions Model
MPL_SESSION_FINALIZE, 497
Fortran 90
a scalar is not an array
MPL_CART_CREATE, 815
copying and sequence problem, 815–818
derived types
MPL_GET_ADDRESS, 819
MPL_TYPE_COMMIT, 819
MPL_TYPE_CREATE_RESIZED, 819
MPL_TYPE_CREATE_STRUCT, 819
heterogeneous MPI I/O (unsafe)
MPL_FILE_SET_VIEW, 812
MPL_TYPE_MATCH_SIZE, 812
heterogeneous communication (unsafe)
MPL_TYPE_MATCH_SIZE, 812
overlapping communication and computation, 829, 832
register optimization, 822, 823
scalars as buffer
MPL_Irecv, 818
selected KIND
MPL_TYPE_CREATE_F90_INTEGER, 808
MPL_TYPE_CREATE_F90_REAL, 808
subarray as buffer
MPL_Irecv, 816, 817
MPL_Isend, 816
MPL_Send, 815
vector subscripts
MPL_Send, 818
Fortran 90 register optimization in RMA
MPL_F_SYNC_REG, 827
MPL_PUT, 827
MPL_WIN_FENCE, 827
Fortran CHARACTER
MPL_CHARACTER, 48
MPL_RECV, 48
MPL_SEND, 48
Gather
MPL_Gather, 202
Gather and Gatherv
MPL_Gather, 207
MPL_Gatherv, 207
MPL_Type_commit, 207
MPL_Type_create_struct, 207
Gather with allocation at the root
MPL_Gather, 202
Gather with datatype
MPL_Gather, 202
MPL_Type_commit, 202
MPL_Type_contiguous, 202
Gatherv
MPL_Gatherv, 203
Gatherv with datatype
MPL_Gatherv, 203, 204
MPL_Type_commit, 203, 204
MPL_Type_vector, 203, 204
Gatherv with struct datatype
MPL_Gatherv, 205
Examples Index

MPI_Type_commit, 205
MPI_Type_create_struct, 205
Gather with vector datatype
 MPI_Gatherv, 206
MPI_Type_commit, 206
MPI_Type_vector, 206
Get with fence
 MPI_Get, 619
MPI_Win_fence, 619
Get with PSCW
 MPI_Get, 619
MPI_Win_complete, 619
MPI_Win_post, 619
MPI_Win_start, 619
MPI_Win_wait, 619
Get_address
 MPI_GET_ADDRESS, 149
Graph create
 MPI_GRAPH_CREATE, 389
Graph creation
 MPI_GRAPH_CREATE, 402
Graph creation and neighbors count
 MPI_GRAPH_CREATE, 402
 MPI_GRAPH_NEIGHBORS, 402
 MPI_GRAPH_NEIGHBORS_COUNT, 402
Hello world
 MPI_Comm_rank, 31
 MPI_Init, 31
 MPI_Recv, 31
 MPI_Send, 31
Ibcast
 MPI_Ibcast, 254
Independence of nonblocking operations, 303
 MPI_Ibcast, 303
Initializing MPI
 MPI_Init, 483
Inter-communicator, 327, 330
Inter-communicator creation
 MPI_Comm_create, 327
 MPI_Comm_group, 327
 MPI_Group_free, 327
 MPI_Group_incl, 327
Interlanguage communication, 847
 MPI_GET_ADDRESS, 847
 MPI_TYPE_CREATE_STRUCT, 847
Intertwined matching pairs, 56
Library Example #1
 MPI_Comm_dup, 346
 MPI_Reduce, 346
Library Example #2
 MPI_Comm_create, 347
 MPI_Comm_group, 347
MPI_Group_free, 347
MPI_Group_incl, 347
Linked list in RMA
 MPI_Accumulate, 624
 MPI_Aint_add, 624
 MPI_Alloc_mem, 624
 MPI_Compare_and_swap, 624
 MPI_Free_mem, 624
 MPI_Get_accumulate, 624
 MPI_Win_attach, 624
 MPI_Win_create_dynamic, 624
 MPI_Win_detach, 624
 MPI_Win_flush, 624
 MPI_Win_lock_all, 624
 MPI_Win_unlock_all, 624
Linking libraries when using the profiling interface, 721
Listing names of control variables
 MPI_T_cvar_get_info, 732
Local subarray for file output
 MPI_Type_create_subarray, 714
Local subarray for file output in Fortran 90
 MPI_TYPE_CREATE_SUBARRAY, 715
Manager-worker with Comm_spawn
 MPI_Comm_get_parent, 528
 MPI_Comm_spawn, 528
Matching type with datatypes
 MPI_RECV, 159
 MPI_SEND, 159
 MPI_TYPE_CONTIGUOUS, 159
Measurement wrapper
 MPI_Send, 720
 MPI_Type_size, 720
 MPI_Wtime, 720
Message exchange
 MPI_RECV, 57
 MPI_SEND, 57
Message exchange (ping-pong), 57
Message matching
 MPI_BSEND, 56
 MPI_RECV, 56
 MPI_SSEND, 56
Message ordering for nonblocking operations
 MPI_Irecv, 82
 MPI_Isend, 82
 MPI_Iwait, 82
Mixing blocking and nonblocking collective operations, 300
 MPI_Bcast, 300
 MPI_Barrier, 300
 MPI_Wait, 300
Mixing collective and point-to-point
 MPI_Barrier, 302
Examples Index

MPI_Irecv, 302
MPI_Send, 302
MPI_Wait, 302
MPI_Waitall, 302
Mixing collective and point-to-point requests, 302
MPI_ACCUMULATE
 Accumulate in RMA, 574
MPI_Accumulate
 Counting semaphore (nonscalable), 621
 Critical region with RMA, 624
 Linked list in RMA, 624
MPI_Aint
 Using datatypes with array of structures, 172
MPI_Aint_add
 Linked list in RMA, 624
MPI_Allgather
 Allgather, 217
MPI_ALLOC_MEM
 Use of Alloc_mem in Fortran, 448
 Use of Alloc_mem in Fortran with Cray pointers, 448
MPI_Alloc_mem
 Linked list in RMA, 624
 Using Alloc_mem, 449
MPI_ALLREDUCE
 Allreduce of a vector, 241
MPI_Alltoall
 Erroneous matching of blocking and nonblocking collectives, 301
mpi_assert_memory_alloc_kinds
 Requesting and querying memory allocation kinds in the Sessions Model, 510
MPI_ASYNC_PROTECTS_NONBLOCKING, 622
MPI_ATTR_GET
 Attributes between languages set in Fortran, 844, 845
MPI_ATTR_PUT
 Attributes between languages set in Fortran, 844
MPI_BARRIER
 Using process set query in group creation, 505
MPI_BARRIER
 Active target and local reads in RMA, 613
 Counting semaphore (nonscalable), 621
 Critical region with Compare-and-Swap, 622
 Critical region with RMA, 621
 Double buffer in RMA, 620
 Finalize and cancel, 490
 Public and private memory in RMA, 612
 Read data in RMA, 611
 Read data in RMA (unsafe), 611
 Update location in separate memory model, 610
 Update location in unified memory model, 610
MPI_Bcast
 Broadcast, 197
 Collective communication, 344
 Erroneous matching of collectives, 300
 Erroneous use of Bcast, 297, 298
 Mixing blocking and nonblocking collective operations, 300
 Nondeterministic use of Bcast, 298
MPI_BSEND
 Message matching, 56
 Nonoverlapping messages, 55
MPI_Bsend
 Deadlock due to synchronization through shared memory, 617
MPI_Buffer_attach
 Attach and detach buffer, 66
 Deadlock due to synchronization through shared memory, 617
 Finalize and buffer attach, 490
MPI_Buffer_detach
 Attach and detach buffer, 66
 Deadlock due to synchronization through shared memory, 617
MPI_BYTE
 Datatypes, 47
MPI_Cancel
 Finalize and cancel, 490
MPI_CART_COORDS
 Using Cart_shift, 406
MPI_CART_CREATE
 Fortran 90
 A scalar is not an array, 815
MPI_CART_GET
 Neighborhood collective communication, 437
MPI_CART_RANK
 Using Cart_shift, 406
MPI_CART_SHIFT
 Neighbor alltoall, 417
 Neighborhood collective communication, 437
 Using Cart_shift, 406
MPI_CART_SUB
 Subgroup cart process topology, 407
MPI_CARTDIM_GET
 Neighbor alltoall, 417
MPI_CHARACTER
 Fortran 90 a scalar is not an array, 815
Examples Index

MPI_Comm_accept
 Client-server, 538, 539
 Name publishing, 538

MPI_Comm_buffer_attach
 Attach and detach communicator-specific buffer, 66

MPI_Comm_buffer_detach
 Attach and detach communicator-specific buffer, 66

MPI_Comm_connect
 Client-server, 538, 539
 Name publishing, 538

MPI_Comm_create
 Communication safety, 345
 Inter-communicator creation, 327
 Library Example #2, 347
 Using Group_excl, 344

MPI_COMM_CREATE_FROM_GROUP
 Using process set query in group creation, 505

MPI_Comm_create_from_group
 Creating a communicator using the Sessions Model, 501

MPI_Comm_dup
 Library Example #1, 346

MPI_COMM_GET_ATTR
 Attributes between languages set in Fortran, 844, 845

MPI_Comm_get_attr
 Attributes between languages set in C, 843

MPI_Comm_get_parent
 Manager-worker with Comm_spawn, 528

MPI_Comm_group
 Inter-communicator creation, 327
 Library Example #2, 347

MPI_Comm_rank
 Hello world, 31

MPI_Comm_remote_size
 Client-server model, 330

MPI_COMM_SET_ATTR
 Attributes between languages set in Fortran, 845

MPI_Comm_set_attr
 Attributes between languages set in C, 843

MPI_COMM_SPAWN
 argv in C and Fortran, 522

MPI_Comm_spawn
 argv in C and Fortran, 522
 Manager-worker with Comm_spawn, 528

MPI_COMM_SPAWN_MULTIPLE
 Array of argv in C and Fortran, 527

MPI_Comm_spawn_multiple
 Array of argv in C and Fortran, 527

MPI_Comm_split
 Client-server model, 330
 Three-Group “Pipeline”, 356
 Three-Group “Ring”, 358

MPI_Comm_split_type, 335

MPI_Comm_split_type
 Recursive splitting of COMM_WORLD, 336
 Splitting into NUMANode subcommunicators, 334

MPI_Compare_and_swap
 Critical region with Compare-and-Swap, 622
 Linked list in RMA, 624

MPI_DIMS_CREATE
 Dims create, 388
 Neighborhood collective communication, 437

MPI_DIST_GRAPH_CREATE
 dist graph creation, 395

MPI_Dist_graph_create
 Dist_graph_create, 396

MPI_DIST_GRAPH_CREATE_ADJACENT
 dist graph creation, 395

MPI_F_SYNC_REG
 Fortran 90 register optimization in RMA, 827
 Shared memory windows, 623

MPI_File
 Consistency for writing and reading files asynchronously, 709

MPI_FILE_CLOSE
 File pointer update semantics, 668
 Read to end of file, 665

MPI_FILE_GET_AMODE
 Decoding amode in Fortran 77, 646

MPI_FILE_IREAD
 File pointer update semantics, 668

MPI_File_iwrite_at
 Consistency for writing and reading files asynchronously, 709

MPI_File_iwrite_at
 Consistency for writing and reading files asynchronously, 709

MPI_FILE_OPEN
 File pointer update semantics, 668
 Read to end of file, 665

MPI_FILE_READ
 Read to end of file, 665

MPI_File_read_all
 Erroneous example fragment of concurrent split collective access on a file handle,
Examples Index

MPI_File_read_all_begin
Consistency for writing and reading files asynchronously, 709
Erroneous example fragment of concurrent split collective access on a file handle, 682

MPI_File_read_all_end
Consistency for writing and reading files asynchronously, 709
Erroneous example fragment of concurrent split collective access on a file handle, 682

MPI_File_read_at
Consistency by setting atomic mode, 707
Consistency using “sync-barrier-sync”, 708
Erroneous attempt to achieve consistency, 708

MPI_File_set_atomicity
Consistency by setting atomic mode, 707
Consistency for writing and reading files asynchronously, 709

MPI_FILE_SET_VIEW
File pointer update semantics, 668
Fortran 90
heterogeneous MPI I/O (unsafe), 812
Read to end of file, 665

MPI_File_set_view
Consistency by setting atomic mode, 707
Consistency for writing and reading files asynchronously, 709

MPI_File_sync
Consistency using “sync-barrier-sync”, 708
Erroneous attempt to achieve consistency, 708

MPI_File_write_all_begin
Consistency for writing and reading files asynchronously, 709
Overlap computation and output, 712

MPI_File_write_all_end
Consistency for writing and reading files asynchronously, 709
Overlap computation and output, 712

MPI_File_write_at
Consistency by setting atomic mode, 707
Consistency using “sync-barrier-sync”, 708
Erroneous attempt to achieve consistency, 708

MPI_Finalize
Actions after Finalize, 491
Finalize and buffer attach, 490
Finalize and cancel, 490
Finalize and request free, 489

Rules for finalize, 489

MPI_FREE_MEM
Use of Alloc_mem in Fortran, 448
Use of Alloc_mem in Fortran with Cray pointers, 448

MPI_Free_mem
Linked list in RMA, 624

MPI_Gather
Gather, 202
Gather and Gatherv, 207
Gather with allocation at the root, 202
Gather with datatype, 202
Pack and Pack_size, 184

MPI_Gatherv
Gather and Gatherv, 207
Gatherv, 203
Gatherv with datatype, 203, 204
Gatherv with struct datatype, 205
Gatherv with vector datatype, 206
Pack and Pack_size, 184

MPI_GET
Using Get, 572
Using Get with indexed datatype, 570

MPI_Get
Double buffer in RMA, 620
Get with fence, 619
Get with PSCW, 619
Public and private memory in RMA, 612
Update location in separate memory model, 610
Update location in unified memory model, 610

MPI_Get_accumulate
Counting semaphore (nonscalable), 621
Critical region with RMA, 621
Linked list in RMA, 624

MPI_GET_ADDRESS
C/Fortran handle conversion and absolute addresses, 841
Fortran 90
derived types, 819
Get_address, 149
Interlanguage communication, 847

MPI_Get_address
Pack/Unpack with struct datatype, 183
Using datatypes with array of structures, 172
Using datatypes with array of structures with absolute addresses, 175
Using datatypes with unions, 176

MPI_GET_COUNT
Using Get_count and Get_elements, 161

MPI_GET_ELEMENTS
Using Get_count and Get_elements, 161
Examples Index

1. **MPI_GRAPH_CREATE**
 - Graph create, 389
 - Graph creation, 402
 - Graph creation and neighbors count, 402

2. **MPI_GRAPH_NEIGHBORS**
 - Graph creation and neighbors count, 402

3. **MPI_GRAPH_NEIGHBORS_COUNT**
 - Graph creation and neighbors count, 402

4. **MPI_Grequest_complete**
 - User-defined reduce, 631

5. **MPI_Grequest_start**
 - User-defined reduce, 631

6. **MPI_Group_excl**
 - Using Group_excl, 344

7. **MPI_Group_free**
 - Communication safety, 345
 - Inter-communicator creation, 327
 - Library Example #2, 347
 - Using Group_excl, 344

8. **MPI_GROUP_FROM_SESSION_PSET**
 - Using process set query in group creation, 505

9. **MPI_Group_from_session_pset**
 - Creating a communicator using the Sessions Model, 501
 - Using process set query in group creation, 503

10. **MPI_Group_incl**
 - Communication safety, 345
 - Inter-communicator creation, 327
 - Library Example #2, 347

11. **MPI_Iallreduce**
 - Overlapping communicators and collectives, 303

12. **MPI_Ialltoall**
 - Erroneous matching of blocking and nonblocking collectives, 301

13. **MPI_ICreate**
 - Erroneous matching of collectives, 300
 - Mixing blocking and nonblocking collective operations, 300
 - Mixing collective and point-to-point, 302
 - Progress of nonblocking collectives, 301

14. **MPI_IBcast**
 - Ibcast, 254
 - Independence of nonblocking operations, 303
 - Pipelining nonblocking collectives, 302

15. **MPI_Info_create**
 - Creating a communicator using the Sessions Model, 501

16. **MPI_INFO_ENV**
 - Pack and Pack.size, 184
 - Pack/Unpack with struct datatype, 183

17. **MPI_Info_set**
 - Creating a communicator using the Sessions Model, 501

18. **MPI_Init**
 - Hello world, 31
 - Initializing MPI, 483

19. **MPI_Intercomm_create**
 - Three-Group “Pipeline”, 356
 - Three-Group “Ring”, 358

20. **MPI_Iprobe**
 - Finalize and cancel, 490

21. **MPI_Irecv**
 - Mixing collective and point-to-point, 302

22. **MPI_Irecv**
 - Client server code with waitsome, 90
 - Client-server, 89
 - Fortran 90
 - scalars as buffer, 818
 - subarray as buffer, 816, 817
 - Message ordering for nonblocking operations, 82
 - Nonblocking point-to-point, 81
 - Nonblocking send and receive with request free, 82
 - Progress semantics, 83

23. **MPI_irecvv**
 - Requesting and querying memory allocation kinds in the Sessions Model, 510

24. **MPI_Open_port**
 - Client-server code with waitsome, 90
 - Client-server, 89
 - Fortran 90
 - subarray as buffer, 816
 - Message ordering for nonblocking operations, 82
 - Nonblocking point-to-point, 81
 - Nonblocking send and receive with request free, 82

25. **mpi_memory_alloc_kinds**
 - Requesting and querying memory allocation kinds in the Sessions Model, 510

26. **MPI_PACK**
 - Neighbor allgather, 412

27. **MPI_PACK**
 - Neighbor alltoall, 417

28. **MPI_PACK**
 - Neighbor_alltoall, 417

29. **MPI_OP_CREATE**
 - Defining a user function, 240

30. **MPI_SIDECAR**
 - Reduction with user-defined op, 239
 - User-defined operation with Scan, 249

31. **MPI_Open_port**
 - Client-server, 538, 539
 - Name publishing, 538

32. **MPI_Pack**
 - Pack and Pack.size, 184
 - Pack/Unpack with struct datatype, 183

33. **MPI_Pack_into**
 - Inter-communicator creation, 327

34. **MPI_Pack_into**
 - Library Example #2, 347
Examples Index

Using Pack, 183

MPI_Pack_size
Pack and Pack_size, 184

MPI_Parrived
Partitioned communication with partial completion, 125

MPI_Pready
Partitioned communication, 114
Partitioned communication using threads, 122
Partitioned communication with partial completion, 125
Partitioned communication with tasks, 123

MPI_Prevc_init
Partitioned communication, 114
Partitioned communication using threads, 122
Partitioned communication with partial completion, 125
Partitioned communication with tasks, 123

MPI_PROBE
Client-server (with error), 96
Client-server with probe, 96

MPI_Psend_init
Partitioned communication, 114
Partitioned communication using threads, 122
Partitioned communication with partial completion, 125
Partitioned communication with tasks, 123

MPI_Publish_name
Name publishing, 538

MPI_PUT
Fortran 90 register optimization in RMA, 827

MPI_Put
Active target and local reads in RMA, 613
Put with Fence, 618
Put with PSCW, 619
Read data in RMA, 611
Read data in RMA (unsafe), 611
Register and Compiler Optimization, 618
RMA Lock and unlock, 600
RMA Start and complete, 594

MPI_RECV
Client-server (with error), 96
Client-server with probe, 96
Datatype matching, 47
Datatypes, 47
Errant message exchange, 57
Exchange relies on buffering, 57

Fortran CHARACTER, 48
Matching type with datatypes, 159
Message exchange, 57
Message matching, 56
Nonovertaking messages, 55
Progress semantics, 83

MPI_Recv
Deadlock due to synchronization through shared memory, 617
Hello world, 31
Progress of nonblocking collectives, 301

MPI_REDUCE
Defining a user function, 240
Reduction, 228
Reduction of a vector, 229
Reduction with maxloc, 233

MPI_Reduce
Library Example #1, 346
Reduction with maxloc, 233
Reduction with minloc, 234
Reduction with user-defined op, 239

MPI_REQUEST_FREE
Nonblocking send and receive with request free, 82

MPI_Request_free
Finalize and request free, 489

MPI_Rget
Requests in RMA, 623

MPI_Rput
Requests in RMA, 623

MPI_Scan
User-defined operation with Scan, 249

MPI_Scatter
Scatter, 212

MPI_Scatterv
Scatterv, 212
Scatterv with vector datatype, 213

MPI_SEND
Client-server (with error), 96
Client-server with probe, 96
Datatype matching, 47
Datatypes, 47
Errant message exchange, 57
Exchange relies on buffering, 57
Fortran 90
subarray as buffer, 815
vector subscripts, 818
Fortran CHARACTER, 48
Matching type with datatypes, 159
Message exchange, 57
Progress semantics, 83

MPI_Send
Hello world, 31
Measurement wrapper, 720
Examples Index

Mixing collective and point-to-point, 302
Pack/Unpack with struct datatype, 183
Progress of nonblocking collectives, 301
Using datatypes with array of structures, 172
Using datatypes with array of structures with absolute addresses, 175
Using datatypes with unions, 176

MPI_SENDRECV
Neighbor altolall, 417
Nested vector datatypes, 171
Send/receive of a 3D array, 170
Transpose with datatypes, 172
Using indexed datatype, 171

MPI_SENDRECV_REPLACE
Using Cart_shift, 406

MPI_SESSION_FINALIZE
Finalize in the Sessions Model, 497
Using process set query in group creation, 505

MPI_Session_finalize
Creating a communicator using the Sessions Model, 501
Using process set query in group creation, 503

MPI_SESSION_GET_NTH_PSET
Using process set query in group creation, 505

MPI_Session_get_nth_pset
Using process set query in group creation, 503

MPI_SESSION_GET_NUM_PSETS
Using process set query in group creation, 505

MPI_SESSION_INIT
Using process set query in group creation, 505

MPI_Session_init
Creating a communicator using the Sessions Model, 501
Using process set query in group creation, 503

MPI_SSSEND
Message matching, 56
Progress semantics, 83

MPI_T_cvar_get_info
Listing names of control variables, 732

MPI_T_cvar_handle_alloc
Reading a control variable, 735

MPI_T_cvar_handle_free
Reading a control variable, 735

MPI_T_cvar_read
Reading a control variable, 735

MPI_T_finalize
Basic usage of performance variables, 746

MPI_T_init_thread
Basic usage of performance variables, 746

MPI_T_pvar_get_info
Basic usage of performance variables, 746

MPI_T_pvar_handle_alloc
Basic usage of performance variables, 746

MPI_T_pvar_handle_free
Basic usage of performance variables, 746

MPI_T_pvar_read
Basic usage of performance variables, 746

MPI_T_pvar_session_create
Basic usage of performance variables, 746

MPI_T_pvar_start
Basic usage of performance variables, 746

MPI_Test_cancelled
Finalize and cancel, 490

MPI_TYPE_COMMIT
Fortran 90
derived types, 819
Nested vector datatypes, 171
Send/receive of a 3D array, 170
Transpose with datatypes, 172
Type_commit, 157
Using Get with indexed datatype, 570
Using indexed datatype, 171

MPI_Type_commit
Gather and Gatherv, 207
Gather with datatype, 202
Gatherv with datatype, 203, 204
Gatherv with struct datatype, 205
Gatherv with vector datatype, 206
Pack/Unpack with struct datatype, 183
Scatterv with vector datatype, 213
User-defined operation with Scan, 249
Using datatypes with array of structures, 172
Using datatypes with array of structures with absolute addresses, 175
Using datatypes with unions, 176

MPI_TYPE_CONTIGUOUS
Matching type with datatypes, 159
Typemap for contiguous, 130
Typemap of nested datatypes, 152
Using Get_count and Get_elements, 161

MPI_Type_contiguous
Gather with datatype, 202

MPI_TYPE_CREATE_DARRAY
Datatypes for distributed arrays, 148

MPI_TYPE_CREATE_F90_INTEGER
Fortran 90
Examples Index

selected KIND, 808

MPI_TYPE_CREATE_F90_REAL
 Fortran 90
 selected KIND, 808

MPI_TYPE_CREATE_HVECTOR
 Nested vector datatypes, 171
 Send/receive of a 3D array, 170

MPI_Type_create_hvector
 Using datatypes with array of structures, 172
 Using datatypes with array of structures with absolute addresses, 175

MPI_TYPE_CREATE_INDEXED_BLOCK
 Using Get with indexed datatype, 570

MPI_TYPE_CREATE_RESIZED
 Fortran 90
 derived types, 819

MPI_Type_create_resized
 Using datatypes with unions, 176

MPI_TYPE_CREATE_STRUCT
 Fortran 90
 derived types, 819
 Interlanguage communication, 847
 Transpose with datatypes, 172
 Typemap for create struct, 140
 Typemap of nested datatypes, 152

MPI_Type_create_struct
 Gather and Gatherv, 207
 Gatherv with struct datatype, 205
 Pack/Unpack with struct datatype, 183
 User-defined operation with Scan, 249
 Using datatypes with array of structures, 172
 Using datatypes with arrays of structures with absolute addresses, 175

MPI_TYPE_CREATE_SUBARRAY
 Local subarray for file output in Fortran 90, 715

MPI_Type_create_subarray
 Local subarray for file output, 714

MPI_TYPE_EXTENT
 Using Get with indexed datatype, 570

MPI_TYPE_FREE
 Using Get with indexed datatype, 570

MPI_Type_get_contents
 Decoding a datatype, 177

MPI_Type_get_envelope
 Decoding a datatype, 177

MPI_TYPE_GET_EXTENT
 Accumulate in RMA, 574
 Nested vector datatypes, 171
 Send/receive of a 3D array, 170
 Transpose with datatypes, 172
 Using Get, 572

MPI_Type_get_extent
 Using datatypes with array of structures, 172

MPI_TYPE_GET_VALUE_INDEX
 Retrieving an unnamed predefined value-index handle, 232

MPI_TYPE_INDEXED
 Typemap for indexed, 134
 Using indexed datatype, 171

MPI_Type_indexed
 Using datatypes with array of structures, 172
 Using datatypes with array of structures with absolute addresses, 175

MPI_TYPE_MATCH_SIZE
 Fortran 90
 heterogeneous MPI I/O (unsafe), 812
 heterogeneous communication (unsafe), 812

MPI_Type_match_size
 Measurement wrapper, 720

MPI_TYPE_VECTOR
 Nested vector datatypes, 171
 Send/receive of a 3D array, 170
 Transpose with datatypes, 172
 Typemap for vector, 131

MPI_Type_vector
 Gatherv with datatype, 203, 204
 Gatherv with vector datatype, 206
 Scatterv with vector datatype, 213

MPI_Unpack
 Pack and Pack_size, 184
 Pack/Unpack with struct datatype, 183

MPI_Unpublish_name
 Name publishing, 538

MPI_USER_FUNCTION
 Defining a user function, 240

MPI_WAIT
 Client server code with waitsome, 90
 Client-server, 89
 File pointer update semantics, 668
 Message ordering for nonblocking operations, 82
 Nonblocking point-to-point, 81
 Nonblocking send and receive with request free, 82
 Progress semantics, 83

MPI_Wait
 Erroneous matching of blocking and nonblocking collectives, 301
Examples Index

1. Erroneous matching of collectives, 300
2. Mixing blocking and nonblocking collective operations, 300
3. Mixing collective and point-to-point, 302
4. Progress of nonblocking collectives, 301
5. **MPI_Waitall**
 - Mixing collective and point-to-point, 302
 - Overlapping communicators and collectives, 303
 - Pipelining nonblocking collectives, 302
 - Requests in **RMA**, 623
6. **MPI_WAITANY**
 - Client-server, 89
7. **MPI_Waitany**
 - Requests in **RMA**, 623
8. **MPI_WAITCOME**
 - Linked list in **RMA**, 624
9. **MPI.Win_complete**
 - Active target and local reads in **RMA**, 613
 - Double buffer in **RMA**, 620
 - Get with PSCW, 619
 - Public and private memory in **RMA**, 612
 - Put with PSCW, 619
 - **RMA** Start and complete, 594
10. **MPI.Win_CREATE**
 - Accumulate in **RMA**, 574
 - Using Get, 572
 - Using Get with indexed datatype, 570
11. **MPI.Win_create_dynamic**
 - Linked list in **RMA**, 624
12. **MPI.Win_detach**
 - Linked list in **RMA**, 624
13. **MPI.Win_fence**
 - Linked list in **RMA**, 624
14. **MPI.Win_fence**
 - Active target and local reads in **RMA**, 613
 - Double buffer in **RMA**, 620
 - Get with PSCW, 619
 - Public and private memory in **RMA**, 612
 - Put with PSCW, 619
 - **RMA** Start and complete, 594
15. **MPI.Win_fence**
 - Deadlock due to synchronization through shared memory, 617
 - Get with fence, 619
 - Put with Fence, 618
 - Register and Compiler Optimization, 618
16. **MPI.Win_flush**
 - Counting semaphore (nonscalable), 621
 - Critical region with Compare-and-Swap, 622
 - Critical region with **RMA**, 621
 - Linked list in **RMA**, 624
 - Read data in **RMA**, 624
 - Read data in **RMA** (unsafe), 611
17. **MPI.Win_flush_all**
 - Critical region with **RMA**, 621
 - Update location in unified memory model, 610
18. **MPI.Win_free**
 - Accumulate in **RMA**, 574
 - Using Get, 572
19. **MPI.Win_lock**
 - Active target and local reads in **RMA**, 613
 - Public and private memory in **RMA**, 612
 - Read data in **RMA**, 611
 - **RMA** Lock and unlock, 600
 - Update location in separate memory model, 610
20. **MPI.Win_lock_all**
 - Linked list in **RMA**, 624
 - Read data in **RMA** (unsafe), 611
 - Requests in **RMA**, 623
 - Shared memory windows, 623
21. **MPI.Win_post**
 - Active target and local reads in **RMA**, 613
 - Double buffer in **RMA**, 620
 - Get with PSCW, 619
 - Public and private memory in **RMA**, 612
 - Put with PSCW, 619
22. **MPI.Win_shared_query**
 - Deadlock due to synchronization through shared memory, 617
23. **MPI.Win_start**
 - Active target and local reads in **RMA**, 613
 - Double buffer in **RMA**, 620
 - Get with PSCW, 619
 - Public and private memory in **RMA**, 612
 - Put with PSCW, 619
 - **RMA** Start and complete, 594
24. **MPI.Win_sync**
 - Shared memory windows, 623
25. **MPI.Win_sync**
 - Counting semaphore (nonscalable), 621
 - Critical region with Compare-and-Swap, 622
 - Critical region with **RMA**, 621
 - Update location in unified memory model, 610
26. **MPI.Win_unlock**
 - Active target and local reads in **RMA**, 613
 - Public and private memory in **RMA**, 612
 - Read data in **RMA**, 611
 - **RMA** Lock and unlock, 600
 - Update location in separate memory model, 610
27. **MPI.Win_unlock_all**
 - Linked list in **RMA**, 624
 - Read data in **RMA** (unsafe), 611
Requests in RMA, 623

MPI

- **MPI_Win_wait**
 - Active target and local reads in RMA, 613
- Double buffer in RMA, 620
- Get with PSCW, 619
- Public and private memory in RMA, 612
- Put with PSCW, 619

MPI_WTIME

- Using **MPI_Wtime**, 470

mpiexec

- mpiexec and environment variables, 484
 - Using mpiexec
 - starting programs with separate argument lists, 514
 - using -arch, 514
 - using -configfile, 514
 - using -host, 514
 - using -n, 513

mpiexec and environment variables

- **MPI_INFO_ENV**, 484
- mpiexec, 514

Name publishing

- **MPI_Comm_accept**, 538
- **MPI_Comm_connect**, 538
- **MPI_Open_port**, 538
- **MPI_Publish_name**, 538
- **MPI_Unpublish_name**, 538

Neighbor allgather

- **MPI_NEIGHBOR_ALLGATHER**, 412

Neighbor alltoall

- **MPI_CART_SHIFT**, 417
- **MPI_CARTDIM_GET**, 417
- **MPI_NEIGHBOR_ALLTOALL**, 417
- **MPI_SENDRECV**, 417

Neighborhood collective communication, 437

- **MPI_CART_GET**, 437
- **MPI_CARTSHIFT**, 437
- **MPI_DIMS_CREATE**, 437

Nested vector datatypes

- **MPI_SENDRECV**, 171
- **MPI_TYPE_COMMIT**, 171
- **MPI_TYPE_CREATE_HVECTOR**, 171
- **MPI_TYPE_GET_EXTENT**, 171
- **MPI_TYPE_VECTOR**, 171

Nonblocking operations, 81, 82

- Nonblocking operation, 81
- Double buffer in RMA, 620
- Get with PSCW, 619
- Public and private memory in RMA, 612
- Put with PSCW, 619

Nonblocking send and receive with request

- Nonblocking send and receive with request free, 81
- **MPI_Irecv**, 82
- **MPI_Isend**, 82
- **MPI_REQUEST_FREE**, 82
- **MPI_Wait**, 82

Nondeterministic program with MPI_Bcast

- 298

Nonoverlapping messages, 55

- **MPI_Bcast**, 298

Overlap computation and output

- Overlap computation and output, 55
- Overlapping communicators, 303
- Overlapping communicators and collectives
 - **MPI_Allreduce**, 303
 - **MPI_Waitall**, 303

Pack and Pack_size

- Pack and Pack_size, 29
- **MPI_Gather**, 184
- **MPI_Gatherv**, 184
- **MPI_Pack**, 184
- **MPI_Pack_size**, 184
- **MPI_Unpack**, 184

Pack/Unpack with struct datatype

- Pack/Unpack with struct datatype, 29
- **MPI_Get_address**, 183
- **MPI_Pack**, 183
- **MPI_Send**, 183
- **MPI_Type_commit**, 183
- **MPI_Type_create_struct**, 183
- **MPI_ Unpack**, 183

Partitioned communication

- Partitioned communication, 32
- Equal send/recv partitioning, 122
- **MPI_Pready**, 114
- **MPI_Precv_init**, 114
- **MPI_Psend_init**, 114
- Partial completion notification, 125
- Send with tasks, 123
- Simple example, 114

Partitioned communication using threads

- Partitioned communication using threads, 39
- **MPI_Pready**, 122
- **MPI_Precv_init**, 122
- **MPI_Psend_init**, 122

Partitioned communication with partial completion

- Partitioned communication with partial completion, 43
- **MPI_Parrived**, 125
- **MPI_Pready**, 125
- **MPI_Precv_init**, 125
- **MPI_Psend_init**, 125

Partitioned communication with tasks

- Partitioned communication with tasks, 47
Examples Index

48
47
46
45
43
42
40
39
37
36
35
34
33
32
31
29
28
27
26
25
24
23
22
20
18
17
16
15
14
12
11
10
9
7
6
5
4
2
1

Read data in

MPI_Barrier, 611
MPI_Put, 611
MPI_Win_flush, 611
MPI_Win_lock_all, 611
MPI_Win_unlock_all, 611

Read to end of file

MPI_FILE_CLOSE, 665
MPI_FILE_OPEN, 665
MPI_FILE_READ, 665
MPI_FILE_SET_VIEW, 665

Reading a control variable

MPI_T_cvar_handle_alloc, 735
MPI_T_cvar_handle_free, 735
MPI_T_cvar_read, 735

Recursive splitting of COMM_WORLD

MPI_Comm_split_type, 336

Reduction

MPI_REDUCE, 228
Reduction of a vector

MPI_REDUCE, 229

Reduction with maxloc

MPI_REDUCE, 233
MPIReduce, 233

Reduction with minloc

MPIReduce, 234

Reduction with user-defined op

MPIOp_create, 239
MPIReduce, 239

Register and Compiler Optimization

MPIPut, 618
MPI_Win_fence, 618

Requesting and querying memory allocation

mpi_assert_memory_alloc_kinds, 510
mpi㋛, 510

Requests in RMA

MPIRget, 623
MPIRput, 623
MPIWaitall, 623
MPIWaitany, 623
MPI_Win_lock_all, 623
MPI_Win_unlock_all, 623

Retrieving an unnamed predefined value-index

handle

MPI_TYPE_GET_VALUE_INDEX, 232

RMA Lock and unlock

MPIPut, 600
MPI_Win_lock, 600
MPI_Win_unlock, 600

RMA Start and complete

MPIPut, 594
MPI_Win_complete, 594
MPI_Win_start, 594

Rules for finalize

MPI_Pready, 123
MPI_Precv_init, 123
MPI_Psend_init, 123

Pipelining nonblocking collective operations,

302

Pipelining nonblocking collectives

MPI_IBcast, 302
MPI_Waitall, 302

Point-to-point

Hello world, 31

Profiling interface

implementation using the C macro

preprocessor, 720

implementation using weak symbols, 720

measurement wrapper, 720

Progress of matching pairs, 56

Progress of nonblocking collective operations,

301

Progress of nonblocking collectives

MPI_Barrier, 301
MPI_Recv, 301
MPI_Send, 301
MPI_Wait, 301

Progress semantics

MPI_Irecv, 83
MPI_Recv, 83
MPI_Send, 83
MPI_Ssend, 83
MPI_Wait, 83

Public and private memory in RMA

MPI_Barrier, 612
MPI_Get, 612
MPI_Win_complete, 612
MPI_Win_lock, 612
MPI_Win_post, 612
MPI_Win_start, 612
MPI_Win_unlock, 612
MPI_Win_wait, 612

Put with Fence

MPIPut, 618
MPI_Win_fence, 618

Put with PSCW

MPIPut, 619
MPI_Win_complete, 619
MPI_Win_post, 619
MPI_Win_start, 619
MPI_Win_wait, 619

Read data in RMA

MPI_Barrier, 611
MPI_Put, 611
MPI_Win_lock, 611
MPI_Win_unlock, 611

Read data in RMA (unsafe)
MPI_Finalize, 489

Scatter
MPI_Scatter, 212

Scatterv
MPI_Scatterv, 212

Scatter with vector datatype
MPI_Scatterv, 213
MPI_Type_commit, 213
MPI_Type_vector, 213

Send/receive of a 3D array
MPI_SENDRECV, 170
MPI_TYPE_COMMIT, 170
MPI_TYPE_CREATE_HVECTOR, 170
MPI_TYPE_GET_EXTENT, 170
MPI_TYPE_VECTOR, 170

Shared memory windows
MPI_F_SYNC_REG, 623
MPI_Win_lock_all, 623
MPI_Win_sync, 623

Splitting into NUMANode subcommunicators
MPI_Comm_split_type, 334

Subgroup cart process topology
MPI_CART_SUB, 407

Threads and MPI, 515
Three-Group “Pipeline”
MPI_Comm_split, 356
MPI_Intercomm_create, 356

Three-Group “Ring”
MPI_Comm_split, 358
MPI_Intercomm_create, 358

Tool information interface
basic usage of performance variables, 746
listing names of all control variables, 732
reading the value of a control variable, 735

Topologies, 437
Transpose with datatypes
MPI_SENDRECV, 172
MPI_TYPE_COMMIT, 172
MPI_TYPE_CREATE_STRUCT, 172
MPI_TYPE_GET_EXTENT, 172
MPI_TYPE_VECTOR, 172

Type-commit
MPI_TYPE_COMMIT, 157

Typemap, 129–131, 134, 140, 148
Typemap for contiguous
MPI_TYPE_CONTIGUOUS, 130

Typemap for create struct
MPI_TYPE_CREATE_STRUCT, 140

Typemap for indexed
MPI_TYPE_INDEXED, 134

Typemap for vector
MPI_TYPE_VECTOR, 131

Typemap of nested datatypes
MPI_TYPE_CONTIGUOUS, 152
MPI_TYPE_CREATE_STRUCT, 152

Update location in separate memory model
MPI_Barrier, 610
MPI_Get, 610
MPI_Win_lock, 610
MPI_Win_unlock, 610

Update location in unified memory model
MPI_Barrier, 610
MPI_Get, 610
MPI_Win_flush_local, 610
MPI_Win_sync, 610

Use of Alloc_mem in Fortran
MPI_ALLOC_MEM, 448
MPI_FREE_MEM, 448

Use of Alloc_mem in Fortran with Cray pointers
MPI_ALLOC_MEM, 448
MPI_FREE_MEM, 448

User-defined operation with Scan
MPI_Op_create, 249
MPI.Scan, 249
MPI_Type_commit, 249
MPI_Type_create_struct, 249

User-defined reduce
MPI_Request_complete, 631
MPI_Request_start, 631

Using Alloc_mem
MPI_Alloc_mem, 449

Using Cart_shift
MPI_CART_COORDS, 406
MPI_CART_RANK, 406
MPI_CART_SHIFT, 406
MPI_SENDRECV_REPLACE, 406

Using datatypes with array of structures
MPI_Aint, 172
MPI_Get_address, 172
MPI_Send, 172
MPI_Type_commit, 172
MPI_Type_create_hvector, 172
MPI_Type_create_struct, 172
MPI_Type_get_extent, 172
MPI_Type_indexed, 172

Using datatypes with array of structures with absolute addresses
MPI_Get_address, 175
MPI_Send, 175
MPI_Type_commit, 175
MPI_Type_create_hvector, 175
MPI_Type_create_struct, 175
MPI_Type_indexed, 175

Using datatypes with unions
Examples Index

1. MPI_Get_address, 176
2. MPI_Send, 176
3. MPI_Type_commit, 176
4. MPI_Type_create_resized, 176

Using Get
5. MPI_GET, 572
6. MPI_TYPE_GET_EXTENT, 572
7. MPI_WIN_CREATE, 572
8. MPI_WIN_FENCE, 572
9. MPI_WIN_FREE, 572

Using Get with indexed datatype
10. MPI_GET, 570
11. MPI_TYPE_COMMIT, 570
12. MPI_TYPE_CREATE_INDEXED_BLOCK, 570
13. MPI_TYPE_EXTENT, 570
14. MPI_TYPE_FREE, 570
15. MPI_WIN_CREATE, 570
16. MPI_WIN_FENCE, 570

Using Get_count and Get_elements
17. MPI_GET_COUNT, 161
18. MPI_GET_ELEMENTS, 161
19. MPI_TYPE_CONTIGUOUS, 161

Using Group_excl
20. MPI_Comm_create, 344
21. MPI_Group_excl, 344
22. MPI_Group_free, 344

Using indexed datatype
23. MPI_SENDRECV, 171
24. MPI_TYPE_COMMIT, 171
25. MPI_TYPE_INDEXED, 171

Using MPI_Wtime
26. MPI_WTIME, 470

Using mpiexec
27. starting programs with separate argument lists
28. mpiexec, 514
29. using -arch
30. mpiexec, 514
31. using -configfile
32. mpiexec, 514
33. using -host
34. mpiexec, 514
35. using -n
36. mpiexec, 513

Using Pack
37. MPI_Pack, 183

Using process set query in group creation
38. MPI_BARRIER, 505
39. MPI_COMM_CREATE_FROM_GROUP, 505
40. MPI_GROUP_FROM_SESSION_PSET, 505
41. MPI_Group_from_session_pset, 503
42. MPI_SESSION_FINALIZE, 505

Virtual topologies, 437
MPI Constant and Predefined Handle Index

This index lists predefined MPI constants and handles, including info keys and values. Underlined page numbers give the location of the primary definition or use of the indexed term.

"access_style", 648, 873
"accumulate_ops", 550, 873
"accumulate_ordering", 550, 614, 873
"alloc_mem", 510, 874
"alloc_shared_noncontig", 555, 556, 873
"appnum", 542, 873
"arch", 484, 527, 873
"argv", 484, 873

"cb_block_size", 649, 873
"cb_buffer_size", 649, 873
"cb_nodes", 649, 873
"chunked", 649, 874
"chunked_item", 649, 873
"chunked_size", 649, 874
"collective_buffering", 648, 874
"command", 484, 874

"external32", 185, 690–696, 700, 807–810, 812, 873, 1056, 1064

"false", 340, 341, 445, 474, 550, 551, 648, 874
"file", 484, 527, 874
"file_perm", 648, 649, 874
"filename", 649, 874

"host", 484, 527, 874
"hwloc://", 445
"hwloc://L3Cache", 497

"internal", 690–692, 700, 873
"io_node_list", 649, 874
"ip_address", 538, 874
"ip_port", 538, 874

"maxprocs", 484, 485, 874
"mpi", 510, 874
"mpi://", 445, 497, 873
"mpi://SELF", 497, 498, 640, 873
"mpi://WORLD", 497, 498, 503, 513, 541, 873

MPI::LONG_LONG, 1056
MPI::BOOL, 1056
MPI::COMPLEX, 1056
MPI::DOUBLE_COMPLEX, 1056

MPI::F_COMPLEX16, 1056
MPI::F_COMPLEX32, 1056
MPI::F_COMPLEX4, 1056
MPI::F_COMPLEX8, 1056
MPI::INTEGER16, 1056
MPI::LONG_DOUBLE_COMPLEX, 1056
MPI::LONG_LONG, 1056
MPI::REAL16, 1056
MPI::2DOUBLE_PRECISION, 231, 856
MPI::2INT, 231, 856
MPI::2INTEGER, 231, 856
MPI::2REAL, 231, 856

"mpi_accumulate_granularity", 550, 874, 1049
MPI_ADDRRES_KIND, 24, 35, 129, 148, 167, 360, 447, 553, 555, 558, 801, 814, 833, 834, 843, 852, 855
MPI_AINT, 35, 129, 228, 560, 695, 833, 854, 855, 1062, 1064
MPI_ANY_SOURCE, 37, 38, 43, 45, 55, 75–77, 79, 94, 95, 97–99, 108, 340, 381, 443, 851
MPI_APPNUM, 542, 860
MPI_ARGV_NULL, 20, 521, 522, 526, 814, 862
MPIARGV_NULL, 20, 526, 814, 862
"mpi_assert_allow_overtaking", 341, 874, 1051
"mpi_assert_exact_length", 341, 874, 1051
"mpi_assert_memory_alloc_kinds", 341, 509, 510, 551, 650, 874, 1048
"mpi_assert_no_any_source", 340, 874, 1051
"mpi_assert_no_any_tag", 340, 874, 1051
"mpi_assert_strict_persistent_collecting_ordering", 341, 1048

MPI_ASYNC_PROTECTS_NONBLOCKING, 622, 788, 789, 791, 793, 796, 804, 805, 825, 852, 1061
MPI_BAND, 227, 228, 857
MPI_BOR, 227, 228, 857
MPI_BOTTOM, 10, 20, 21, 42, 59, 60, 121, 148, 161, 162, 193, 392, 394, 523, 560, 564,
MPI(Constant and Predefined Handle Index)

1. 789, 792, 800, 814, 819, 821, 823, 824,
2. 826–828, 831, 841, 842, 847, 851, 1068
3. MPI_BSEND_OVERHEAD, 68, 851
4. MPI_BUFFER_AUTOMATIC, 20, 59, 60, 63, 67,
5. 851, 1048
6. MPI_BXOR, 227, 228, 857
7. MPI_BYTE, 34, 34, 46, 47, 49, 185, 228, 638,
8. 690, 691, 695, 705, 847, 854, 855, 1064
9. Fortran example usage, 47
10. MPI_C_BOOL, 34, 228, 695, 854, 1056, 1062,
11. 1064
12. MPI_C_COMPLEX, 34, 228, 695, 854, 1056,
13. 1062, 1064
14. MPI_C_DOUBLE_COMPLEX, 34, 228, 695,
15. 854, 1062, 1064
16. MPI_C_FLOAT_COMPLEX, 34, 228, 695, 854,
17. 1062, 1064
18. MPI_C_LONG_DOUBLE_COMPLEX, 34, 228,
19. 695, 854, 1062, 1064
20. MPI_CART, 397, 858
21. MPI_CHAR, 31, 49, 140, 229, 695, 727, 728,
22. 854, 1061, 1062
23. MPI_CHARACTER, 33, 48, 49, 229, 695, 855
24. Fortran example usage, 48
25. MPI_COMBINDER_CONTIGUOUS, 164, 168, 861
26. MPI_COMBINDER_DARRAY, 164, 170, 861
27. MPI_COMBINDER_DUP, 164, 168, 861
28. MPI_COMBINDER_F90_COMPLEX, 164, 170,
29. 861
30. MPI_COMBINDER_F90_INTEGER, 164, 170, 861
31. MPI_COMBINDER_F90_REAL, 164, 170, 861
32. MPI_COMBINDER_HINDEXED, 24, 164, 169,
33. 861
34. MPI_COMBINDER_HINDEXED_BLOCK, 164,
35. 169, 861, 1058
36. MPI_COMBINDER_HINDEXED_INTEGER, 24,
37. 784, 1057
38. MPI_COMBINDER_HVECTOR, 24, 164, 168, 861
39. MPI_COMBINDER_HVECTOR_INTEGER, 24,
40. 784, 1057
41. MPI_COMBINDER_INDEXED, 164, 169, 861
42. MPI_COMBINDER_INDEXED_BLOCK, 164, 169,
43. 861
44. MPI_COMBINDER_INDEXED_LEN, 164, 168, 232, 861
45. MPI_COMBINDER_INDEXED_LEN_BLOCK, 164, 169,
46. 861
47. MPI_COMBINDER_INDEXED_LEN_INDEX, 24, 164,
48. 169, 861
49. MPI_COMBINDER_INDEXED_LEN_INDEX_BLOCK, 24,
50. 784, 1057
51. MPI_COMBINDER_INDEXED_LEN_SUBARRAY, 164,
52. 169, 861
53. MPI_COMBINDER_INDEXED_LEN_SUBARRAY_BLOCK, 164,
54. 169, 861
55. MPI_COMBINDER_INDEXED_LEN_SUBARRAY_INDEX, 24,
56. 784, 1057
57. MPI_COMBINDER_INDEXED_LEN_SUBARRAY_INDEX_BLOCK, 24,
58. 784, 1057
59. MPI_COMBINDER_INDEXED_SUBVOLUME, 164,
60. 169, 861
61. MPI_COMBINDER_INDEXED_SUBVOLUME_BLOCK, 164,
62. 169, 861
63. MPI_COMBINDER_INDEXED_SUBVOLUME_INDEX, 24,
64. 784, 1057
65. MPI_COMBINDER_INDEXED_SUBVOLUME_INDEX_BLOCK, 24,
66. 784, 1057
67. MPI_COMBINDER_INDEXED_SUBVOLUME_INDEX_INDEX, 24,
68. 784, 1057
69. MPI_COMBINDER_INDEXED_SUBVOLUME_INDEX_INDEX_BLOCK, 24,
70. 784, 1057
71. MPI_COMBINDER_INDEXED_SUBVOLUME_INDEX_INDEX_INDEX, 24,
72. 784, 1057
73. MPI_COMM_NULL, 309, 325, 327–330,
74. 333–336, 339, 340, 355, 377, 387, 389,
75. 524, 544, 545, 836, 858, 1048, 1065
76. "MPI_COMM_NULL", 377, 873
77. MPI_COMM_NULL_COPY_FN, 23, 24, 362,
78. 363, 364, 790, 842, 859, 1055, 1060
79. MPI_COMM_NULL_DELETE_FN, 24, 363, 364,
80. 859, 1055
81. "MPI_COMM_PARENT", 377, 873
82. MPI_COMM_SELF, 26, 309, 328, 342, 359, 377,
83. 449, 450, 482, 483, 488, 490, 492, 493,
84. 544, 640, 785, 856, 1050, 1063
85. "MPI_COMM_SELF", 377, 873
86. MPI_COMM_TYPE_HW_GUIDED, 333, 334,
87. 446, 856, 1051
88. MPI_COMM_TYPE_HW_UNGUIDED, 336,
89. 337, 856, 1051
90. MPI_COMM_TYPE_RESOURCE_GUIDED, 334,
91. 335, 446, 856, 1048
92. MPI_COMM_TYPE_SHARED, 333, 334, 335,
93. 617, 856, 1058
94. MPI_COMM_WORLD, 19, 29, 31, 32, 36, 307,
95. 309, 311, 312, 320, 321, 334–337, 342,
96. 345, 353, 377, 442–444, 453, 465,
97. 481–483, 485, 487–491, 493, 508, 513,
98. 514, 518–521, 524, 526, 540–544, 689,
99. 711, 734, 742, 777, 778, 785, 835, 847,
100. 856, 881, 1050, 1066
101. "MPI_COMM_WORLD", 377, 873
102. MPI_COMPLEX, 34, 228, 693, 695, 806, 855
103. MPI_COMPLEX16, 35, 228, 696, 855
104. MPI_COMPLEX32, 35, 228, 696, 855
105. MPI_COMPLEX4, 35, 228, 696, 855
106. MPI_COMPLEX8, 35, 228, 696, 855
107. MPI_CONGRUENT, 321, 352, 856
108. MPI_CONVERSION_FN_NULL, 700, 859, 1055
109. MPI_CONVERSION_FN_NULL_C, 700, 833,
110. 859, 1050
111. MPI_COUNT, 35, 129, 228, 237, 695, 727, 833,
112. 854, 855, 1057
113. MPI_COUNT_KIND, 21, 22, 35, 834, 852, 855,
114. 1057
115. MPI_CXX_BOOL, 35, 228, 695, 696, 855, 1056
116. MPI_CXX_DOUBLE_COMPLEX, 35, 228, 695,
117. 696, 855, 1056
118. MPI_CXX_FLOAT_COMPLEX, 35, 228, 695,
119. 696, 855, 1056
120. MPI_CXX_LONG_DOUBLE_COMPLEX, 35,
121. 228, 695, 696, 855, 1056
122. MPI_DATATYPE_NULL, 157, 232, 379, 858,
123. 1048
124. "MPI_DATATYPE_NULL", 379, 873
125. MPI_DISPLACEMENT_CURRENT, 651, 862,
126. 1067
MPI_CONSTANT and Predefined Handle Index

MPI_DIST_GRAPH, 397, 858, 1063
MPI_DISTRIBUTE_BLOCK, 145, 146, 862
MPI_DISTRIBUTE_CYCLIC, 145, 146, 862
MPI_DISTRIBUTE_DEFLT_DARG, 145, 146, 862
MPI_DISTRIBUTE_NONE, 145, 146, 862
MPI_DOUBLE, 34, 227, 695, 727, 737, 738, 805, 854
MPI_DOUBLE_COMPLEX, 34, 228, 693, 695, 806, 855
MPI_DOUBLE_INT, 231, 856
MPI_DOUBLE_PRECISION, 33, 227, 695, 806, 855
MPI_DUP_FN, 24, 363, 772, 860
MPI_ERR_ACCESS, 462, 643, 712, 850
MPI_ERR_AMODE, 462, 641, 712, 850
MPI_ERR_ARG, 462, 849
MPI_ERR_ASSERT, 462, 605, 850
MPI_ERR_BAD_FILE, 462, 712, 850
MPI_ERR_BASE, 448, 462, 605, 850
MPI_ERR_BUFFER, 462, 849
MPI_ERR_COMM, 462, 849
MPI_ERR_CONVERSION, 462, 700, 712, 850
MPI_ERR_COUNT, 462, 849
MPI_ERR_DIMS, 462, 849
MPI_ERR_DISP, 462, 605, 850
MPI_ERR_DUP_DATAREP, 462, 697, 712, 850
MPI_ERR_ERRHANDLER, 462, 850, 1049
MPI_ERR_FILE, 462, 712, 850
MPI_ERR_FILE_EXISTS, 462, 712, 850
MPI_ERR_FILE_IN_USE, 462, 643, 712, 850
MPI_ERR_GROUP, 462, 849
MPI_ERR_IN_STATUS, 39, 43, 79, 86, 88, 452, 460, 462, 630, 656, 850
MPI_ERR_INFO, 462, 850
MPI_ERR_INFO_KEY, 462, 475, 850
MPI_ERR_INFO_NOKEY, 462, 475, 850
MPI_ERR_INFO_VALUE, 462, 475, 850
MPI_ERR_INTERN, 451, 462, 849
MPI_ERR_IO, 462, 712, 850
MPI_ERR_KEYVAL, 374, 462, 850
MPI_ERR_LASTCODE, 461, 463, 465, 467, 768, 851
MPI_ERR_LOCKTYPE, 462, 605, 850
MPI_ERR_NAME, 462, 537, 850
MPI_ERR_NO_MEM, 447, 462, 850
MPI_ERR_NO_SPACE, 462, 712, 850
MPI_ERR_NO_SUCH_FILE, 462, 642, 712, 850
MPI_ERR_NOT_SAME, 462, 712, 850
MPI_ERR_OP, 463, 605, 849
MPI_ERR_OTHER, 461, 463, 849
MPI_ERR_PENDING, 86, 463, 849
MPI_ERR_PORT, 463, 534, 535, 850
MPI_ERR_PROC_ABORTED, 463, 508, 850, 1052
MPI_ERR_QUOTA, 463, 712, 850
MPI_ERR_RANK, 463, 605, 849
MPI_ERR_READ_ONLY, 463, 712, 850
MPI_ERR_REQUEST, 463, 849
MPI_ERR_RMA_ATTACH, 463, 605, 850
MPI_ERR_RMA_CONFLICT, 463, 605, 850
MPI_ERR_RMA_FLAVOR, 463, 605, 850
MPI_ERR_RMA_RANGE, 463, 605, 850
MPI_ERR_RMA_SHARED, 463, 605, 850
MPI_ERR_RMA_SYNC, 463, 605, 850
MPI_ERR_ROOT, 463, 849
MPI_ERR_SERVICE, 463, 537, 850
MPI_ERR_SESSION, 463, 850, 1052
MPI_ERR_SIZE, 463, 605, 850
MPI_ERR_SPAWN, 463, 522, 523, 850
MPI_ERR_TAG, 463, 849
MPI_ERR_TOPOLOGY, 463, 849
MPI_ERR_TRUNCATE, 463, 849
MPI_ERR_TYPE, 164, 166, 463, 712, 849
MPI_ERR_UNKNOWN, 461, 463, 849
MPI_ERR_UNSUPPORTED_DATAREP, 463, 712, 850
MPI_ERR_UNSUPPORTED_OPERATION, 463, 712, 850
MPI_ERR_VALUE_TOO_LARGE, 463, 697, 850, 1050
MPI_ERR_WIN, 463, 605, 850
MPI_ERRCODES_IGNORE, 20, 523, 814, 862
MPI_ERRHANDLER_NULL, 459, 858
MPI_ERROR, 39, 41, 42, 79, 251, 580, 635, 636, 838, 852, 1053, 1060
MPI_ERRORS_ABORT, 450, 483, 527, 852, 1050
"mpi_errors_abort", 527, 874, 1052
MPI_ERRORS_ARE_FATAL, 450, 451, 469, 527, 605, 711, 852, 1050
"mpi_errors_are_fatal", 527, 874, 1052
MPI_ERRORS_RETURN, 450, 451, 469, 508, 527, 711, 847, 852
"mpi_errors_return", 527, 874, 1052
MPI_F08_STATUS_IGNORE, 839, 863, 1060
MPI_F08_STATUSES_IGNORE, 839, 863, 1060
MPI_F_ERROR, 838, 852, 1050
MPI_F_SOURCE, 838, 852, 1050
MPI_F_STATUS_IGNORE, 838, 863
MPI_F_STATUS_SIZE, 838, 852, 1050
MPI_F_STATUSES_IGNORE, 838, 863
MPI_F_TAG, 838, 852, 1050
MPI_FILE_NULL, 642, 711, 858
MPI_FLOAT, 34, 140, 225, 227, 692, 695, 854
MPI_FLOAT_INT, 16, 231, 856
MPI_GRAPH, 397, 858
MPI_GROUP_EMPTY, 308, 314, 315, 325, 327, 328, 339, 355, 858
MPI Constant and Predefined Handle Index

MPI_GROUP_NULL, 308, 318, 319, 858
MPI_HOST, 5, 24, 777, 778, 857, 1047
"mpi_hw_resource_type", 333–336, 446, 874, 1051
MPI_IDENT, 312, 321, 856
MPI_IN_PLACE, 20, 192, 221, 792, 814, 851
MPI_INFO_ENV, 478, 484, 484, 485, 493, 509, 856, 1059
MPI_INFO_NULL, 333, 334, 395, 447, 478, 523, 533, 641, 642, 652, 858
"mpi_initial_errhandler", 483, 484, 527, 874, 1052
MPI_INT, 16, 34, 128, 227, 692, 693, 695, 727, 728, 731, 737, 740, 805, 847, 848, 854
MPI_INT16_T, 34, 227, 695, 854, 1062, 1064
MPI_INT32_T, 34, 227, 695, 727, 854, 1062, 1064
MPI_INT64_T, 34, 227, 695, 727, 854, 1062, 1064
MPI_INT8_T, 34, 227, 695, 854, 1062, 1064
MPI_INTEGER, 33, 46, 227, 695, 805, 806, 848, 855
MPI_INTEGER1, 35, 227, 696, 855
MPI_INTEGER16, 227, 696, 855
MPI_INTEGER2, 35, 227, 693, 696, 855
MPI_INTEGER4, 35, 227, 696, 855
MPI_INTEGER8, 35, 227, 696, 810, 855
MPI_INTEGER_KIND, 852
MPI_IO, 443, 857
MPI_KEYVAL_INVALID, 363, 364, 365, 851
MPI_LAND, 227, 228, 857
MPI_LASTUSED_CODE, 465, 860, 1046
MPI_LB, 24, 784, 1057
MPI_LOCK_EXCLUSIVE, 597, 851
MPI_LOCK_SHARED, 597, 598, 851
MPI_LOGICAL, 33, 228, 695, 855
MPI_LONG, 34, 227, 695, 854
MPI_LONG_DOUBLE, 34, 227, 695, 854
MPI_LONG_DOUBLE_INT, 231, 856
MPI_LONG_INT, 231, 856
MPI_LONG_LONG, 34, 227, 854, 1064
MPI_LONG_LONG_INT, 34, 227, 695, 854, 1064
MPI_LOR, 227, 228, 857
MPI_LXOR, 227, 228, 857
MPI_MAX, 225, 227, 228, 232, 249, 857
MPI_MAX_DATE huyệnSTRING, 653, 697, 853
MPI_MAX_ERROR_STRING, 460, 467, 853
MPI_MAX_INFO_KEY, 462, 473, 476, 775, 776, 853
MPI_MAX_INFO_VAL, 462, 473, 853
MPI_MAX_LIBRARY_VERSION_STRING, 442, 853, 1057
MPI_MAX_OBJECT_NAME, 376–379, 853, 1059, 1065
MPI_MAX_PORT_NAME, 532, 853
MPI_MAX_PROCESSOR_NAME, 444, 445, 853, 1066
MPI_MAX_PSET_NAME_LEN, 500, 853, 1045, 1052
MPI_MAX_STRING_TAG_LEN, 339, 355, 853, 1045, 1052
MPI_MAXLOC, 227, 229–232, 234, 857, 1048
"mpi_memory_alloc_kinds", 484, 495, 508, 509, 528, 874, 1048
MPI_MESSAGE_NO_PROC, 99, 101, 102, 111, 852, 1058
MPI_MESSAGE_NULL, 99, 101, 102, 858, 1058
MPI_MIN, 227, 228, 232, 857
"mpi_minimum_memory_alignment", 447, 554, 556, 874, 1051
MPI_MINLOC, 227, 229–232, 234, 857, 1048
MPI_MODE_APPEND, 640, 641, 861
MPI_MODE_CREATE, 640, 641, 649, 861
MPI_MODE_DELETE_ON_CLOSE, 640, 641, 861
MPI_MODE_EXCL, 640, 641, 861
MPI_MODE_NOCHECK, 598, 603, 604, 621, 861
MPI_MODE_NOPRECEDE, 592, 603, 604, 861
MPI_MODE_NOPUT, 603, 604, 861
MPI_MODE_NOSTORE, 603, 604, 861
MPI_MODE_NOSUCCEED, 603, 604, 861
MPI_MODE_RDONLY, 640, 641, 861
MPI_MODE_RDWR, 640, 641, 861
MPI_MODE_SEQUENTIAL, 640, 641, 643, 644, 651, 656, 664, 679, 704, 861, 1067
MPI_MODE_UNIQUE_OPEN, 640, 641, 861
MPI_MODE_WRONLY, 640, 641, 861
MPI_NO_OP, 550, 577, 578, 857, 1054
MPI_NULL_COPY_FN, 24, 363, 772, 860
MPI_NULL_DELETE_FN, 24, 363, 772, 860
MPI_OFFSET, 35, 228, 695, 854, 855, 1062, 1064
MPI_OFFSET_KIND, 21, 35, 706, 814, 834, 835, 852, 855, 862
MPI_OP_NULL, 238, 858
MPI_ORDER_C, 19, 142, 145, 146, 862
MPI_ORDER_FORTRAN, 19, 142, 145, 146, 862
MPI_PACKED, 16, 33, 34, 46, 47, 179, 181, 185, 694, 695, 847, 854, 855
MPI_PROD, 227, 228, 857
"mpi_pset_name", 334, 335, 874, 1048
MPI_REAL, 33, 46, 227, 693, 695, 805, 806, 812, 855
MPI Constant and Predefined Handle Index

1 MPI_T_SCOPE_LOCAL, 732, 864
2 MPI_T_SCOPE_READONLY, 732, 864
3 MPI_T_SCOPE_SOURCE, 750, 865
4 MPI_T_SCOPE_UNORDERED, 750, 865
5 MPI_T_VERBOSITY_MPIDEV_ALL, 724, 863
6 MPI_T_VERBOSITY_MPIDEV_BASIC, 724, 863
7 MPI_T_VERBOSITY_MPIDEV_DETAIL, 724, 863
8 MPI_T_VERBOSITY_TUNER_ALL, 724, 863
9 MPI_T_VERBOSITY_TUNER_BASIC, 724, 863
10 MPI_T_VERBOSITY_TUNER_DETAIL, 724, 863
11
12 MPI_T_VERBOSITY_USER_ALL, 724, 863
13 MPI_T_VERBOSITY_USER_BASIC, 724, 863
14 MPI_T_VERBOSITY_USER_DETAIL, 724, 863
15
16 MPI_TAG, 39, 41, 42, 251, 635, 636, 838, 852, 1053, 1060
17
18 MPI_TAG_UNB, 36, 443, 843, 846, 857
19
20 "MPI_THREAD_FUNNELED", 495, 874
21
22 "MPI_THREAD_MULTIPLE", 495, 874
23
24 "MPI_THREAD_SERIALISED", 855, 861
25 "MPI_THREAD_SERIALISED", 495, 875
26 "MPI_THREAD_SINGLE", 485–487, 495, 861
27 "MPI_THREAD_SINGLE", 495, 875
28
29 MPI_TYPE_DUP_FN, 371, 859, 1055
30 MPI_TYPE_NULL_COPY_FN, 371, 859, 1055
31 MPI_TYPE_NULL_DELETE_FN, 371, 859, 1055
32
33 MPI_TYPECLASS_COMPLEX, 811, 862
34
35 MPI_TYPECLASS_INTEGER, 811, 862
36
37 MPI_TYPECLASS_REAL, 811, 862
38
39 MPI_TYPECLASS, 4, 24, 784, 1057
40
41 MPI_UINT16_T, 34, 227, 695, 854, 1062, 1064
42 MPI_UINT32_T, 34, 227, 695, 727, 854, 1062, 1064
43
44 MPI_UINT64_T, 34, 227, 550, 695, 727, 854, 1062, 1064
45
46 MPI_UINT8_T, 34, 227, 695, 854, 1062, 1064
47
48 MPI_UNDEFINED, 22, 40, 63, 84, 85, 88, 89, 91–93, 151, 154, 156, 160, 161, 182, 310, 311, 329, 330, 333, 397, 408, 409, 693, 697, 807, 851, 1057, 1058, 1064
49
50 MPI_UNIFORM, 312, 321, 352, 856
51
52 MPI_UNIVERSE_SIZE, 519, 540, 541, 860
53
54 MPI_UNSIGNED, 34, 227, 695, 727, 737, 738, 854
55
56 MPI_UNSIGNED_CHAR, 34, 227, 229, 695, 854
57
58 MPI_UNSIGNED_LONG, 34, 227, 695, 727, 737, 738, 854
59
60 MPI_UNSIGNED_LONG_LONG, 34, 227, 695, 727, 737, 738, 854, 1064
61
62 MPI_UNSIGNED_SHORT, 34, 227, 695, 854
63
64 MPI_UNWEIGHTED, 20, 392, 394, 396, 403, 405, 814, 862, 1057, 1063
65
66 MPI_VAL, 17, 836
67
68 MPI_VERSION, 442, 863
69
70 MPI_WCHAR, 34, 229, 379, 693, 695, 854, 1064
71
72 MPI_WEIGHTS_EMPTY, 20, 392, 394, 814, 862, 1057
73
74 MPI_WIN_BASE, 563, 846, 860
75
76 MPI_WIN_CREATE_FLAVOR, 563, 860
77
78 MPI_WIN_DISP_UNIT, 563, 860
79
80 MPI_WIN_DUP_FN, 367, 859, 1055
81
82 MPI_WIN_FLAVOR_ALLOCATE, 563, 860, 1049
83
84 MPI_WIN_FLAVOR_CREATE, 563, 860, 1049
85
86 MPI_WIN_FLAVOR_DYNAMIC, 564, 860
87
88 MPI_WIN_FLAVOR_SHARED, 564, 860
89
90 MPI_WIN_MODEL, 563, 857, 860
91
92 MPI_WIN_NULL, 380, 562, 858, 1048
93 "MPI_WIN_NULL", 380, 873
94
95 MPI_WIN_NULL_COPY_FN, 367, 859, 1055
96 MPI_WIN_NULL_DELETE_FN, 367, 859, 1055
97
98 MPI_WIN_SEPARATE, 564, 857, 607, 860
99
100 MPI_WIN_SIZE, 563, 860
101
102 MPI_WIN_UNIFIED, 564, 857, 608, 618, 860
103
104 MPI_WTIME_IS_GLOBAL, 443, 444, 471, 843, 857
105 "mpich://", 445
106 "mpix://UNIVERSE", 497
107 "native", 690–692, 700, 873
108 "nb_proc", 649, 874
109 "no_locks", 550, 563, 874, 1049
110 "none", 614, 875
111 "num_io_nodes", 649, 874
112
113 "openmp://", 445
114 "openmpi://", 445
115
116 "path", 527, 874
117 "pmix://", 445
118
119 "random", 648, 875
120 "rar", 614, 875
121 "rar,raw,war,waw", 550, 614
122 "rar,waw", 614
123 "raw", 614, 875
124 "read_mostly", 648, 875
125 "read_once", 648, 875
126 "reverse_sequential", 648, 875
127 "same_disp_unit", 551, 874, 1055
128 "same_op", 550, 875
129 "same_op_no_op", 550, 875
"same_size", 551, 874, 1054
"sequential", 648, 875
"slurm://", 445
"soft", 484, 523, 528, 874
"striping_factor", 649, 874
"striping_unit", 650, 874
"system", 510, 875

"thread_level", 484, 495, 874
"true", 340, 341, 445, 474, 563, 648, 875, 1049

"war", 614, 875
"waw", 614, 875
"wdir", 484, 527, 874
"win_allocate", 510, 875
"win_allocate_shared", 510, 875
"write_mostly", 648, 875
"write_once", 648, 875
MPI Declarations Index

This index refers to declarations needed in C and Fortran, such as address kind integers, handles, etc. The underlined page numbers is the “main” reference (sometimes there are more than one when key concepts are discussed in multiple areas). Fortran defined types are shown as TYPE(name).

C example usage, 172

TYPE(MPI_Comm), 32, 327, 353, 801, 856, 858, 866

MPI_Count, 21, 22, 35, 748, 750, 833, 854, 865, 1057

MPI_Data_type, 129, 371, 823, 854–856, 858, 865

TYPE(MPI_Data_type), 129, 854–856, 858, 865

MPI_Errhandler, 452, 453–459, 837, 852, 858, 865

TYPE(MPI_Errhandler), 452, 852, 858, 866

MPI_F08_status, 838, 863, 865, 1060

TYPE(MPI_File), 639, 858, 866

MPI_Fint, 836, 863, 865, 1064

MPI_Group, 310, 311–316, 318, 352, 499, 564, 593, 594, 645, 836, 858, 865

TYPE(MPI_Group), 310, 858, 866

MPI_Info, 446, 473, 474–477, 498, 501, 520, 523, 524, 531, 533–537, 544, 565, 639, 642, 647, 650, 775, 836, 837, 856, 858, 865, 1067

TYPE(MPI_Info), 473, 856, 858, 866

MPI_Message, 97, 837, 852, 858, 865, 1058

TYPE(MPI_Message), 97, 852, 858, 866

TYPE(MPI(Op), 235, 857, 858, 866

TYPE(MPI_Request), 79, 858, 866

MPI_Session, 458, 494, 837, 858, 865, 1052

TYPE(MPI_Session), 494, 858, 866, 1052

TYPE(MPI_Status), 36, 39, 801, 838–840, 862, 866, 1050, 1053, 1060

MPI_T_cb_safety, 751, 757, 758, 865, 1053

MPI_T_cvar_handle, 733, 734, 735, 863, 865

MPI_T_enum, 728, 729, 730, 739, 753, 863, 865

MPI_T_event_instance, 757, 761–763, 865, 1053

MPI_T_event_registration, 755, 756–758, 760, 865, 1053

MPI_T_pvar_handle, 742, 743–745, 863–865

MPI_T_pvar_session, 741, 742–745, 863, 865

MPI_T_source_order, 749, 865, 1053

MPI_Win, 367–369, 454, 455, 548, 552, 554, 559, 562, 564, 565, 567, 569, 573, 575, 578–581, 583, 584, 590, 593–599, 601, 602, 836, 858, 865

TYPE(MPI_Win), 548, 552, 554, 559, 858, 866
MPI Callback Function Prototype Index

This index lists the C typedef names for callback routines, such as those used with attribute caching or user-defined reduction operations. Fortran example prototypes are given near the text of the C name.

COMM_COPY_ATTR_FUNCTION, 23, 24, 361, 362, 790, 859, 871
COMM_DELETE_ATTR_FUNCTION, 24, 361, 362, 859, 871
COMM_ERRHANDLER_FUNCTION, 452, 453, 871
COPY_FUNCTION, 24, 771, 771, 772, 860, 872
DATAREP_CONVERSION_FUNCTION, 696, 698, 859, 872
DATAREP_EXTENT_FUNCTION, 696, 697, 872
DELETE_FUNCTION, 24, 771, 772, 860, 872
FILE_ERRHANDLER_FUNCTION, 456, 871
GREQUEST_CANCEL_FUNCTION, 628, 630, 872
GREQUEST_FREE_FUNCTION, 628, 629, 872
GREQUEST_QUERY_FUNCTION, 628, 629, 872
MPI_Comm_copy_attr_function, 23, 24, 361, 362, 790, 859, 866, 868
MPI_Comm_delete_attr_function, 24, 361, 362, 859, 866, 868
MPI_Comm_errhandler_fn, 774, 1063
MPI_Comm_errhandler_function, 24, 452, 453, 774, 784, 867, 869, 1063
MPI_COMM_NULL_COPY_FN, 859
MPI_Copy_function, 24, 771, 860, 872
MPI_Datatype_conversion_function, 694, 697, 698, 833, 859, 867, 870
MPI_Datatype_conversion_function_c, 694, 697, 698, 833, 859, 867, 870, 1050
MPI_Datatype_extent_function, 694, 697, 867, 870
MPI_Delete_function, 24, 771, 772, 860, 872
MPI_File_errhandler_fn, 774, 1063
MPI_File_errhandler_function, 456, 774, 867, 869, 1063
MPI_Grequest_cancel_function, 628, 630, 867, 870
MPI_Grequest_free_function, 628, 629, 867, 869
MPI_Grequest_query_function, 628, 628, 629, 867, 869
MPI_Handler_function, 24, 784, 1057
MPI_Session_errhandler_function, 457, 458, 867, 869, 1052
MPI_T_event_cb_function, 757, 867, 1053
MPI_T_event_dropped_cb_function, 760, 867, 1053
MPI_T_event_free_cb_function, 759, 867, 1053
MPI_Type_copy_attr_function, 370, 371, 859, 866, 869
MPI_Type_delete_attr_function, 370, 371, 859, 867, 869, 1060
MPI_User_function, 235, 236, 240, 833, 866, 867
MPI_User_function_c, 235, 236, 833, 866, 868, 1050
MPI_Win_copy_attr_function, 367, 367, 368, 859, 866, 868
MPI_Win_delete_attr_function, 367, 367, 368, 859, 866, 868
MPI_Win_errhandler_fn, 774, 1063
MPI_Win_errhandler_function, 454, 774, 867, 869, 1063
SESSION_ERRHANDLER_FUNCTION, 458, 871, 1052
TYPE_COPY_ATTR_FUNCTION, 370, 371, 859, 871
TYPE_DELETE_ATTR_FUNCTION, 370, 372, 859, 871
USER_FUNCTION, 235, 236, 870
WIN_COPY_ATTR_FUNCTION, 367, 368, 859, 871
WIN_DELETE_ATTR_FUNCTION, 367, 368, 859, 871
WIN_ERRHANDLER_FUNCTION, 454, 455, 871
MPI Function Index

The underlined page numbers refer to the function definitions.

MPI_ABORT, 237, 450, 483, 489, 506, 508, 543, 727, 836, 1066
MPI_ACCUMULATE, 547, 566, 573, 574, 575, 577, 584, 588, 614, 621, 622, 882, 1063, 1067
C example usage, 624
Fortran example usage, 574
Language-independent example usage, 621
MPI_Accumulate_c, 573, 1050
MPI_ADD_ERROR_CLASS, 464, 465, 507
MPI_ADD_ERROR_CODE, 466, 507
MPI_ADD_ERROR_STRING, 467, 507
MPI_ADDRESS, 24, 783, 800, 1057
MPI_AINT_ADD, 25, 148, 150, 560, 1055
C example usage, 624
MPI_AINT_DIFF, 25, 148, 150, 560, 1055
MPI_ALLGATHER, 189, 193, 194, 214, 215, 217, 219, 261, 877, 880
C example usage, 217
MPI_Allgather_c, 214, 1050
MPI_ALLGATHER_INIT, 189, 193, 194, 282, 880, 1051
MPI_Allgather_init_c, 283, 1050
MPI_ALLGATHERV, 189, 193, 194, 216, 217, 262, 880
MPI_Allgatherv_c, 216, 1050
MPI_ALLGATHERV_INIT, 189, 193, 194, 284, 880, 1051
MPI_Allgatherv_init_c, 284, 1050
MPI_ALLOCA, MEM, 446, 447, 448, 462, 508, 510, 551–556, 558, 561, 569, 600, 800–802, 814, 1051, 1054, 1061
C example usage, 449, 624
Fortran example usage, 448
MPI_ALLOC_MEM, 446, 447, 448, 462, 508
Fortran example usage, 241
MPI_Allreduce_c, 240, 1050
MPI_ALLREDUCE_INIT, 189, 193, 194, 291, 880, 1051
MPI_Allreduce_init_c, 291, 1050
MPI_ALLTOALL, 189, 193, 194, 218, 219, 221, 222, 263, 877, 880, 1062
C example usage, 301
MPI_Alltoall, 218, 1050
MPI_ALLTOALL_INIT, 189, 193, 194, 285, 880, 1051
MPI_Alltoall_init_c, 285, 1050
MPI_ALLTOALLV, 189, 193, 194, 220, 221, 222, 224, 265, 880, 1062
MPI_Alltoallv_c, 220, 1050
MPI_ALLTOALLV_INIT, 189, 193, 194, 286, 880, 1051
MPI_Alltoallv_init_c, 287, 1050
MPI_ALLTOALLW, 189, 193, 194, 222, 223, 224, 266, 880, 1062
MPI_Alltoallw_c, 223, 1050
MPI_ALLTOALLW_INIT, 189, 193, 194, 288, 880, 1051
MPI_Alltoallw_init_c, 288, 1050
MPI_ASSERT_MEMORY_ALLOC_KINDS
C example usage, 510
MPI_ATTR_DELETE, 24, 374, 772, 774
MPI_ATTR_GET, 24, 374, 773, 843
Fortran example usage, 844, 845
MPI_ATTR_PUT, 24, 374, 773, 843, 846
Fortran example usage, 844
MPI_BARRIER, 189, 193, 194, 196, 253, 506, 611, 612, 708, 876, 880
C example usage, 490, 620
Fortran example usage, 505
Language-independent example usage, 610–613, 621, 622
MPI_BARRIER_INIT, 189, 193, 194, 275, 880, 1051
MPI_BCAST, 15, 189, 193, 194, 275, 880, 1051
MPI_Bcast, 197, 297, 298, 300, 344
MPI_Bcast_c, 197, 1050
MPI_BCAST_INIT, 15, 189, 193, 194, 276, 880, 1051
MPI_Bcast_init_c, 276, 1050
MPI_BSEND, 15, 28, 51, 52, 68, 617, 876, 879
C example usage, 617
Fortran example usage, 55, 56
MPI_Bsend_c, 51, 1050
MPI_BSEND_INIT, 105, 109, 879
MPI_Bsend_init_c, 106, 1050
MPI_BUFFER_ATTACH, 60, 67, 80, 617, 879,
<table>
<thead>
<tr>
<th>Function</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI COMM CREATE_FROM_GROUP</td>
<td>319, 321, 338, 339, 355, 443, 1046, 1052</td>
</tr>
<tr>
<td>C example usage, 501</td>
<td></td>
</tr>
<tr>
<td>Fortran example usage, 505</td>
<td></td>
</tr>
<tr>
<td>MPI COMM CREATE_GROUP</td>
<td>319, 321, 327, 328, 330, 339, 880, 1058</td>
</tr>
<tr>
<td>MPI COMM CREATE_KEYVAL</td>
<td>24, 360, 361, 363, 373, 771, 842, 843, 868, 870, 1060, 1065</td>
</tr>
<tr>
<td>C example usage, 374</td>
<td></td>
</tr>
<tr>
<td>MPI COMM DELETE_ATTR</td>
<td>24, 360, 363–365, 366, 374, 774</td>
</tr>
<tr>
<td>MPI COMM_DETACH_BUFFER</td>
<td>61, 67, 1048</td>
</tr>
<tr>
<td>MPI Comm detach_buffer.c, 61</td>
<td></td>
</tr>
<tr>
<td>MPI COMM DISCONNECT</td>
<td>110, 363, 374, 489, 496, 497, 506, 524, 543, 544, 877, 880, 1045</td>
</tr>
<tr>
<td>MPI COMM DUP</td>
<td>312, 319, 321, 322, 323, 324, 326, 353, 356, 360, 362, 366, 374, 381, 771, 880, 1046, 1051, 1058</td>
</tr>
<tr>
<td>C example usage, 346</td>
<td></td>
</tr>
<tr>
<td>MPI COMM DUP_FN</td>
<td>24, 362, 363, 364, 794, 859, 1055, 1060</td>
</tr>
<tr>
<td>MPI COMM DUP_WITH_INFO</td>
<td>319, 321, 323, 324, 340, 360, 362, 366, 374, 785, 880, 1058</td>
</tr>
<tr>
<td>MPI COMM F2C</td>
<td>836</td>
</tr>
<tr>
<td>MPI COMM FLUSH_BUFFER</td>
<td>63, 67, 1048</td>
</tr>
<tr>
<td>MPI COMM FREE_KEYVAL</td>
<td>24, 360, 364, 374, 772</td>
</tr>
<tr>
<td>MPI COMM GET ATTR</td>
<td>24, 360, 365, 374, 442, 773, 796, 843, 846</td>
</tr>
<tr>
<td>C example usage, 374</td>
<td>343</td>
</tr>
<tr>
<td>Fortran example usage, 344, 845</td>
<td></td>
</tr>
<tr>
<td>MPI COMM GET_ERRHANDLER</td>
<td>24, 451, 453, 783, 1066</td>
</tr>
<tr>
<td>MPI COMM GET_INFO</td>
<td>340, 342, 509, 510, 1051, 1058</td>
</tr>
<tr>
<td>MPI COMM GET_NAME</td>
<td>377, 378, 1048, 1065</td>
</tr>
<tr>
<td>MPI COMM GET_PARENT</td>
<td>377, 483, 489, 493, 521, 524</td>
</tr>
<tr>
<td>C example usage, 528</td>
<td></td>
</tr>
<tr>
<td>MPI COMM GROUP</td>
<td>19, 309, 312, 313, 319, 320, 352, 452, 1066</td>
</tr>
<tr>
<td>C example usage, 327, 347, 374</td>
<td></td>
</tr>
<tr>
<td>MPI COMM_IDUP</td>
<td>319, 321, 323, 324, 350, 360, 362, 366, 374, 785, 880, 1051, 1053, 1058</td>
</tr>
<tr>
<td>MPI COMM_IDUP_WITH_INFO</td>
<td>319, 321, 324, 340, 360, 362, 366, 374, 785, 1051</td>
</tr>
<tr>
<td>MPI COMM_IFLUSH_BUFFER</td>
<td>65, 1048</td>
</tr>
</tbody>
</table>
MPI Function Index

MPI_COMM_JOIN, 493, 544, 545, 546
MPI_COMM_MULTIPLE, 881
MPI_COMM_NULL_COPY_FN, 23, 24, 362,
363, 364, 790, 842, 859, 1055, 1060
MPI_COMM_NULL_DELETE_FN, 24, 363, 364,
859, 1055
MPI_COMM_RANK, 15, 320, 352, 798
C example usage, 31
MPI_COMM_RANK_F08, 798
MPI_COMM_REMOTE_GROUP, 352
MPI_COMM_REMOTE_SIZE, 352, 353
C example usage, 330
MPI_COMM_SET_ATTRIB, 24, 360, 363, 364,
374, 773, 796, 843, 846
C example usage, 374, 843
Fortran example usage, 845
MPI_COMM_SET_ERRHANDLER, 24, 451,
453, 783
MPI_COMM_SET_INFO, 275, 340, 341, 342,
880, 1051, 1054, 1058
MPI_COMM_SET_NAME, 376
MPI_COMM_SIZE, 319, 320, 352, 621
MPI_COMM_SPLIT, 483, 484, 508, 509, 513,
518, 519, 520, 521–526, 528, 541, 542,
881, 1052
C example usage, 522, 528
Fortran example usage, 522
MPI_COMM_SPLIT_MULTIPLE, 483, 484,
508, 509, 513, 518, 519, 524, 525, 526,
542, 1052
C example usage, 527
Fortran example usage, 527
MPI_COMM_SPLIT, 319, 321, 325, 326, 329,
330, 331, 381, 385, 387, 389, 407, 409,
880, 1063
C example usage, 330, 356, 358
MPI_COMM_SPLIT_TYPE, 319, 321, 332, 335,
337, 340, 446, 551, 553, 558, 617, 880,
1048, 1051, 1058
C example usage, 334, 336
MPI_COMM_TEST_INTER, 350, 351
MPI_COMPARE_AND_SWAP, 547, 566, 579,
621, 882
C example usage, 624
Language-independent example usage, 622
MPI_CONVERSION_FN_NULL, 700, 850, 1055
MPI_CONVERSION_FN_NULL_C, 700, 833,
859, 1050
MPI_DIMS_CREATE, 385, 387, 388, 1051
Fortran example usage, 437
Language-independent example usage, 388
MPI_DIST_GRAPH_CREATE, 340, 385, 390,
392, 393–396, 405, 410, 881, 1063
C example usage, 396
Language-independent example usage, 395
MPI_DIST_GRAPH_CREATE_ADJACENT, 340,
385, 390, 391, 392, 395, 396, 405, 410,
881, 1059, 1063
Language-independent example usage, 395
MPI_DIST_GRAPH_NEIGHBORS, 385, 403,
404, 405, 410, 1059, 1063
MPI_DIST_GRAPH_NEIGHBORS_COUNT,
385, 403, 405, 1056, 1063
MPI_DUP_FN, 24, 363, 772, 860
MPI_ERRHANDLER_C2F, 507, 837
MPI_ERRHANDLER_CREATE, 24, 783, 1057,
1060
MPI_ERRHANDLER_F2C, 507, 837
MPI_ERRHANDLER_FREE, 451, 459, 489, 496,
507, 1066
MPI_ERRHANDLER_GET, 24, 783, 1057, 1066
MPI_ERRHANDLER_SET, 24, 783, 1057
MPI_ERROR_CLASS, 461, 464, 507
MPI_ERROR_STRING, 460, 461, 464, 467, 507
MPI_EXSCAN, 190, 193, 227, 235, 248, 249,
273, 880, 1062
MPI_Exscan_c, 248, 1050
MPI_EXSCAN_INIT, 190, 193, 296, 880, 1051
MPI_Exscan_init_c, 296, 1050
MPI_F_SYNC_REG, 149, 623, 788, 804, 805,
824–828, 830, 1061
Fortran example usage, 827
Language-independent example usage, 623
MPI_FENCE, 618
MPI_FETCH_AND_OP, 547, 566, 574, 577,
578, 882
MPI_FILE
C example usage, 709
MPI_FILE_C2F, 836
MPI_FILE_CALL_ERRHANDLER, 469, 470
MPI_FILE_CLOSE, 489, 496, 544, 639, 640,
641, 642, 883
Fortran example usage, 665, 668
MPI_FILE_CREATE_ERRHANDLER, 451, 452,
456, 457, 809, 871, 1060
MPI_FILE_DELETE, 641, 642, 647, 649, 711,
883
MPI_FILE_F2C, 836
MPI_FILE_GET_AMODE, 645, 646
Fortran example usage, 646
MPI_FILE_GET_ATOMICITY, 703
MPI_FILE_GET_BYTE_OFFSET, 664, 672, 673,
680
MPI_FILE_GET_ERRHANDLER, 451, 457, 711,
1066
MPI_FILE_GET_GROUP, 645
MPI_FILE_GET_INFO, 509, 646, 647, 648, 649,
1051, 1067
MPI_FUNCTION_INDEX

MPI_FILE_GET_POSITION, 672
MPI_FILE_GET_POSITION_SHARED, 679, 680, 704
MPI_FILE_GET_SIZE, 644, 645, 706
MPI_FILE_GET_TYPE_EXTENT, 691, 692, 700, 1050
MPI_File_get_type_extent_c, 692, 1050
MPI_FILE_GET_VIEW, 652, 653, 883
MPI_FILE_IREAD, 653, 668, 681, 701, 883
MPI_File_iread_c, 668, 1050
MPI_FILE_IREAD_ALL, 653, 669, 670, 883, 1055
MPI_File_iread_all_c, 669, 1050
MPI_FILE_IREAD_AT, 653, 660, 883
C example usage, 709
MPI_File_iread_at_c, 660, 1050
MPI_FILE_IREAD_AT_ALL, 653, 661, 883, 1055
MPI_File_iread_at_all_c, 661, 1050
MPI_FILE_IREAD_SHARED, 653, 675, 676, 883
MPI_File_iread_shared_c, 676, 1050
MPI_FILE_IWRITE, 653, 670, 883
MPI_File_iwrite_c, 670, 1050
MPI_FILE_IWRITE_ALL, 653, 671, 883, 1055
MPI_File_iwrite_all_c, 671, 1050
MPI_FILE_IWRITE_AT, 653, 662, 883
C example usage, 709
MPI_File_iwrite_at_c, 662, 1050
MPI_FILE_IWRITE_AT_ALL, 653, 663, 883, 1055
MPI_File_iwrite_at_all_c, 663, 1050
MPI_FILE_IWRITE_SHARED, 653, 676, 677, 883
MPI_File_iwrite_shared_c, 676, 1050
MPI_FILE_OPEN, 462, 517, 639, 640, 641, 647, 649, 651, 673, 705, 706, 711, 712, 883
Fortran example usage, 665, 668
MPI_FILE_PREALLOCATE, 643, 644, 701, 706, 707, 883
MPI_FILE_READ, 653, 664, 666, 668, 706, 707, 883
Fortran example usage, 665
MPI_File_read_c, 664, 1050
MPI_FILE_READ_ALL, 653, 665, 666, 670, 681, 682, 883
C example usage, 682
MPI_File_read_all_c, 665, 1050
MPI_FILE_READ_ALL_BEGIN, 15, 653, 681, 682, 685, 701, 830, 883
C example usage, 682, 709
MPI_File_read_all_begin_c, 685, 1050
MPI_FILE_READ_ALL_END, 653, 681, 682, 685, 701, 830, 883
C example usage, 682, 709
MPI_FILE_READ_AT, 653, 656, 657, 658, 660, 883
C example usage, 707, 708
MPI_File_read_at_c, 656, 1050
MPI_FILE_READ_AT_ALL, 653, 657, 658, 661, 883
MPI_File_read_at_all_c, 657, 1050
MPI_FILE_READ_AT_ALL_BEGIN, 15, 653, 682, 830, 883
MPI_File_read_at_all_begin_c, 682, 1050
MPI_FILE_READ_AT_ALL_END, 653, 683, 830, 883
MPI_FILE_READ_ORDERED, 653, 678, 883
MPI_File_read_ordered_c, 678, 1050
MPI_FILE_READ_ORDERED_BEGIN, 15, 653, 687, 830, 883
MPI_File_read_ordered_begin_c, 687, 1050
MPI_FILE_READ_ORDERED_END, 653, 688, 830, 883
MPI_FILE_READ_SHARED, 653, 674, 676, 678, 883
MPI_File_read_shared_c, 674, 1050
MPI_FILE_SEEK, 671, 672, 883
MPI_FILE_SEEK_SHARED, 679, 680, 704, 883
MPI_FILE_SET_ATOMICITY, 641, 702, 703, 883
C example usage, 707, 709
MPI_FILE_SET_ERRHANDLER, 451, 456, 711
MPI_FILE_SET_INFO, 647, 649, 883, 1051, 1067
MPI_FILE_SET_SIZE, 643, 644, 701, 704, 706, 707, 883
C example usage, 707, 708
Fortran example usage, 665, 668, 812
MPI_FILE_SYNC, 642, 654, 701, 702, 703, 704, 709, 883
C example usage, 708
MPI_FILE_WRITE, 653, 654, 666, 667, 668, 670, 706, 883
MPI_File_write_c, 666, 1050
MPI_FILE_WRITE_ALL, 653, 667, 668, 671, 883
MPI_File_write_all_c, 667, 1050
MPI_FILE_WRITE_ALL_BEGIN, 15, 653, 686, 816, 830, 883
C example usage, 709, 712
MPI_File_write_all_begin_c, 686, 1050
MPI_FILE_WRITE_ALL_END, 653, 686, 830, 883
C example usage, 709, 712
MPI_FILE_WRITE_AT, 653, 654, 658, 659, 662, 883
MPI Function Index

C example usage, 707, 708
MPL_File_write_at_c, 658, 1050
MPI_FILE_WRITE_AT_ALL, 653, 659, 663, 883
MPI_File_write_all_c, 650, 1050
MPI_FILE_WRITE_AT_ALL_BEGIN, 15, 653, 683, 830, 883
MPI_Write_file_at_all_begin_c, 684, 1050
MPI_FILE_WRITE_AT_ALL_END, 653, 684, 830, 883
MPI_FILE_WRITE_ORDERED, 653, 677, 678, 679, 883
MPI_File_write_ordered_c, 679, 1050
MPI_FILE_WRITE_ORDERED_BEGIN, 15, 653, 688, 830, 883
MPI_File_write_ordered_begin_c, 688, 1050
MPI_FILE_WRITE_ORDERED_END, 653, 689, 830, 883
MPI_FILE_WRITE_SHARED, 653, 654, 675, 677, 679, 883
MPI_File_write_shared_c, 675, 1050
C example usage, 489–491
MPI_FINALIZED, 491, 492, 507, 835, 1055
MPI_FINALIZE, 110
MPI_FREE_MEM, 447, 448, 462, 553, 555
C example usage, 624
Fortran example usage, 448
MPI_GATHER, 189, 192–194, 198, 201, 202, 209, 215, 226, 256, 880
C example usage, 184, 202, 207
MPI_Gather_c, 198, 1050
MPI_GATHER_INIT, 189, 193, 194, 277, 880, 1051
MPI_Gather_init_c, 277, 1050
MPI_GATHERV, 189, 193, 194, 200, 201–203, 211, 217, 257, 880
C example usage, 184, 203–207
MPI_Gatherv_c, 200, 1050
MPI_GATHERV_INIT, 189, 193, 194, 278, 880, 1051
MPI_Gatherv_init_c, 278, 1050
MPI_GET, 547, 566, 569, 570, 575, 577, 583, 588, 606, 611, 622, 827, 882, 1067
C example usage, 619, 620
Fortran example usage, 570, 572
Language-independent example usage, 610, 612
MPI_Get_c, 570, 1050
MPI_GET_ACCUMULATE, 547, 566, 574, 575, 577, 578, 586, 614, 621, 882, 1054
C example usage, 624
Language-independent example usage, 621
MPI_Get_accumulate_c, 576, 1050
MPI_GET_ADDRESS, 24, 129, 148, 149, 150, 151, 162, 560, 783, 800, 818, 823, 841, 842
C example usage, 172, 175, 176, 183
Fortran example usage, 149, 819, 841, 847
MPI_GET_COUNT, 39, 40, 41, 79, 160, 161, 580, 634, 656, 1057, 1064
Fortran example usage, 161
MPI_Get_count_c, 40, 1050
MPI_GET_ELEMENTS, 79, 160, 161, 634, 635, 656, 780, 1057
Fortran example usage, 161
MPI_Get_elements_c, 100, 1050
MPI_Get_elements_c, 24
MPI_GET_ELEMENTS_X, 24, 780, 1047, 1057
MPI_GET_HWRESOURCEINFO, 445, 446, 1049
MPI_GET_LIBRARY_VERSION, 442, 507, 1054, 1055, 1057
MPI_GET_PROCESSOR_NAME, 444, 445, 1066
MPI_GETVERSION, 441, 442, 507, 1005, 1055
MPI_GRAPH_CREATE, 385, 388, 389, 390, 395, 398, 402, 409, 410, 881, 1065
Language-independent example usage, 389, 402
MPI_GRAPH_GET, 385, 388
MPI_GRAPH_MAP, 385, 400
MPI_GRAPH_NEIGHBORS, 385, 401, 402, 410, 1063
Language-independent example usage, 402
MPI_GRAPH_NEIGHBORS_COUNT, 385, 401, 402, 1063
Language-independent example usage, 402
MPIGRAPHDIMS_GET, 385, 397, 398
MPI_REQUEST_COMPLETE, 627, 629, 630, 631
C example usage, 631
MPI_REQUEST_START, 628, 869, 872, 1063
C example usage, 631
MPI_GROUP_C2F, 836
MPI_GROUP_COMPARE, 311, 315
MPI_GROUP_DIFFERENCE, 314
MPI_GROUP_EXCL, 315, 317
C example usage, 344
MPI_GROUP_F2C, 836
MPI_GROUP_FREE, 318, 319, 320, 452, 489, 496, 1066
C example usage, 327, 344, 345, 347
MPI_GROUP_FROM_SESSION_PSET, 318, 1052
C example usage, 501, 503
Fortran example usage, 505
<table>
<thead>
<tr>
<th>Function</th>
<th>Page Numbers</th>
<th>Description</th>
<th>C Example Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_ALLGATHER</td>
<td>20, 26, 29, 309, 443, 450, 478, 481, 482, 483, 485–489</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_ALLGATHERV</td>
<td>24, 775, 1052, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_ALLTOALL</td>
<td>24, 775, 1052, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_ALLTOALLV</td>
<td>24, 775, 1052, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_IBARRIER</td>
<td>24, 775, 1052, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_IBCAST</td>
<td>24, 775, 1052, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_IBSEND</td>
<td>24, 775, 1052, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_IEXSCAN</td>
<td>416, 507, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_IGATHER</td>
<td>416, 507, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_IGATHERV</td>
<td>416, 507, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_IRECV</td>
<td>416, 507, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_IREDUCE</td>
<td>416, 507, 1067</td>
<td>Language-independent example usage, 484</td>
<td></td>
</tr>
<tr>
<td>MPI_Group_Incl</td>
<td>314, 315, 316</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Group_INTERSECTION</td>
<td>313</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Group_Range_EXCL</td>
<td>317</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Group_Range_INCL</td>
<td>316</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Group_Rank</td>
<td>310, 320</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Group_Size</td>
<td>310, 320</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Group_Translate_Ranks</td>
<td>311, 1065</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Group_Union</td>
<td>313</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Ineighbor_alltoallv_c</td>
<td>426, 1050</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Ineighbor_alltoallv</td>
<td>426, 1050</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Ineighbor_alltoallV</td>
<td>426, 1050</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Info_C2F</td>
<td>507, 837</td>
<td>C Example usage, 327, 345, 347</td>
<td></td>
</tr>
<tr>
<td>MPI_Info_FREE</td>
<td>343, 445, 478, 489, 496, 501, 507, 566, 648, 750, 754, 756, 758</td>
<td>C Example usage, 501</td>
<td></td>
</tr>
<tr>
<td>MPI_Info_Get</td>
<td>24, 775, 1052, 1067</td>
<td>C Example usage, 501</td>
<td></td>
</tr>
<tr>
<td>MPI_Info_Get_Nkeys</td>
<td>473, 476, 477, 507, 1067</td>
<td>C Example usage, 501</td>
<td></td>
</tr>
<tr>
<td>MPI_Info_Get_Nthkey</td>
<td>473, 477, 507, 1067</td>
<td>C Example usage, 501</td>
<td></td>
</tr>
<tr>
<td>MPI_Info_Get_String</td>
<td>24, 473, 475, 476, 507, 775, 776, 1052</td>
<td>C Example usage, 501</td>
<td></td>
</tr>
<tr>
<td>MPI_Info_Get_ValueLen</td>
<td>24, 776, 1052, 1067</td>
<td>C Example usage, 501</td>
<td></td>
</tr>
<tr>
<td>MPI_Info_Set</td>
<td>474, 475, 477, 507, 775</td>
<td>C Example usage, 501</td>
<td></td>
</tr>
<tr>
<td>MPI_Init</td>
<td>20, 26, 29, 309, 443, 450, 478, 481, 482, 483, 485–489</td>
<td>C Example usage, 501</td>
<td></td>
</tr>
<tr>
<td>MPI_Intercomm.Create</td>
<td>319, 322, 328, 353, 354, 355, 356, 880, 1058</td>
<td>C Example usage, 356, 358</td>
<td></td>
</tr>
<tr>
<td>MPI_Intercomm_From_Groups</td>
<td>319, 322, 353, 354, 355, 443, 1046, 1052</td>
<td>C Example usage, 356, 358</td>
<td></td>
</tr>
<tr>
<td>MPI_Intercomm_Merge</td>
<td>321, 328, 350, 353, 356, 880, 1060</td>
<td>C Example usage, 356, 358</td>
<td></td>
</tr>
<tr>
<td>MPI_Iprobe</td>
<td>321, 328, 350, 353, 356, 880, 1060</td>
<td>C Example usage, 356, 358</td>
<td></td>
</tr>
<tr>
<td>MPI_Irecv</td>
<td>321, 328, 350, 353, 356, 880, 1060</td>
<td>C Example usage, 356, 358</td>
<td></td>
</tr>
<tr>
<td>MPI_Ireduce</td>
<td>321, 328, 350, 353, 356, 880, 1060</td>
<td>C Example usage, 356, 358</td>
<td></td>
</tr>
</tbody>
</table>
MPI Function Index

MPI_Ireduce_c, 267, 1050
MPI_IREDUCE_SCATTER, 190, 193, 194, 270, 880
MPI_Ireduce_scatter_c, 271, 1050
MPI_IREDUCE_SCATTER_BLOCK, 189, 193, 194, 269, 880
MPI_Ireduce_scatter_block_c, 269, 1050
MPI_ISEND, 74, 879
MPI_Isend_c, 74, 1050
MPI_IS_THREAD_MAIN, 485, 487, 1055
MPI_ISCAN, 190, 193, 271, 880
MPI_Iscan_c, 272, 1050
MPI_ISCATTER, 189, 193, 194, 257, 880
MPI_Iscatter_c, 258, 1050
MPI_ISCATTERV, 189, 193, 194, 259, 880
MPI_Iscatterv_c, 259, 1050
MPI_ISEND, 15, 28, 71, 109, 795, 797, 799, 816, 817, 822, 879
Fortran example usage, 81, 82, 89, 90, 816
MPI_Isend_c, 71, 1050
MPI_ISENDRECV, 76, 879, 1050
MPI_Isendrecv_c, 76, 1050
MPI_ISENDRECV_REPLACE, 77, 879, 1050
MPI_Isendrecv_replace_c, 77, 1050
MPI_ISSEND, 73, 879
MPI_Isend_send_c, 73, 1050
MPI_KEYVAL_CREATE, 24, 771, 773, 872
MPI_KEYVAL_FREE, 24, 374, 772
MPI_LOOKUP_NAME, 462, 531, 536, 537, 538
MPI_MEMORYALLOC_KINDS
C example usage, 510
MPI_MESSAGE_C2F, 837, 1058
MPI_MESSAGE_F2C, 837, 1058
MPI_MPROBE, 15, 94, 97, 99, 102, 517, 876, 879, 1058
MPI_MRECV, 15, 97–99, 100, 101, 102, 489, 496, 876, 879, 1058
MPI_Mrecv_c, 100, 1050
MPI_NEIGHBOR_ALLGATHER, 386, 411, 412, 413, 415, 243, 881, 1050, 1059
Language-independent example usage, 412
MPI_Neighbor_allgather_c, 411, 1050
MPI_NEIGHBOR_ALLGATHER_INIT, 429, 881, 1051
MPI_Neighbor_allgather_init_c, 430, 1050
MPI_NEIGHBOR_ALLGATHERV, 386, 413, 425, 881, 1050, 1059
MPI_Neighbor_allgatherv_c, 414, 1050
MPI_NEIGHBOR_ALLGATHERV_INIT, 430, 795, 881, 1051, 1053
MPI_Neighbor_allgatherv_init_c, 431, 1050
MPI_NEIGHBOR_ALLTOALL, 386, 415, 417, 426, 881, 1050, 1059
Language-independent example usage, 417
MPI_Neighbor_alltoall_c, 415, 1050
MPI_NEIGHBOR_ALLTOALL_INIT, 432, 881, 1051
MPI_Neighbor_alltoall_init_c, 432, 1050
MPI_NEIGHBOR_ALLTOALLV, 386, 418, 427, 881, 1050, 1059
MPI_Neighbor_alltoallv_c, 418, 1050
MPI_NEIGHBOR_ALLTOALLV_INIT, 433, 795, 881, 1051, 1053
MPI_Neighbor_alltoallv_init_c, 434, 1050
MPI_NEIGHBOR_ALLTOALLW, 386, 420, 429, 881, 1050, 1059
MPI_Neighbor_alltoallw_c, 421, 1050
MPI_NEIGHBOR_ALLTOALLW_INIT, 435, 795, 881, 1051, 1053
MPI_Neighbor_alltoallw_init_c, 435, 1050
MPI_NULL_COPY_FN, 24, 363, 772, 860
MPI_NULL_DELETE_FN, 24, 363, 772, 860
MPI_OP_C2F, 836
MPI_OP_COMMUTATIVE, 243, 1062
MPI_OP_CREATE, 235, 238, 794, 867, 870, 1060
C example usage, 239, 249
Fortran example usage, 240
MPI_Op_create_c, 235, 834, 867, 1050
MPI_OP_F2C, 836
MPI_OP_FREE, 238, 489, 496
MPI_OPEN_PORT, 531, 532, 534–538
C example usage, 538, 539
MPI_PACK, 69, 178, 181–183, 185, 694, 698, 699
C example usage, 183, 184
MPI_Pack_c, 179, 1050
MPI_PACK_EXTERNAL, 8, 185, 810, 1064
MPI_Pack_external_c, 186, 1050
MPI_PACK_EXTERNALSIZE, 188
MPI_Pack_external_size_c, 188, 1050
MPI_PACK_SIZE, 68, 182, 1057
C example usage, 184
MPI_Pack_size_c, 182, 1050
MPI_PARRIVED, 28, 114, 120, 121, 877, 879, 1051
C example usage, 125
MPI_PP CONTROL, 718, 719
MPI_PREDDY, 114–116, 118, 119–121, 877, 879, 1051
C example usage, 114, 122, 123, 125
MPI_Pready_list, 119, 120, 1051
MPI_PREADY_RANGE, 119, 120, 1051
MPI_PRECv INIT, 114, 117, 118, 122, 879, 1051
C example usage, 114, 122, 123, 125
MPI_PROBE, 15, 38, 40, 43, 94, 95, 96, 97, 99, 101, 102, 517, 876, 879, 1058
MPI Function Index

For C example usage, 594, 600, 618, 619

Fortran example usage, 827

Language-independent example usage, 611, 613, 618

MPI_Psend.c, 567, 1050

MPI_Query_thread, 487, 488, 516, 1055

MPI_Raccumulat, 547, 566, 574, 577, 583, 584, 882

MPI_Raccumulat_c, 583, 1050

MPI_Recv, 15, 28, 32, 37, 39-43, 95, 97, 98, 101, 128, 159, 160, 181, 190, 199, 301, 617, 635, 708, 746, 823, 827, 828, 879

C example usage, 31, 301, 617

Fortran example usage, 47, 48, 55-57, 83, 96, 159

MPI_Recv.c, 37, 1050

MPI_Recv_init, 15, 108, 109, 118, 879

MPI_Recv_init.c, 108, 1050

MPI_Reduce, 189, 193, 194, 224, 225-227, 235-238, 241, 244, 246, 248, 249, 268, 574, 577, 578, 880, 1063

C example usage, 233, 234, 239, 346

Fortran example usage, 228, 229, 233, 240

MPI_Reduce_c, 225, 1050

MPI_Reduce_init, 189, 193, 194, 289, 880, 1051

MPI_Reduce_init.c, 290, 1050

MPI_Reduce_local, 226, 227, 235, 242, 1060, 1062

MPI_Reduce_local.c, 242, 1050

MPI_Reduce_scatter, 189, 193, 194, 227, 235, 245, 246, 271, 877, 880

MPI_Reduce_scatter.c, 245, 1050

MPI_Reduce_scatter_block, 189, 193, 194, 227, 235, 243, 244, 245, 270, 877, 880, 1062

MPI_Reduce_scatter_block.c, 244, 1050

MPI_Reduce_scatter_block_init, 189, 193, 194, 292, 880, 1051

MPI_Reduce_scatter_block_init.c, 292, 1050

MPI_Reduce_scatter_init, 190, 193, 194, 293, 880, 1051

MPI_Reduce_scatter_init.c, 294, 1050

MPI_Register_datarep, 462, 694, 697-700, 712, 870, 872

MPI_Register_datarep_c, 694, 700, 834, 870, 1050

MPI_Remove_error_class, 465, 507, 1049

MPI_Remove_error_code, 466, 507, 1049

MPI_Remove_error_string, 467, 507, 1049

MPI_Request_c2f, 836

MPI_Request_f2c, 836

MPI_Request_free, 81, 82, 102, 110, 251, 274, 275, 489, 496, 544, 580, 629-631, 876, 877, 879-881, 1062

C example usage, 489

Fortran example usage, 82

MPI_Request_get_status, 28, 43, 90, 91, 92, 629, 879, 1047, 1062

MPI_Request_get_status_all, 92, 93, 94, 1048

MPI_Request_get_status_any, 91, 92, 94, 1048

MPI_Request_get_status_some, 93, 94, 1048

MPI_Rget, 547, 566, 581, 583, 882

C example usage, 623

MPI_Rget_c, 582, 1050

MPI_RGet_accumulate, 547, 566, 574, 577, 584, 586, 882

MPI_RGet_accumulate_c, 585, 1050

MPI_Rput, 547, 566, 580, 882

C example usage, 623

MPI_Rput_c, 580, 1050

MPI_RSend, 15, 28, 53, 876, 879

MPI_RSend_c, 53, 1050

MPI_RSend_init, 107, 879

MPI_RSend_init_c, 107, 1050

MPI_Scan, 190, 193, 227, 235, 247, 249, 272, 880

C example usage, 249

MPI_Scan_c, 247, 1050

MPI_Scan_init, 190, 193, 294, 880, 1051

MPI_Scan_init_c, 295, 1050

MPI_Scatter, 189, 193, 194, 208, 209, 211, 212, 244, 258, 880

C example usage, 212

MPI_Scatter_c, 208, 1050

MPI_Scatter_init, 189, 193, 194, 279, 880, 1051

MPI_Scatter_init_c, 280, 1050

MPI_Scatterv, 189, 193, 194, 210, 211, 212, 246, 260, 880

C example usage, 212, 213

MPI_Scatterv_c, 210, 1050

MPI_Scatterv_init, 189, 193, 194, 281, 880, 1051
MPI Function Index

MPI_Scatterv_init_c, 281, 1050
MPI_SEND, 15, 28, 31, 32, 33, 41, 47, 128, 158,
159, 179, 301, 640, 708, 720, 823, 824,
827, 879
C example usage, 31, 172, 175, 176, 183,
301, 302, 720
Fortran example usage, 47, 48, 57, 83, 96,
159, 815, 818
MPI_Send_c, 32, 1050
MPI_SEND_INIT, 15, 104, 109, 117, 879
MPI_Send_init_c, 105, 1050
MPI_SENDRECV, 43, 111, 405, 879
Fortran example usage, 170–172
Language-independent example usage, 417
MPI_Sendrecv_c, 44, 1050
MPI_SENDRECV_REPLACE, 45, 111, 879
Fortran example usage, 406
MPI_Sendrecv_replace_c, 45, 1050
MPI_SESSION_ATTACH_BUFFER, 59, 67, 80,
1048
MPI_Session_attach_buffer_c, 59
MPI_SESSION_C2F, 837, 1052
MPI_SESSION_CALL_ERRHANDLER, 469, 470,
507, 1052
MPI_SESSION_CREATE_ERRHANDLER, 451,
452, 457, 458, 495, 507, 869, 871, 1052
MPI_SESSION_DETACH_BUFFER, 62, 67, 1048
MPI_Session_detach_buffer_c, 62
MPI_SESSION_F2C, 837, 1052
MPI_SESSION_FINALIZE, 27, 110, 495, 496,
497, 506, 835, 881, 1045, 1046, 1052
C example usage, 501, 503
Fortran example usage, 505
Language-independent example usage, 497
MPI_SESSION_FLUSH_BUFFER, 64, 67, 1048
MPI_SESSION_GET_ERRHANDLER, 451, 459,
1052
MPI_SESSION_GET_INFO, 495, 500, 509, 1052
MPI_SESSION_GET_NTH_PSET, 318, 499,
500, 1052
C example usage, 503
Fortran example usage, 505
MPI_SESSION_GET_NUM_PSETS, 498, 499,
1052
C example usage, 503
Fortran example usage, 505
MPI_SESSION_GET_PSET_INFO, 501, 1052
MPI_SESSION_IFLUSH_BUFFER, 65, 1048
MPI_SESSION_INIT, 451, 489, 494, 495, 506,
508, 509, 516, 541, 726, 835, 881,
1046, 1052
C example usage, 501, 503
Fortran example usage, 505
MPI_SESSION_SET_ERRHANDLER, 451, 458,
1052
MPI_SIZEOF, 24, 777, 1053
MPI_SSEND, 28, 52, 879
Fortran example usage, 56, 83
MPI_Ssend_c, 52, 1050
MPI_SSEND_INIT, 106, 879
MPI_Ssend_init_c, 106, 1050
MPI_START, 109, 110, 113, 116, 119, 120, 274,
823, 876, 877, 879–881
MPI_STARTALL, 109, 110, 113, 116, 119, 120,
274, 823, 876, 879–881
MPI_STATUS_C2F, 838
MPI_STATUS_C2F08, 839, 1060
MPI_STATUS_F082C, 839, 1060
MPI_STATUS_F082F, 840, 1050, 1060
MPI_STATUS_F2C, 838
MPI_STATUS_F2F08, 839, 1050, 1060
MPI_STATUS_GET_ERROR, 42, 1048
MPI_STATUS_GET_SOURCE, 41, 1048
MPI_STATUS_GET_TAG, 41, 1048
MPI_STATUS_SET_CANCELLED, 635, 1053
MPI_STATUS_SET_ELEMENTS, 634, 781, 1047
MPI_Status_set_elements_c, 634
MPI_Status_set_elements_c, 24
MPI_STATUS_SET_ELEMENTS_X, 24, 780,
1047, 1057
MPI_STATUS_SET_ERROR, 636, 1048
MPI_STATUS_SET_SOURCE, 635, 1048
MPI_STATUS_SET_TAG, 636, 1048
MPI_T CATEGORY_CHANGED, 767, 1053
MPI_T CATEGORY_GET CATEGORIES, 767,
768, 769
MPI_T CATEGORY_GET CVARS, 766, 767,
769
MPI_T CATEGORY_GET EVENTS, 766, 767,
768, 1053
MPI_T CATEGORY GET INDEX, 765, 769,
1055
MPI_T CATEGORY GET INFO, 764, 765, 767,
769, 1054, 1055
MPI_T CATEGORY GET NUM, 764
MPI_T CATEGORY GET NUM EVENTS, 765,
1053
MPI_T CATEGORY GET PVARS, 766, 767,
769
MPI_T CVAR_GET INDEX, 732, 769, 1055
MPI_T CVAR_GET INFO, 728, 730, 731, 734,
735, 767, 769, 1054, 1055
C example usage, 732
MPI_T CVAR GET NUM, 730, 734
MPI_T CVAR HANDLE_ALLOC, 728, 733, 734,
735, 769
C example usage, 735
MPI_T_CVAR_HANDLE_FREE, 734, 769
C example usage, 735
MPI_T_CVAR_READ, 734, 769
C example usage, 735
MPI_T_CVAR_WRITE, 735, 769, 1047
MPI_T_ENUM_GET_INFO, 728, 769
MPI_T_ENUM_GET_ITEM, 729, 769
MPI_T_EVENT_CALLBACK_GET_INFO, 758, 1053
MPI_T_EVENT_CALLBACK_SET_INFO, 758, 1053
MPI_T_EVENT_COPY, 752, 754, 762, 1053
MPI_T_EVENT_GET_INDEX, 755, 769, 1053
MPI_T_EVENT_GET_INFO, 728, 753, 755, 762, 767, 769, 1053
MPI_T_EVENT_GET_NUM, 753, 1053
MPI_T_EVENT_GET_SOURCE, 752, 763, 1053
MPI_T_EVENT_GET_TIMESTAMP, 750, 752, 762, 1053
MPI_T_EVENT_HANDLE_ALLOC, 755, 757, 769, 1053
MPI_T_EVENT_HANDLE_FREE, 759, 769, 1053
MPI_T_EVENT_HANDLE_GET_INFO, 756, 1053
MPI_T_EVENT_HANDLE_SET_INFO, 756, 1053
MPI_T_EVENT_READ, 752, 754, 761, 1053
MPI_T_EVENT_REGISTER_CALLBACK, 757, 1053
MPI_T_EVENT_SET_DROPPED_HANDLER, 759, 760, 761, 1053
MPI_T_FINALIZE, 727
C example usage, 746
MPI_T_INIT_THREAD, 726, 727
C example usage, 746
MPI_T_PVAR_GET_INDEX, 740, 741, 769, 1055
MPI_T_PVAR_GET_INFO, 728, 738, 739, 740, 742, 744–746, 767, 769, 1054, 1055
C example usage, 746
MPI_T_PVAR_GET_NUM, 739, 742
MPI_T_PVAR_HANDLE_ALLOC, 728, 742, 744, 745, 769, 1047
C example usage, 746
MPI_T_PVAR_HANDLE_FREE, 743, 769, 1047, 1055
C example usage, 746
MPI_T_PVAR_READ, 744, 745, 752, 769, 1055
C example usage, 746
MPI_T_PVAR_READRESET, 740, 745, 752, 769, 1055
MPI_T_PVAR_RESET, 745, 752, 769, 1047, 1054, 1055
MPI_T_PVAR_SESSION_CREATE, 741, 769
C example usage, 746
MPI_T_PVAR_SESSION_FREE, 741, 769
MPI_T_PVAR_START, 743, 752, 769, 1047, 1054, 1055
C example usage, 746
MPI_T_PVAR_STOP, 743, 752, 769, 1047, 1054, 1055
MPI_T_PVAR_WRITE, 744, 745, 752, 769, 1047, 1055
MPI_T_SOURCE_GET_INFO, 749, 750, 763, 769, 1053
MPI_T_SOURCE_GET_NUM, 749, 769, 1053
MPI_T_SOURCE_GET_TIMESTAMP, 750, 752, 769, 1053
MPI_TEST, 28, 43, 78, 79, 80, 81–83, 85, 90, 91, 93, 102, 103, 110, 113, 114, 120, 121, 275, 489, 496, 544, 630, 631, 654, 655, 876, 877, 879–882
MPI_TEST_CANCELLLED, 79, 80, 103, 104, 629, 635, 656, 877, 879
C example usage, 490
MPI_TESTALL, 28, 83, 86, 87, 489, 496, 516, 544, 629, 630, 633
MPI_TESTANY, 28, 83, 84, 85, 89, 489, 496, 516, 544, 629, 630, 633
MPI_TESTSOME, 28, 83, 88, 89, 93, 94, 489, 496, 516, 544, 629, 630, 633
MPI_TOPO_TEST, 385, 397
MPI_TYPE_C2F, 836
MPI_TYPE_COMMIT, 156, 157, 837, 1046
C example usage, 172, 175, 176, 183, 202–207, 213, 249
Fortran example usage, 157, 170–172, 570, 819
MPI_TYPE_CONTIGUOUS, 16, 129, 132, 152, 164, 638, 692
C example usage, 202
Fortran example usage, 159, 161
Language-independent example usage, 130, 152
MPI_Type_contiguous_c, 129, 1050
Fortran example usage, 148
MPI_Type_create_darray_c, 144, 1050
MPI_TYPE_CREATE_F90_COMPLEX, 16, 164, 167, 228, 694, 788, 807, 809
MPI_TYPE_CREATE_F90_INTEGER, 16, 164, 167, 227, 694, 788, 808, 809
Fortran example usage, 808
MPI_TYPE_CREATE_F90_REAL, 16, 164, 167, 227, 694, 788, 806, 807–809, 1062
Fortran example usage, 808
MPI Function Index

MPI_TYPE_CREATE_HINDEXED, 17, 24, 129, 135, 136, 139, 140, 164, 783, 833
C example usage, 177
MPI_Type_create_hindexed_c, 136, 1050
MPI_TYPE_CREATE_HINDEXED_BLOCK, 17, 129, 138, 164, 833, 1058
MPI_Type_create_hindexed_block_c, 138, 1050
MPI_TYPE_CREATE_HVECTOR, 17, 24, 129, 132, 164, 783
C example usage, 172, 175
Fortran example usage, 170, 171
MPI_Type_create_hvector_c, 132, 1050
MPI_TYPE_CREATE_INDEXED_BLOCK, 16, 137, 138, 164
Fortran example usage, 570
MPI_Type_create_indexed_block_c, 137, 1050
MPI_TYPE_CREATE_KEYVAL, 360, 370, 373, 843, 868, 871, 1065
MPI_TYPE_CREATE_RESIZED, 24, 129, 152, 154, 155, 164, 692, 784, 1060
C example usage, 176
Fortran example usage, 819
MPI_Type_create_resized_c, 154, 1050
MPI_TYPE_CREATE_STRUCT, 17, 24, 129, 139, 140, 152, 164, 223, 783, 833
C example usage, 172, 175, 183, 205, 207, 249
Fortran example usage, 172, 819, 847
Language-independent example usage, 140, 152
MPI_Type_create_struct_c, 139, 1050
MPI_TYPE_CREATE_SUBARRAY, 16, 19, 141, 143, 145, 164
C example usage, 714
Fortran example usage, 715
MPI_Type_create_subarray_c, 141, 1050
MPI_TYPE_DELETE_ATTR, 360, 373, 374, 1060
MPI_TYPE_DUP, 16, 158, 164, 1060
MPI_TYPE_DUP_FN, 371, 859, 1055
MPI_TYPE_ENSURE, 24, 783, 1057
Fortran example usage, 570
MPI_TYPE_F2C, 836
MPI_TYPE_FREE, 157, 166, 372, 489, 496
Fortran example usage, 570
MPI_TYPE_FREE_KEYVAL, 360, 372, 374
MPI_TYPE_GET_ATTR, 360, 373, 374, 796, 843, 1060
MPI_TYPE_GET_CONTENTS, 163, 164, 165, 166–168, 833
C example usage, 177
MPI_Type_get_contents_c, 165, 1050
MPI_TYPE_GET_ENVELOPE, 163, 164, 166, 167, 232, 808, 833
C example usage, 177
MPI_Type_get_envelope_c, 163, 1050
MPI_TYPE_GET_EXTENT, 24, 153, 156, 779, 783, 811, 840
C example usage, 172
Fortran example usage, 170–172, 572, 574
MPI_Type_get_extent_c, 154, 1050
MPI_TYPE_GET_EXTENT_X, 24, 779, 1047, 1057
MPI_TYPE_GET_NAME, 379, 1048, 1060
MPI_TYPE_GET_TRUE_EXTENT, 155, 780
MPI_Type_get_true_extent_c, 155, 1050
MPI_TYPE_GET_TRUE_EXTENT_X, 24, 779, 1047, 1057
MPI_TYPE_GET_VALUE_INDEX, 164, 231, 232, 1048
C example usage, 232
MPI_TYPE_INDEXED, 24, 783, 1057
MPI_TYPE_HVECTOR, 24, 783, 1057
MPI_TYPE_INDEXED, 16, 133, 134, 135, 137, 164
C example usage, 172, 175
Fortran example usage, 171
Language-independent example usage, 134
MPI_Type_indexed_c, 134, 1050
MPI_TYPE_LB, 24, 783, 1057
MPI_TYPE_MATCH_SIZE, 788, 811, 1060
C example usage, 811
Fortran example usage, 812
MPI_TYPE_NULL_COPY_FN, 371, 859, 1055
MPI_Type_null_delete_fn, 371, 859, 1055, 1060
MPI_TYPE_SET_ATTR, 360, 372, 374, 796, 843, 846, 1060
MPI_TYPE_SET_NAME, 378, 1060
MPI_TYPE_SIZE, 151, 778, 1057
C example usage, 720
MPI_Type_size_c, 151, 1050
MPI_Type_size_c, 24
MPI_TYPE_SIZE, 24, 778, 1047, 1057
MPI_TYPESTRUCT, 24, 783, 1057
MPI_TYPE_OBJ, 24, 783, 1057
MPI_TYPE_VECTOR, 16, 130, 131, 132, 135, 164
C example usage, 203, 204, 206, 213
Fortran example usage, 170–172
Language-independent example usage, 131
MPI_Type_vector_c, 131, 1050
MPI_UNPACK, 180, 181, 185, 698
C example usage, 183, 184
MPI Function Index

MPI_Unpack_c, 180, 1050

MPI_UNPACK_EXTERNAL, 8, 187, 810

MPI_Unpack_external_c, 187, 1050

MPI_UNPUBLISH_NAME, 463, 536, 537

C example usage, 538

MPI_USER_FUNCTION

Fortran example usage, 240

MPI_WAIT, 39, 43, 78, 79, 80–84, 86, 102, 103, 110, 113, 114, 120, 121, 251, 275, 301, 489, 496, 517, 544, 627, 630, 631, 654, 655, 681, 701, 703, 816, 822, 823, 826, 827, 875–877, 879–882

C example usage, 300–302

Fortran example usage, 81–83, 89, 90, 668

MPI_WAITALL, 83, 85, 86, 87, 251, 302, 489, 496, 516, 544, 580, 629, 630, 633

C example usage, 302, 303, 623

MPI_WAITANY, 55, 83, 84, 89, 489, 496, 516, 544, 629, 630, 633

C example usage, 623

Fortran example usage, 89

MPI_WAITSOME, 83, 87, 88–90, 93, 94, 489, 496, 516, 544, 629, 630, 633

Fortran example usage, 90

MPI_WIN_ALLOCATE, 508, 510, 548, 551, 552, 553, 556–558, 562, 563, 569, 600, 801, 802, 882, 1051, 1054

MPI_Win_allocate_c, 552, 1050

MPI_WIN_ALLOCATE_CPTR, 554, 1054

MPI_WIN_ALLOCATE_SHARED, 333, 510, 548, 551, 554, 555, 557, 558, 562, 564, 600, 802, 882, 1051, 1052, 1054

MPI_Win_allocate_shared_c, 554, 1050

MPI_WIN_ALLOCATE_SHARED_CPTR, 556, 1054

MPI_WIN_ATTACH, 551, 559, 560, 561, 562, 600

C example usage, 624

MPI_WIN_C2F, 836

MPI_WIN_CALL_ERRHANDLER, 468, 470

MPI_WIN_COMPLETE, 562, 588, 589, 593, 594–596, 606, 612, 882

C example usage, 594, 619, 620

Language-independent example usage, 612, 613

MPI_WIN_CREATE, 517, 548, 551–554, 556–559, 561–563, 605, 882

Fortran example usage, 570, 572, 574

MPI_Win_create_c, 549, 1050

MPI_WIN_CREATE_DYNAMIC, 463, 548, 558, 559, 560, 561, 563, 564, 605, 882

C example usage, 624

MPI_WIN_CREATE_ERRHANDLER, 451, 452, 454, 455, 869, 871, 1060

MPI_WIN_CREATE_KEYVAL, 360, 367, 373, 843, 868, 871, 1065

MPI_WIN_DELETE_ATTR, 360, 370, 374

MPI_WIN_DETACH, 559, 561, 562, 563

C example usage, 624

MPI_WIN_DUP_FN, 367, 859, 1055

MPI_WIN_F2C, 836

MPI_WIN_FENCE, 562, 570, 588, 590, 591, 592, 603, 604, 606, 607, 610, 615, 827, 882

C example usage, 617–619

Fortran example usage, 570, 572, 574, 827

Language-independent example usage, 618

MPI_WIN_FLUSH, 558, 580, 581, 601, 606, 621, 622, 882

C example usage, 624

Language-independent example usage, 611, 621, 622

MPI_WIN_FLUSH_ALL, 580, 581, 601, 606, 882

Language-independent example usage, 621

MPI_WIN_FLUSH_LOCAL, 580, 602, 606, 882

Language-independent example usage, 610

MPI_WIN_FLUSH_LOCAL_ALL, 580, 602, 606, 882

MPI_WIN_FREE, 368, 489, 496, 544, 562, 563, 882, 1049

Fortran example usage, 572, 574

MPI_WIN_FREE_KEYVAL, 360, 368, 374

MPI_WIN_GET_ATTR, 360, 369, 374, 563, 796, 843, 846

MPI_WIN_GET_ERRHANDLER, 451, 455, 1066

MPI_WIN_GET_GROUP, 564

MPI_WIN_GET_INFO, 509, 564, 565, 566, 1051, 1058

MPI_WIN_GET_NAME, 380, 1048

MPI_WIN_LOCK, 550, 562, 589, 597, 598–600, 603, 604, 606, 610–612, 877, 882

C example usage, 600

Language-independent example usage, 610–613

MPI_WIN_LOCK_ALL, 550, 589, 598, 599, 603, 604, 606, 612, 821, 882

C example usage, 623, 624

Language-independent example usage, 611, 623

MPI_WIN_NULL_COPY_FN, 367, 859, 1055

MPI_WIN_NULL_DELETE_FN, 367, 859, 1055

MPI_WIN_POST, 562, 588, 589, 593, 594, 595–597, 599, 603, 604, 606, 613, 615, 877, 882, 1049

C example usage, 619, 620

Language-independent example usage, 612, 613

MPI_WIN_SET_ATTR, 360, 369, 374, 563, 796, 843, 846
MPI Function Index

MPI_WIN_SET_ERRHANDLER, 451, 455
MPI_WIN_SET_INFO, 564, 565, 882, 1051, 1058
MPI_WIN_SET_NAME, 379
MPI_WIN_SHARED_QUERY, 551, 553, 555, 556, 557, 558, 600, 802, 1049, 1054
 C example usage, 617
 MPI_Win_shared_query_c, 557, 1050
MPI_WIN_SHARED_QUERY_CPTR, 559, 1054
MPI_WIN_START, 562, 588, 589, 593, 594, 595, 597, 603, 604, 613, 621, 877, 882
 C example usage, 594, 619, 620
 Language-independent example usage,
 612, 613
MPI_WIN_SYNC, 602, 603, 606, 608, 609, 612, 621–623, 1046, 1049
 Language-independent example usage,
 610, 621, 622
MPI_WIN_TEST, 28, 596, 882, 1046, 1047
MPI_WIN_UNLOCK, 562, 581, 589, 599, 600, 606, 610, 611, 882
 C example usage, 600
 Language-independent example usage,
 610–613
MPI_WIN_UNLOCK_ALL, 581, 589, 598, 599, 606, 610, 621, 882
 C example usage, 623, 624
 Language-independent example usage, 611
MPI_WIN_WAIT, 562, 588, 589, 595, 596, 599, 606, 610, 612, 613, 620, 882
 C example usage, 619, 620
 Language-independent example usage,
 612, 613
MPI_WTICK, 471, 751, 785, 1047
MPI_WTIME, 15, 444, 470, 471, 738, 751, 785, 1047
 C example usage, 470, 720
MPIEXEC
 Language-independent example usage,
 484, 513, 514
mpiexec, 483, 484, 486, 508, 512, 1052
mpirun, 512
PMPI_, 717, 796
PMPI_AINT_ADD, 25
PMPI_AINT_DIFF, 25
PMPI_ISEND, 796, 799
PMPI_WTICK, 785, 1047
PMPI_WTIME, 785, 1047