
Chapter 1

Errata for MPI-3.0

This document was processed on January 1, 2015.

The known corrections to MPI-3.0 are listed in this document. All page and line num-
bers are for the official version of the MPI-3.0 document available from the MPI Forum home
page at www.mpi-forum.org. Information on reporting mistakes in the MPI documents is
also located on the MPI Forum home page.

• In all mpi_f08 subroutine and function definitions in Chapters 3–17 and Annex A.3, in
Example 5.21 on page 187 line 13, and in all mpi_f08 ABSTRACT INTERFACE definitions
(on page 183 line 47, page 268 lines 23 and 33, page 273 line 47, page 274 line 9, page
277 lines 12 and 21, page 344 line 22, page 346 line 12, page 347 line 36, page 475
lines 10 and 43, page 476 line 38, page 537 line 29, page 538 line 2, and page 678 line
11 through page 680 line 35), the BIND(C) must be removed.

Note that a previous version of this errata added BIND(C) to a routine declaration.
That change is now removed.

• Section 6.4.2, page 239 (MPI_Comm_idup) line 32 reads

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

but should read

TYPE(MPI_Comm), INTENT(OUT), ASYNCHRONOUS :: newcomm

• Section 6.4.4, page 249 (MPI_Comm_set_info) lines 20–21 read

MPI_Comm_set_info(MPI_Comm comm, MPI_Info info) BIND(C)

TYPE(MPI_Comm), INTENT(INOUT) :: comm

but should read

MPI_Comm_set_info(comm, info, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

• Section 8.1.1, page 336 (MPI_Get_library_version) line 17 reads

MPI_Get_library_version(version, resulten, ierror) BIND(C)

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

www.mpi-forum.org

2 CHAPTER 1. ERRATA FOR MPI-3.0

but should read

MPI_Get_library_version(version, resultlen, ierror)

• Section 8.1.1, page 336 (MPI_Get_library_version) line 22 reads

MPI_GET_LIBRARY_VERSION(VERSION, RESULTEN, IERROR)

but should read

MPI_GET_LIBRARY_VERSION(VERSION, RESULTLEN, IERROR)

• Section 8.2, page 339 lines 44–47, page 407 lines 47 through page 408 line 2, page 409
lines 30–33, and page 411 lines 11–14 read

If the Fortran compiler provides TYPE(C_PTR), then the following interface
must be provided in the mpi module and should be provided in mpif.h

through overloading, i.e., with the same routine name as the routine with
INTEGER(KIND=MPI_ADDRESS_KIND) BASEPTR, but with a different linker
name:

but should read

If the Fortran compiler provides TYPE(C_PTR), then the following generic
interface must be provided in the mpi module and should be provided in
mpif.h through overloading, i.e., with the same routine name as the rou-
tine with INTEGER(KIND=MPI_ADDRESS_KIND) BASEPTR, but with a differ-
ent specific procedure name:

• Section 8.2, page 340 lines 1–8, and Annex A.4.6, page 772, lines 38–46 read

INTERFACE MPI_ALLOC_MEM

SUBROUTINE MPI_ALLOC_MEM_CPTR(SIZE, INFO, BASEPTR, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER :: INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

but should read

INTERFACE MPI_ALLOC_MEM

SUBROUTINE MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)

IMPORT :: MPI_ADDRESS_KIND

INTEGER INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

END SUBROUTINE

SUBROUTINE MPI_ALLOC_MEM_CPTR(SIZE, INFO, BASEPTR, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

IMPORT :: MPI_ADDRESS_KIND

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3

INTEGER :: INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

• Section 8.2, page 340 (MPI_ALLOC_MEM) lines 10–11 read

The linker name base of this overloaded function is
MPI_ALLOC_MEM_CPTR. The implied linker names are described in Sec-
tion 17.1.5 on page 605.

but should read

The base procedure name of this overloaded function is
MPI_ALLOC_MEM_CPTR. The implied specific procedure names are de-
scribed in Section 17.1.5 on page 605.

• Section 11.2.2, page 408, lines 4–12, and Annex A.4.9, page 777, lines 31–40 read

INTERFACE MPI_WIN_ALLOCATE

SUBROUTINE MPI_WIN_ALLOCATE_CPTR(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &

WIN, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

but should read

INTERFACE MPI_WIN_ALLOCATE

SUBROUTINE MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &

WIN, IERROR)

IMPORT :: MPI_ADDRESS_KIND

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

END SUBROUTINE

SUBROUTINE MPI_WIN_ALLOCATE_CPTR(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &

WIN, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

IMPORT :: MPI_ADDRESS_KIND

INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

• Section 11.2.2, page 408 (MPI_WIN_ALLOCATE) lines 14–15 read

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. ERRATA FOR MPI-3.0

The linker name base of this overloaded function is
MPI_WIN_ALLOCATE_CPTR. The implied linker names are described in
Section 17.1.5 on page 605.

but should read

The base procedure name of this overloaded function is
MPI_WIN_ALLOCATE_CPTR. The implied specific procedure names are de-
scribed in Section 17.1.5 on page 605.

• Section 11.2.2, Page 408, lines 24–26 read:

The following info key is predefined:

same_size — if set to true, then the implementation may assume that the
argument size is identical on all processes.

That text should be deleted. Add the following text to page 406, after line 10:

same_size — if set to true, then the implementation may assume that the
argument size is identical on all processes.

• Section 11.2.3, page 409, lines 35–43, and Annex A.4.9, page 777, line 46 through page
778, line 6 read

INTERFACE MPI_WIN_ALLOCATE_SHARED

SUBROUTINE MPI_WIN_ALLOCATE_SHARED_CPTR(SIZE, DISP_UNIT, INFO, COMM, &

BASEPTR, WIN, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

but should read

INTERFACE MPI_WIN_ALLOCATE_SHARED

SUBROUTINE MPI_WIN_ALLOCATE_SHARED(SIZE, DISP_UNIT, INFO, COMM, &

BASEPTR, WIN, IERROR)

IMPORT :: MPI_ADDRESS_KIND

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

END SUBROUTINE

SUBROUTINE MPI_WIN_ALLOCATE_SHARED_CPTR(SIZE, DISP_UNIT, INFO, COMM, &

BASEPTR, WIN, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

IMPORT :: MPI_ADDRESS_KIND

INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5

• Section 11.2.3, page 409 (MPI_WIN_ALLOCATE_SHARED) lines 44–46 read

The linker name base of this overloaded function is
MPI_WIN_ALLOCATE_SHARED_CPTR. The implied linker names are de-
scribed in Section 17.1.5 on page 605.

but should read

The base procedure name of this overloaded function is
MPI_WIN_ALLOCATE_SHARED_CPTR. The implied specific procedure names
are described in Section 17.1.5 on page 605.

• Section 11.2.3, page 409, line 48: MPI_WIN_ALLOC should be changed to
MPI_WIN_ALLOCATE.

• Section 11.2.3, page 411, lines 16–24, and Annex A.4.9, page 779, lines 12–20 read

INTERFACE MPI_WIN_SHARED_QUERY

SUBROUTINE MPI_WIN_SHARED_QUERY_CPTR(WIN, RANK, SIZE, DISP_UNIT, &

BASEPTR, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER :: WIN, RANK, DISP_UNIT, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

but should read

INTERFACE MPI_WIN_SHARED_QUERY

SUBROUTINE MPI_WIN_SHARED_QUERY(WIN, RANK, SIZE, DISP_UNIT, &

BASEPTR, IERROR)

IMPORT :: MPI_ADDRESS_KIND

INTEGER WIN, RANK, DISP_UNIT, IERROR

INTEGER (KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

END SUBROUTINE

SUBROUTINE MPI_WIN_SHARED_QUERY_CPTR(WIN, RANK, SIZE, DISP_UNIT, &

BASEPTR, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

IMPORT :: MPI_ADDRESS_KIND

INTEGER :: WIN, RANK, DISP_UNIT, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

• Section 11.2.3, page 411 (MPI_WIN_SHARED_QUERY_CPTR) lines 26–27 read

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. ERRATA FOR MPI-3.0

The linker name base of this overloaded function is
MPI_WIN_SHARED_QUERY_CPTR. The implied linker names are described
in Section 17.1.5 on page 605.

but should read

The base procedure name of this overloaded function is
MPI_WIN_SHARED_QUERY_CPTR. The implied specific procedure names
are described in Section 17.1.5 on page 605.

• Section 11.3.4, page 428, lines 15–18 read

Accumulate origin_count elements of type origin_datatype from the origin
buffer (origin_addr) to the buffer at offset target_disp, in the target win-
dow specified by target_rank and win, using the operation op and return
in the result buffer result_addr the content of the target buffer before the
accumulation.

but should say

Accumulate origin_count elements of type origin_datatype from the origin
buffer (origin_addr) to the buffer at offset target_disp, in the target window
specified by target_rank and win, using the operation
op and return in the result buffer result_addr the content of the target buffer
before the accumulation, specified by target_disp, target_count, and
target_datatype. The data transferred from origin to target must fit, without
truncation, in the target buffer. Likewise, the data copied from target to
origin must fit, without truncation, in the result buffer.

• Section 11.3.4, page 428, line 30, add

When MPI_NO_OP is specified as the operation, the origin_addr, origin_count,
and origin_datatype arguments are ignored.

after

the origin and no operation is performed on the target buffer.

• Section 11.7.3, page 464, lines 16–20 read

While this ambiguity is unfortunate, it does not seem to affect many real
codes. The MPI Forum decided not to decide which interpretation of the
standard is the correct one, since the issue is very contentious, and a decision
would have much impact on implementors but less impact on users.

but should be

While this ambiguity is unfortunate, the MPI Forum decided not to define
which interpretation of the standard is the correct one, since the issue is
contentious.

• Section 11.8, example 11.21, page 469, in line 32 change

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7

double **baseptr;

to

double *baseptr;

and in line 36, change

MPI_COMM_WORLD, baseptr, &win);

to

MPI_COMM_WORLD, &baseptr, &win);

• Section 14.2.1, page 555 (Profiling interface) lines 38–40 read

For Fortran, the different support methods cause several linker names.
Therefore, several profiling routines (with these linker names) are needed
for each Fortran MPI routine, as described in Section 17.1.5 on page 605.

but should read

For Fortran, the different support methods cause several specific procedure
names. Therefore, several profiling routines (with these specific procedure
names) are needed for each Fortran MPI routine, as described in Section
17.1.5 on page 605.

• Section 14.2.7, page 560 (Profiling interface, Fortran support methods) lines 29–32
read

The different Fortran support methods and possible options for the support
of subarrays (depending on whether the compiler can support TYPE(*),

DIMENSION(..) choice buffers) imply different linker names for the same
Fortran MPI routine. The rules and implications for the profiling interface
are described in Section 17.1.5 on page 605.

but should read

The different Fortran support methods and possible options for the support
of subarrays (depending on whether the compiler can support TYPE(*),

DIMENSION(..) choice buffers) imply different specific procedure names for
the same Fortran MPI routine. The rules and implications for the profiling
interface are described in Section 17.1.5 on page 605.

• Section 14.3, page 561, line 22 add

Variables and categories across connected processes with equivalent names
are required to have the same meaning (see the definition of “equivalent”
as related to strings in Section 14.3.3). Furthermore, enumerations with
equivalent names across connected processes are required to have the same
meaning, but are allowed to comprise different enumeration items. Enu-
meration items that have equivalent names across connected processes in
enumerations with the same meaning must also have the same meaning. In

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. ERRATA FOR MPI-3.0

order for variables and categories to have the same meaning, routines in
the tools information interface that return details for those variables and
categories have requirements on what parameters must be identical. These
requirements are specified in their respective sections.

• Section 14.3, page 561, lines 33–36 read

Since the MPI tool information interface primarily focuses on tools and sup-
port libraries, MPI implementations are only required to provide C bindings
for functions introduced in this section.

but should read

Since the MPI tool information interface primarily focuses on tools and sup-
port libraries, MPI implementations are only required to provide C bindings
for functions and constants introduced in this section.

• Section 14.3, page 561, lines 43–45 read

Further, there is no guarantee that the number of variables, variable indices,
and variable names are the same across connected processes.

but should read

Further, there is no guarantee that the number of variables and variable
indices are the same across connected processes.

• Section 14.3.3, page 563 line 34 add

MPI implementations behave as if they have an internal character array that
is copied to the output character array supplied by the user. Such output
strings are defined to be equivalent if their notional source internal character
arrays are identical (up to and including the null terminator), even if the
output string is truncated due to a small input length parameter n.

• Section 14.3.5, line 36 add

The use of the datatype MPI_CHAR in the MPI tool information inter-
face implies a null-terminated character array, i.e., a string in the C lan-
guage. If a variable has type MPI_CHAR, the value of the count param-
eter returned by MPI_T_CVAR_HANDLE_ALLOC and
MPI_T_PVAR_HANDLE_ALLOC must be large enough to include any valid
value, including its terminating null character. The contents of returned
MPI_CHAR arrays are only defined from index 0 through the location of the
first null character.

• Page 569, line 11 add

If the name of a control variable is equivalent across connected processes, the
following OUT parameters must be identical: verbosity, datatype, enumtype,
bind, and scope. The returned description must be equivalent.

• Page 574, lines 10–16 read

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9

A performance variable in this class represents a value that is the fixed
size of a resource. Values returned from variables in this class are non-
negative and represented by one of the following datatypes: MPI_UNSIGNED,
MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG,
MPI_DOUBLE. The starting value is the current utilization level of the re-
source at the time that the starting value is set. MPI implementations must
ensure that variables of this class cannot overflow.

but should read

A performance variable in this class represents a value that is the size of
a resource. Values returned from variables in this class are non-negative
and represented by one of the following datatypes:
MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG,
MPI_DOUBLE. The starting value is the current size of the resource at the
time that the starting value is set. MPI implementations must ensure that
variables of this class cannot overflow.

• Page 574, lines 31–32 and 40–41 read

The starting value is the current utilization level of the resource at the time
that the starting value is set.

but should read

The starting value is the current utilization level of the resource at the time
that the variable is started or reset.

• Page 577, line 32 add

If a performance variable has an equivalent name and has the same class
across connected processes, the following OUT parameters must be identical:
verbosity, varclass, datatype, enumtype, bind, readonly, continuous, and
atomic. The returned description must be equivalent.

• Page 579, line 7 add:

For all routines in the rest of this section that take both handle and session
as IN arguments, if the handle argument passed in is not associated with
the session argument, MPI_T_ERR_INVALID_HANDLE is returned.

• Page 579, line 41 add the following after the word successfully:

(even if there are no non-continuous variables to be started)

• Page 580, line 13 add the following after the word successfully:

(even if there are no non-continuous variables to be stopped)

• Page 581, line 25 add the following after the word successfully:

(even if there are no valid handles or all are read-only)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 1. ERRATA FOR MPI-3.0

• Page 585 line 21 of 3.0 reads:

The following function can be used to query the number of control variables,
N .

but should read

The following function can be used to query the number of categories, N .

• Page 586, line 34 add

If the name of a category is equivalent across connected processes, then the
returned description must be equivalent.

• Page 589, lines 11–12 read

The enumeration index is invalid or has been deleted.

The enumeration index is invalid.

• Page 589, line 19 reads

The variable index is invalid or has been deleted.

The variable index is invalid.

• Section 17.1.1, page 598 (Fortran support, overview) lines 29–32 read

The Fortran interfaces of each MPI routine are shorthands. Section 17.1.5
defines the corresponding full interface specification together with the used
linker names and implications for the profiling interface.

but should read

The Fortran interfaces of each MPI routine are shorthands. Section 17.1.5
defines the corresponding full interface specification together with the spe-
cific procedure names and implications for the profiling interface.

• Section 17.1.2, page 599 (Fortran support through the mpi_f08 module) lines 19–20
read

Define all MPI handles with uniquely named handle types (instead of
INTEGER handles, as in the mpi module).

but should read

Define the derived type MPI_Status, and define all MPI handles with uniquely
named handle types (instead of INTEGER handles, as in the mpi module).

• Section 17.1.2, page 601 (Fortran support through the mpi_f08 module) lines 11–15
read

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11

The INTERFACE construct in combination with BIND(C) allows the imple-
mentation of the Fortran mpi_f08 interface with a single set of portable
wrapper routines written in C, which supports all desired features in the
mpi_f08 interface. TS 29113 also has a provision for OPTIONAL arguments
in BIND(C) interfaces.

but should be removed.

• Section 17.1.3 (mpi module), page 601 lines 33–35 read

Provide explicit interfaces according to the Fortran routine interface specifi-
cations. This module therefore guarantees compile-time argument checking
and allows positional and keyword-based argument lists.

but should read

Provide explicit interfaces according to the Fortran routine interface specifi-
cations. This module therefore guarantees compile-time argument checking
and allows positional and keyword-based argument lists. If an implemen-
tation is paired with a compiler that either does not support TYPE(*),

DIMENSION(..) from TS 29113, or is otherwise unable to ignore the types
of choice buffers, then the implementation must provide explicit interfaces
only for MPI routines with no choice buffer arguments. See Section 17.1.6
on page 609 for more details.

• Both the last Advice to implementors in Section 17.1.4 (Fortran support through the
mpif.h include file), page 604 line 29 through page 605 line 11, and the whole of
Section 17.1.5 (Interface specification, linker names and the profiling interface), page
605 line 29 through page 609 line 31 are replaced with the following:

17.1.5 Interface Specifications, Procedure Names, and the Profiling Interface

The Fortran interface specification of each MPI routine specifies the routine name that must
be called by the application program, and the names and types of the dummy arguments
together with additional attributes. The Fortran standard allows a given Fortran interface
to be implemented with several methods, e.g., within or outside of a module, with or without
BIND(C), or the buffers with or without TS 29113. Such implementation decisions imply
different binary interfaces and different specific procedure names. The requirements for
several implementation schemes together with the rules for the specific procedure names
and its implications for the profiling interface are specified within this section, but not the
implementation details.

Rationale. This section was introduced in MPI-3.0 on Sep. 21, 2012. The major goals
for implementing the three Fortran support methods have been:

• Portable implementation of the wrappers from the MPI Fortran interfaces to the
MPI routines in C.

• Binary backward compatible implementation path when switching
MPI_SUBARRAYS_SUPPORTED from .FALSE. to .TRUE..

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 1. ERRATA FOR MPI-3.0

• The Fortran PMPI interface need not be backward compatible, but a method
must be included that a tools layer can use to examine the MPI library about
the specific procedure names and interfaces used.

• No performance drawbacks.

• Consistency between all three Fortran support methods.

• Consistent with Fortran 2008 + TS 29113.

The design expected that all dummy arguments in the MPI Fortran interfaces are
interoperable with C according to Fortran 2008 + TS 29113. This expectation was
not fulfilled. The LOGICAL arguments are not interoperable with C, mainly because
the internal representations for .FALSE. and .TRUE. are compiler dependent. The
provided interface was mainly based on BIND(C) interfaces and therefore inconsistent
with Fortran. To be consistent with Fortran, the BIND(C) had to be removed from
the callback procedure interfaces and the predefined callbacks, e.g.,
MPI_COMM_DUP_FN. Non-BIND(C) procedures are also not interoperable with C,
and therefore the BIND(C) had to be removed from all routines with
PROCEDURE arguments, e.g., from MPI_OP_CREATE.

Therefore, this section was rewritten as an erratum to MPI-3.0. (End of rationale.)

A Fortran call to an MPI routine shall result in a call to a procedure with one of the
specific procedure names and calling conventions, as described in Table 1.1 on page 13.
Case is not significant in the names.

Note that for the deprecated routines in Section 15.1 on page 591, which are reported
only in Annex A.4, scheme 2A is utilized in the mpi module and mpif.h, and also in the
mpi_f08 module.

To set MPI_SUBARRAYS_SUPPORTED to .TRUE. within a Fortran support method, it
is required that all non-blocking and split-collective routines with buffer arguments are
implemented according to 1B and 2B, i.e., with MPI_Xxxx_f08ts in the mpi_f08 module,
and with MPI_XXXX_FTS in the mpi module and the mpif.h include file.

The mpi and mpi_f08 modules and the mpif.h include file will each correspond to
exactly one implementation scheme from Table 1.1 on page 13. However, the MPI library
may contain multiple implementation schemes from Table 1.1.

Advice to implementors. This may be desirable for backwards binary compatibility
in the scope of a single MPI implementation, for example. (End of advice to imple-
mentors.)

Rationale. After a compiler provides the facilities from TS 29113, i.e., TYPE(*),
DIMENSION(..), it is possible to change the bindings within a Fortran support method
to support subarrays without recompiling the complete application provided that the
previous interfaces with their specific procedure names are still included in the li-
brary. Of course, only recompiled routines can benefit from the added facilities.
There is no binary compatibility conflict because each interface uses its own spe-
cific procedure names and all interfaces use the same constants (except the value of
MPI_SUBARRAYS_SUPPORTED and MPI_ASYNC_PROTECTS_NONBLOCKING) and type
definitions. After a compiler also ensures that buffer arguments of nonblocking MPI
operations can be protected through the ASYNCHRONOUS attribute, and the proce-
dure declarations in the mpi_f08 and mpi module and the mpif.h include file declare

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13

No. Specific pro- Calling convention
cedure name

1A MPI_Isend_f08 Fortran interface and arguments, as in Annex A.3, except
that in routines with a choice buffer dummy argument, this
dummy argument is implemented with non-standard ex-
tensions like !$PRAGMA IGNORE_TKR, which provides a call-
by-reference argument without type, kind, and dimension
checking.

1B MPI_Isend_f08ts Fortran interface and arguments, as in Annex A.3, but
only for routines with one or more choice buffer dummy
arguments; these dummy arguments are implemented with
TYPE(*), DIMENSION(..).

2A MPI_ISEND Fortran interface and arguments, as in Annex A.4, except
that in routines with a choice buffer dummy argument, this
dummy argument is implemented with non-standard ex-
tensions like !$PRAGMA IGNORE_TKR, which provides a call-
by-reference argument without type, kind, and dimension
checking.

2B MPI_ISEND_FTS Fortran interface and arguments, as in Annex A.4, but
only for routines with one or more choice buffer dummy
arguments; these dummy arguments are implemented with
TYPE(*), DIMENSION(..).

Table 1.1: Specific Fortran procedure names and related calling conventions. MPI_ISEND
is used as an example. For routines without choice buffers, only 1A and 2A apply.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 1. ERRATA FOR MPI-3.0

choice buffers with the ASYNCHRONOUS attribute, then the value of
MPI_ASYNC_PROTECTS_NONBLOCKING can be switched to .TRUE. in the module def-
inition and include file. (End of rationale.)

Advice to users. Partial recompilation of user applications when upgrading MPI
implementations is a highly complex and subtle topic. Users are strongly advised to
consult their MPI implementation’s documentation to see exactly what is — and what
is not — supported. (End of advice to users.)

Within the mpi_f08 and mpi modules and mpif.h, for all MPI procedures, a second
procedure with the same calling conventions shall be supplied, except that the name is
modified by prefixing with the letter “P”, e.g., PMPI_Isend. The specific procedure names
for these PMPI_Xxxx procedures must be different from the specific procedure names for
the MPI_Xxxx procedures and are not specified by this standard.

A user-written or middleware profiling routine should provide the same specific For-
tran procedure names and calling conventions, and therefore can interpose itself as the
MPI library routine. The profiling routine can internally call the matching PMPI routine
with any of its existing bindings, except for routines that have callback routine dummy
arguments, choice buffer arguments, or that are attribute caching routines (
MPI_{COMM|WIN|TYPE}_{SET|GET}_ATTR). In this case, the profiling software should
invoke the corresponding PMPI routine using the same Fortran support method as used in
the calling application program, because the C, mpi_f08 and mpi callback prototypes are
different or the meaning of the choice buffer or attribute_val arguments are different.

Advice to users. Although for each support method and MPI routine (e.g.,
MPI_ISEND in mpi_f08), multiple routines may need to be provided to intercept
the specific procedures in the MPI library (e.g., MPI_Isend_f08 and MPI_Isend_f08ts),
each profiling routine itself uses only one support method (e.g., mpi_f08) and calls
the real MPI routine through the one PMPI routine defined in this support method
(i.e., PMPI_Isend in this example). (End of advice to users.)

Advice to implementors. If all of the following conditions are fulfilled:

• the handles in the mpi_f08 module occupy one Fortran numerical storage unit
(same as an INTEGER handle),

• the internal argument passing mechanism used to pass an actual ierror argument
to a non-optional ierror dummy argument is binary compatible to passing an
actual ierror argument to an ierror dummy argument that is declared as OPTIONAL,

• the internal argument passing mechanism for ASYNCHRONOUS and non-
ASYNCHRONOUS arguments is the same,

• the internal routine call mechanism is the same for the Fortran and the C com-
pilers for which the MPI library is compiled,

• the compiler does not provide TS 29113,

then the implementor may use the same internal routine implementations for all For-
tran support methods but with several different specific procedure names. If the
accompanying Fortran compiler supports TS 29113, then the new routines are needed
only for routines with choice buffer arguments. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

15

Advice to implementors. In the Fortran support method mpif.h, compile-time
argument checking can be also implemented for all routines. For mpif.h, the argument
names are not specified through the MPI standard, i.e., only positional argument lists
are defined, and not key-word based lists. Due to the rule that mpif.h must be
valid for fixed and free source form, the subroutine declaration is restricted to one
line with 72 characters. To keep the argument lists short, each argument name can
be shortened to a minimum of one character. With this, the two longest subroutine
declaration statements are

SUBROUTINE PMPI_Dist_graph_create_adjacent(a,b,c,d,e,f,g,h,i,j,k)

SUBROUTINE PMPI_Rget_accumulate(a,b,c,d,e,f,g,h,i,j,k,l,m,n)

with 71 and 66 characters. With buffers implemented with TS 29113, the specific
procedure names have an additional postfix. The longest of such interface definitions
is

INTERFACE PMPI_Rget_accumulate

SUBROUTINE PMPI_Rget_accumulate_fts(a,b,c,d,e,f,g,h,i,j,k,l,m,n)

with 70 characters. In principle, continuation lines would be possible in mpif.h (spaces
in columns 73–131, & in column 132, and in column 6 of the continuation line) but
this would not be valid if the source line length is extended with a compiler flag to 132
characters. Column 133 is also not available for the continuation character because
lines longer than 132 characters are invalid with some compilers by default.

The longest specific procedure names are PMPI_Dist_graph_create_adjacent_f08 and
PMPI_File_write_ordered_begin_f08ts both with 35 characters in the mpi_f08 module.

For example, the interface specifications together with the specific procedure names
can be implemented with

MODULE mpi_f08

TYPE, BIND(C) :: MPI_Comm

INTEGER :: MPI_VAL

END TYPE MPI_Comm

...

INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)

SUBROUTINE MPI_Comm_rank_f08(comm, rank, ierror)

IMPORT :: MPI_Comm

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: rank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

END SUBROUTINE

END INTERFACE

END MODULE mpi_f08

MODULE mpi

INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)

SUBROUTINE MPI_Comm_rank(comm, rank, ierror)

INTEGER, INTENT(IN) :: comm ! The INTENT may be added although

INTEGER, INTENT(OUT) :: rank ! it is not defined in the

INTEGER, INTENT(OUT) :: ierror ! official routine definition.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 1. ERRATA FOR MPI-3.0

END SUBROUTINE

END INTERFACE

END MODULE mpi

And if interfaces are provided in mpif.h, they might look like this (outside of any
module and in fixed source format):

!23456789012345678901234567890123456789012345678901234567890123456789012

INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)

SUBROUTINE MPI_Comm_rank(comm, rank, ierror)

INTEGER, INTENT(IN) :: comm ! The argument names may be

INTEGER, INTENT(OUT) :: rank ! shortened so that the

INTEGER, INTENT(OUT) :: ierror ! subroutine line fits to the

END SUBROUTINE ! maximum of 72 characters.

END INTERFACE

(End of advice to implementors.)

Advice to users. The following is an example of how a user-written or middleware
profiling routine can be implemented:

SUBROUTINE MPI_Isend_f08ts(buf,count,datatype,dest,tag,comm,request,ierror)

USE :: mpi_f08, my_noname => MPI_Isend_f08ts

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

! ... some code for the begin of profiling

call PMPI_Isend (buf, count, datatype, dest, tag, comm, request, ierror)

! ... some code for the end of profiling

END SUBROUTINE MPI_Isend_f08ts

Note that this routine is used to intercept the existing specific procedure name
MPI_Isend_f08ts in the MPI library. This routine must not be part of a module.
This routine itself calls PMPI_Isend. The USE of the mpi_f08 module is needed for
definitions of handle types and the interface for PMPI_Isend. However, this module
also contains an interface definition for the specific procedure name MPI_Isend_f08ts
that conflicts with the definition of this profiling routine (i.e., the name is doubly
defined). Therefore, the USE here specifically excludes the interface from the module
by renaming the unused routine name in the mpi_f08 module into “my_noname” in
the scope of this routine. (End of advice to users.)

Advice to users. The PMPI interface allows intercepting MPI routines. For exam-
ple, an additional MPI_ISEND profiling wrapper can be provided that is called by the
application and internally calls PMPI_ISEND. There are two typical use cases: a pro-
filing layer that is developed independently from the application and the MPI library,
and profiling routines that are part of the application and have access to the appli-
cation data. With MPI-3.0, new Fortran interfaces and implementation schemes were
introduced that have several implications on how Fortran MPI routines are internally

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17

implemented and optimized. For profiling layers, these schemes imply that several in-
ternal interfaces with different specific procedure names may need to be intercepted,
as shown in the example code above. Therefore, for wrapper routines that are part
of a Fortran application, it may be more convenient to make the name shift within
the application, i.e., to substitute the call to the MPI routine (e.g., MPI_ISEND) by a
call to a user-written profiling wrapper with a new name (e.g., X_MPI_ISEND) and to
call the Fortran MPI_ISEND from this wrapper, instead of using the PMPI interface.
(End of advice to users.)

• Section 17.1.6, page 610 (MPI for different Fortran standard versions) line 27 reads

The routines are not BIND(C).

but should be removed.

• Section 17.1.6, page 610 (MPI for different Fortran standard versions) line 33 reads

The linker names are specified in Section 17.1.5 on page 605.

but should read

The specific procedure names are specified in Section 17.1.5 on page 605.

• Section 17.1.6, page 611 (MPI for different Fortran standard versions) line 21 reads

BIND(C, NAME=’...’) interfaces.

but should be removed.

• After Section 17.1.6, page 611 (MPI for different Fortran standard versions) line 26,
which reads

arguments.

the following list item should be added:

The ability to overload the operators .EQ. and .NE. to allow the comparison
of derived types (used in MPI-3.0 for MPI handles).

• Section 17.1.6, page 611 (MPI for different Fortran standard versions) line 43 reads

The routines are not BIND(C).

but should be removed.

• Section 17.1.6, page 611 (MPI for different Fortran standard versions) line 47 reads

The linker names are specified in Section 17.1.5 on page 605.

but should read

The specific procedure names are specified in Section 17.1.5 on page 605.

• Section 17.1.6, page 612 (MPI for different Fortran standard versions) lines 22–24 read

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 1. ERRATA FOR MPI-3.0

– OPTIONAL dummy arguments are allowed in combination with BIND(C)

interfaces.

– CHARACTER(LEN=*) dummy arguments are allowed in combination with
BIND(C) interfaces.

but should be removed.

• Section 17.1.7, page 614 (Requirements on Fortran compilers) lines 25–47 read

All of these rules are valid independently of whether the MPI routine in-
terfaces in the mpi_f08 and mpi modules are internally defined with an
INTERFACE or CONTAINS construct, and with or without BIND(C), and also
if mpif.h uses explicit interfaces.

Advice to implementors. Some of these rules are already part of
the Fortran 2003 standard if the MPI interfaces are defined without
BIND(C). Additional compiler support may be necessary if BIND(C) is
used. Some of these additional requirements are defined in the Fortran
TS 29113 [41]. Some of these requirements for MPI-3.0 are beyond the
scope of TS 29113. (End of advice to implementors.)

Further requirements apply if the MPI library internally uses
BIND(C) routine interfaces (i.e., for a full implementation of mpi_f08):

– Non-buffer arguments are INTEGER, INTEGER(KIND=...),
CHARACTER(LEN=*), LOGICAL, and BIND(C) derived types (handles and
status in mpi_f08), variables and arrays; function results are DOUBLE

PRECISION. All these types must be valid as dummy arguments in the
BIND(C) MPI routine interfaces. When compiling an MPI application,
the compiler should not issue warnings indicating that these types may
not be interoperable with an existing type in C. Some of these types
are already valid in BIND(C) interfaces since Fortran 2003, some may
be valid based on TS 29113 (e.g., CHARACTER*(*)).

– OPTIONAL dummy arguments are also valid within
BIND(C) interfaces. This requirement is fulfilled if TS 29113 is fully
supported by the compiler.

but should read

All of these rules are valid for the mpi_f08 and mpi modules and indepen-
dently of whether mpif.h uses explicit interfaces.

Advice to implementors. Some of these rules are already part of the
Fortran 2003 standard, some of these requirements require the Fortran
TS 29113 [41], and some of these requirements for MPI-3.0 are beyond
the scope of TS 29113. (End of advice to implementors.)

• Annex A.1, page 674, line 31 reads

Fortran Type: INTEGER

but should be deleted.

• Annex A.1, page 675, line 4 reads

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

19

Fortran Type: INTEGER

but should be deleted.

• Annex A.1, page 675, line 21 reads

Fortran Type: INTEGER

but should be deleted.

• Annex A.1, page 676, line 4 reads

Fortran Type: INTEGER

but should be deleted.

• Annex A.1.2, page 677 (Handle types in the mpi_f08 and mpi modules) line 10 reads

TYPE(MPI_Info)

but should read

TYPE(MPI_Info)

TYPE(MPI_Message)

• Annex A.1.5 Info Keys, page 683, lines 17 and later, add (maintaining the sorted
order):

accumulate_ops

accumulate_ordering

alloc_shared_noncontig

same_size

• Annex A.1.6 Info Values, page 684, beginning at line 1, add (maintaining the sorted
order):

rar

raw

same_op

same_op_no_op

war

waw

• Annex A.2.11, page 700, line 46 reads

int MPI_File_close(MPI_File *fh)

but should read (add MPI_CONVERSION_FN_NULL before)

int MPI_CONVERSION_FN_NULL(void *userbuf, MPI_Datatype datatype, int

count, void *filebuf, MPI_Offset position, void *extra_state)

int MPI_File_close(MPI_File *fh)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 1. ERRATA FOR MPI-3.0

• Annex A.3.4, page 724 lines 15–40 read

MPI_COMM_DUP_FN(oldcomm, comm_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror) BIND(C)

TYPE(MPI_Comm), INTENT(IN) :: oldcomm

INTEGER, INTENT(IN) :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state,

attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val_out

LOGICAL, INTENT(OUT) :: flag

INTEGER, INTENT(OUT) :: ierror

MPI_COMM_NULL_COPY_FN(oldcomm, comm_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror) BIND(C)

TYPE(MPI_Comm), INTENT(IN) :: oldcomm

INTEGER, INTENT(IN) :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state,

attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val_out

LOGICAL, INTENT(OUT) :: flag

INTEGER, INTENT(OUT) :: ierror

MPI_COMM_NULL_DELETE_FN(comm, comm_keyval, attribute_val, extra_state,

ierror) BIND(C)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val,

extra_state

INTEGER, INTENT(OUT) :: ierror

but should read (without all INTENT information and BIND(C))

MPI_COMM_DUP_FN(oldcomm, comm_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror)

TYPE(MPI_Comm) :: oldcomm

INTEGER :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

MPI_COMM_NULL_COPY_FN(oldcomm, comm_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror)

TYPE(MPI_Comm) :: oldcomm

INTEGER :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

21

MPI_COMM_NULL_DELETE_FN(comm, comm_keyval, attribute_val, extra_state,

ierror)

TYPE(MPI_Comm) :: comm

INTEGER :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

INTEGER :: ierror

• Annex A.3.4, page 728 line 44 through page 729 line 22 reads

MPI_TYPE_DUP_FN(oldtype, type_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror) BIND(C)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

INTEGER, INTENT(IN) :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state,

attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val_out

LOGICAL, INTENT(OUT) :: flag

INTEGER, INTENT(OUT) :: ierror

MPI_TYPE_NULL_COPY_FN(oldtype, type_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror) BIND(C)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

INTEGER, INTENT(IN) :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state,

attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val_out

LOGICAL, INTENT(OUT) :: flag

INTEGER, INTENT(OUT) :: ierror

MPI_TYPE_NULL_DELETE_FN(datatype, type_keyval, attribute_val,

extra_state, ierror) BIND(C)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val,

extra_state

INTEGER, INTENT(OUT) :: ierror

but should read (without all INTENT information and BIND(C))

MPI_TYPE_DUP_FN(oldtype, type_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror)

TYPE(MPI_Datatype) :: oldtype

INTEGER :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

MPI_TYPE_NULL_COPY_FN(oldtype, type_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 1. ERRATA FOR MPI-3.0

TYPE(MPI_Datatype) :: oldtype

INTEGER :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

MPI_TYPE_NULL_DELETE_FN(datatype, type_keyval, attribute_val,

extra_state, ierror)

TYPE(MPI_Datatype) :: datatype

INTEGER :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

INTEGER :: ierror

• Annex A.3.4, page 730 lines 15–38 read

MPI_WIN_DUP_FN(oldwin, win_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror) BIND(C)

INTEGER, INTENT(IN) :: oldwin, win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state,

attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val_out

LOGICAL, INTENT(OUT) :: flag

INTEGER, INTENT(OUT) :: ierror

MPI_WIN_NULL_COPY_FN(oldwin, win_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror) BIND(C)

INTEGER, INTENT(IN) :: oldwin, win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state,

attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val_out

LOGICAL, INTENT(OUT) :: flag

INTEGER, INTENT(OUT) :: ierror

MPI_WIN_NULL_DELETE_FN(win, win_keyval, attribute_val, extra_state,

ierror) BIND(C)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val,

extra_state

INTEGER, INTENT(OUT) :: ierror

but should read (without all INTENT information, BIND(C), and oldwin as
TYPE(MPI_Win))

MPI_WIN_DUP_FN(oldwin, win_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror)

TYPE(MPI_Win) :: oldwin

INTEGER :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

23

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

MPI_WIN_NULL_COPY_FN(oldwin, win_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror)

TYPE(MPI_Win) :: oldwin

INTEGER :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

MPI_WIN_NULL_DELETE_FN(win, win_keyval, attribute_val, extra_state,

ierror)

TYPE(MPI_Win) :: win

INTEGER :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

INTEGER :: ierror

• Annex A.3.11, page 747, line 36 reads

MPI_File_close(fh, ierror) BIND(C)

but should read (add MPI_CONVERSION_FN_NULL before, but without BIND(C))

MPI_CONVERSION_FN_NULL(userbuf, datatype, count, filebuf, position,

extra_state, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

TYPE(C_PTR), VALUE :: userbuf, filebuf

TYPE(MPI_Datatype) :: datatype

INTEGER :: count, ierror

INTEGER(KIND=MPI_OFFSET_KIND) :: position

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

MPI_File_close(fh, ierror)

• Annex A.4.11, page 780, line 22 reads

MPI_FILE_CLOSE(FH, IERROR)

but should read (add MPI_CONVERSION_FN_NULL before)

MPI_CONVERSION_FN_NULL(USERBUF, DATATYPE, COUNT, FILEBUF, POSITION,

EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)

INTEGER COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) POSITION

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_FILE_CLOSE(FH, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	Errata for MPI-3.0

