
MPI: A Message-Passing Interface Standard

Version 1.3

Message Passing Interface Forum

May 30, 2008
This work was supported in part by ARPA and NSF under grant ASC-9310330, the

National Science Foundation Science and Technology Center Cooperative
Agreement No. CCR-8809615, and by the Commission of the European Community

through Esprit project P6643.

Version 1.3: May 30, 2008. This document combines the previous documents MPI 1.1 (June
12, 1995) and the MPI 1.2 Chapter in MPI-2 (July 18, 1997). Additional errata collected
by the MPI Forum referring to MPI 1.1 and MPI 1.2 are also included in this document.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI 1.2 as Chap.3 in the stan-
dard ”MPI-2: Extensions to the Message-Passing Interface”, July 18, 1997. This section
contains clarifications and minor corrections to Version 1.1 of the MPI Standard. The only
new function in MPI-1.2 is one for identifying to which version of the MPI Standard the im-
plementation conforms. There are small differences between MPI-1 and MPI-1.1. There are
very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2
and MPI-2.

Version 1.1: June, 1995. Beginning in March, 1995, the Message Passing Interface Forum
reconvened to correct errors and make clarifications in the MPI document of May 5, 1994,
referred to below as Version 1.0. These discussions resulted in Version 1.1, which is this
document. The changes from Version 1.0 are minor. A version of this document with all
changes marked is available. This paragraph is an example of a change.

Version 1.0: May, 1994. The Message Passing Interface Forum (MPIF), with participation
from over 40 organizations, has been meeting since January 1993 to discuss and define a set
of library interface standards for message passing. MPIF is not sanctioned or supported by
any official standards organization.

The goal of the Message Passing Interface, simply stated, is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message passing.

This is the final report, Version 1.0, of the Message Passing Interface Forum. This
document contains all the technical features proposed for the interface. This copy of the
draft was processed by LATEX on May 5, 1994.

Please send comments on MPI to mpi-comments@mpi-forum.org. Your comment will
be forwarded to MPI Forum committee members who will attempt to respond.

c©1993, 1994, 1995, 2008 University of Tennessee, Knoxville, Tennessee. Permission to
copy without fee all or part of this material is granted, provided the University of Tennessee
copyright notice and the title of this document appear, and notice is given that copying is
by permission of the University of Tennessee.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Contents

Acknowledgments vii

1 Introduction to MPI 1
1.1 Overview and Goals . 1
1.2 Who Should Use This Standard? . 2
1.3 What Platforms Are Targets For Implementation? 3
1.4 What Is Included In The Standard? . 3
1.5 What Is Not Included In The Standard? . 3
1.6 Organization of this Document . 4

2 MPI Terms and Conventions 6
2.1 Document Notation . 6
2.2 Procedure Specification . 6
2.3 Semantic Terms . 7
2.4 Data Types . 8

2.4.1 Opaque objects . 8
2.4.2 Array arguments . 9
2.4.3 State . 9
2.4.4 Named constants . 9
2.4.5 Choice . 10
2.4.6 Addresses . 10

2.5 Language Binding . 10
2.5.1 Fortran 77 Binding Issues . 11
2.5.2 C Binding Issues . 12

2.6 Processes . 12
2.7 Error Handling . 13
2.8 Implementation issues . 14

2.8.1 Independence of Basic Runtime Routines 14
2.8.2 Interaction with signals in POSIX 15

2.9 Examples . 15

3 Point-to-Point Communication 16
3.1 Introduction . 16
3.2 Blocking Send and Receive Operations . 17

3.2.1 Blocking send . 17
3.2.2 Message data . 17
3.2.3 Message envelope . 19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2.4 Blocking receive . 20
3.2.5 Return status . 21

3.3 Data type matching and data conversion . 23
3.3.1 Type matching rules . 23
3.3.2 Data conversion . 26

3.4 Communication Modes . 27
3.5 Semantics of point-to-point communication 31
3.6 Buffer allocation and usage . 34

3.6.1 Model implementation of buffered mode 36
3.7 Nonblocking communication . 37

3.7.1 Communication Objects . 38
3.7.2 Communication initiation . 38
3.7.3 Communication Completion . 41
3.7.4 Semantics of Nonblocking Communications 45
3.7.5 Multiple Completions . 46

3.8 Probe and Cancel . 52
3.9 Persistent communication requests . 56
3.10 Send-receive . 60
3.11 Null processes . 62
3.12 Derived datatypes . 62

3.12.1 Datatype constructors . 64
3.12.2 Address and extent functions . 70
3.12.3 Lower-bound and upper-bound markers 72
3.12.4 Commit and free . 73
3.12.5 Use of general datatypes in communication 75
3.12.6 Correct use of addresses . 77
3.12.7 Examples . 78

3.13 Pack and unpack . 86

4 Collective Communication 93
4.1 Introduction and Overview . 93
4.2 Communicator argument . 96
4.3 Barrier synchronization . 96
4.4 Broadcast . 96

4.4.1 Example using MPI BCAST . 97
4.5 Gather . 97

4.5.1 Examples using MPI GATHER, MPI GATHERV 100
4.6 Scatter . 106

4.6.1 Examples using MPI SCATTER, MPI SCATTERV 109
4.7 Gather-to-all . 111

4.7.1 Examples using MPI ALLGATHER, MPI ALLGATHERV 112
4.8 All-to-All Scatter/Gather . 113
4.9 Global Reduction Operations . 115

4.9.1 Reduce . 115
4.9.2 Predefined reduce operations . 116
4.9.3 MINLOC and MAXLOC . 118
4.9.4 User-Defined Operations . 122
4.9.5 All-Reduce . 126

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.10 Reduce-Scatter . 127
4.11 Scan . 128

4.11.1 Example using MPI SCAN . 128
4.12 Correctness . 130

5 Groups, Contexts, and Communicators 134
5.1 Introduction . 134

5.1.1 Features Needed to Support Libraries 134
5.1.2 MPI’s Support for Libraries . 135

5.2 Basic Concepts . 137
5.2.1 Groups . 137
5.2.2 Contexts . 137
5.2.3 Intra-Communicators . 138
5.2.4 Predefined Intra-Communicators . 138

5.3 Group Management . 139
5.3.1 Group Accessors . 139
5.3.2 Group Constructors . 140
5.3.3 Group Destructors . 144

5.4 Communicator Management . 145
5.4.1 Communicator Accessors . 145
5.4.2 Communicator Constructors . 147
5.4.3 Communicator Destructors . 150

5.5 Motivating Examples . 150
5.5.1 Current Practice #1 . 150
5.5.2 Current Practice #2 . 151
5.5.3 (Approximate) Current Practice #3 152
5.5.4 Example #4 . 152
5.5.5 Library Example #1 . 153
5.5.6 Library Example #2 . 155

5.6 Inter-Communication . 157
5.6.1 Inter-communicator Accessors . 159
5.6.2 Inter-communicator Operations . 160
5.6.3 Inter-Communication Examples . 162

5.7 Caching . 169
5.7.1 Functionality . 170
5.7.2 Attributes Example . 174

5.8 Formalizing the Loosely Synchronous Model 176
5.8.1 Basic Statements . 176
5.8.2 Models of Execution . 176

6 Process Topologies 178
6.1 Introduction . 178
6.2 Virtual Topologies . 179
6.3 Embedding in MPI . 179
6.4 Overview of the Functions . 180
6.5 Topology Constructors . 181

6.5.1 Cartesian Constructor . 181
6.5.2 Cartesian Convenience Function: MPI DIMS CREATE 181

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.5.3 General (Graph) Constructor . 182
6.5.4 Topology inquiry functions . 184
6.5.5 Cartesian Shift Coordinates . 188
6.5.6 Partitioning of Cartesian structures 189
6.5.7 Low-level topology functions . 190

6.6 An Application Example . 191

7 MPI Environmental Management 193
7.1 Implementation information . 193

7.1.1 Version Inquiries . 193
7.1.2 Environmental Inquiries . 194

7.2 Error handling . 196
7.3 Error codes and classes . 199
7.4 Timers and synchronization . 201
7.5 Startup . 201

8 Profiling Interface 207
8.1 Requirements . 207
8.2 Discussion . 207
8.3 Logic of the design . 208

8.3.1 Miscellaneous control of profiling . 208
8.4 Examples . 209

8.4.1 Profiler implementation . 209
8.4.2 MPI library implementation . 210
8.4.3 Complications . 211

8.5 Multiple levels of interception . 212

Bibliography 213

Language Binding 216
A.1 Introduction . 216
A.2 Defined Constants for C and Fortran . 216
A.3 C bindings for Point-to-Point Communication 220
A.4 C Bindings for Collective Communication 223
A.5 C Bindings for Groups, Contexts, and Communicators 224
A.6 C Bindings for Process Topologies . 225
A.7 C bindings for Environmental Inquiry . 226
A.8 C Bindings for Profiling . 226
A.9 Fortran Bindings for Point-to-Point Communication 226
A.10 Fortran Bindings for Collective Communication 230
A.11 Fortran Bindings for Groups, Contexts, etc. 232
A.12 Fortran Bindings for Process Topologies . 234
A.13 Fortran Bindings for Environmental Inquiry 235
A.14 Fortran Bindings for Profiling . 235

MPI Function Index 236

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Acknowledgments

The technical development was carried out by subgroups, whose work was reviewed
by the full committee. During the period of development of the Message Passing Interface
(MPI), many people served in positions of responsibility and are listed below.

• Jack Dongarra, David Walker, Conveners and Meeting Chairs

• Ewing Lusk, Bob Knighten, Minutes

• Marc Snir, William Gropp, Ewing Lusk, Point-to-Point Communications

• Al Geist, Marc Snir, Steve Otto, Collective Communications

• Steve Otto, Editor

• Rolf Hempel, Process Topologies

• Ewing Lusk, Language Binding

• William Gropp, Environmental Management

• James Cownie, Profiling

• Tony Skjellum, Lyndon Clarke, Marc Snir, Richard Littlefield, Mark Sears, Groups,
Contexts, and Communicators

• Steven Huss-Lederman, Initial Implementation Subset

The following list includes some of the active participants in the MPI process not
mentioned above.

Ed Anderson Robert Babb Joe Baron Eric Barszcz
Scott Berryman Rob Bjornson Nathan Doss Anne Elster
Jim Feeney Vince Fernando Sam Fineberg Jon Flower
Daniel Frye Ian Glendinning Adam Greenberg Robert Harrison
Leslie Hart Tom Haupt Don Heller Tom Henderson
Alex Ho C.T. Howard Ho Gary Howell John Kapenga
James Kohl Susan Krauss Bob Leary Arthur Maccabe
Peter Madams Alan Mainwaring Oliver McBryan Phil McKinley
Charles Mosher Dan Nessett Peter Pacheco Howard Palmer
Paul Pierce Sanjay Ranka Peter Rigsbee Arch Robison
Erich Schikuta Ambuj Singh Alan Sussman Robert Tomlinson
Robert G. Voigt Dennis Weeks Stephen Wheat Steve Zenith

The University of Tennessee and Oak Ridge National Laboratory made the draft avail-
able by anonymous FTP mail servers and were instrumental in distributing the document.

MPI operated on a very tight budget (in reality, it had no budget when the first meeting
was announced). ARPA and NSF have supported research at various institutions that have

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

made a contribution towards travel for the U.S. academics. Support for several European
participants was provided by ESPRIT.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 1

Introduction to MPI

1.1 Overview and Goals

Message passing is a paradigm used widely on certain classes of parallel machines, especially
those with distributed memory. Although there are many variations, the basic concept of
processes communicating through messages is well understood. Over the last ten years,
substantial progress has been made in casting significant applications in this paradigm. Each
vendor has implemented its own variant. More recently, several systems have demonstrated
that a message passing system can be efficiently and portably implemented. It is thus an
appropriate time to try to define both the syntax and semantics of a core of library routines
that will be useful to a wide range of users and efficiently implementable on a wide range
of computers.

In designing MPI we have sought to make use of the most attractive features of a number
of existing message passing systems, rather than selecting one of them and adopting it as
the standard. Thus, MPI has been strongly influenced by work at the IBM T. J. Watson
Research Center [1, 2], Intel’s NX/2 [23], Express [22], nCUBE’s Vertex [21], p4 [7, 6], and
PARMACS [5, 8]. Other important contributions have come from Zipcode [24, 25], Chimp
[14, 15], PVM [4, 11], Chameleon [19], and PICL [18].

The MPI standardization effort involved about 60 people from 40 organizations mainly
from the United States and Europe. Most of the major vendors of concurrent computers
were involved in MPI, along with researchers from universities, government laboratories, and
industry. The standardization process began with the Workshop on Standards for Message
Passing in a Distributed Memory Environment, sponsored by the Center for Research on
Parallel Computing, held April 29-30, 1992, in Williamsburg, Virginia [28]. At this workshop
the basic features essential to a standard message passing interface were discussed, and a
working group established to continue the standardization process.

A preliminary draft proposal, known as MPI1, was put forward by Dongarra, Hempel,
Hey, and Walker in November 1992, and a revised version was completed in February
1993 [12]. MPI1 embodied the main features that were identified at the Williamsburg
workshop as being necessary in a message passing standard. Since MPI1 was primarily
intended to promote discussion and “get the ball rolling,” it focused mainly on point-to-point
communications. MPI1 brought to the forefront a number of important standardization
issues, but did not include any collective communication routines and was not thread-safe.

In November 1992, a meeting of the MPI working group was held in Minneapolis, at
which it was decided to place the standardization process on a more formal footing, and to

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. INTRODUCTION TO MPI

generally adopt the procedures and organization of the High Performance Fortran Forum.
Subcommittees were formed for the major component areas of the standard, and an email
discussion service established for each. In addition, the goal of producing a draft MPI
standard by the Fall of 1993 was set. To achieve this goal the MPI working group met every
6 weeks for two days throughout the first 9 months of 1993, and presented the draft MPI
standard at the Supercomputing 93 conference in November 1993. These meetings and the
email discussion together constituted the MPI Forum, membership of which has been open
to all members of the high performance computing community.

The main advantages of establishing a message-passing standard are portability and
ease-of-use. In a distributed memory communication environment in which the higher level
routines and/or abstractions are build upon lower level message passing routines the benefits
of standardization are particularly apparent. Furthermore, the definition of a message
passing standard, such as that proposed here, provides vendors with a clearly defined base
set of routines that they can implement efficiently, or in some cases provide hardware support
for, thereby enhancing scalability.

The goal of the Message Passing Interface simply stated is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message passing.

A complete list of goals follows.

• Design an application programming interface (not necessarily for compilers or a system
implementation library).

• Allow efficient communication: Avoid memory-to-memory copying and allow overlap
of computation and communication and offload to communication co-processor, where
available.

• Allow for implementations that can be used in a heterogeneous environment.

• Allow convenient C and Fortran 77 bindings for the interface.

• Assume a reliable communication interface: the user need not cope with communica-
tion failures. Such failures are dealt with by the underlying communication subsystem.

• Define an interface that is not too different from current practice, such as PVM, NX,
Express, p4, etc., and provides extensions that allow greater flexibility.

• Define an interface that can be implemented on many vendor’s platforms, with no
significant changes in the underlying communication and system software.

• Semantics of the interface should be language independent.

• The interface should be designed to allow for thread-safety.

1.2 Who Should Use This Standard?

This standard is intended for use by all those who want to write portable message-passing
programs in Fortran 77 and C. This includes individual application programmers, developers
of software designed to run on parallel machines, and creators of environments and tools.
In order to be attractive to this wide audience, the standard must provide a simple, easy-
to-use interface for the basic user while not semantically precluding the high-performance
message-passing operations available on advanced machines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.3. WHAT PLATFORMS ARE TARGETS FOR IMPLEMENTATION? 3

1.3 What Platforms Are Targets For Implementation?

The attractiveness of the message-passing paradigm at least partially stems from its wide
portability. Programs expressed this way may run on distributed-memory multiprocessors,
networks of workstations, and combinations of all of these. In addition, shared-memory
implementations are possible. The paradigm will not be made obsolete by architectures
combining the shared- and distributed-memory views, or by increases in network speeds. It
thus should be both possible and useful to implement this standard on a great variety of
machines, including those “machines” consisting of collections of other machines, parallel
or not, connected by a communication network.

The interface is suitable for use by fully general MIMD programs, as well as those
written in the more restricted style of SPMD. Although no explicit support for threads is
provided, the interface has been designed so as not to prejudice their use. With this version
of MPI no support is provided for dynamic spawning of tasks.

MPI provides many features intended to improve performance on scalable parallel com-
puters with specialized interprocessor communication hardware. Thus, we expect that
native, high-performance implementations of MPI will be provided on such machines. At
the same time, implementations of MPI on top of standard Unix interprocessor communi-
cation protocols will provide portability to workstation clusters and heterogenous networks
of workstations. Several proprietary, native implementations of MPI, and a public domain,
portable implementation of MPI are in progress at the time of this writing [17, 13].

1.4 What Is Included In The Standard?

The standard includes:

• Point-to-point communication

• Collective operations

• Process groups

• Communication contexts

• Process topologies

• Bindings for Fortran 77 and C

• Environmental Management and inquiry

• Profiling interface

1.5 What Is Not Included In The Standard?

The standard does not specify:

• Explicit shared-memory operations

• Operations that require more operating system support than is currently standard;
for example, interrupt-driven receives, remote execution, or active messages

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. INTRODUCTION TO MPI

• Program construction tools

• Debugging facilities

• Explicit support for threads

• Support for task management

• I/O functions

There are many features that have been considered and not included in this standard.
This happened for a number of reasons, one of which is the time constraint that was self-
imposed in finishing the standard. Features that are not included can always be offered as
extensions by specific implementations. Perhaps future versions of MPI will address some
of these issues.

1.6 Organization of this Document

The following is a list of the remaining chapters in this document, along with a brief
description of each.

• Chapter 2, MPI Terms and Conventions, explains notational terms and conventions
used throughout the MPI document.

• Chapter 3, Point to Point Communication, defines the basic, pairwise communication
subset of MPI. send and receive are found here, along with many associated functions
designed to make basic communication powerful and efficient.

• Chapter 4, Collective Communications, defines process-group collective communication
operations. Well known examples of this are barrier and broadcast over a group of
processes (not necessarily all the processes).

• Chapter 5, Groups, Contexts, and Communicators, shows how groups of processes are
formed and manipulated, how unique communication contexts are obtained, and how
the two are bound together into a communicator.

• Chapter 6, Process Topologies, explains a set of utility functions meant to assist in
the mapping of process groups (a linearly ordered set) to richer topological structures
such as multi-dimensional grids.

• Chapter 7, MPI Environmental Management, explains how the programmer can manage
and make inquiries of the current MPI environment. These functions are needed for the
writing of correct, robust programs, and are especially important for the construction
of highly-portable message-passing programs.

• Chapter 8, Profiling Interface, explains a simple name-shifting convention that any
MPI implementation must support. One motivation for this is the ability to put
performance profiling calls into MPI without the need for access to the MPI source
code. The name shift is merely an interface, it says nothing about how the actual
profiling should be done and in fact, the name shift can be useful for other purposes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.6. ORGANIZATION OF THIS DOCUMENT 5

• Annex 8.5, Language Bindings, gives specific syntax in Fortran 77 and C, for all MPI
functions, constants, and types.

• The MPI Function Index is a simple index showing the location of the precise definition
of each MPI function, together with both C and Fortran bindings.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 2

MPI Terms and Conventions

This chapter explains notational terms and conventions used throughout the MPI document,
some of the choices that have been made, and the rationale behind those choices.

2.1 Document Notation

Rationale. Throughout this document, the rationale for the design choices made in
the interface specification is set off in this format. Some readers may wish to skip
these sections, while readers interested in interface design may want to read them
carefully. (End of rationale.)

Advice to users. Throughout this document, material that speaks to users and
illustrates usage is set off in this format. Some readers may wish to skip these sections,
while readers interested in programming in MPI may want to read them carefully. (End
of advice to users.)

Advice to implementors. Throughout this document, material that is primarily
commentary to implementors is set off in this format. Some readers may wish to skip
these sections, while readers interested in MPI implementations may want to read
them carefully. (End of advice to implementors.)

2.2 Procedure Specification

MPI procedures are specified using a language independent notation. The arguments of
procedure calls are marked as IN, OUT or INOUT. The meanings of these are:

• the call uses but does not update an argument marked IN,

• the call may update an argument marked OUT,

• the call both uses and updates an argument marked INOUT.

There is one special case — if an argument is a handle to an opaque object (these
terms are defined in Section 2.4.1), and the object is updated by the procedure call, then
the argument is marked OUT. It is marked this way even though the handle itself is not
modified — we use the OUT attribute to denote that what the handle references is updated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.3. SEMANTIC TERMS 7

The definition of MPI tries to avoid, to the largest possible extent, the use of INOUT

arguments, because such use is error-prone, especially for scalar arguments.
A common occurrence for MPI functions is an argument that is used as IN by some

processes and OUT by other processes. Such argument is, syntactically, an INOUT argument
and is marked as such, although, semantically, it is not used in one call both for input and
for output.

Another frequent situation arises when an argument value is needed only by a subset
of the processes. When an argument is not significant at a process then an arbitrary value
can be passed as argument.

Unless specified otherwise, an argument of type OUT or type INOUT cannot be aliased
with any other argument passed to an MPI procedure. An example of argument aliasing in
C appears below. If we define a C procedure like this,

void copyIntBuffer(int *pin, int *pout, int len)
{ int i;

for (i=0; i<len; ++i) *pout++ = *pin++;
}

then a call to it in the following code fragment has aliased arguments.

int a[10];
copyIntBuffer(a, a+3, 7);

Although the C language allows this, such usage of MPI procedures is forbidden unless
otherwise specified. Note that Fortran prohibits aliasing of arguments.

All MPI functions are first specified in the language-independent notation. Immediately
below this, the ANSI C version of the function is shown, and below this, a version of the
same function in Fortran 77.

2.3 Semantic Terms

When discussing MPI procedures the following semantic terms are used. The first two are
usually applied to communication operations.

nonblocking If the procedure may return before the operation completes, and before the
user is allowed to re-use resources (such as buffers) specified in the call.

blocking If return from the procedure indicates the user is allowed to re-use resources
specified in the call.

local If completion of the procedure depends only on the local executing process. Such an
operation does not require communication with another user process.

non-local If completion of the operation may require the execution of some MPI procedure
on another process. Such an operation may require communication occurring with
another user process.

collective If all processes in a process group need to invoke the procedure.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 2. MPI TERMS AND CONVENTIONS

2.4 Data Types

2.4.1 Opaque objects

MPI manages system memory that is used for buffering messages and for storing internal
representations of various MPI objects such as groups, communicators, datatypes, etc. This
memory is not directly accessible to the user, and objects stored there are opaque: their
size and shape is not visible to the user. Opaque objects are accessed via handles, which
exist in user space. MPI procedures that operate on opaque objects are passed handle
arguments to access these objects. In addition to their use by MPI calls for object access,
handles can participate in assignment and comparisons.

In Fortran, all handles have type INTEGER. In C, a different handle type is defined
for each category of objects. These should be types that support assignment and equality
operators.

In Fortran, the handle can be an index to a table of opaque objects in system table; in
C it can be such index or a pointer to the object. More bizarre possibilities exist.

Opaque objects are allocated and deallocated by calls that are specific to each object
type. These are listed in the sections where the objects are described. The calls accept a
handle argument of matching type. In an allocate call this is an OUT argument that returns
a valid reference to the object. In a call to deallocate this is an INOUT argument which
returns with a “null handle” value. MPI provides a “null handle” constant for each object
type. Comparisons to this constant are used to test for validity of the handle.

A call to deallocate invalidates the handle and marks the object for deallocation. The
object is not accessible to the user after the call. However, MPI need not deallocate the
object immediatly. Any operation pending (at the time of the deallocate) that involves this
object will complete normally; the object will be deallocated afterwards.

MPI calls do not change the value of handles, with the exception of calls that allocate
and deallocate objects, and of the call MPI TYPE COMMIT, in Section 3.12.4.

A null handle argument is an erroneous IN argument in MPI calls, unless an exception is
explicitly stated in the text that defines the function. Such exception is allowed for handles
to request objects in Wait and Test calls (sections 3.7.3 and 3.7.5). Otherwise, a null handle
can only be passed to a function that allocates a new object and returns a reference to it
in the handle.

An opaque object and its handle are significant only at the process where the object
was created, and cannot be transferred to another process.

MPI provides certain predefined opaque objects and predefined, static handles to these
objects. Such objects may not be destroyed.

Rationale. This design hides the internal representation used for MPI data structures,
thus allowing similar calls in C and Fortran. It also avoids conflicts with the typing
rules in these languages, and easily allows future extensions of functionality. The
mechanism for opaque objects used here loosely follows the POSIX Fortran binding
standard.

The explicit separating of handles in user space, objects in system space, allows space-
reclaiming, deallocation calls to be made at appropriate points in the user program.
If the opaque objects were in user space, one would have to be very careful not to
go out of scope before any pending operation requiring that object completed. The
specified design allows an object to be marked for deallocation, the user program can

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.4. DATA TYPES 9

then go out of scope, and the object itself still persists until any pending operations
are complete.

The requirement that handles support assignment/comparison is made since such
operations are common. This restricts the domain of possible implementations. The
alternative would have been to allow handles to have been an arbitrary, opaque type.
This would force the introduction of routines to do assignment and comparison, adding
complexity, and was therefore ruled out. (End of rationale.)

Advice to users. A user may accidently create a dangling reference by assigning to a
handle the value of another handle, and then deallocating the object associated with
these handles. Conversely, if a handle variable is deallocated before the associated
object is freed, then the object becomes inaccessible (this may occur, for example, if
the handle is a local variable within a subroutine, and the subroutine is exited before
the associated object is deallocated). It is the user’s responsibility to avoid adding
or deleting references to opaque objects, except as a result of calls that allocate or
deallocate such objects. (End of advice to users.)

Advice to implementors. The intended semantics of opaque objects is that each
opaque object is separate from each other; each call to allocate such an object copies
all the information required for the object. Implementations may avoid excessive
copying by substituting referencing for copying. For example, a derived datatype
may contain references to its components, rather then copies of its components; a
call to MPI COMM GROUP may return a reference to the group associated with the
communicator, rather than a copy of this group. In such cases, the implementation
must maintain reference counts, and allocate and deallocate objects such that the
visible effect is as if the objects were copied. (End of advice to implementors.)

2.4.2 Array arguments

An MPI call may need an argument that is an array of opaque objects, or an array of
handles. The array-of-handles is a regular array with entries that are handles to objects
of the same type in consecutive locations in the array. Whenever such an array is used,
an additional len argument is required to indicate the number of valid entries (unless this
number can be derived otherwise). The valid entries are at the begining of the array; len
indicates how many of them there are, and need not be the entire size of the array. The
same approach is followed for other array arguments.

2.4.3 State

MPI procedures use at various places arguments with state types. The values of such data
type are all identified by names, and no operation is defined on them. For example, the
MPI ERRHANDLER SET routine has a state type argument with values MPI ERRORS ARE FATAL,
MPI ERRORS RETURN, etc.

2.4.4 Named constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argu-
ment; e.g. tag is an integer-valued argument of point-to-point communication operations,
with a special wild-card value, MPI ANY TAG. Such arguments will have a range of regular

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 2. MPI TERMS AND CONVENTIONS

values, which is a proper subrange of the range of values of the corresponding basic type;
special values (such as MPI ANY TAG) will be outside the regular range. The range of regular
values can be queried using environmental inquiry functions (Chapter 7).

MPI also provides predefined named constant handles, such as MPI COMM WORLD

which is a handle to an object that represents all processes available at start-up time and
allowed to communicate with any of them.

All named constants, with the exception of MPI BOTTOM in Fortran, can be used in
initialization expressions or assignments. These constants do not change values during
execution. Opaque objects accessed by constant handles are defined and do not change
value between MPI initialization (MPI INIT() call) and MPI completion (MPI FINALIZE()
call).

2.4.5 Choice

MPI functions sometimes use arguments with a choice (or union) data type. Distinct calls
to the same routine may pass by reference actual arguments of different types. The mecha-
nism for providing such arguments will differ from language to language. For Fortran, the
document uses <type> to represent a choice variable, for C, we use (void *).

2.4.6 Addresses

Some MPI procedures use address arguments that represent an absolute address in the
calling program. The datatype of such an argument is an integer of the size needed to hold
any valid address in the execution environment.

2.5 Language Binding

This section defines the rules for MPI language binding in general and for Fortran 77 and
ANSI C in particular. Defined here are various object representations, as well as the naming
conventions used for expressing this standard. The actual calling sequences are defined
elsewhere.

It is expected that any Fortran 90 and C++ implementations use the Fortran 77
and ANSI C bindings, respectively. Although we consider it premature to define other
bindings to Fortran 90 and C++, the current bindings are designed to encourage, rather
than discourage, experimentation with better bindings that might be adopted later.

Since the word PARAMETER is a keyword in the Fortran language, we use the word
“argument” to denote the arguments to a subroutine. These are normally referred to
as parameters in C, however, we expect that C programmers will understand the word
“argument” (which has no specific meaning in C), thus allowing us to avoid unnecessary
confusion for Fortran programmers.

There are several important language binding issues not addressed by this standard.
This standard does not discuss the interoperability of message passing between languages. It
is fully expected that many implementations will have such features, and that such features
are a sign of the quality of the implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.5. LANGUAGE BINDING 11

double precision a
integer b
...
call MPI_send(a,...)
call MPI_send(b,...)

Figure 2.1: An example of calling a routine with mismatched formal and actual arguments.

2.5.1 Fortran 77 Binding Issues

All MPI names have an MPI prefix, and all characters are capitals. Programs must not
declare variables or functions with names beginning with the prefix, MPI . This is mandated
to avoid possible name collisions.

All MPI Fortran subroutines have a return code in the last argument. A few MPI op-
erations are functions, which do not have the return code argument. The return code value
for successful completion is MPI SUCCESS. Other error codes are implementation dependent;
see Chapter 7.

Handles are represented in Fortran as INTEGERs. Binary-valued variables are of type
LOGICAL.

Array arguments are indexed from one.
Unless explicitly stated, the MPI F77 binding is consistent with ANSI standard Fortran

77. There are several points where this standard diverges from the ANSI Fortran 77 stan-
dard. These exceptions are consistent with common practice in the Fortran community. In
particular:

• MPI identifiers are limited to thirty, not six, significant characters.

• MPI identifiers may contain underscores after the first character.

• An MPI subroutine with a choice argument may be called with different argument
types. An example is shown in Figure 2.1. This violates the letter of the Fortran
standard, but such a violation is common practice. An alternative would be to have
a separate version of MPI SEND for each data type.

• Although not required, it is strongly suggested that named MPI constants (PARAMETERs)
be provided in an include file, called mpif.h. On systems that do not support include
files, the implementation should specify the values of named constants.

• Vendors are encouraged to provide type declarations in the mpif.h file on Fortran
systems that support user-defined types. One should define, if possible, the type
MPI ADDRESS TYPE, which is an INTEGER of the size needed to hold an address
in the execution environment. On systems where type definition is not supported, it
is up to the user to use an INTEGER of the right kind to represent addresses (i.e.,
INTEGER*4 on a 32 bit machine, INTEGER*8 on a 64 bit machine, etc.).

All MPI named constants can be used wherever an entity declared with the PARAMETER
attribute can be used in Fortran. There is one exception to this rule: the MPI constant
MPI BOTTOM (section 3.12.2) can only be used as a buffer argument.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 2. MPI TERMS AND CONVENTIONS

2.5.2 C Binding Issues

We use the ANSI C declaration format. All MPI names have an MPI prefix, defined con-
stants are in all capital letters, and defined types and functions have one capital letter after
the prefix. Programs must not declare variables or functions with names beginning with
the prefix, MPI . This is mandated to avoid possible name collisions.

The definition of named constants, function prototypes, and type definitions must be
supplied in an include file mpi.h.

Almost all C functions return an error code. The successful return code will be
MPI SUCCESS, but failure return codes are implementation dependent. A few C functions
do not return values, so that they can be implemented as macros.

Type declarations are provided for handles to each category of opaque objects. Either
a pointer or an integer type is used.

Array arguments are indexed from zero.
Logical flags are integers with value 0 meaning “false” and a non-zero value meaning

“true.”
Choice arguments are pointers of type void*.
Address arguments are of MPI defined type MPI Aint. This is defined to be an int of the

size needed to hold any valid address on the target architecture.
All named MPI constants can be used in initialization expressions or assignments like

C constants.

2.6 Processes

An MPI program consists of autonomous processes, executing their own code, in an MIMD
style. The codes executed by each process need not be identical. The processes commu-
nicate via calls to MPI communication primitives. Typically, each process executes in its
own address space, although shared-memory implementations of MPI are possible. This
document specifies the behavior of a parallel program assuming that only MPI calls are
used for communication. The interaction of an MPI program with other possible means of
communication (e.g., shared memory) is not specified.

MPI does not specify the execution model for each process. A process can be sequential,
or can be multi-threaded, with threads possibly executing concurrently. Care has been taken
to make MPI “thread-safe,” by avoiding the use of implicit state. The desired interaction of
MPI with threads is that concurrent threads be all allowed to execute MPI calls, and calls
be reentrant; a blocking MPI call blocks only the invoking thread, allowing the scheduling
of another thread.

MPI does not provide mechanisms to specify the initial allocation of processes to an
MPI computation and their binding to physical processors. It is expected that vendors will
provide mechanisms to do so either at load time or at run time. Such mechanisms will
allow the specification of the initial number of required processes, the code to be executed
by each initial process, and the allocation of processes to processors. Also, the current
proposal does not provide for dynamic creation or deletion of processes during program
execution (the total number of processes is fixed), although it is intended to be consistent
with such extensions. Finally, we always identify processes according to their relative rank
in a group, that is, consecutive integers in the range 0..groupsize-1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.7. ERROR HANDLING 13

2.7 Error Handling

MPI provides the user with reliable message transmission. A message sent is always received
correctly, and the user does not need to check for transmission errors, time-outs, or other
error conditions. In other words, MPI does not provide mechanisms for dealing with failures
in the communication system. If the MPI implementation is built on an unreliable underly-
ing mechanism, then it is the job of the implementor of the MPI subsystem to insulate the
user from this unreliability, or to reflect unrecoverable errors as failures. Whenever possible,
such failures will be reflected as errors in the relevant communication call. Similarly, MPI
itself provides no mechanisms for handling processor failures. The error handling facilities
described in section 7.2 can be used to restrict the scope of an unrecoverable error, or design
error recovery at the application level.

Of course, MPI programs may still be erroneous. A program error can occur when
an MPI call is called with an incorrect argument (non-existing destination in a send oper-
ation, buffer too small in a receive operation, etc.) This type of error would occur in any
implementation. In addition, a resource error may occur when a program exceeds the
amount of available system resources (number of pending messages, system buffers, etc.).
The occurrence of this type of error depends on the amount of available resources in the
system and the resource allocation mechanism used; this may differ from system to system.
A high-quality implementation will provide generous limits on the important resources so
as to alleviate the portability problem this represents.

Almost all MPI calls return a code that indicates successful completion of the operation.
Whenever possible, MPI calls return an error code if an error occurred during the call. In
certain circumstances, when the MPI function may complete several distinct operations, and
therefore may generate several independent errors, the MPI function may return multiple
error codes. By default, an error detected during the execution of the MPI library causes
the parallel computation to abort. However, MPI provides mechanisms for users to change
this default and to handle recoverable errors. The user may specify that no error is fatal,
and handle error codes returned by MPI calls by himself or herself. Also, the user may
provide his or her own error-handling routines, which will be invoked whenever an MPI call
returns abnormally. The MPI error handling facilities are described in section 7.2.

Several factors limit the ability of MPI calls to return with meaningful error codes
when an error occurs. MPI may not be able to detect some errors; other errors may be too
expensive to detect in normal execution mode; finally some errors may be “catastrophic”
and may prevent MPI from returning control to the caller in a consistent state.

Another subtle issue arises because of the nature of asynchronous communications: MPI
calls may initiate operations that continue asynchronously after the call returned. Thus, the
operation may return with a code indicating successful completion, yet later cause an error
exception to be raised. If there is a subsequent call that relates to the same operation (e.g.,
a call that verifies that an asynchronous operation has completed) then the error argument
associated with this call will be used to indicate the nature of the error. In a few cases,
the error may occur after all calls that relate to the operation have completed, so that no
error value can be used to indicate the nature of the error (e.g., an error in a send with the
ready mode). Such an error must be treated as fatal, since information cannot be returned
for the user to recover from it.

This document does not specify the state of a computation after an erroneous MPI call
has occurred. The desired behavior is that a relevant error code be returned, and the effect
of the error be localized to the greatest possible extent. E.g., it is highly desireable that an

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 2. MPI TERMS AND CONVENTIONS

erroneous receive call will not cause any part of the receiver’s memory to be overwritten,
beyond the area specified for receiving the message.

Implementations may go beyond this document in supporting in a meaningful manner
MPI calls that are defined here to be erroneous. For example, MPI specifies strict type
matching rules between matching send and receive operations: it is erroneous to send a
floating point variable and receive an integer. Implementations may go beyond these type
matching rules, and provide automatic type conversion in such situations. It will be helpful
to generate warnings for such nonconforming behavior.

2.8 Implementation issues

There are a number of areas where an MPI implementation may interact with the operating
environment and system. While MPI does not mandate that any services (such as I/O or
signal handling) be provided, it does strongly suggest the behavior to be provided if those
services are available. This is an important point in achieving portability across platforms
that provide the same set of services.

2.8.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment
(such as date and write in Fortran and printf and malloc in ANSI C) and are executed
after MPI INIT and before MPI FINALIZE operate independently and that their completion
is independent of the action of other processes in an MPI program.

Note that this in no way prevents the creation of library routines that provide parallel
services whose operation is collective. However, the following program is expected to com-
plete in an ANSI C environment regardless of the size of MPI COMM WORLD (assuming that
I/O is available at the executing nodes).

int rank;
MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) printf("Starting program\n");
MPI_Finalize();

The corresponding Fortran 77 program is also expected to complete.
An example of what is not required is any particular ordering of the action of these

routines when called by several tasks. For example, MPI makes neither requirements nor
recommendations for the output from the following program (again assuming that I/O is
available at the executing nodes).

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf("Output from task rank %d\n", rank);

In addition, calls that fail because of resource exhaustion or other error are not con-
sidered a violation of the requirements here (however, they are required to complete, just
not to complete successfully).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.9. EXAMPLES 15

2.8.2 Interaction with signals in POSIX

MPI does not specify either the interaction of processes with signals, in a UNIX environment,
or with other events that do not relate to MPI communication. That is, signals are not
significant from the view point of MPI, and implementors should attempt to implement
MPI so that signals are transparent: an MPI call suspended by a signal should resume and
complete after the signal is handled. Generally, the state of a computation that is visible
or significant from the view-point of MPI should only be affected by MPI calls.

The intent of MPI to be thread and signal safe has a number of subtle effects. For
example, on Unix systems, a catchable signal such as SIGALRM (an alarm signal) must
not cause an MPI routine to behave differently than it would have in the absence of the
signal. Of course, if the signal handler issues MPI calls or changes the environment in
which the MPI routine is operating (for example, consuming all available memory space),
the MPI routine should behave as appropriate for that situation (in particular, in this case,
the behavior should be the same as for a multithreaded MPI implementation).

A second effect is that a signal handler that performs MPI calls must not interfere
with the operation of MPI. For example, an MPI receive of any type that occurs within a
signal handler must not cause erroneous behavior by the MPI implementation. Note that an
implementation is permitted to prohibit the use of MPI calls from within a signal handler,
and is not required to detect such use.

It is highly desirable that MPI not use SIGALRM, SIGFPE, or SIGIO. An implementation
is required to clearly document all of the signals that the MPI implementation uses; a good
place for this information is a Unix ‘man’ page on MPI.

2.9 Examples

The examples in this document are for illustration purposes only. They are not intended
to specify the standard. Furthermore, the examples have not been carefully checked or
verified.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 3

Point-to-Point Communication

3.1 Introduction

Sending and receiving of messages by processes is the basic MPI communication mechanism.
The basic point-to-point communication operations are send and receive. Their use is
illustrated in the example below.

#include "mpi.h"
main(argc, argv)
int argc;
char **argv;
{

char message[20];
int myrank;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) /* code for process zero */
{

strcpy(message,"Hello, there");
MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

}
else /* code for process one */
{

MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
printf("received :%s:\n", message);

}
MPI_Finalize();

}

In this example, process zero (myrank = 0) sends a message to process one using the
send operation MPI SEND. The operation specifies a send buffer in the sender memory
from which the message data is taken. In the example above, the send buffer consists of
the storage containing the variable message in the memory of process zero. The location,
size and type of the send buffer are specified by the first three parameters of the send
operation. The message sent will contain the 13 characters of this variable. In addition,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 17

the send operation associates an envelope with the message. This envelope specifies the
message destination and contains distinguishing information that can be used by the receive
operation to select a particular message. The last three parameters of the send operation
specify the envelope for the message sent.

Process one (myrank = 1) receives this message with the receive operation MPI RECV.
The message to be received is selected according to the value of its envelope, and the message
data is stored into the receive buffer. In the example above, the receive buffer consists
of the storage containing the string message in the memory of process one. The first three
parameters of the receive operation specify the location, size and type of the receive buffer.
The next three parameters are used for selecting the incoming message. The last parameter
is used to return information on the message just received.

The next sections describe the blocking send and receive operations. We discuss send,
receive, blocking communication semantics, type matching requirements, type conversion in
heterogeneous environments, and more general communication modes. Nonblocking com-
munication is addressed next, followed by channel-like constructs and send-receive oper-
ations. We then consider general datatypes that allow one to transfer efficiently hetero-
geneous and noncontiguous data. We conclude with the description of calls for explicit
packing and unpacking of messages.

3.2 Blocking Send and Receive Operations

3.2.1 Blocking send

The syntax of the blocking send operation is given below.

MPI SEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (nonnegative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI Send(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

MPI SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

The blocking semantics of this call are described in Sec. 3.4.

3.2.2 Message data

The send buffer specified by the MPI SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 3. POINT-TO-POINT COMMUNICATION

the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to the
basic datatypes of the host language. Possible values of this argument for Fortran and the
corresponding Fortran types are listed below.

MPI datatype Fortran datatype
MPI INTEGER INTEGER
MPI REAL REAL
MPI DOUBLE PRECISION DOUBLE PRECISION
MPI COMPLEX COMPLEX
MPI LOGICAL LOGICAL
MPI CHARACTER CHARACTER(1)
MPI BYTE
MPI PACKED

Possible values for this argument for C and the corresponding C types are listed below.

MPI datatype C datatype
MPI CHAR signed char
MPI SHORT signed short int
MPI INT signed int
MPI LONG signed long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE
MPI PACKED

The datatypes MPI BYTE and MPI PACKED do not correspond to a Fortran or C
datatype. A value of type MPI BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is different from a character. Different machines may have different
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI PACKED is explained in Section 3.13.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 19

MPI requires support of the datatypes listed above, which match the basic datatypes
of Fortran 77 and ANSI C. Additional MPI datatypes should be provided if the host lan-
guage has additional data types: MPI LONG LONG INT, for C integers declared to be of
type long long; MPI DOUBLE COMPLEX for double precision complex in Fortran declared
to be of type DOUBLE COMPLEX; MPI REAL2, MPI REAL4 and MPI REAL8 for Fortran
reals, declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI INTEGER1
MPI INTEGER2 and MPI INTEGER4 for Fortran integers, declared to be of type INTEGER*1,
INTEGER*2 and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication buffer; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)

3.2.3 Message envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

source
destination

tag
communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.
The integer-valued message tag is specified by the tag argument. This integer can be

used by the program to distinguish different types of messages. The range of valid tag
values is 0,...,UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI TAG UB, as described in Chapter 7. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 5; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe:” messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within
this group. Thus, the range of valid values for dest is 0, ... , n-1, where n is the number of
processes in the group. (If the communicator is an inter-communicator, then destinations
are identified by their rank in the remote group. See Chapter 5.)

A predefined communicator MPI COMM WORLD is provided by MPI. It allows commu-
nication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI COMM WORLD.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Advice to users. Users that are comfortable with the notion of a flat name space
for processes, and a single communication context, as offered by most existing com-
munication libraries, need only use the predefined variable MPI COMM WORLD as the
comm argument. This will allow communication with all the processes available at
initialization time.

Users may define new communicators, as explained in Chapter 5. Communicators
provide an important encapsulation mechanism for libraries and modules. They allow
modules to have their own disjoint communication universe and their own process
numbering scheme. (End of advice to users.)

Advice to implementors. The message envelope would normally be encoded by a
fixed-length message header. However, the actual encoding is implementation depen-
dent. Some of the information (e.g., source or destination) may be implicit, and need
not be explicitly carried by messages. Also, processes may be identified by relative
ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking receive

The syntax of the blocking receive operation is given below.

MPI RECV (buf, count, datatype, source, tag, comm, status)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (integer)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI Recv(void* buf, int count, MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Status *status)

MPI RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE),
IERROR

The blocking semantics of this call are described in Sec. 3.4.
The receive buffer consists of the storage containing count consecutive elements of the

type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations
corresponding to the (shorter) message are modified.

Advice to users. The MPI PROBE function described in Section 3.8 can be used to
receive messages of unknown length. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 21

Advice to implementors. Even though no specific behavior is mandated by MPI for
erroneous programs, the recommended handling of overflow situations is to return in
status information about the source and tag of the incoming message. The receive
operation will return an error code. A quality implementation will also ensure that
no memory that is outside the receive buffer will ever be overwritten.

In the case of a message shorter than the receive buffer, MPI is quite strict in that it
allows no modification of the other locations. A more lenient statement would allow
for some optimizations but this is not allowed. The implementation must be ready to
end a copy into the receiver memory exactly at the end of the receive buffer, even if
it is an odd address. (End of advice to implementors.)

The selection of a message by a receive operation is governed by the value of the
message envelope. A message can be received by a receive operation if its envelope matches
the source, tag and comm values specified by the receive operation. The receiver may specify
a wildcard MPI ANY SOURCE value for source, and/or a wildcard MPI ANY TAG value for
tag, indicating that any source and/or tag are acceptable. It cannot specify a wildcard value
for comm. Thus, a message can be received by a receive operation only if it is addressed to
the receiving process, has a matching communicator, has matching source unless source=
MPI ANY SOURCE in the pattern, and has a matching tag unless tag= MPI ANY TAG in the
pattern.

The message tag is specified by the tag argument of the receive operation. The
argument source, if different from MPI ANY SOURCE, is specified as a rank within the
process group associated with that same communicator (remote process group, for in-
tercommunicators). Thus, the range of valid values for the source argument is {0,...,n-
1}∪{MPI ANY SOURCE}, where n is the number of processes in this group.

Note the asymmetry between send and receive operations: A receive operation may
accept messages from an arbitrary sender, on the other hand, a send operation must specify
a unique receiver. This matches a “push” communication mechanism, where data transfer
is effected by the sender (rather than a “pull” mechanism, where data transfer is effected
by the receiver).

Source = destination is allowed, that is, a process can send a message to itself. (How-
ever, it is unsafe to do so with the blocking send and receive operations described above,
since this may lead to deadlock. See Sec. 3.5.)

Advice to implementors. Message context and other communicator information can
be implemented as an additional tag field. It differs from the regular message tag
in that wild card matching is not allowed on this field, and that value setting for
this field is controlled by communicator manipulation functions. (End of advice to
implementors.)

3.2.5 Return status

The source or tag of a received message may not be known if wildcard values were used
in the receive operation. Also, if multiple requests are completed by a single MPI function
(see Section 3.7.5), a distinct error code may need to be returned for each request. The
information is returned by the status argument of MPI RECV. The type of status is MPI-
defined. Status variables need to be explicitly allocated by the user, that is, they are not
system objects.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 3. POINT-TO-POINT COMMUNICATION

In C, status is a structure that contains three fields named MPI SOURCE, MPI TAG,
and MPI ERROR; the structure may contain additional fields. Thus, status.MPI SOURCE,
status.MPI TAG and status.MPI ERROR contain the source, tag, and error code, respectively,
of the received message.

In Fortran, status is an array of INTEGERs of size MPI STATUS SIZE. The constants
MPI SOURCE, MPI TAG and MPI ERROR are the indices of the entries that store the source,
tag and error fields. Thus, status(MPI SOURCE), status(MPI TAG) and status(MPI ERROR)
contain, respectively, the source, tag and error code of the received message.

In general, message passing calls do not modify the value of the error code field of
status variables. This field may be updated only by the functions in Section 3.7.5 which
return multiple statuses. The field is updated if and only if such function returns with an
error code of MPI ERR IN STATUS.

Rationale. The error field in status is not needed for calls that return only one status,
such as MPI WAIT, since that would only duplicate the information returned by the
function itself. The current design avoids the additional overhead of setting it, in such
cases. The field is needed for calls that return multiple statuses, since each request
may have had a different failure. (End of rationale.)

The status argument also returns information on the length of the message received.
However, this information is not directly available as a field of the status variable and a call
to MPI GET COUNT is required to “decode” this information.

MPI GET COUNT(status, datatype, count)

IN status return status of receive operation (Status)

IN datatype datatype of each receive buffer entry (handle)

OUT count number of received entries (integer)

int MPI Get count(MPI Status *status, MPI Datatype datatype, int *count)

MPI GET COUNT(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERROR

Returns the number of entries received. (Again, we count entries, each of type datatype,
not bytes.) The datatype argument should match the argument provided by the receive call
that set the status variable. (We shall later see, in Section 3.12.5, that MPI GET COUNT
may return, in certain situations, the value MPI UNDEFINED.)

Rationale. Some message passing libraries use INOUT count, tag and source argu-
ments, thus using them both to specify the selection criteria for incoming messages
and return the actual envelope values of the received message. The use of a separate
status argument prevents errors that are often attached with INOUT argument (e.g.,
using the MPI ANY TAG constant as the tag in a receive). Some libraries use calls that
refer implicitly to the “last message received.” This is not thread safe.

The datatype argument is passed to MPI GET COUNT so as to improve performance.
A message might be received without counting the number of elements it contains,
and the count value is often not needed. Also, this allows the same function to be

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.3. DATA TYPE MATCHING AND DATA CONVERSION 23

used after a call to MPI PROBE or MPI IPROBE. With a status from MPI PROBE
or MPI IPROBE, the same datatypes are allowed as in a call to MPI RECV to receive
this message. (End of rationale.)

Advice to users. The buffer size required for the receive can be affected by data con-
versions and by the stride of the receive datatype. In most cases, the safest approach
is to use the same datatype with MPI GET COUNT and the receive. (End of advice
to users.)

All send and receive operations use the buf, count, datatype, source, dest, tag, comm
and status arguments in the same way as the blocking MPI SEND and MPI RECV operations
described in this section.

3.3 Data type matching and data conversion

3.3.1 Type matching rules

One can think of message transfer as consisting of the following three phases.

1. Data is pulled out of the send buffer and a message is assembled.

2. A message is transferred from sender to receiver.

3. Data is pulled from the incoming message and disassembled into the receive buffer.

Type matching has to be observed at each of these three phases: The type of each
variable in the sender buffer has to match the type specified for that entry by the send
operation; the type specified by the send operation has to match the type specified by the
receive operation; and the type of each variable in the receive buffer has to match the type
specified for that entry by the receive operation. A program that fails to observe these three
rules is erroneous.

To define type matching more precisely, we need to deal with two issues: matching of
types of the host language with types specified in communication operations; and matching
of types at sender and receiver.

The types of a send and receive match (phase two) if both operations use identical
names. That is, MPI INTEGER matches MPI INTEGER, MPI REAL matches MPI REAL,
and so on. There is one exception to this rule, discussed in Sec. 3.13, the type MPI PACKED
can match any other type.

The type of a variable in a host program matches the type specified in the commu-
nication operation if the datatype name used by that operation corresponds to the basic
type of the host program variable. For example, an entry with type name MPI INTEGER
matches a Fortran variable of type INTEGER. A table giving this correspondence for Fortran
and C appears in Sec. 3.2.2. There are two exceptions to this last rule: an entry with
type name MPI BYTE or MPI PACKED can be used to match any byte of storage (on a
byte-addressable machine), irrespective of the datatype of the variable that contains this
byte. The type MPI PACKED is used to send data that has been explicitly packed, or receive
data that will be explicitly unpacked, see Section 3.13. The type MPI BYTE allows one to
transfer the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall into the three categories below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 3. POINT-TO-POINT COMMUNICATION

• Communication of typed values (e.g., with datatype different from MPI BYTE), where
the datatypes of the corresponding entries in the sender program, in the send call, in
the receive call and in the receiver program must all match.

• Communication of untyped values (e.g., of datatype MPI BYTE), where both sender
and receiver use the datatype MPI BYTE. In this case, there are no requirements on
the types of the corresponding entries in the sender and the receiver programs, nor is
it required that they be the same.

• Communication involving packed data, where MPI PACKED is used.

The following examples illustrate the first two cases.

Example 3.1 Sender and receiver specify matching types.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank.EQ.0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE

CALL MPI_RECV(b(1), 15, MPI_REAL, 0, tag, comm, status, ierr)
END IF

This code is correct if both a and b are real arrays of size ≥ 10. (In Fortran, it might
be correct to use this code even if a or b have size < 10: e.g., when a(1) can be equivalenced
to an array with ten reals.)

Example 3.2 Sender and receiver do not specify matching types.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank.EQ.0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE

CALL MPI_RECV(b(1), 40, MPI_BYTE, 0, tag, comm, status, ierr)
END IF

This code is erroneous, since sender and receiver do not provide matching datatype
arguments.

Example 3.3 Sender and receiver specify communication of untyped values.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank.EQ.0) THEN

CALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)
ELSE

CALL MPI_RECV(b(1), 60, MPI_BYTE, 0, tag, comm, status, ierr)
END IF

This code is correct, irrespective of the type and size of a and b (unless this results in
an out of bound memory access).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.3. DATA TYPE MATCHING AND DATA CONVERSION 25

Advice to users. If a buffer of type MPI BYTE is passed as an argument to MPI SEND,
then MPI will send the data stored at contiguous locations, starting from the address
indicated by the buf argument. This may have unexpected results when the data
layout is not as a casual user would expect it to be. For example, some Fortran
compilers implement variables of type CHARACTER as a structure that contains the
character length and a pointer to the actual string. In such an environment, sending
and receiving a Fortran CHARACTER variable using the MPI BYTE type will not have
the anticipated result of transferring the character string. For this reason, the user is
advised to use typed communications whenever possible. (End of advice to users.)

Type MPI CHARACTER

The type MPI CHARACTER matches one character of a Fortran variable of type CHARACTER,
rather then the entire character string stored in the variable. Fortran variables of type
CHARACTER or substrings are transferred as if they were arrays of characters. This is
illustrated in the example below.

Example 3.4 Transfer of Fortran CHARACTERs.

CHARACTER*10 a
CHARACTER*10 b

CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank.EQ.0) THEN

CALL MPI_SEND(a, 5, MPI_CHARACTER, 1, tag, comm, ierr)
ELSE

CALL MPI_RECV(b(6:10), 5, MPI_CHARACTER, 0, tag, comm, status, ierr)
END IF

The last five characters of string b at process 1 are replaced by the first five characters
of string a at process 0.

Rationale. The alternative choice would be for MPI CHARACTER to match a char-
acter of arbitrary length. This runs into problems.

A Fortran character variable is a constant length string, with no special termination
symbol. There is no fixed convention on how to represent characters, and how to store
their length. Some compilers pass a character argument to a routine as a pair of argu-
ments, one holding the address of the string and the other holding the length of string.
Consider the case of an MPI communication call that is passed a communication buffer
with type defined by a derived datatype (Section 3.12). If this communicator buffer
contains variables of type CHARACTER then the information on their length will not be
passed to the MPI routine.

This problem forces us to provide explicit information on character length with the
MPI call. One could add a length parameter to the type MPI CHARACTER, but this
does not add much convenience and the same functionality can be achieved by defining
a suitable derived datatype. (End of rationale.)

Advice to implementors. Some compilers pass Fortran CHARACTER arguments as a
structure with a length and a pointer to the actual string. In such an environment,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 CHAPTER 3. POINT-TO-POINT COMMUNICATION

the MPI call needs to dereference the pointer in order to reach the string. (End of
advice to implementors.)

3.3.2 Data conversion

One of the goals of MPI is to support parallel computations across heterogeneous environ-
ments. Communication in a heterogeneous environment may require data conversions. We
use the following terminology.

type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.

representation conversion changes the binary representation of a value, e.g., from Hex
floating point to IEEE floating point.

The type matching rules imply that MPI communication never entails type conversion.
On the other hand, MPI requires that a representation conversion be performed when a
typed value is transferred across environments that use different representations for the
datatype of this value. MPI does not specify rules for representation conversion. Such
conversion is expected to preserve integer, logical or character values, and to convert a
floating point value to the nearest value that can be represented on the target system.

Overflow and underflow exceptions may occur during floating point conversions. Con-
version of integers or characters may also lead to exceptions when a value that can be
represented in one system cannot be represented in the other system. An exception occur-
ring during representation conversion results in a failure of the communication. An error
occurs either in the send operation, or the receive operation, or both.

If a value sent in a message is untyped (i.e., of type MPI BYTE), then the binary
representation of the byte stored at the receiver is identical to the binary representation
of the byte loaded at the sender. This holds true, whether sender and receiver run in the
same or in distinct environments. No representation conversion is required. (Note that
representation conversion may occur when values of type MPI CHARACTER or MPI CHAR
are transferred, for example, from an EBCDIC encoding to an ASCII encoding.)

No conversion need occur when an MPI program executes in a homogeneous system,
where all processes run in the same environment.

Consider the three examples, 3.1–3.3. The first program is correct, assuming that a and
b are REAL arrays of size ≥ 10. If the sender and receiver execute in different environments,
then the ten real values that are fetched from the send buffer will be converted to the
representation for reals on the receiver site before they are stored in the receive buffer.
While the number of real elements fetched from the send buffer equal the number of real
elements stored in the receive buffer, the number of bytes stored need not equal the number
of bytes loaded. For example, the sender may use a four byte representation and the receiver
an eight byte representation for reals.

The second program is erroneous, and its behavior is undefined.
The third program is correct. The exact same sequence of forty bytes that were loaded

from the send buffer will be stored in the receive buffer, even if sender and receiver run in
a different environment. The message sent has exactly the same length (in bytes) and the
same binary representation as the message received. If a and b are of different types, or if
they are of the same type but different data representations are used, then the bits stored
in the receive buffer may encode values that are different from the values they encoded in
the send buffer.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.4. COMMUNICATION MODES 27

Data representation conversion also applies to the envelope of a message: source, des-
tination and tag are all integers that may need to be converted.

Advice to implementors. The current definition does not require messages to carry
data type information. Both sender and receiver provide complete data type infor-
mation. In a heterogeneous environment, one can either use a machine independent
encoding such as XDR, or have the receiver convert from the sender representation
to its own, or even have the sender do the conversion.

Additional type information might be added to messages in order to allow the sys-
tem to detect mismatches between datatype at sender and receiver. This might be
particularly useful in a slower but safer debug mode. (End of advice to implementors.)

MPI does not require support for inter-language communication. The behavior of a
program is undefined if messages are sent by a C process and received by a Fortran process,
or vice-versa.

Rationale. MPI does not handle inter-language communication because there are no
agreed standards for the correspondence between C types and Fortran types. There-
fore, MPI programs that mix languages would not port. (End of rationale.)

Advice to implementors. MPI implementors may want to support inter-language
communication by allowing Fortran programs to use “C MPI types,” such as MPI INT,

MPI CHAR, etc., and allowing C programs to use Fortran types. (End of advice to
implementors.)

3.4 Communication Modes

The send call described in Section 3.2.1 is blocking: it does not return until the message
data and envelope have been safely stored away so that the sender is free to access and
overwrite the send buffer. The message might be copied directly into the matching receive
buffer, or it might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can com-
plete as soon as the message was buffered, even if no matching receive has been executed by
the receiver. On the other hand, message buffering can be expensive, as it entails additional
memory-to-memory copying, and it requires the allocation of memory for buffering. MPI
offers the choice of several communication modes that allow one to control the choice of the
communication protocol.

The send call described in Section 3.2.1 used the standard communication mode. In
this mode, it is up to MPI to decide whether outgoing messages will be buffered. MPI may
buffer outgoing messages. In such a case, the send call may complete before a matching
receive is invoked. On the other hand, buffer space may be unavailable, or MPI may choose
not to buffer outgoing messages, for performance reasons. In this case, the send call will
not complete until a matching receive has been posted, and the data has been moved to the
receiver.

Thus, a send in standard mode can be started whether or not a matching receive has
been posted. It may complete before a matching receive is posted. The standard mode send
is non-local: successful completion of the send operation may depend on the occurrence
of a matching receive.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Rationale. The reluctance of MPI to mandate whether standard sends are buffering
or not stems from the desire to achieve portable programs. Since any system will run
out of buffer resources as message sizes are increased, and some implementations may
want to provide little buffering, MPI takes the position that correct (and therefore,
portable) programs do not rely on system buffering in standard mode. Buffering may
improve the performance of a correct program, but it doesn’t affect the result of the
program. If the user wishes to guarantee a certain amount of buffering, the user-
provided buffer system of Sec. 3.6 should be used, along with the buffered-mode send.
(End of rationale.)

There are three additional communication modes.
A buffered mode send operation can be started whether or not a matching receive

has been posted. It may complete before a matching receive is posted. However, unlike
the standard send, this operation is local, and its completion does not depend on the
occurrence of a matching receive. Thus, if a send is executed and no matching receive is
posted, then MPI must buffer the outgoing message, so as to allow the send call to complete.
An error will occur if there is insufficient buffer space. The amount of available buffer space
is controlled by the user — see Section 3.6. Buffer allocation by the user may be required
for the buffered mode to be effective.

A send that uses the synchronous mode can be started whether or not a matching
receive was posted. However, the send will complete successfully only if a matching re-
ceive is posted, and the receive operation has started to receive the message sent by the
synchronous send. Thus, the completion of a synchronous send not only indicates that the
send buffer can be reused, but also indicates that the receiver has reached a certain point in
its execution, namely that it has started executing the matching receive. If both sends and
receives are blocking operations then the use of the synchronous mode provides synchronous
communication semantics: a communication does not complete at either end before both
processes rendezvous at the communication. A send executed in this mode is non-local.

A send that uses the ready communication mode may be started only if the matching
receive is already posted. Otherwise, the operation is erroneous and its outcome is unde-
fined. On some systems, this allows the removal of a hand-shake operation that is otherwise
required and results in improved performance. The completion of the send operation does
not depend on the status of a matching receive, and merely indicates that the send buffer
can be reused. A send operation that uses the ready mode has the same semantics as a
standard send operation, or a synchronous send operation; it is merely that the sender
provides additional information to the system (namely that a matching receive is already
posted), that can save some overhead. In a correct program, therefore, a ready send could
be replaced by a standard send with no effect on the behavior of the program other than
performance.

Three additional send functions are provided for the three additional communication
modes. The communication mode is indicated by a one letter prefix: B for buffered, S for
synchronous, and R for ready.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.4. COMMUNICATION MODES 29

MPI BSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (integer)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI Bsend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

MPI BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in buffered mode.

MPI SSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (integer)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI Ssend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

MPI SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in synchronous mode.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI RSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (integer)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI Rsend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

MPI RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in ready mode.
There is only one receive operation, which can match any of the send modes. The

receive operation described in the last section is blocking: it returns only after the receive
buffer contains the newly received message. A receive can complete before the matching
send has completed (of course, it can complete only after the matching send has started).

In a multi-threaded implementation of MPI, the system may de-schedule a thread that
is blocked on a send or receive operation, and schedule another thread for execution in the
same address space. In such a case it is the user’s responsibility not to access or modify a
communication buffer until the communication completes. Otherwise, the outcome of the
computation is undefined.

Rationale. We prohibit read accesses to a send buffer while it is being used, even
though the send operation is not supposed to alter the content of this buffer. This
may seem more stringent than necessary, but the additional restriction causes little
loss of functionality and allows better performance on some systems — consider the
case where data transfer is done by a DMA engine that is not cache-coherent with the
main processor. (End of rationale.)

Advice to implementors. Since a synchronous send cannot complete before a matching
receive is posted, one will not normally buffer messages sent by such an operation.

It is recommended to choose buffering over blocking the sender, whenever possible,
for standard sends. The programmer can signal his or her preference for blocking the
sender until a matching receive occurs by using the synchronous send mode.

A possible communication protocol for the various communication modes is outlined
below.

ready send: The message is sent as soon as possible.

synchronous send: The sender sends a request-to-send message. The receiver stores
this request. When a matching receive is posted, the receiver sends back a permission-
to-send message, and the sender now sends the message.

standard send: First protocol may be used for short messages, and second protocol for
long messages.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 31

buffered send: The sender copies the message into a buffer and then sends it with a
nonblocking send (using the same protocol as for standard send).

Additional control messages might be needed for flow control and error recovery. Of
course, there are many other possible protocols.

Ready send can be implemented as a standard send. In this case there will be no
performance advantage (or disadvantage) for the use of ready send.

A standard send can be implemented as a synchronous send. In such a case, no data
buffering is needed. However, many (most?) users expect some buffering.

In a multi-threaded environment, the execution of a blocking communication should
block only the executing thread, allowing the thread scheduler to de-schedule this
thread and schedule another thread for execution. (End of advice to implementors.)

3.5 Semantics of point-to-point communication

A valid MPI implementation guarantees certain general properties of point-to-point com-
munication, which are described in this section.

Order Messages are non-overtaking: If a sender sends two messages in succession to the
same destination, and both match the same receive, then this operation cannot receive the
second message if the first one is still pending. If a receiver posts two receives in succession,
and both match the same message, then the second receive operation cannot be satisfied
by this message, if the first one is still pending. This requirement facilitates matching of
sends to receives. It guarantees that message-passing code is deterministic, if processes
are single-threaded and the wildcard MPI ANY SOURCE is not used in receives. (Some of
the calls described later, such as MPI CANCEL or MPI WAITANY, are additional sources of
nondeterminism.)

If a process has a single thread of execution, then any two communications executed
by this process are ordered. On the other hand, if the process is multi-threaded, then the
semantics of thread execution may not define a relative order between two send operations
executed by two distinct threads. The operations are logically concurrent, even if one
physically precedes the other. In such a case, the two messages sent can be received in
any order. Similarly, if two receive operations that are logically concurrent receive two
successively sent messages, then the two messages can match the two receives in either
order.

Example 3.5 An example of non-overtaking messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

The message sent by the first send must be received by the first receive, and the message
sent by the second send must be received by the second receive.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

32 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Progress If a pair of matching send and receives have been initiated on two processes, then
at least one of these two operations will complete, independently of other actions in the
system: the send operation will complete, unless the receive is satisfied by another message,
and completes; the receive operation will complete, unless the message sent is consumed by
another matching receive that was posted at the same destination process.

Example 3.6 An example of two, intertwined matching pairs.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF

Both processes invoke their first communication call. Since the first send of process zero
uses the buffered mode, it must complete, irrespective of the state of process one. Since
no matching receive is posted, the message will be copied into buffer space. (If insufficient
buffer space is available, then the program will fail.) The second send is then invoked. At
that point, a matching pair of send and receive operation is enabled, and both operations
must complete. Process one next invokes its second receive call, which will be satisfied by
the buffered message. Note that process one received the messages in the reverse order they
were sent.

Fairness MPI makes no guarantee of fairness in the handling of communication. Suppose
that a send is posted. Then it is possible that the destination process repeatedly posts a
receive that matches this send, yet the message is never received, because it is each time
overtaken by another message, sent from another source. Similarly, suppose that a receive
was posted by a multi-threaded process. Then it is possible that messages that match this
receive are repeatedly received, yet the receive is never satisfied, because it is overtaken
by other receives posted at this node (by other executing threads). It is the programmer’s
responsibility to prevent starvation in such situations.

Resource limitations Any pending communication operation consumes system resources
that are limited. Errors may occur when lack of resources prevent the execution of an MPI
call. A quality implementation will use a (small) fixed amount of resources for each pending
send in the ready or synchronous mode and for each pending receive. However, buffer space
may be consumed to store messages sent in standard mode, and must be consumed to store
messages sent in buffered mode, when no matching receive is available. The amount of space
available for buffering will be much smaller than program data memory on many systems.
Then, it will be easy to write programs that overrun available buffer space.

MPI allows the user to provide buffer memory for messages sent in the buffered mode.
Furthermore, MPI specifies a detailed operational model for the use of this buffer. An MPI
implementation is required to do no worse than implied by this model. This allows users to
avoid buffer overflows when they use buffered sends. Buffer allocation and use is described
in Section 3.6.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 33

A buffered send operation that cannot complete because of a lack of buffer space is
erroneous. When such a situation is detected, an error is signalled that may cause the
program to terminate abnormally. On the other hand, a standard send operation that
cannot complete because of lack of buffer space will merely block, waiting for buffer space
to become available or for a matching receive to be posted. This behavior is preferable in
many situations. Consider a situation where a producer repeatedly produces new values
and sends them to a consumer. Assume that the producer produces new values faster
than the consumer can consume them. If buffered sends are used, then a buffer overflow
will result. Additional synchronization has to be added to the program so as to prevent
this from occurring. If standard sends are used, then the producer will be automatically
throttled, as its send operations will block when buffer space is unavailable.

In some situations, a lack of buffer space leads to deadlock situations. This is illustrated
by the examples below.

Example 3.7 An exchange of messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

This program will succeed even if no buffer space for data is available. The standard send
operation can be replaced, in this example, with a synchronous send.

Example 3.8 An attempt to exchange messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

The receive operation of the first process must complete before its send, and can complete
only if the matching send of the second processor is executed. The receive operation of the
second process must complete before its send and can complete only if the matching send
of the first process is executed. This program will always deadlock. The same holds for any
other send mode.

Example 3.9 An exchange that relies on buffering.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34 CHAPTER 3. POINT-TO-POINT COMMUNICATION

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
ELSE ! rank.EQ.1

CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

The message sent by each process has to be copied out before the send operation returns
and the receive operation starts. For the program to complete, it is necessary that at least
one of the two messages sent be buffered. Thus, this program can succeed only if the
communication system can buffer at least count words of data.

Advice to users. When standard send operations are used, then a deadlock situation
may occur where both processes are blocked because buffer space is not available. The
same will certainly happen, if the synchronous mode is used. If the buffered mode is
used, and not enough buffer space is available, then the program will not complete
either. However, rather than a deadlock situation, we shall have a buffer overflow
error.

A program is “safe” if no message buffering is required for the program to complete.
One can replace all sends in such program with synchronous sends, and the pro-
gram will still run correctly. This conservative programming style provides the best
portability, since program completion does not depend on the amount of buffer space
available or in the communication protocol used.

Many programmers prefer to have more leeway and be able to use the “unsafe” pro-
gramming style shown in example 3.9. In such cases, the use of standard sends is likely
to provide the best compromise between performance and robustness: quality imple-
mentations will provide sufficient buffering so that “common practice” programs will
not deadlock. The buffered send mode can be used for programs that require more
buffering, or in situations where the programmer wants more control. This mode
might also be used for debugging purposes, as buffer overflow conditions are easier to
diagnose than deadlock conditions.

Nonblocking message-passing operations, as described in Section 3.7, can be used to
avoid the need for buffering outgoing messages. This prevents deadlocks due to lack
of buffer space, and improves performance, by allowing overlap of computation and
communication, and avoiding the overheads of allocating buffers and copying messages
into buffers. (End of advice to users.)

3.6 Buffer allocation and usage

A user may specify a buffer to be used for buffering messages sent in buffered mode. Buffer-
ing is done by the sender.

MPI BUFFER ATTACH(buffer, size)

IN buffer initial buffer address (choice)

IN size buffer size, in bytes (integer)

int MPI Buffer attach(void* buffer, int size)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.6. BUFFER ALLOCATION AND USAGE 35

MPI BUFFER ATTACH(BUFFER, SIZE, IERROR)
<type> BUFFER(*)
INTEGER SIZE, IERROR

Provides to MPI a buffer in the user’s memory to be used for buffering outgoing mes-
sages. The buffer is used only by messages sent in buffered mode. Only one buffer can be
attached to a process at a time.

MPI BUFFER DETACH(buffer addr, size)

OUT buffer addr initial buffer address (choice)

OUT size buffer size, in bytes (integer)

int MPI Buffer detach(void* buffer addr, int* size)

MPI BUFFER DETACH(BUFFER ADDR, SIZE, IERROR)
<type> BUFFER ADDR(*)
INTEGER SIZE, IERROR

Detach the buffer currently associated with MPI. The call returns the address and the
size of the detached buffer. This operation will block until all messages currently in the
buffer have been transmitted. Upon return of this function, the user may reuse or deallocate
the space taken by the buffer.

Example 3.10 Calls to attach and detach buffers.

#define BUFFSIZE 10000
int size
char *buff;
MPI_Buffer_attach(malloc(BUFFSIZE), BUFFSIZE);
/* a buffer of 10000 bytes can now be used by MPI_Bsend */
MPI_Buffer_detach(&buff, &size);
/* Buffer size reduced to zero */
MPI_Buffer_attach(buff, size);
/* Buffer of 10000 bytes available again */

Advice to users. Even though the C functions MPI Buffer attach and MPI Buffer detach
both have a first argument of type void*, these arguments are used differently: A
pointer to the buffer is passed to MPI Buffer attach; the address of the pointer is
passed to MPI Buffer detach, so that this call can return the pointer value. (End of
advice to users.)

Rationale. Both arguments are defined to be of type void* (rather than void* and
void**, respectively), so as to avoid complex type casts. E.g., in the last example,
&buff, which is of type char**, can be passed as argument to MPI Buffer detach without
type casting. If the formal parameter had type void** then we would need a type cast
before and after the call. (End of rationale.)

The statements made in this section describe the behavior of MPI for buffered-mode
sends. When no buffer is currently associated, MPI behaves as if a zero-sized buffer is
associated with the process.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI must provide as much buffering for outgoing messages as if outgoing message
data were buffered by the sending process, in the specified buffer space, using a circular,
contiguous-space allocation policy. We outline below a model implementation that defines
this policy. MPI may provide more buffering, and may use a better buffer allocation algo-
rithm than described below. On the other hand, MPI may signal an error whenever the
simple buffering allocator described below would run out of space. In particular, if no buffer
is explicitly associated with the process, then any buffered send may cause an error.

MPI does not provide mechanisms for querying or controlling buffering done by standard
mode sends. It is expected that vendors will provide such information for their implemen-
tations.

Rationale. There is a wide spectrum of possible implementations of buffered com-
munication: buffering can be done at sender, at receiver, or both; buffers can be
dedicated to one sender-receiver pair, or be shared by all communications; buffering
can be done in real or in virtual memory; it can use dedicated memory, or memory
shared by other processes; buffer space may be allocated statically or be changed dy-
namically; etc. It does not seem feasible to provide a portable mechanism for querying
or controlling buffering that would be compatible with all these choices, yet provide
meaningful information. (End of rationale.)

3.6.1 Model implementation of buffered mode

The model implementation uses the packing and unpacking functions described in Sec-
tion 3.13 and the nonblocking communication functions described in Section 3.7.

We assume that a circular queue of pending message entries (PME) is maintained.
Each entry contains a communication request handle that identifies a pending nonblocking
send, a pointer to the next entry and the packed message data. The entries are stored in
successive locations in the buffer. Free space is available between the queue tail and the
queue head.

A buffered send call results in the execution of the following code.

• Traverse sequentially the PME queue from head towards the tail, deleting all entries
for communications that have completed, up to the first entry with an uncompleted
request; update queue head to point to that entry.

• Compute the number, n, of bytes needed to store an entry for the new message. An up-
per bound on n can be computed as follows: A call to the function
MPI PACK SIZE(count, datatype, comm, size), with the count, datatype and comm
arguments used in the MPI BSEND call, returns an upper bound on the amount
of space needed to buffer the message data (see Section 3.13). The MPI constant
MPI BSEND OVERHEAD provides an upper bound on the additional space consumed
by the entry (e.g., for pointers or envelope information).

• Find the next contiguous empty space of n bytes in buffer (space following queue tail,
or space at start of buffer if queue tail is too close to end of buffer). If space is not
found then raise buffer overflow error.

• Append to end of PME queue in contiguous space the new entry that contains request
handle, next pointer and packed message data; MPI PACK is used to pack data.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 37

• Post nonblocking send (standard mode) for packed data.

• Return

3.7 Nonblocking communication

One can improve performance on many systems by overlapping communication and com-
putation. This is especially true on systems where communication can be executed au-
tonomously by an intelligent communication controller. Light-weight threads are one mech-
anism for achieving such overlap. An alternative mechanism that often leads to better
performance is to use nonblocking communication. A nonblocking send start call ini-
tiates the send operation, but does not complete it. The send start call will return before
the message was copied out of the send buffer. A separate send complete call is needed
to complete the communication, i.e., to verify that the data has been copied out of the send
buffer. With suitable hardware, the transfer of data out of the sender memory may proceed
concurrently with computations done at the sender after the send was initiated and before it
completed. Similarly, a nonblocking receive start call initiates the receive operation, but
does not complete it. The call will return before a message is stored into the receive buffer.
A separate receive complete call is needed to complete the receive operation and verify
that the data has been received into the receive buffer. With suitable hardware, the transfer
of data into the receiver memory may proceed concurrently with computations done after
the receive was initiated and before it completed. The use of nonblocking receives may also
avoid system buffering and memory-to-memory copying, as information is provided early
on the location of the receive buffer.

Nonblocking send start calls can use the same four modes as blocking sends: standard,
buffered, synchronous and ready. These carry the same meaning. Sends of all modes, ready
excepted, can be started whether a matching receive has been posted or not; a nonblocking
ready send can be started only if a matching receive is posted. In all cases, the send start call
is local: it returns immediately, irrespective of the status of other processes. If the call causes
some system resource to be exhausted, then it will fail and return an error code. Quality
implementations of MPI should ensure that this happens only in “pathological” cases. That
is, an MPI implementation should be able to support a large number of pending nonblocking
operations.

The send-complete call returns when data has been copied out of the send buffer. It
may carry additional meaning, depending on the send mode.

If the send mode is synchronous, then the send can complete only if a matching receive
has started. That is, a receive has been posted, and has been matched with the send. In
this case, the send-complete call is non-local. Note that a synchronous, nonblocking send
may complete, if matched by a nonblocking receive, before the receive complete call occurs.
(It can complete as soon as the sender “knows” the transfer will complete, but before the
receiver “knows” the transfer will complete.)

If the send mode is buffered then the message must be buffered if there is no pending
receive. In this case, the send-complete call is local, and must succeed irrespective of the
status of a matching receive.

If the send mode is standard then the send-complete call may return before a matching
receive occurred, if the message is buffered. On the other hand, the send-complete may not
complete until a matching receive occurred, and the message was copied into the receive
buffer.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Nonblocking sends can be matched with blocking receives, and vice-versa.

Advice to users. The completion of a send operation may be delayed, for standard
mode, and must be delayed, for synchronous mode, until a matching receive is posted.
The use of nonblocking sends in these two cases allows the sender to proceed ahead
of the receiver, so that the computation is more tolerant of fluctuations in the speeds
of the two processes.

Nonblocking sends in the buffered and ready modes have a more limited impact. A
nonblocking send will return as soon as possible, whereas a blocking send will return
after the data has been copied out of the sender memory. The use of nonblocking
sends is advantageous in these cases only if data copying can be concurrent with
computation.

The message-passing model implies that communication is initiated by the sender.
The communication will generally have lower overhead if a receive is already posted
when the sender initiates the communication (data can be moved directly to the
receive buffer, and there is no need to queue a pending send request). However, a
receive operation can complete only after the matching send has occurred. The use
of nonblocking receives allows one to achieve lower communication overheads without
blocking the receiver while it waits for the send. (End of advice to users.)

3.7.1 Communication Objects

Nonblocking communications use opaque request objects to identify communication oper-
ations and match the operation that initiates the communication with the operation that
terminates it. These are system objects that are accessed via a handle. A request object
identifies various properties of a communication operation, such as the send mode, the com-
munication buffer that is associated with it, its context, the tag and destination arguments
to be used for a send, or the tag and source arguments to be used for a receive. In addition,
this object stores information about the status of the pending communication operation.

3.7.2 Communication initiation

We use the same naming conventions as for blocking communication: a prefix of B, S, or
R is used for buffered, synchronous or ready mode. In addition a prefix of I (for immediate)
indicates that the call is nonblocking.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 39

MPI ISEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (integer)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Isend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

MPI ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a standard mode, nonblocking send.

MPI IBSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (integer)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Ibsend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

MPI IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a buffered mode, nonblocking send.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

40 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI ISSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (integer)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Issend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

MPI ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a synchronous mode, nonblocking send.

MPI IRSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (integer)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Irsend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

MPI IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a ready mode nonblocking send.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 41

MPI IRECV (buf, count, datatype, source, tag, comm, request)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (integer)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Irecv(void* buf, int count, MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Request *request)

MPI IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Start a nonblocking receive.
These calls allocate a communication request object and associate it with the request

handle (the argument request). The request can be used later to query the status of the
communication or wait for its completion.

A nonblocking send call indicates that the system may start copying data out of the
send buffer. The sender should not access any part of the send buffer after a nonblocking
send operation is called, until the send completes.

A nonblocking receive call indicates that the system may start writing data into the re-
ceive buffer. The receiver should not access any part of the receive buffer after a nonblocking
receive operation is called, until the receive completes.

Advice to users. To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “A Problem with Register Op-
timization” in Section 10.2.2 of the MPI-2 Standard, pages 286 and 289. (End of
advice to users.)

3.7.3 Communication Completion

The functions MPI WAIT and MPI TEST are used to complete a nonblocking communica-
tion. The completion of a send operation indicates that the sender is now free to update the
locations in the send buffer (the send operation itself leaves the content of the send buffer
unchanged). It does not indicate that the message has been received, rather, it may have
been buffered by the communication subsystem. However, if a synchronous mode send was
used, the completion of the send operation indicates that a matching receive was initiated,
and that the message will eventually be received by this matching receive.

The completion of a receive operation indicates that the receive buffer contains the
received message, the receiver is now free to access it, and that the status object is set. It
does not indicate that the matching send operation has completed (but indicates, of course,
that the send was initiated).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

42 CHAPTER 3. POINT-TO-POINT COMMUNICATION

We shall use the following terminology: A null handle is a handle with value
MPI REQUEST NULL. A persistent request and the handle to it are inactive if the request
is not associated with any ongoing communication (see Section 3.9). A handle is active if
it is neither null nor inactive. An empty status is a status which is set to return tag =
MPI ANY TAG, source = MPI ANY SOURCE, error = MPI SUCCESS, and is also internally
configured so that calls to MPI GET COUNT and MPI GET ELEMENTS return count = 0
and MPI TEST CANCELLED returns false. We set a status variable to empty when the
value returned by it is not significant. Status is set in this way so as to prevent errors due
to accesses of stale information.

The fields in a status object returned by a call to MPI WAIT, MPI TEST, or any of
the other derived functions (MPI {TEST,WAIT}{ALL,SOME,ANY}), where the request cor-
responds to a send call, are undefined, with two exceptions: The error status field will
contain valid information if the wait or test call returned with MPI ERR IN STATUS; and the
returned status can be queried by the call MPI TEST CANCELLED.

Error codes belonging to the error class MPI ERR IN STATUS should be returned only by
the MPI completion functions that take arrays of MPI STATUS. For the functions (MPI TEST,

MPI TESTANY, MPI WAIT, MPI WAITANY) that return a single MPI STATUS value, the nor-
mal MPI error return process should be used (not the MPI ERROR field in the MPI STATUS
argument).

MPI WAIT(request, status)

INOUT request request (handle)

OUT status status object (Status)

int MPI Wait(MPI Request *request, MPI Status *status)

MPI WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI STATUS SIZE), IERROR

A call to MPI WAIT returns when the operation identified by request is complete. If the
communication object associated with this request was created by a nonblocking send or
receive call, then the object is deallocated by the call to MPI WAIT and the request handle
is set to MPI REQUEST NULL. MPI WAIT is a non-local operation.

The call returns, in status, information on the completed operation. The content of
the status object for a receive operation can be accessed as described in section 3.2.5. The
status object for a send operation may be queried by a call to MPI TEST CANCELLED (see
Section 3.8).

One is allowed to call MPI WAIT with a null or inactive request argument. In this case
the operation returns immediately with empty status.

Advice to users. Successful return of MPI WAIT after a MPI IBSEND implies that
the user send buffer can be reused — i.e., data has been sent out or copied into a
buffer attached with MPI BUFFER ATTACH. Note that, at this point, we can no longer
cancel the send (see Sec. 3.8). If a matching receive is never posted, then the buffer
cannot be freed. This runs somewhat counter to the stated goal of MPI CANCEL
(always being able to free program space that was committed to the communication
subsystem). (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 43

Advice to implementors. In a multi-threaded environment, a call to MPI WAIT
should block only the calling thread, allowing the thread scheduler to schedule another
thread for execution. (End of advice to implementors.)

MPI TEST(request, flag, status)

INOUT request communication request (handle)

OUT flag true if operation completed (logical)

OUT status status object (Status)

int MPI Test(MPI Request *request, int *flag, MPI Status *status)

MPI TEST(REQUEST, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER REQUEST, STATUS(MPI STATUS SIZE), IERROR

A call to MPI TEST returns flag = true if the operation identified by request is com-
plete. In such a case, the status object is set to contain information on the completed
operation; if the communication object was created by a nonblocking send or receive, then
it is deallocated and the request handle is set to MPI REQUEST NULL. The call returns flag
= false, otherwise. In this case, the value of the status object is undefined. MPI TEST is a
local operation.

The return status object for a receive operation carries information that can be accessed
as described in section 3.2.5. The status object for a send operation carries information
that can be accessed by a call to MPI TEST CANCELLED (see Section 3.8).

One is allowed to call MPI TEST with a null or inactive request argument. In such a
case the operation returns with flag = true and empty status.

The functions MPI WAIT and MPI TEST can be used to complete both sends and
receives.

Advice to users. The use of the nonblocking MPI TEST call allows the user to
schedule alternative activities within a single thread of execution. An event-driven
thread scheduler can be emulated with periodic calls to MPI TEST. (End of advice to
users.)

Rationale. The function MPI TEST returns with flag = true exactly in those situ-
ations where the function MPI WAIT returns; both functions return in such case the
same value in status. Thus, a blocking Wait can be easily replaced by a nonblocking
Test. (End of rationale.)

Example 3.11 Simple usage of nonblocking operations and MPI WAIT.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank.EQ.0) THEN

CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)
**** do some computation to mask latency ****
CALL MPI_WAIT(request, status, ierr)

ELSE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

44 CHAPTER 3. POINT-TO-POINT COMMUNICATION

CALL MPI_IRECV(a(1), 15, MPI_REAL, 0, tag, comm, request, ierr)
**** do some computation to mask latency ****
CALL MPI_WAIT(request, status, ierr)

END IF

A request object can be deallocated without waiting for the associated communication
to complete, by using the following operation.

MPI REQUEST FREE(request)

INOUT request communication request (handle)

int MPI Request free(MPI Request *request)

MPI REQUEST FREE(REQUEST, IERROR)
INTEGER REQUEST, IERROR

Mark the request object for deallocation and set request to MPI REQUEST NULL. An
ongoing communication that is associated with the request will be allowed to complete.
The request will be deallocated only after its completion.

Rationale. The MPI REQUEST FREE mechanism is provided for reasons of perfor-
mance and convenience on the sending side. (End of rationale.)

Advice to users. Once a request is freed by a call to MPI REQUEST FREE, it is
not possible to check for the successful completion of the associated communication
with calls to MPI WAIT or MPI TEST. Also, if an error occurs subsequently during
the communication, an error code cannot be returned to the user — such an error
must be treated as fatal. Questions arise as to how one knows when the operations
have completed when using MPI REQUEST FREE. Depending on the program logic,
there may be other ways in which the program knows that certain operations have
completed and this makes usage of MPI REQUEST FREE practical. For example, an
active send request could be freed when the logic of the program is such that the
receiver sends a reply to the message sent — the arrival of the reply informs the
sender that the send has completed and the send buffer can be reused. An active
receive request should never be freed as the receiver will have no way to verify that
the receive has completed and the receive buffer can be reused. (End of advice to
users.)

Example 3.12 An example using MPI REQUEST FREE.

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
IF(rank.EQ.0) THEN

DO i=1, n
CALL MPI_ISEND(outval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

END DO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 45

ELSE ! rank.EQ.1
CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
DO I=1, n-1

CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

END DO
CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

END IF

3.7.4 Semantics of Nonblocking Communications

The semantics of nonblocking communication is defined by suitably extending the definitions
in Section 3.5.

Order Nonblocking communication operations are ordered according to the execution order
of the calls that initiate the communication. The non-overtaking requirement of Section 3.5
is extended to nonblocking communication, with this definition of order being used.

Example 3.13 Message ordering for nonblocking operations.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (RANK.EQ.0) THEN

CALL MPI_ISEND(a, 1, MPI_REAL, 1, 0, comm, r1, ierr)
CALL MPI_ISEND(b, 1, MPI_REAL, 1, 0, comm, r2, ierr)

ELSE ! rank.EQ.1
CALL MPI_IRECV(a, 1, MPI_REAL, 0, MPI_ANY_TAG, comm, r1, ierr)
CALL MPI_IRECV(b, 1, MPI_REAL, 0, 0, comm, r2, ierr)

END IF
CALL MPI_WAIT(r1, status, ierr)
CALL MPI_WAIT(r2, status, ierr)

The first send of process zero will match the first receive of process one, even if both messages
are sent before process one executes either receive.

Progress A call to MPI WAIT that completes a receive will eventually terminate and return
if a matching send has been started, unless the send is satisfied by another receive. In
particular, if the matching send is nonblocking, then the receive should complete even if
no call is executed by the sender to complete the send. Similarly, a call to MPI WAIT that
completes a send will eventually return if a matching receive has been started, unless the
receive is satisfied by another send, and even if no call is executed to complete the receive.

Example 3.14 An illustration of progress semantics.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (RANK.EQ.0) THEN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

46 CHAPTER 3. POINT-TO-POINT COMMUNICATION

CALL MPI_SSEND(a, 1, MPI_REAL, 1, 0, comm, ierr)
CALL MPI_SEND(b, 1, MPI_REAL, 1, 1, comm, ierr)

ELSE ! rank.EQ.1
CALL MPI_IRECV(a, 1, MPI_REAL, 0, 0, comm, r, ierr)
CALL MPI_RECV(b, 1, MPI_REAL, 0, 1, comm, ierr)
CALL MPI_WAIT(r, status, ierr)

END IF

This code should not deadlock in a correct MPI implementation. The first synchronous
send of process zero must complete after process one posts the matching (nonblocking)
receive even if process one has not yet reached the completing wait call. Thus, process zero
will continue and execute the second send, allowing process one to complete execution.

If an MPI TEST that completes a receive is repeatedly called with the same arguments,
and a matching send has been started, then the call will eventually return flag = true, unless
the send is satisfied by another receive. If an MPI TEST that completes a send is repeatedly
called with the same arguments, and a matching receive has been started, then the call will
eventually return flag = true, unless the receive is satisfied by another send.

3.7.5 Multiple Completions

It is convenient to be able to wait for the completion of any, some, or all the operations
in a list, rather than having to wait for a specific message. A call to MPI WAITANY or
MPI TESTANY can be used to wait for the completion of one out of several operations. A
call to MPI WAITALL or MPI TESTALL can be used to wait for all pending operations in
a list. A call to MPI WAITSOME or MPI TESTSOME can be used to complete all enabled
operations in a list.

MPI WAITANY (count, array of requests, index, status)

IN count list length (integer)

INOUT array of requests array of requests (array of handles)

OUT index index of handle for operation that completed (integer)

OUT status status object (Status)

int MPI Waitany(int count, MPI Request *array of requests, int *index,
MPI Status *status)

MPI WAITANY(COUNT, ARRAY OF REQUESTS, INDEX, STATUS, IERROR)
INTEGER COUNT, ARRAY OF REQUESTS(*), INDEX, STATUS(MPI STATUS SIZE),
IERROR

Blocks until one of the operations associated with the active requests in the array has
completed. If more then one operation is enabled and can terminate, one is arbitrarily
chosen. Returns in index the index of that request in the array and returns in status the
status of the completing communication. (The array is indexed from zero in C, and from
one in Fortran.) If the request was allocated by a nonblocking communication operation,
then it is deallocated and the request handle is set to MPI REQUEST NULL.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 47

The array of requests list may contain null or inactive handles. If the list contains no
active handles (list has length zero or all entries are null or inactive), then the call returns
immediately with index = MPI UNDEFINED, and a empty status.

The execution of MPI WAITANY(count, array of requests, index, status) has the same
effect as the execution of MPI WAIT(&array of requests[i], status), where i is the value
returned by index (unless the value of index is MPI UNDEFINED). MPI WAITANY with an
array containing one active entry is equivalent to MPI WAIT.

MPI TESTANY(count, array of requests, index, flag, status)

IN count list length (integer)

INOUT array of requests array of requests (array of handles)

OUT index index of operation that completed, or MPI UNDEFINED

if none completed (integer)

OUT flag true if one of the operations is complete (logical)

OUT status status object (Status)

int MPI Testany(int count, MPI Request *array of requests, int *index,
int *flag, MPI Status *status)

MPI TESTANY(COUNT, ARRAY OF REQUESTS, INDEX, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY OF REQUESTS(*), INDEX, STATUS(MPI STATUS SIZE),
IERROR

Tests for completion of either one or none of the operations associated with active
handles. In the former case, it returns flag = true, returns in index the index of this request
in the array, and returns in status the status of that operation; if the request was allocated
by a nonblocking communication call then the request is deallocated and the handle is set
to MPI REQUEST NULL. (The array is indexed from zero in C, and from one in Fortran.)
In the latter case (no operation completed), it returns flag = false, returns a value of
MPI UNDEFINED in index and status is undefined.

The array may contain null or inactive handles. If the array contains no active handles
then the call returns immediately with flag = true, index = MPI UNDEFINED, and an empty
status.

If the array of requests contains active handles then the execution of MPI TESTANY(count,
array of requests, index, status) has the same effect as the execution of MPI TEST(&ar-
ray of requests[i], flag, status), for i=0, 1 ,..., count-1, in some arbitrary order, until one call
returns flag = true, or all fail. In the former case, index is set to the last value of i, and in
the latter case, it is set to MPI UNDEFINED. MPI TESTANY with an array containing one
active entry is equivalent to MPI TEST.

Rationale. The function MPI TESTANY returns with flag = true exactly in those
situations where the function MPI WAITANY returns; both functions return in that
case the same values in the remaining parameters. Thus, a blocking MPI WAITANY
can be easily replaced by a nonblocking MPI TESTANY. The same relation holds for
the other pairs of Wait and Test functions defined in this section. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI WAITALL(count, array of requests, array of statuses)

IN count lists length (integer)

INOUT array of requests array of requests (array of handles)

OUT array of statuses array of status objects (array of Status)

int MPI Waitall(int count, MPI Request *array of requests,
MPI Status *array of statuses)

MPI WAITALL(COUNT, ARRAY OF REQUESTS, ARRAY OF STATUSES, IERROR)
INTEGER COUNT, ARRAY OF REQUESTS(*)
INTEGER ARRAY OF STATUSES(MPI STATUS SIZE,*), IERROR

Blocks until all communication operations associated with active handles in the list
complete, and return the status of all these operations (this includes the case where no
handle in the list is active). Both arrays have the same number of valid entries. The i-th
entry in array of statuses is set to the return status of the i-th operation. Requests that were
created by nonblocking communication operations are deallocated and the corresponding
handles in the array are set to MPI REQUEST NULL. The list may contain null or inactive
handles. The call sets to empty the status of each such entry.

The error-free execution of MPI WAITALL(count, array of requests, array of statuses) has
the same effect as the execution of
MPI WAIT(&array of request[i], &array of statuses[i]), for i=0 ,..., count-1, in some arbitrary
order. MPI WAITALL with an array of length one is equivalent to MPI WAIT.

When one or more of the communications completed by a call to MPI WAITALL fail, it is
desireable to return specific information on each communication. The function MPI WAITALL
will return in such case the error code MPI ERR IN STATUS and will set the error field of each
status to a specific error code. This code will be MPI SUCCESS, if the specific communication
completed; it will be another specific error code, if it failed; or it can be MPI ERR PENDING if
it has neither failed nor completed. The function MPI WAITALL will return MPI SUCCESS
if no request had an error, or will return another error code if it failed for other reasons
(such as invalid arguments). In such cases, it will not update the error fields of the statuses.

Rationale. This design streamlines error handling in the application. The application
code need only test the (single) function result to determine if an error has occurred. It
needs to check each individual status only when an error occurred. (End of rationale.)

MPI TESTALL(count, array of requests, flag, array of statuses)

IN count lists length (integer)

INOUT array of requests array of requests (array of handles)

OUT flag (logical)

OUT array of statuses array of status objects (array of Status)

int MPI Testall(int count, MPI Request *array of requests, int *flag,
MPI Status *array of statuses)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 49

MPI TESTALL(COUNT, ARRAY OF REQUESTS, FLAG, ARRAY OF STATUSES, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY OF REQUESTS(*),
ARRAY OF STATUSES(MPI STATUS SIZE,*), IERROR

Returns flag = true if all communications associated with active handles in the array
have completed (this includes the case where no handle in the list is active). In this case,
each status entry that corresponds to an active handle request is set to the status of the
corresponding communication; if the request was allocated by a nonblocking communication
call then it is deallocated, and the handle is set to MPI REQUEST NULL. Each status entry
that corresponds to a null or inactive handle is set to empty.

Otherwise, flag = false is returned, no request is modified and the values of the status
entries are undefined. This is a local operation.

Errors that occurred during the execution of MPI TESTALL are handled as errors in
MPI WAITALL.

MPI WAITSOME(incount, array of requests, outcount, array of indices, array of statuses)

IN incount length of array of requests (integer)

INOUT array of requests array of requests (array of handles)

OUT outcount number of completed requests (integer)

OUT array of indices array of indices of operations that completed (array of
integers)

OUT array of statuses array of status objects for operations that completed
(array of Status)

int MPI Waitsome(int incount, MPI Request *array of requests, int *outcount,
int *array of indices, MPI Status *array of statuses)

MPI WAITSOME(INCOUNT, ARRAY OF REQUESTS, OUTCOUNT, ARRAY OF INDICES,
ARRAY OF STATUSES, IERROR)

INTEGER INCOUNT, ARRAY OF REQUESTS(*), OUTCOUNT, ARRAY OF INDICES(*),
ARRAY OF STATUSES(MPI STATUS SIZE,*), IERROR

Waits until at least one of the operations associated with active handles in the list
have completed. Returns in outcount the number of requests from the list array of requests
that have completed. Returns in the first outcount locations of the array array of indices the
indices of these operations (index within the array array of requests; the array is indexed
from zero in C and from one in Fortran). Returns in the first outcount locations of the array
array of status the status for these completed operations. If a request that completed was
allocated by a nonblocking communication call, then it is deallocated, and the associated
handle is set to MPI REQUEST NULL.

If the list contains no active handles, then the call returns immediately with outcount
= MPI UNDEFINED.

When one or more of the communications completed by MPI WAITSOME fails, then it
is desirable to return specific information on each communication. The arguments outcount,
array of indices and array of statuses will be adjusted to indicate completion of all communi-
cations that have succeeded or failed. The call will return the error code MPI ERR IN STATUS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

50 CHAPTER 3. POINT-TO-POINT COMMUNICATION

and the error field of each status returned will be set to indicate success or to indicate the
specific error that occurred. The call will return MPI SUCCESS if no request resulted in
an error, and will return another error code if it failed for other reasons (such as invalid
arguments). In such cases, it will not update the error fields of the statuses.

MPI TESTSOME(incount, array of requests, outcount, array of indices, array of statuses)

IN incount length of array of requests (integer)

INOUT array of requests array of requests (array of handles)

OUT outcount number of completed requests (integer)

OUT array of indices array of indices of operations that completed (array of
integers)

OUT array of statuses array of status objects for operations that completed
(array of Status)

int MPI Testsome(int incount, MPI Request *array of requests, int *outcount,
int *array of indices, MPI Status *array of statuses)

MPI TESTSOME(INCOUNT, ARRAY OF REQUESTS, OUTCOUNT, ARRAY OF INDICES,
ARRAY OF STATUSES, IERROR)

INTEGER INCOUNT, ARRAY OF REQUESTS(*), OUTCOUNT, ARRAY OF INDICES(*),
ARRAY OF STATUSES(MPI STATUS SIZE,*), IERROR

Behaves like MPI WAITSOME, except that it returns immediately. If no operation has
completed it returns outcount = 0. If there is no active handle in the list it returns outcount
= MPI UNDEFINED.

MPI TESTSOME is a local operation, which returns immediately, whereas MPI WAITSOME
will block until a communication completes, if it was passed a list that contains at least one
active handle. Both calls fulfill a fairness requirement: If a request for a receive repeatedly
appears in a list of requests passed to MPI WAITSOME or MPI TESTSOME, and a matching
send has been posted, then the receive will eventually succeed, unless the send is satisfied
by another receive; and similarly for send requests.

Errors that occur during the execution of MPI TESTSOME are handled as for
MPI WAITSOME.

Advice to users. The use of MPI TESTSOME is likely to be more efficient than the use
of MPI TESTANY. The former returns information on all completed communications,
with the latter, a new call is required for each communication that completes.

A server with multiple clients can use MPI WAITSOME so as not to starve any
client. Clients send messages to the server with service requests. The server calls
MPI WAITSOME with one receive request for each client, and then handles all re-
ceives that completed. If a call to MPI WAITANY is used instead, then one client
could starve while requests from another client always sneak in first. (End of advice
to users.)

Advice to implementors. MPI TESTSOME should complete as many pending com-
munications as possible. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 51

Example 3.15 Client-server code (starvation can occur).

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank .GT. 0) THEN ! client code

DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)

END DO
ELSE ! rank=0 -- server code

DO i=1, size-1
CALL MPI_IRECV(a(1,i), n, MPI_REAL, i tag,

comm, request_list(i), ierr)
END DO
DO WHILE(.TRUE.)

CALL MPI_WAITANY(size-1, request_list, index, status, ierr)
CALL DO_SERVICE(a(1,index)) ! handle one message
CALL MPI_IRECV(a(1, index), n, MPI_REAL, index, tag,

comm, request_list(index), ierr)
END DO

END IF

Example 3.16 Same code, using MPI WAITSOME.

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank .GT. 0) THEN ! client code

DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)

END DO
ELSE ! rank=0 -- server code

DO i=1, size-1
CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag,

comm, requests(i), ierr)
END DO
DO WHILE(.TRUE.)

CALL MPI_WAITSOME(size, request_list, numdone,
indices, statuses, ierr)

DO i=1, numdone
CALL DO_SERVICE(a(1, indices(i)))
CALL MPI_IRECV(a(1, indices(i)), n, MPI_REAL, 0, tag,

comm, requests(indices(i)), ierr)
END DO

END DO
END IF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

52 CHAPTER 3. POINT-TO-POINT COMMUNICATION

3.8 Probe and Cancel

The MPI PROBE and MPI IPROBE operations allow incoming messages to be checked for,
without actually receiving them. The user can then decide how to receive them, based on
the information returned by the probe (basically, the information returned by status). In
particular, the user may allocate memory for the receive buffer, according to the length of
the probed message.

The MPI CANCEL operation allows pending communications to be canceled. This is
required for cleanup. Posting a send or a receive ties up user resources (send or receive
buffers), and a cancel may be needed to free these resources gracefully.

MPI IPROBE(source, tag, comm, flag, status)

IN source source rank, or MPI ANY SOURCE (integer)

IN tag tag value or MPI ANY TAG (integer)

IN comm communicator (handle)

OUT flag (logical)

OUT status status object (Status)

int MPI Iprobe(int source, int tag, MPI Comm comm, int *flag,
MPI Status *status)

MPI IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE), IERROR

MPI IPROBE(source, tag, comm, flag, status) returns flag = true if there is a message
that can be received and that matches the pattern specified by the arguments source, tag,
and comm. The call matches the same message that would have been received by a call to
MPI RECV(..., source, tag, comm, status) executed at the same point in the program, and
returns in status the same value that would have been returned by MPI RECV(). Otherwise,
the call returns flag = false, and leaves status undefined.

If MPI IPROBE returns flag = true, then the content of the status object can be sub-
sequently accessed as described in section 3.2.5 to find the source, tag and length of the
probed message.

A subsequent receive executed with the same communicator, and the source and tag
returned in status by MPI IPROBE will receive the message that was matched by the probe,
if no other intervening receive occurs after the probe, and the send is not successfully
cancelled before the receive. If the receiving process is multi-threaded, it is the user’s
responsibility to ensure that the last condition holds.

The source argument of MPI PROBE can be MPI ANY SOURCE, and the tag argument
can be MPI ANY TAG, so that one can probe for messages from an arbitrary source and/or
with an arbitrary tag. However, a specific communication context must be provided with
the comm argument.

It is not necessary to receive a message immediately after it has been probed for, and
the same message may be probed for several times before it is received.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. PROBE AND CANCEL 53

MPI PROBE(source, tag, comm, status)

IN source source rank, or MPI ANY SOURCE (integer)

IN tag tag value, or MPI ANY TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI Probe(int source, int tag, MPI Comm comm, MPI Status *status)

MPI PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE), IERROR

MPI PROBE behaves like MPI IPROBE except that it is a blocking call that returns
only after a matching message has been found.

The MPI implementation of MPI PROBE and MPI IPROBE needs to guarantee progress:
if a call to MPI PROBE has been issued by a process, and a send that matches the probe
has been initiated by some process, then the call to MPI PROBE will return, unless the
message is received by another concurrent receive operation (that is executed by another
thread at the probing process). Similarly, if a process busy waits with MPI IPROBE and a
matching message has been issued, then the call to MPI IPROBE will eventually return flag
= true unless the message is received by another concurrent receive operation.

Example 3.17 Use blocking probe to wait for an incoming message.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)
ELSE IF(rank.EQ.1) THEN

CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE ! rank.EQ.2

DO i=1, 2
CALL MPI_PROBE(MPI_ANY_SOURCE, 0,

comm, status, ierr)
IF (status(MPI_SOURCE) .EQ. 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, comm, status, ierr)
ELSE

200 CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, comm, status, ierr)
END IF

END DO
END IF

Each message is received with the right type.

Example 3.18 A similar program to the previous example, but now it has a problem.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)
ELSE IF(rank.EQ.1) THEN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

54 CHAPTER 3. POINT-TO-POINT COMMUNICATION

CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE

DO i=1, 2
CALL MPI_PROBE(MPI_ANY_SOURCE, 0,

comm, status, ierr)
IF (status(MPI_SOURCE) .EQ. 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, MPI_ANY_SOURCE,
0, comm, status, ierr)

ELSE
200 CALL MPI_RECV(x, 1, MPI_REAL, MPI_ANY_SOURCE,

0, comm, status, ierr)
END IF

END DO
END IF

We slightly modified example 3.17, using MPI ANY SOURCE as the source argument in
the two receive calls in statements labeled 100 and 200. The program is now incorrect: the
receive operation may receive a message that is distinct from the message probed by the
preceding call to MPI PROBE.

Advice to implementors. A call to MPI PROBE(source, tag, comm, status) will match
the message that would have been received by a call to MPI RECV(..., source, tag,
comm, status) executed at the same point. Suppose that this message has source s, tag
t and communicator c. If the tag argument in the probe call has value MPI ANY TAG

then the message probed will be the earliest pending message from source s with com-
municator c and any tag; in any case, the message probed will be the earliest pending
message from source s with tag t and communicator c (this is the message that would
have been received, so as to preserve message order). This message continues as the
earliest pending message from source s with tag t and communicator c, until it is re-
ceived. A receive operation subsequent to the probe that uses the same communicator
as the probe and uses the tag and source values returned by the probe, must receive
this message, unless it has already been received by another receive operation. (End
of advice to implementors.)

MPI CANCEL(request)

IN request communication request (handle)

int MPI Cancel(MPI Request *request)

MPI CANCEL(REQUEST, IERROR)
INTEGER REQUEST, IERROR

A call to MPI CANCEL marks for cancellation a pending, nonblocking communication
operation (send or receive). The cancel call is local. It returns immediately, possibly before
the communication is actually canceled. It is still necessary to complete a communication
that has been marked for cancellation, using a call to MPI REQUEST FREE, MPI WAIT or
MPI TEST (or any of the derived operations).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. PROBE AND CANCEL 55

If a communication is marked for cancellation, then a MPI WAIT call for that com-
munication is guaranteed to return, irrespective of the activities of other processes (i.e.,
MPI WAIT behaves as a local function); similarly if MPI TEST is repeatedly called in a
busy wait loop for a canceled communication, then MPI TEST will eventually be successful.

MPI CANCEL can be used to cancel a communication that uses a persistent request (see
Sec. 3.9), in the same way it is used for nonpersistent requests. A successful cancellation
cancels the active communication, but not the request itself. After the call to MPI CANCEL
and the subsequent call to MPI WAIT or MPI TEST, the request becomes inactive and can
be activated for a new communication.

The successful cancellation of a buffered send frees the buffer space occupied by the
pending message.

Either the cancellation succeeds, or the communication succeeds, but not both. If a
send is marked for cancellation, then it must be the case that either the send completes
normally, in which case the message sent was received at the destination process, or that
the send is successfully canceled, in which case no part of the message was received at the
destination. Then, any matching receive has to be satisfied by another send. If a receive is
marked for cancellation, then it must be the case that either the receive completes normally,
or that the receive is successfully canceled, in which case no part of the receive buffer is
altered. Then, any matching send has to be satisfied by another receive.

If the operation has been canceled, then information to that effect will be returned in
the status argument of the operation that completes the communication.

MPI TEST CANCELLED(status, flag)

IN status status object (Status)

OUT flag (logical)

int MPI Test cancelled(MPI Status *status, int *flag)

MPI TEST CANCELLED(STATUS, FLAG, IERROR)
LOGICAL FLAG
INTEGER STATUS(MPI STATUS SIZE), IERROR

Returns flag = true if the communication associated with the status object was canceled
successfully. In such a case, all other fields of status (such as count or tag) are undefined.
Returns flag = false, otherwise. If a receive operation might be canceled then one should call
MPI TEST CANCELLED first, to check whether the operation was canceled, before checking
on the other fields of the return status.

Advice to users. Cancel can be an expensive operation that should be used only
exceptionally. (End of advice to users.)

Advice to implementors. If a send operation uses an “eager” protocol (data is trans-
ferred to the receiver before a matching receive is posted), then the cancellation of this
send may require communication with the intended receiver in order to free allocated
buffers. On some systems this may require an interrupt to the intended receiver. Note
that, while communication may be needed to implement MPI CANCEL, this is still a
local operation, since its completion does not depend on the code executed by other
processes. If processing is required on another process, this should be transparent to

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

56 CHAPTER 3. POINT-TO-POINT COMMUNICATION

the application (hence the need for an interrupt and an interrupt handler). (End of
advice to implementors.)

3.9 Persistent communication requests

Often a communication with the same argument list is repeatedly executed within the in-
ner loop of a parallel computation. In such a situation, it may be possible to optimize
the communication by binding the list of communication arguments to a persistent com-
munication request once and, then, repeatedly using the request to initiate and complete
messages. The persistent request thus created can be thought of as a communication port or
a “half-channel.” It does not provide the full functionality of a conventional channel, since
there is no binding of the send port to the receive port. This construct allows reduction
of the overhead for communication between the process and communication controller, but
not of the overhead for communication between one communication controller and another.
It is not necessary that messages sent with a persistent request be received by a receive
operation using a persistent request, or vice versa.

A persistent communication request is created using one of the four following calls.
These calls involve no communication.

MPI SEND INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Send init(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

MPI SEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a standard mode send operation, and
binds to it all the arguments of a send operation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.9. PERSISTENT COMMUNICATION REQUESTS 57

MPI BSEND INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Bsend init(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

MPI BSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a buffered mode send.

MPI SSEND INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Ssend init(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

MPI SSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication object for a synchronous mode send operation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

58 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI RSEND INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Rsend init(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

MPI RSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication object for a ready mode send operation.

MPI RECV INIT(buf, count, datatype, source, tag, comm, request)

OUT buf initial address of receive buffer (choice)

IN count number of elements received (integer)

IN datatype type of each element (handle)

IN source rank of source or MPI ANY SOURCE (integer)

IN tag message tag or MPI ANY TAG (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI Recv init(void* buf, int count, MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Request *request)

MPI RECV INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a receive operation. The argument buf
is marked as OUT because the user gives permission to write on the receive buffer by passing
the argument to MPI RECV INIT.

A persistent communication request is inactive after it was created — no active com-
munication is attached to the request.

A communication (send or receive) that uses a persistent request is initiated by the
function MPI START.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.9. PERSISTENT COMMUNICATION REQUESTS 59

MPI START(request)

INOUT request communication request (handle)

int MPI Start(MPI Request *request)

MPI START(REQUEST, IERROR)
INTEGER REQUEST, IERROR

The argument, request, is a handle returned by one of the previous five calls. The
associated request should be inactive. The request becomes active once the call is made.

If the request is for a send with ready mode, then a matching receive should be posted
before the call is made. The communication buffer should not be accessed after the call,
and until the operation completes.

The call is local, with similar semantics to the nonblocking communication opera-
tions described in section 3.7. That is, a call to MPI START with a request created by
MPI SEND INIT starts a communication in the same manner as a call to MPI ISEND; a call
to MPI START with a request created by MPI BSEND INIT starts a communication in the
same manner as a call to MPI IBSEND; and so on.

MPI STARTALL(count, array of requests)

IN count list length (integer)

INOUT array of requests array of requests (array of handle)

int MPI Startall(int count, MPI Request *array of requests)

MPI STARTALL(COUNT, ARRAY OF REQUESTS, IERROR)
INTEGER COUNT, ARRAY OF REQUESTS(*), IERROR

Start all communications associated with requests in array of requests. A call to
MPI STARTALL(count, array of requests) has the same effect as calls to MPI START (&ar-
ray of requests[i]), executed for i=0 ,..., count-1, in some arbitrary order.

A communication started with a call to MPI START or MPI STARTALL is completed
by a call to MPI WAIT, MPI TEST, or one of the derived functions described in section 3.7.5.
The request becomes inactive after successful completion of such call. The request is not
deallocated and it can be activated anew by an MPI START or MPI STARTALL call.

A persistent request is deallocated by a call to MPI REQUEST FREE (Section 3.7.3).
The call to MPI REQUEST FREE can occur at any point in the program after the per-

sistent request was created. However, the request will be deallocated only after it becomes
inactive. Active receive requests should not be freed. Otherwise, it will not be possible
to check that the receive has completed. It is preferable, in general, to free requests when
they are inactive. If this rule is followed, then the functions described in this section will
be invoked in a sequence of the form,

Create (Start Complete)∗ Free ,

where ∗ indicates zero or more repetitions. If the same communication object is used in
several concurrent threads, it is the user’s responsibility to coordinate calls so that the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

60 CHAPTER 3. POINT-TO-POINT COMMUNICATION

correct sequence is obeyed.
A send operation initiated with MPI START can be matched with any receive operation

and, likewise, a receive operation initiated with MPI START can receive messages generated
by any send operation.

Advice to users. To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “A Problem with Register Op-
timization” in Section 10.2.2 of the MPI-2 Standard, pages 286 and 289. (End of
advice to users.)

3.10 Send-receive

The send-receive operations combine in one call the sending of a message to one desti-
nation and the receiving of another message, from another process. The two (source and
destination) are possibly the same. A send-receive operation is very useful for executing
a shift operation across a chain of processes. If blocking sends and receives are used for
such a shift, then one needs to order the sends and receives correctly (for example, even
processes send, then receive, odd processes receive first, then send) so as to prevent cyclic
dependencies that may lead to deadlock. When a send-receive operation is used, the com-
munication subsystem takes care of these issues. The send-receive operation can be used
in conjunction with the functions described in Chapter 6 in order to perform shifts on var-
ious logical topologies. Also, a send-receive operation is useful for implementing remote
procedure calls.

A message sent by a send-receive operation can be received by a regular receive oper-
ation or probed by a probe operation; a send-receive operation can receive a message sent
by a regular send operation.

MPI SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype,
source, recvtag, comm, status)

IN sendbuf initial address of send buffer (choice)

IN sendcount number of elements in send buffer (integer)

IN sendtype type of elements in send buffer (handle)

IN dest rank of destination (integer)

IN sendtag send tag (integer)

OUT recvbuf initial address of receive buffer (choice)

IN recvcount number of elements in receive buffer (integer)

IN recvtype type of elements in receive buffer (handle)

IN source rank of source (integer)

IN recvtag receive tag (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI Sendrecv(void *sendbuf, int sendcount, MPI Datatype sendtype,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.10. SEND-RECEIVE 61

int dest, int sendtag, void *recvbuf, int recvcount,
MPI Datatype recvtype, int source, int recvtag, MPI Comm comm,
MPI Status *status)

MPI SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
SOURCE, RECVTAG, COMM, STATUS(MPI STATUS SIZE), IERROR

Execute a blocking send and receive operation. Both send and receive use the same
communicator, but possibly different tags. The send buffer and receive buffers must be
disjoint, and may have different lengths and datatypes.

MPI SENDRECV REPLACE(buf, count, datatype, dest, sendtag, source, recvtag, comm, sta-
tus)

INOUT buf initial address of send and receive buffer (choice)

IN count number of elements in send and receive buffer (integer)

IN datatype type of elements in send and receive buffer (handle)

IN dest rank of destination (integer)

IN sendtag send message tag (integer)

IN source rank of source (integer)

IN recvtag receive message tag (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI Sendrecv replace(void* buf, int count, MPI Datatype datatype,
int dest, int sendtag, int source, int recvtag, MPI Comm comm,
MPI Status *status)

MPI SENDRECV REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
COMM, STATUS, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
STATUS(MPI STATUS SIZE), IERROR

Execute a blocking send and receive. The same buffer is used both for the send and
for the receive, so that the message sent is replaced by the message received.

The semantics of a send-receive operation is what would be obtained if the caller forked
two concurrent threads, one to execute the send, and one to execute the receive, followed
by a join of these two threads.

Advice to implementors. Additional intermediate buffering is needed for the “replace”
variant. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

62 CHAPTER 3. POINT-TO-POINT COMMUNICATION

3.11 Null processes

In many instances, it is convenient to specify a “dummy” source or destination for commu-
nication. This simplifies the code that is needed for dealing with boundaries, for example,
in the case of a non-circular shift done with calls to send-receive.

The special value MPI PROC NULL can be used instead of a rank wherever a source or a
destination argument is required in a call. A communication with process MPI PROC NULL

has no effect. A send to MPI PROC NULL succeeds and returns as soon as possible. A receive
from MPI PROC NULL succeeds and returns as soon as possible with no modifications to the
receive buffer. When a receive with source = MPI PROC NULL is executed then the status
object returns source = MPI PROC NULL, tag = MPI ANY TAG and count = 0.

3.12 Derived datatypes

Up to here, all point to point communication have involved only contiguous buffers contain-
ing a sequence of elements of the same type. This is too constraining on two accounts. One
often wants to pass messages that contain values with different datatypes (e.g., an integer
count, followed by a sequence of real numbers); and one often wants to send noncontiguous
data (e.g., a sub-block of a matrix). One solution is to pack noncontiguous data into a
contiguous buffer at the sender site and unpack it back at the receiver site. This has the
disadvantage of requiring additional memory-to-memory copy operations at both sites, even
when the communication subsystem has scatter-gather capabilities. Instead, MPI provides
mechanisms to specify more general, mixed, and noncontiguous communication buffers. It
is up to the implementation to decide whether data should be first packed in a contiguous
buffer before being transmitted, or whether it can be collected directly from where it resides.

The general mechanisms provided here allow one to transfer directly, without copying,
objects of various shape and size. It is not assumed that the MPI library is cognizant of
the objects declared in the host language. Thus, if one wants to transfer a structure, or an
array section, it will be necessary to provide in MPI a definition of a communication buffer
that mimics the definition of the structure or array section in question. These facilities can
be used by library designers to define communication functions that can transfer objects
defined in the host language — by decoding their definitions as available in a symbol table
or a dope vector. Such higher-level communication functions are not part of MPI.

More general communication buffers are specified by replacing the basic datatypes that
have been used so far with derived datatypes that are constructed from basic datatypes using
the constructors described in this section. These methods of constructing derived datatypes
can be applied recursively.

A general datatype is an opaque object that specifies two things:

• A sequence of basic datatypes

• A sequence of integer (byte) displacements

The displacements are not required to be positive, distinct, or in increasing order.
Therefore, the order of items need not coincide with their order in store, and an item may
appear more than once. We call such a pair of sequences (or sequence of pairs) a type
map. The sequence of basic datatypes (displacements ignored) is the type signature of
the datatype.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 63

Let

Typemap = {(type0, disp0), ..., (typen−1, dispn−1)},

be such a type map, where typei are basic types, and dispi are displacements. Let

Typesig = {type0, ..., typen−1}

be the associated type signature. This type map, together with a base address buf, specifies
a communication buffer: the communication buffer that consists of n entries, where the
i-th entry is at address buf + dispi and has type typei. A message assembled from such a
communication buffer will consist of n values, of the types defined by Typesig.

We can use a handle to a general datatype as an argument in a send or receive operation,
instead of a basic datatype argument. The operation MPI SEND(buf, 1, datatype,...) will use
the send buffer defined by the base address buf and the general datatype associated with
datatype; it will generate a message with the type signature determined by the datatype
argument. MPI RECV(buf, 1, datatype,...) will use the receive buffer defined by the base
address buf and the general datatype associated with datatype.

General datatypes can be used in all send and receive operations. We discuss, in Sec.
3.12.5, the case where the second argument count has value > 1.

The basic datatypes presented in section 3.2.2 are particular cases of a general datatype,
and are predefined. Thus, MPI INT is a predefined handle to a datatype with type map
{(int, 0)}, with one entry of type int and displacement zero. The other basic datatypes are
similar.

The extent of a datatype is defined to be the span from the first byte to the last byte
occupied by entries in this datatype, rounded up to satisfy alignment requirements. That
is, if

Typemap = {(type0, disp0), ..., (typen−1, dispn−1)},

then

lb(Typemap) = min
j

dispj ,

ub(Typemap) = max
j

(dispj + sizeof(typej)) + ε, and

extent(Typemap) = ub(Typemap)− lb(Typemap). (3.1)

If typei requires alignment to a byte address that is is a multiple of ki, then ε is the least
nonnegative increment needed to round extent(Typemap) to the next multiple of maxi ki.
The complete definition of extent is given on page 73.

Example 3.19 Assume that Type = {(double, 0), (char, 8)} (a double at displacement zero,
followed by a char at displacement eight). Assume, furthermore, that doubles have to be
strictly aligned at addresses that are multiples of eight. Then, the extent of this datatype is
16 (9 rounded to the next multiple of 8). A datatype that consists of a character immediately
followed by a double will also have an extent of 16.

Rationale. The definition of extent is motivated by the assumption that the amount
of padding added at the end of each structure in an array of structures is the least
needed to fulfill alignment constraints. More explicit control of the extent is provided
in section 3.12.3. Such explicit control is needed in cases where the assumption does
not hold, for example, where union types are used. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

64 CHAPTER 3. POINT-TO-POINT COMMUNICATION

3.12.1 Datatype constructors

Contiguous The simplest datatype constructor is MPI TYPE CONTIGUOUS which allows
replication of a datatype into contiguous locations.

MPI TYPE CONTIGUOUS(count, oldtype, newtype)

IN count replication count (nonnegative integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI Type contiguous(int count, MPI Datatype oldtype,
MPI Datatype *newtype)

MPI TYPE CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

newtype is the datatype obtained by concatenating count copies of oldtype. Concate-
nation is defined using extent as the size of the concatenated copies.

Example 3.20 Let oldtype have type map {(double, 0), (char, 8)}, with extent 16, and let
count = 3. The type map of the datatype returned by newtype is

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40)};

i.e., alternating double and char elements, with displacements 0, 8, 16, 24, 32, 40.

In general, assume that the type map of oldtype is

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent ex. Then newtype has a type map with count · n entries defined by:

{(type0, disp0), ..., (typen−1, dispn−1), (type0, disp0 + ex), ..., (typen−1, dispn−1 + ex),

..., (type0, disp0 + ex · (count− 1)), ..., (typen−1, dispn−1 + ex · (count− 1))}.

Vector The function MPI TYPE VECTOR is a more general constructor that allows repli-
cation of a datatype into locations that consist of equally spaced blocks. Each block is
obtained by concatenating the same number of copies of the old datatype. The spacing
between blocks is a multiple of the extent of the old datatype.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 65

MPI TYPE VECTOR(count, blocklength, stride, oldtype, newtype)

IN count number of blocks (nonnegative integer)

IN blocklength number of elements in each block (nonnegative inte-
ger)

IN stride number of elements between start of each block (inte-
ger)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI Type vector(int count, int blocklength, int stride,
MPI Datatype oldtype, MPI Datatype *newtype)

MPI TYPE VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

Example 3.21 Assume, again, that oldtype has type map {(double, 0), (char, 8)}, with ex-
tent 16. A call to MPI TYPE VECTOR(2, 3, 4, oldtype, newtype) will create the datatype
with type map,

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40),

(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104)}.

That is, two blocks with three copies each of the old type, with a stride of 4 elements (4 · 16
bytes) between the blocks.

Example 3.22 A call to MPI TYPE VECTOR(3, 1, -2, oldtype, newtype) will create the
datatype,

{(double, 0), (char, 8), (double,−32), (char,−24), (double,−64), (char,−56)}.

In general, assume that oldtype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with
count · bl · n entries:

{(type0, disp0), ..., (typen−1, dispn−1),

(type0, disp0 + ex), ..., (typen−1, dispn−1 + ex), ...,

(type0, disp0 + (bl− 1) · ex), ..., (typen−1, dispn−1 + (bl− 1) · ex),

(type0, disp0 + stride · ex), ..., (typen−1, dispn−1 + stride · ex), ...,

(type0, disp0 + (stride + bl− 1) · ex), ..., (typen−1, dispn−1 + (stride + bl− 1) · ex),,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

66 CHAPTER 3. POINT-TO-POINT COMMUNICATION

(type0, disp0 + stride · (count− 1) · ex), ...,

(typen−1, dispn−1 + stride · (count− 1) · ex), ...,

(type0, disp0 + (stride · (count− 1) + bl− 1) · ex), ...,

(typen−1, dispn−1 + (stride · (count− 1) + bl− 1) · ex)}.

A call to MPI TYPE CONTIGUOUS(count, oldtype, newtype) is equivalent to a call to
MPI TYPE VECTOR(count, 1, 1, oldtype, newtype), or to a call to MPI TYPE VECTOR(1,
count, n, oldtype, newtype), n arbitrary.

Hvector The function MPI TYPE HVECTOR is identical to MPI TYPE VECTOR, except
that stride is given in bytes, rather than in elements. The use for both types of vector
constructors is illustrated in Sec. 3.12.7. (H stands for “heterogeneous”).

MPI TYPE HVECTOR(count, blocklength, stride, oldtype, newtype)

IN count number of blocks (nonnegative integer)

IN blocklength number of elements in each block (nonnegative inte-
ger)

IN stride number of bytes between start of each block (integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI Type hvector(int count, int blocklength, MPI Aint stride,
MPI Datatype oldtype, MPI Datatype *newtype)

MPI TYPE HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

Assume that oldtype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with
count · bl · n entries:

{(type0, disp0), ..., (typen−1, dispn−1),

(type0, disp0 + ex), ..., (typen−1, dispn−1 + ex), ...,

(type0, disp0 + (bl− 1) · ex), ..., (typen−1, dispn−1 + (bl− 1) · ex),

(type0, disp0 + stride), ..., (typen−1, dispn−1 + stride), ...,

(type0, disp0 + stride + (bl− 1) · ex), ...,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 67

(typen−1, dispn−1 + stride + (bl− 1) · ex),,

(type0, disp0 + stride · (count− 1)), ..., (typen−1, dispn−1 + stride · (count− 1)), ...,

(type0, disp0 + stride · (count− 1) + (bl− 1) · ex), ...,

(typen−1, dispn−1 + stride · (count− 1) + (bl− 1) · ex)}.

Indexed The function MPI TYPE INDEXED allows replication of an old datatype into a
sequence of blocks (each block is a concatenation of the old datatype), where each block
can contain a different number of copies and have a different displacement. All block
displacements are multiples of the old type extent.

MPI TYPE INDEXED(count, array of blocklengths, array of displacements, oldtype, newtype)

IN count number of blocks – also number of entries in
array of displacements and array of blocklengths (non-
negative integer)

IN array of blocklengths number of elements per block (array of nonnegative
integers)

IN array of displacements displacement for each block, in multiples of oldtype

extent (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI Type indexed(int count, int *array of blocklengths,
int *array of displacements, MPI Datatype oldtype,
MPI Datatype *newtype)

MPI TYPE INDEXED(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

Example 3.23 Let oldtype have type map {(double, 0), (char, 8)}, with extent 16. Let B =
(3, 1) and let D = (4, 0). A call to MPI TYPE INDEXED(2, B, D, oldtype, newtype) returns
a datatype with type map,

{(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104),

(double, 0), (char, 8)}.

That is, three copies of the old type starting at displacement 64, and one copy starting at
displacement 0.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

68 CHAPTER 3. POINT-TO-POINT COMMUNICATION

In general, assume that oldtype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent ex. Let B be the array of blocklength argument and D be the
array of displacements argument. The newly created datatype has n ·

∑count−1
i=0 B[i] entries:

{(type0, disp0 + D[0] · ex), ..., (typen−1, dispn−1 + D[0] · ex), ...,

(type0, disp0 + (D[0] + B[0]− 1) · ex), ..., (typen−1, dispn−1 + (D[0] + B[0]− 1) · ex), ...,

(type0, disp0 + D[count− 1] · ex), ..., (typen−1, dispn−1 + D[count− 1] · ex), ...,

(type0, disp0 + (D[count− 1] + B[count− 1]− 1) · ex), ...,

(typen−1, dispn−1 + (D[count− 1] + B[count− 1]− 1) · ex)}.

A call to MPI TYPE VECTOR(count, blocklength, stride, oldtype, newtype) is equivalent
to a call to MPI TYPE INDEXED(count, B, D, oldtype, newtype) where

D[j] = j · stride, j = 0, ..., count− 1,

and

B[j] = blocklength, j = 0, ..., count− 1.

Hindexed The function MPI TYPE HINDEXED is identical to MPI TYPE INDEXED, except
that block displacements in array of displacements are specified in bytes, rather than in
multiples of the oldtype extent.

MPI TYPE HINDEXED(count, array of blocklengths, array of displacements, oldtype, new-
type)

IN count number of blocks – also number of entries in
array of displacements and array of blocklengths (inte-
ger)

IN array of blocklengths number of elements in each block (array of nonnega-
tive integers)

IN array of displacements byte displacement of each block (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI Type hindexed(int count, int *array of blocklengths,
MPI Aint *array of displacements, MPI Datatype oldtype,
MPI Datatype *newtype)

MPI TYPE HINDEXED(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 69

INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

Assume that oldtype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent ex. Let B be the array of blocklength argument and D be the
array of displacements argument. The newly created datatype has a type map with n ·∑count−1

i=0 B[i] entries:

{(type0, disp0 + D[0]), ..., (typen−1, dispn−1 + D[0]), ...,

(type0, disp0 + D[0] + (B[0]− 1) · ex), ...,

(typen−1, dispn−1 + D[0] + (B[0]− 1) · ex), ...,

(type0, disp0 + D[count− 1]), ..., (typen−1, dispn−1 + D[count− 1]), ...,

(type0, disp0 + D[count− 1] + (B[count− 1]− 1) · ex), ...,

(typen−1, dispn−1 + D[count− 1] + (B[count− 1]− 1) · ex)}.

Struct MPI TYPE STRUCT is the most general type constructor. It further generalizes
the previous one in that it allows each block to consist of replications of different datatypes.

MPI TYPE STRUCT(count, array of blocklengths, array of displacements, array of types, new-
type)

IN count number of blocks (integer) – also number of entries
in arrays array of types, array of displacements and ar-

ray of blocklengths

IN array of blocklength number of elements in each block (array of integer)

IN array of displacements byte displacement of each block (array of integer)

IN array of types type of elements in each block (array of handles to
datatype objects)

OUT newtype new datatype (handle)

int MPI Type struct(int count, int *array of blocklengths,
MPI Aint *array of displacements, MPI Datatype *array of types,
MPI Datatype *newtype)

MPI TYPE STRUCT(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,
ARRAY OF TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),
ARRAY OF TYPES(*), NEWTYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

70 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Example 3.24 Let type1 have type map,

{(double, 0), (char, 8)},

with extent 16. Let B = (2, 1, 3), D = (0, 16, 26), and T = (MPI FLOAT, type1, MPI CHAR).
Then a call to MPI TYPE STRUCT(3, B, D, T, newtype) returns a datatype with type map,

{(float, 0), (float, 4), (double, 16), (char, 24), (char, 26), (char, 27), (char, 28)}.

That is, two copies of MPI FLOAT starting at 0, followed by one copy of type1 starting at
16, followed by three copies of MPI CHAR, starting at 26. (We assume that a float occupies
four bytes.)

In general, let T be the array of types argument, where T[i] is a handle to,

typemapi = {(typei
0, dispi

0), ..., (typei
ni−1, dispi

ni−1)},

with extent exi. Let B be the array of blocklength argument and D be the array of displacements
argument. Let c be the count argument. Then the newly created datatype has a type map
with

∑c−1
i=0 B[i] · ni entries:

{(type0
0, disp0

0 + D[0]), ..., (type0
n0

, disp0
n0

+ D[0]), ...,

(type0
0, disp0

0 + D[0] + (B[0]− 1) · ex0), ..., (type0
n0

, disp0
n0

+ D[0] + (B[0]− 1) · ex0), ...,

(typec−1
0 , dispc−1

0 + D[c− 1]), ..., (typec−1
nc−1−1, dispc−1

nc−1−1 + D[c− 1]), ...,

(typec−1
0 , dispc−1

0 + D[c− 1] + (B[c− 1]− 1) · exc−1), ...,

(typec−1
nc−1−1, dispc−1

nc−1−1 + D[c− 1] + (B[c− 1]− 1) · exc−1)}.

A call to MPI TYPE HINDEXED(count, B, D, oldtype, newtype) is equivalent to a call
to MPI TYPE STRUCT(count, B, D, T, newtype), where each entry of T is equal to oldtype.

3.12.2 Address and extent functions

The displacements in a general datatype are relative to some initial buffer address. Abso-
lute addresses can be substituted for these displacements: we treat them as displacements
relative to “address zero,” the start of the address space. This initial address zero is indi-
cated by the constant MPI BOTTOM. Thus, a datatype can specify the absolute address of
the entries in the communication buffer, in which case the buf argument is passed the value
MPI BOTTOM.

The address of a location in memory can be found by invoking the function
MPI ADDRESS.

MPI ADDRESS(location, address)

IN location location in caller memory (choice)

OUT address address of location (integer)

int MPI Address(void* location, MPI Aint *address)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 71

MPI ADDRESS(LOCATION, ADDRESS, IERROR)
<type> LOCATION(*)
INTEGER ADDRESS, IERROR

Returns the (byte) address of location.

Example 3.25 Using MPI ADDRESS for an array.

REAL A(100,100)
INTEGER I1, I2, DIFF
CALL MPI_ADDRESS(A(1,1), I1, IERROR)
CALL MPI_ADDRESS(A(10,10), I2, IERROR)
DIFF = I2 - I1

! The value of DIFF is 909*sizeofreal; the values of I1 and I2 are
! implementation dependent.

Advice to users. C users may be tempted to avoid the usage of MPI ADDRESS
and rely on the availability of the address operator &. Note, however, that & cast-
expression is a pointer, not an address. ANSI C does not require that the value of a
pointer (or the pointer cast to int) be the absolute address of the object pointed at —
although this is commonly the case. Furthermore, referencing may not have a unique
definition on machines with a segmented address space. The use of MPI ADDRESS
to “reference” C variables guarantees portability to such machines as well. (End of
advice to users.)

Advice to users. To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections “Problems
Due to Data Copying and Sequence Association,” and “A Problem with Register Op-
timization” in Section 10.2.2 of the MPI-2 Standard, pages 286 and 289. (End of
advice to users.)

The following auxiliary functions provide useful information on derived datatypes.

MPI TYPE EXTENT(datatype, extent)

IN datatype datatype (handle)

OUT extent datatype extent (integer)

int MPI Type extent(MPI Datatype datatype, MPI Aint *extent)

MPI TYPE EXTENT(DATATYPE, EXTENT, IERROR)
INTEGER DATATYPE, EXTENT, IERROR

Returns the extent of a datatype, where extent is as defined on page 73.

MPI TYPE SIZE(datatype, size)

IN datatype datatype (handle)

OUT size datatype size (integer)

int MPI Type size(MPI Datatype datatype, int *size)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

72 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI TYPE SIZE(DATATYPE, SIZE, IERROR)
INTEGER DATATYPE, SIZE, IERROR

MPI TYPE SIZE returns the total size, in bytes, of the entries in the type signature
associated with datatype; i.e., the total size of the data in a message that would be created
with this datatype. Entries that occur multiple times in the datatype are counted with
their multiplicity.

Advice to users. The MPI-1 Standard specifies that the output argument of
MPI TYPE SIZE in C is of type int. The MPI Forum considered proposals to change
this and decided to reiterate the original decision. (End of advice to users.)

3.12.3 Lower-bound and upper-bound markers

It is often convenient to define explicitly the lower bound and upper bound of a type map,
and override the definition given on page 73. This allows one to define a datatype that has
“holes” at its beginning or its end, or a datatype with entries that extend above the upper
bound or below the lower bound. Examples of such usage are provided in Sec. 3.12.7. Also,
the user may want to overide the alignment rules that are used to compute upper bounds
and extents. E.g., a C compiler may allow the user to overide default alignment rules for
some of the structures within a program. The user has to specify explicitly the bounds of
the datatypes that match these structures.

To achieve this, we add two additional “pseudo-datatypes,” MPI LB and MPI UB, that
can be used, respectively, to mark the lower bound or the upper bound of a datatype. These
pseudo-datatypes occupy no space (extent(MPI LB) = extent(MPI UB) = 0). They do not
affect the size or count of a datatype, and do not affect the content of a message created
with this datatype. However, they do affect the definition of the extent of a datatype and,
therefore, affect the outcome of a replication of this datatype by a datatype constructor.

Example 3.26 Let D = (-3, 0, 6); T = (MPI LB, MPI INT, MPI UB), and B = (1, 1, 1).
Then a call to MPI TYPE STRUCT(3, B, D, T, type1) creates a new datatype that has an
extent of 9 (from -3 to 5, 5 included), and contains an integer at displacement 0. This is
the datatype defined by the sequence {(lb, -3), (int, 0), (ub, 6)} . If this type is replicated
twice by a call to MPI TYPE CONTIGUOUS(2, type1, type2) then the newly created type
can be described by the sequence {(lb, -3), (int, 0), (int,9), (ub, 15)} . (An entry of type ub
can be deleted if there is another entry of type ub with a higher displacement; an entry of
type lb can be deleted if there is another entry of type lb with a lower displacement.)

In general, if

Typemap = {(type0, disp0), ..., (typen−1, dispn−1)},

then the lower bound of Typemap is defined to be

lb(Typemap) =

{
minj dispj if no entry has basic type lb
minj{dispj such that typej = lb} otherwise

Similarly, the upper bound of Typemap is defined to be

ub(Typemap) =

{
maxj dispj + sizeof(typej) + ε if no entry has basic type ub
maxj{dispj such that typej = ub} otherwise

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 73

Then

extent(Typemap) = ub(Typemap)− lb(Typemap)

If typei requires alignment to a byte address that is a multiple of ki, then ε is the least
nonnegative increment needed to round extent(Typemap) to the next multiple of maxi ki.

The formal definitions given for the various datatype constructors apply now, with the
amended definition of extent.

The two functions below can be used for finding the lower bound and the upper bound
of a datatype.

MPI TYPE LB(datatype, displacement)

IN datatype datatype (handle)

OUT displacement displacement of lower bound from origin, in bytes (in-
teger)

int MPI Type lb(MPI Datatype datatype, MPI Aint* displacement)

MPI TYPE LB(DATATYPE, DISPLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR

MPI TYPE UB(datatype, displacement)

IN datatype datatype (handle)

OUT displacement displacement of upper bound from origin, in bytes (in-
teger)

int MPI Type ub(MPI Datatype datatype, MPI Aint* displacement)

MPI TYPE UB(DATATYPE, DISPLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR

3.12.4 Commit and free

A datatype object has to be committed before it can be used in a communication. A
committed datatype can still be used as a argument in datatype constructors. There is no
need to commit basic datatypes. They are “pre-committed.”

MPI TYPE COMMIT(datatype)

INOUT datatype datatype that is committed (handle)

int MPI Type commit(MPI Datatype *datatype)

MPI TYPE COMMIT(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

74 CHAPTER 3. POINT-TO-POINT COMMUNICATION

The commit operation commits the datatype, that is, the formal description of a com-
munication buffer, not the content of that buffer. Thus, after a datatype has been commit-
ted, it can be repeatedly reused to communicate the changing content of a buffer or, indeed,
the content of different buffers, with different starting addresses.

Advice to implementors. The system may “compile” at commit time an internal
representation for the datatype that facilitates communication, e.g. change from a
compacted representation to a flat representation of the datatype, and select the most
convenient transfer mechanism. (End of advice to implementors.)

MPI TYPE FREE(datatype)

INOUT datatype datatype that is freed (handle)

int MPI Type free(MPI Datatype *datatype)

MPI TYPE FREE(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

Marks the datatype object associated with datatype for deallocation and sets datatype
to MPI DATATYPE NULL. Any communication that is currently using this datatype will com-
plete normally. Derived datatypes that were defined from the freed datatype are not af-
fected.

Example 3.27 The following code fragment gives examples of using MPI TYPE COMMIT.

INTEGER type1, type2
CALL MPI_TYPE_CONTIGUOUS(5, MPI_REAL, type1, ierr)

! new type object created
CALL MPI_TYPE_COMMIT(type1, ierr)

! now type1 can be used for communication
type2 = type1

! type2 can be used for communication
! (it is a handle to same object as type1)

CALL MPI_TYPE_VECTOR(3, 5, 4, MPI_REAL, type1, ierr)
! new uncommitted type object created

CALL MPI_TYPE_COMMIT(type1, ierr)
! now type1 can be used anew for communication

Freeing a datatype does not affect any other datatype that was built from the freed
datatype. The system behaves as if input datatype arguments to derived datatype con-
structors are passed by value.

Advice to implementors. The implementation may keep a reference count of active
communications that use the datatype, in order to decide when to free it. Also, one
may implement constructors of derived datatypes so that they keep pointers to their
datatype arguments, rather then copying them. In this case, one needs to keep track
of active datatype definition references in order to know when a datatype object can
be freed. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 75

3.12.5 Use of general datatypes in communication

Handles to derived datatypes can be passed to a communication call wherever a datatype
argument is required. A call of the form MPI SEND(buf, count, datatype , ...), where count >
1, is interpreted as if the call was passed a new datatype which is the concatenation of count
copies of datatype. Thus, MPI SEND(buf, count, datatype, dest, tag, comm) is equivalent to,

MPI_TYPE_CONTIGUOUS(count, datatype, newtype)
MPI_TYPE_COMMIT(newtype)
MPI_SEND(buf, 1, newtype, dest, tag, comm).

Similar statements apply to all other communication functions that have a count and
datatype argument.

Suppose that a send operation MPI SEND(buf, count, datatype, dest, tag, comm) is
executed, where datatype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

and extent extent. (Empty entries of “pseudo-type” MPI UB and MPI LB are not listed
in the type map, but they affect the value of extent.) The send operation sends n · count
entries, where entry i · n + j is at location addri,j = buf + extent · i + dispj and has type
typej , for i = 0, ..., count− 1 and j = 0, ..., n− 1. These entries need not be contiguous, nor
distinct; their order can be arbitrary.

The variable stored at address addri,j in the calling program should be of a type that
matches typej , where type matching is defined as in section 3.3.1. The message sent contains
n · count entries, where entry i · n + j has type typej .

Similarly, suppose that a receive operation MPI RECV(buf, count, datatype, source, tag,
comm, status) is executed, where datatype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)},

with extent extent. (Again, empty entries of “pseudo-type” MPI UB and MPI LB are not
listed in the type map, but they affect the value of extent.) This receive operation receives
n · count entries, where entry i · n + j is at location buf + extent · i + dispj and has type
typej . If the incoming message consists of k elements, then we must have k ≤ n · count; the
i · n + j-th element of the message should have a type that matches typej .

Type matching is defined according to the type signature of the corresponding datatypes,
that is, the sequence of basic type components. Type matching does not depend on some
aspects of the datatype definition, such as the displacements (layout in memory) or the
intermediate types used.

Example 3.28 This example shows that type matching is defined in terms of the basic
types that a derived type consists of.

...
CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, type2, ...)
CALL MPI_TYPE_CONTIGUOUS(4, MPI_REAL, type4, ...)
CALL MPI_TYPE_CONTIGUOUS(2, type2, type22, ...)
...
CALL MPI_SEND(a, 4, MPI_REAL, ...)
CALL MPI_SEND(a, 2, type2, ...)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

76 CHAPTER 3. POINT-TO-POINT COMMUNICATION

CALL MPI_SEND(a, 1, type22, ...)
CALL MPI_SEND(a, 1, type4, ...)
...
CALL MPI_RECV(a, 4, MPI_REAL, ...)
CALL MPI_RECV(a, 2, type2, ...)
CALL MPI_RECV(a, 1, type22, ...)
CALL MPI_RECV(a, 1, type4, ...)

Each of the sends matches any of the receives.

A datatype may specify overlapping entries. The use of such a datatype in a receive
operation is erroneous. (This is erroneous even if the actual message received is short enough
not to write any entry more than once.)

Suppose that MPI RECV(buf, count, datatype, dest, tag, comm, status) is executed,
where datatype has type map,

{(type0, disp0), ..., (typen−1, dispn−1)}.

The received message need not fill all the receive buffer, nor does it need to fill a number of
locations which is a multiple of n. Any number, k, of basic elements can be received, where
0 ≤ k ≤ count ·n. The number of basic elements received can be retrieved from status using
the query function MPI GET ELEMENTS.

MPI GET ELEMENTS(status, datatype, count)

IN status return status of receive operation (Status)

IN datatype datatype used by receive operation (handle)

OUT count number of received basic elements (integer)

int MPI Get elements(MPI Status *status, MPI Datatype datatype, int *count)

MPI GET ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERROR

The previously defined function, MPI GET COUNT (Sec. 3.2.5), has a different behav-
ior. It returns the number of “top-level entries” received, i.e. the number of “copies” of type
datatype. In the previous example, MPI GET COUNT may return any integer value k, where
0 ≤ k ≤ count. If MPI GET COUNT returns k, then the number of basic elements received
(and the value returned by
MPI GET ELEMENTS) is n ·k. If the number of basic elements received is not a multiple of
n, that is, if the receive operation has not received an integral number of datatype “copies,”
then MPI GET COUNT returns the value MPI UNDEFINED. The datatype argument should
match the argument provided by the receive call that set the status variable.

Example 3.29 Usage of MPI GET COUNT and MPI GET ELEMENT.

...
CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, Type2, ierr)
CALL MPI_TYPE_COMMIT(Type2, ierr)
...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 77

CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank.EQ.0) THEN

CALL MPI_SEND(a, 2, MPI_REAL, 1, 0, comm, ierr)
CALL MPI_SEND(a, 3, MPI_REAL, 1, 0, comm, ierr)

ELSE
CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)
CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=1
CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=2
CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)
CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=MPI_UNDEFINED
CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=3

END IF

The function MPI GET ELEMENTS can also be used after a probe to find the number
of elements in the probed message. Note that the two functions MPI GET COUNT and
MPI GET ELEMENTS return the same values when they are used with basic datatypes.

Rationale. The extension given to the definition of MPI GET COUNT seems natural:
one would expect this function to return the value of the count argument, when
the receive buffer is filled. Sometimes datatype represents a basic unit of data one
wants to transfer, for example, a record in an array of records (structures). One
should be able to find out how many components were received without bothering to
divide by the number of elements in each component. However, on other occasions,
datatype is used to define a complex layout of data in the receiver memory, and does
not represent a basic unit of data for transfers. In such cases, one needs to use the
function MPI GET ELEMENTS. (End of rationale.)

Advice to implementors. The definition implies that a receive cannot change the
value of storage outside the entries defined to compose the communication buffer. In
particular, the definition implies that padding space in a structure should not be mod-
ified when such a structure is copied from one process to another. This would prevent
the obvious optimization of copying the structure, together with the padding, as one
contiguous block. The implementation is free to do this optimization when it does not
impact the outcome of the computation. The user can “force” this optimization by
explicitly including padding as part of the message. (End of advice to implementors.)

3.12.6 Correct use of addresses

Successively declared variables in C or Fortran are not necessarily stored at contiguous
locations. Thus, care must be exercised that displacements do not cross from one variable
to another. Also, in machines with a segmented address space, addresses are not unique
and address arithmetic has some peculiar properties. Thus, the use of addresses, that is,
displacements relative to the start address MPI BOTTOM, has to be restricted.

Variables belong to the same sequential storage if they belong to the same array, to
the same COMMON block in Fortran, or to the same structure in C. Valid addresses are
defined recursively as follows:

1. The function MPI ADDRESS returns a valid address, when passed as argument a
variable of the calling program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

78 CHAPTER 3. POINT-TO-POINT COMMUNICATION

2. The buf argument of a communication function evaluates to a valid address, when
passed as argument a variable of the calling program.

3. If v is a valid address, and i is an integer, then v+i is a valid address, provided v and
v+i are in the same sequential storage.

4. If v is a valid address then MPI BOTTOM + v is a valid address.

A correct program uses only valid addresses to identify the locations of entries in
communication buffers. Furthermore, if u and v are two valid addresses, then the (integer)
difference u - v can be computed only if both u and v are in the same sequential storage.
No other arithmetic operations can be meaningfully executed on addresses.

The rules above impose no constraints on the use of derived datatypes, as long as
they are used to define a communication buffer that is wholly contained within the same
sequential storage. However, the construction of a communication buffer that contains
variables that are not within the same sequential storage must obey certain restrictions.
Basically, a communication buffer with variables that are not within the same sequential
storage can be used only by specifying in the communication call buf = MPI BOTTOM,
count = 1, and using a datatype argument where all displacements are valid (absolute)
addresses.

Advice to users. It is not expected that MPI implementations will be able to detect
erroneous, “out of bound” displacements — unless those overflow the user address
space — since the MPI call may not know the extent of the arrays and records in the
host program. (End of advice to users.)

Advice to implementors. There is no need to distinguish (absolute) addresses and
(relative) displacements on a machine with contiguous address space: MPI BOTTOM is
zero, and both addresses and displacements are integers. On machines where the dis-
tinction is required, addresses are recognized as expressions that involve MPI BOTTOM.
(End of advice to implementors.)

Note that in Fortran, Fortran INTEGERs may be too small to contain an address
(e.g., 32 bit INTEGERs on a machine with 64bit pointers). Because of this, in Fortran,
implementations may restrict the use of absolute addresses to only part of the process
memory, and restrict the use of relative displacements to subranges of the process memory
where they are constrained by the size of Fortran INTEGERs.

3.12.7 Examples

The following examples illustrate the use of derived datatypes.

Example 3.30 Send and receive a section of a 3D array.

REAL a(100,100,100), e(9,9,9)
INTEGER oneslice, twoslice, threeslice, sizeofreal, myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

C extract the section a(1:17:2, 3:11, 2:10)
C and store it in e(:,:,:).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 79

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_EXTENT(MPI_REAL, sizeofreal, ierr)

C create datatype for a 1D section
CALL MPI_TYPE_VECTOR(9, 1, 2, MPI_REAL, oneslice, ierr)

C create datatype for a 2D section
CALL MPI_TYPE_HVECTOR(9, 1, 100*sizeofreal, oneslice, twoslice, ierr)

C create datatype for the entire section
CALL MPI_TYPE_HVECTOR(9, 1, 100*100*sizeofreal, twoslice,

threeslice, ierr)

CALL MPI_TYPE_COMMIT(threeslice, ierr)
CALL MPI_SENDRECV(a(1,3,2), 1, threeslice, myrank, 0, e, 9*9*9,

MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 3.31 Copy the (strictly) lower triangular part of a matrix.

REAL a(100,100), b(100,100)
INTEGER disp(100), blocklen(100), ltype, myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

C copy lower triangular part of array a
C onto lower triangular part of array b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C compute start and size of each column
DO i=1, 100
disp(i) = 100*(i-1) + i
block(i) = 100-i

END DO

C create datatype for lower triangular part
CALL MPI_TYPE_INDEXED(100, block, disp, MPI_REAL, ltype, ierr)

CALL MPI_TYPE_COMMIT(ltype, ierr)
CALL MPI_SENDRECV(a, 1, ltype, myrank, 0, b, 1,

ltype, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 3.32 Transpose a matrix.

REAL a(100,100), b(100,100)
INTEGER row, xpose, sizeofreal, myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

80 CHAPTER 3. POINT-TO-POINT COMMUNICATION

C transpose matrix a onto b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_EXTENT(MPI_REAL, sizeofreal, ierr)

C create datatype for one row
CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, row, ierr)

C create datatype for matrix in row-major order
CALL MPI_TYPE_HVECTOR(100, 1, sizeofreal, row, xpose, ierr)

CALL MPI_TYPE_COMMIT(xpose, ierr)

C send matrix in row-major order and receive in column major order
CALL MPI_SENDRECV(a, 1, xpose, myrank, 0, b, 100*100,

MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 3.33 Another approach to the transpose problem:

REAL a(100,100), b(100,100)
INTEGER disp(2), blocklen(2), type(2), row, row1, sizeofreal
INTEGER myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C transpose matrix a onto b

CALL MPI_TYPE_EXTENT(MPI_REAL, sizeofreal, ierr)

C create datatype for one row
CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, row, ierr)

C create datatype for one row, with the extent of one real number
disp(1) = 0
disp(2) = sizeofreal
type(1) = row
type(2) = MPI_UB
blocklen(1) = 1
blocklen(2) = 1
CALL MPI_TYPE_STRUCT(2, blocklen, disp, type, row1, ierr)

CALL MPI_TYPE_COMMIT(row1, ierr)

C send 100 rows and receive in column major order
CALL MPI_SENDRECV(a, 100, row1, myrank, 0, b, 100*100,

MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 81

Example 3.34 We manipulate an array of structures.

struct Partstruct
{
int class; /* particle class */
double d[6]; /* particle coordinates */
char b[7]; /* some additional information */
};

struct Partstruct particle[1000];

int i, dest, rank;
MPI_Comm comm;

/* build datatype describing structure */

MPI_Datatype Particletype;
MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};
int blocklen[3] = {1, 6, 7};
MPI_Aint disp[3];
MPI_Aint base;

/* compute displacements of structure components */

MPI_Address(particle, disp);
MPI_Address(particle[0].d, disp+1);
MPI_Address(particle[0].b, disp+2);
base = disp[0];
for (i=0; i <3; i++) disp[i] -= base;

MPI_Type_struct(3, blocklen, disp, type, &Particletype);

/* If compiler does padding in mysterious ways,
the following may be safer */

MPI_Datatype type1[4] = {MPI_INT, MPI_DOUBLE, MPI_CHAR, MPI_UB};
int blocklen1[4] = {1, 6, 7, 1};
MPI_Aint disp1[4];

/* compute displacements of structure components */

MPI_Address(particle, disp1);
MPI_Address(particle[0].d, disp1+1);
MPI_Address(particle[0].b, disp1+2);
MPI_Address(particle+1, disp1+3);
base = disp1[0];

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

82 CHAPTER 3. POINT-TO-POINT COMMUNICATION

for (i=0; i <4; i++) disp1[i] -= base;

/* build datatype describing structure */

MPI_Type_struct(4, blocklen1, disp1, type1, &Particletype);

/* 4.1:
send the entire array */

MPI_Type_commit(&Particletype);
MPI_Send(particle, 1000, Particletype, dest, tag, comm);

/* 4.2:
send only the entries of class zero particles,
preceded by the number of such entries */

MPI_Datatype Zparticles; /* datatype describing all particles
with class zero (needs to be recomputed
if classes change) */

MPI_Datatype Ztype;

MPI_Aint zdisp[1000];
int zblock[1000], j, k;
int zzblock[2] = {1,1};
MPI_Aint zzdisp[2];
MPI_Datatype zztype[2];

/* compute displacements of class zero particles */
j = 0;
for(i=0; i < 1000; i++)
if (particle[i].class==0)

{
zdisp[j] = i;
zblock[j] = 1;
j++;
}

/* create datatype for class zero particles */
MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);

/* prepend particle count */
MPI_Address(&j, zzdisp);
MPI_Address(particle, zzdisp+1);
zztype[0] = MPI_INT;
zztype[1] = Zparticles;
MPI_Type_struct(2, zzblock, zzdisp, zztype, &Ztype);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 83

MPI_Type_commit(&Ztype);
MPI_Send(MPI_BOTTOM, 1, Ztype, dest, tag, comm);

/* A probably more efficient way of defining Zparticles */

/* consecutive particles with index zero are handled as one block */
j=0;
for (i=0; i < 1000; i++)
if (particle[i].index==0)
{
for (k=i+1; (k < 1000)&&(particle[k].index == 0) ; k++);
zdisp[j] = i;
zblock[j] = k-i;
j++;
i = k;
}

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);

/* 4.3:
send the first two coordinates of all entries */

MPI_Datatype Allpairs; /* datatype for all pairs of coordinates */

MPI_Aint sizeofentry;

MPI_Type_extent(Particletype, &sizeofentry);

/* sizeofentry can also be computed by subtracting the address
of particle[0] from the address of particle[1] */

MPI_Type_hvector(1000, 2, sizeofentry, MPI_DOUBLE, &Allpairs);
MPI_Type_commit(&Allpairs);
MPI_Send(particle[0].d, 1, Allpairs, dest, tag, comm);

/* an alternative solution to 4.3 */

MPI_Datatype Onepair; /* datatype for one pair of coordinates, with
the extent of one particle entry */

MPI_Aint disp2[3];
MPI_Datatype type2[3] = {MPI_LB, MPI_DOUBLE, MPI_UB};
int blocklen2[3] = {1, 2, 1};

MPI_Address(particle, disp2);
MPI_Address(particle[0].d, disp2+1);
MPI_Address(particle+1, disp2+2);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

84 CHAPTER 3. POINT-TO-POINT COMMUNICATION

base = disp2[0];
for (i=0; i<2; i++) disp2[i] -= base;

MPI_Type_struct(3, blocklen2, disp2, type2, &Onepair);
MPI_Type_commit(&Onepair);
MPI_Send(particle[0].d, 1000, Onepair, dest, tag, comm);

Example 3.35 The same manipulations as in the previous example, but use absolute ad-
dresses in datatypes.

struct Partstruct
{
int class;
double d[6];
char b[7];
};

struct Partstruct particle[1000];

/* build datatype describing first array entry */

MPI_Datatype Particletype;
MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};
int block[3] = {1, 6, 7};
MPI_Aint disp[3];

MPI_Address(particle, disp);
MPI_Address(particle[0].d, disp+1);
MPI_Address(particle[0].b, disp+2);
MPI_Type_struct(3, block, disp, type, &Particletype);

/* Particletype describes first array entry -- using absolute
addresses */

/* 5.1:
send the entire array */

MPI_Type_commit(&Particletype);
MPI_Send(MPI_BOTTOM, 1000, Particletype, dest, tag, comm);

/* 5.2:
send the entries of class zero,
preceded by the number of such entries */

MPI_Datatype Zparticles, Ztype;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.12. DERIVED DATATYPES 85

MPI_Aint zdisp[1000]
int zblock[1000], i, j, k;
int zzblock[2] = {1,1};
MPI_Datatype zztype[2];
MPI_Aint zzdisp[2];

j=0;
for (i=0; i < 1000; i++)
if (particle[i].index==0)
{
for (k=i+1; (k < 1000)&&(particle[k].index = 0) ; k++);
zdisp[j] = i;
zblock[j] = k-i;
j++;
i = k;
}

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);
/* Zparticles describe particles with class zero, using

their absolute addresses*/

/* prepend particle count */
MPI_Address(&j, zzdisp);
zzdisp[1] = MPI_BOTTOM;
zztype[0] = MPI_INT;
zztype[1] = Zparticles;
MPI_Type_struct(2, zzblock, zzdisp, zztype, &Ztype);

MPI_Type_commit(&Ztype);
MPI_Send(MPI_BOTTOM, 1, Ztype, dest, tag, comm);

Example 3.36 Handling of unions.

union {
int ival;
float fval;

} u[1000]

int utype;

/* All entries of u have identical type; variable
utype keeps track of their current type */

MPI_Datatype type[2];
int blocklen[2] = {1,1};
MPI_Aint disp[2];
MPI_Datatype mpi_utype[2];
MPI_Aint i,j;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

86 CHAPTER 3. POINT-TO-POINT COMMUNICATION

/* compute an MPI datatype for each possible union type;
assume values are left-aligned in union storage. */

MPI_Address(u, &i);
MPI_Address(u+1, &j);
disp[0] = 0; disp[1] = j-i;
type[1] = MPI_UB;

type[0] = MPI_INT;
MPI_Type_struct(2, blocklen, disp, type, &mpi_utype[0]);

type[0] = MPI_FLOAT;
MPI_Type_struct(2, blocklen, disp, type, &mpi_utype[1]);

for(i=0; i<2; i++) MPI_Type_commit(&mpi_utype[i]);

/* actual communication */

MPI_Send(u, 1000, mpi_utype[utype], dest, tag, comm);

3.13 Pack and unpack

Some existing communication libraries provide pack/unpack functions for sending noncon-
tiguous data. In these, the user explicitly packs data into a contiguous buffer before sending
it, and unpacks it from a contiguous buffer after receiving it. Derived datatypes, which are
described in Section 3.12, allow one, in most cases, to avoid explicit packing and unpacking.
The user specifies the layout of the data to be sent or received, and the communication
library directly accesses a noncontiguous buffer. The pack/unpack routines are provided
for compatibility with previous libraries. Also, they provide some functionality that is not
otherwise available in MPI. For instance, a message can be received in several parts, where
the receive operation done on a later part may depend on the content of a former part.
Another use is that outgoing messages may be explicitly buffered in user supplied space,
thus overriding the system buffering policy. Finally, the availability of pack and unpack
operations facilitates the development of additional communication libraries layered on top
of MPI.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.13. PACK AND UNPACK 87

MPI PACK(inbuf, incount, datatype, outbuf, outsize, position, comm)

IN inbuf input buffer start (choice)

IN incount number of input data items (integer)

IN datatype datatype of each input data item (handle)

OUT outbuf output buffer start (choice)

IN outsize output buffer size, in bytes (integer)

INOUT position current position in buffer, in bytes (integer)

IN comm communicator for packed message (handle)

int MPI Pack(void* inbuf, int incount, MPI Datatype datatype, void *outbuf,
int outsize, int *position, MPI Comm comm)

MPI PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
<type> INBUF(*), OUTBUF(*)
INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

Packs the message in the send buffer specified by inbuf, incount, datatype into the buffer
space specified by outbuf and outsize. The input buffer can be any communication buffer
allowed in MPI SEND. The output buffer is a contiguous storage area containing outsize
bytes, starting at the address outbuf (length is counted in bytes, not elements, as if it were
a communication buffer for a message of type MPI PACKED).

The input value of position is the first location in the output buffer to be used for
packing. position is incremented by the size of the packed message, and the output value
of position is the first location in the output buffer following the locations occupied by the
packed message. The comm argument is the communicator that will be subsequently used
for sending the packed message.

MPI UNPACK(inbuf, insize, position, outbuf, outcount, datatype, comm)

IN inbuf input buffer start (choice)

IN insize size of input buffer, in bytes (integer)

INOUT position current position in bytes (integer)

OUT outbuf output buffer start (choice)

IN outcount number of items to be unpacked (integer)

IN datatype datatype of each output data item (handle)

IN comm communicator for packed message (handle)

int MPI Unpack(void* inbuf, int insize, int *position, void *outbuf,
int outcount, MPI Datatype datatype, MPI Comm comm)

MPI UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,
IERROR)

<type> INBUF(*), OUTBUF(*)
INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

88 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Unpacks a message into the receive buffer specified by outbuf, outcount, datatype from
the buffer space specified by inbuf and insize. The output buffer can be any communication
buffer allowed in MPI RECV. The input buffer is a contiguous storage area containing insize
bytes, starting at address inbuf. The input value of position is the first location in the input
buffer occupied by the packed message. position is incremented by the size of the packed
message, so that the output value of position is the first location in the input buffer after
the locations occupied by the message that was unpacked. comm is the communicator used
to receive the packed message.

Advice to users. Note the difference between MPI RECV and MPI UNPACK: in
MPI RECV, the count argument specifies the maximum number of items that can
be received. The actual number of items received is determined by the length of
the incoming message. In MPI UNPACK, the count argument specifies the actual
number of items that are unpacked; the “size” of the corresponding message is the
increment in position. The reason for this change is that the “incoming message size”
is not predetermined since the user decides how much to unpack; nor is it easy to
determine the “message size” from the number of items to be unpacked. In fact, in a
heterogeneous system, this number may not be determined a priori. (End of advice
to users.)

To understand the behavior of pack and unpack, it is convenient to think of the data
part of a message as being the sequence obtained by concatenating the successive values sent
in that message. The pack operation stores this sequence in the buffer space, as if sending
the message to that buffer. The unpack operation retrieves this sequence from buffer space,
as if receiving a message from that buffer. (It is helpful to think of internal Fortran files or
sscanf in C, for a similar function.)

Several messages can be successively packed into one packing unit. This is effected
by several successive related calls to MPI PACK, where the first call provides position = 0,
and each successive call inputs the value of position that was output by the previous call,
and the same values for outbuf, outcount and comm. This packing unit now contains the
equivalent information that would have been stored in a message by one send call with a
send buffer that is the “concatenation” of the individual send buffers.

A packing unit can be sent using type MPI PACKED. Any point to point or collective
communication function can be used to move the sequence of bytes that forms the packing
unit from one process to another. This packing unit can now be received using any receive
operation, with any datatype: the type matching rules are relaxed for messages sent with
type MPI PACKED.

A message sent with any type (including MPI PACKED) can be received using the type
MPI PACKED. Such a message can then be unpacked by calls to MPI UNPACK.

A packing unit (or a message created by a regular, “typed” send) can be unpacked
into several successive messages. This is effected by several successive related calls to
MPI UNPACK, where the first call provides position = 0, and each successive call inputs
the value of position that was output by the previous call, and the same values for inbuf,
insize and comm.

The concatenation of two packing units is not necessarily a packing unit; nor is a
substring of a packing unit necessarily a packing unit. Thus, one cannot concatenate two
packing units and then unpack the result as one packing unit; nor can one unpack a substring
of a packing unit as a separate packing unit. Each packing unit, that was created by a related

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.13. PACK AND UNPACK 89

sequence of pack calls, or by a regular send, must be unpacked as a unit, by a sequence of
related unpack calls.

Rationale. The restriction on “atomic” packing and unpacking of packing units
allows the implementation to add at the head of packing units additional information,
such as a description of the sender architecture (to be used for type conversion, in a
heterogeneous environment) (End of rationale.)

The following call allows the user to find out how much space is needed to pack a
message and, thus, manage space allocation for buffers.

MPI PACK SIZE(incount, datatype, comm, size)

IN incount count argument to packing call (integer)

IN datatype datatype argument to packing call (handle)

IN comm communicator argument to packing call (handle)

OUT size upper bound on size of packed message, in bytes (in-
teger)

int MPI Pack size(int incount, MPI Datatype datatype, MPI Comm comm,
int *size)

MPI PACK SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

A call to MPI PACK SIZE(incount, datatype, comm, size) returns in size an upper bound
on the increment in position that is effected by a call to MPI PACK(inbuf, incount, datatype,
outbuf, outcount, position, comm).

Rationale. The call returns an upper bound, rather than an exact bound, since the
exact amount of space needed to pack the message may depend on the context (e.g.,
first message packed in a packing unit may take more space). (End of rationale.)

Example 3.37 An example using MPI PACK.

int position, i, j, a[2];
char buff[1000];

....

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0)
{

/ * SENDER CODE */

position = 0;
MPI_Pack(&i, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);
MPI_Pack(&j, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);
MPI_Send(buff, position, MPI_PACKED, 1, 0, MPI_COMM_WORLD);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

90 CHAPTER 3. POINT-TO-POINT COMMUNICATION

}
else /* RECEIVER CODE */
MPI_Recv(a, 2, MPI_INT, 0, 0, MPI_COMM_WORLD)

}

Example 3.38 A elaborate example.

int position, i;
float a[1000];
char buff[1000]

....

MPI_Comm_rank(MPI_Comm_world, &myrank);
if (myrank == 0)
{
/ * SENDER CODE */

int len[2];
MPI_Aint disp[2];
MPI_Datatype type[2], newtype;

/* build datatype for i followed by a[0]...a[i-1] */

len[0] = 1;
len[1] = i;
MPI_Address(&i, disp);
MPI_Address(a, disp+1);
type[0] = MPI_INT;
type[1] = MPI_FLOAT;
MPI_Type_struct(2, len, disp, type, &newtype);
MPI_Type_commit(&newtype);

/* Pack i followed by a[0]...a[i-1]*/

position = 0;
MPI_Pack(MPI_BOTTOM, 1, newtype, buff, 1000, &position, MPI_COMM_WORLD);

/* Send */

MPI_Send(buff, position, MPI_PACKED, 1, 0,
MPI_COMM_WORLD)

/* *****
One can replace the last three lines with
MPI_Send(MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);
***** */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.13. PACK AND UNPACK 91

}
else /* myrank == 1 */
{

/* RECEIVER CODE */

MPI_Status status;

/* Receive */

MPI_Recv(buff, 1000, MPI_PACKED, 0, 0, &status);

/* Unpack i */

position = 0;
MPI_Unpack(buff, 1000, &position, &i, 1, MPI_INT, MPI_COMM_WORLD);

/* Unpack a[0]...a[i-1] */
MPI_Unpack(buff, 1000, &position, a, i, MPI_FLOAT, MPI_COMM_WORLD);
}

Example 3.39 Each process sends a count, followed by count characters to the root; the
root concatenate all characters into one string.

int count, gsize, counts[64], totalcount, k1, k2, k,
displs[64], position, concat_pos;

char chr[100], *lbuf, *rbuf, *cbuf;
...
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);

/* allocate local pack buffer */
MPI_Pack_size(1, MPI_INT, comm, &k1);
MPI_Pack_size(count, MPI_CHAR, comm, &k2);
k = k1+k2;
lbuf = (char *)malloc(k);

/* pack count, followed by count characters */
position = 0;
MPI_Pack(&count, 1, MPI_INT, lbuf, k, &position, comm);
MPI_Pack(chr, count, MPI_CHAR, lbuf, k, &position, comm);

if (myrank != root) {
/* gather at root sizes of all packed messages */

MPI_Gather(&position, 1, MPI_INT, NULL, NULL,
NULL, root, comm);

/* gather at root packed messages */
MPI_Gatherv(&buf, position, MPI_PACKED, NULL,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

92 CHAPTER 3. POINT-TO-POINT COMMUNICATION

NULL, NULL, NULL, root, comm);

} else { /* root code */
/* gather sizes of all packed messages */

MPI_Gather(&position, 1, MPI_INT, counts, 1,
MPI_INT, root, comm);

/* gather all packed messages */
displs[0] = 0;
for (i=1; i < gsize; i++)
displs[i] = displs[i-1] + counts[i-1];

totalcount = dipls[gsize-1] + counts[gsize-1];
rbuf = (char *)malloc(totalcount);
cbuf = (char *)malloc(totalcount);
MPI_Gatherv(lbuf, position, MPI_PACKED, rbuf,

counts, displs, MPI_PACKED, root, comm);

/* unpack all messages and concatenate strings */
concat_pos = 0;
for (i=0; i < gsize; i++) {

position = 0;
MPI_Unpack(rbuf+displs[i], totalcount-displs[i],

&position, &count, 1, MPI_INT, comm);
MPI_Unpack(rbuf+displs[i], totalcount-displs[i],

&position, cbuf+concat_pos, count, MPI_CHAR, comm);
concat_pos += count;

}
cbuf[concat_pos] = ‘\0’;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 4

Collective Communication

4.1 Introduction and Overview

Collective communication is defined as communication that involves a group of processes.
The functions of this type provided by MPI are the following:

• Barrier synchronization across all group members (Sec. 4.3).

• Broadcast from one member to all members of a group (Sec. 4.4). This is shown in
figure 4.1.

• Gather data from all group members to one member (Sec. 4.5). This is shown in
figure 4.1.

• Scatter data from one member to all members of a group (Sec. 4.6). This is shown
in figure 4.1.

• A variation on Gather where all members of the group receive the result (Sec. 4.7).
This is shown as “allgather” in figure 4.1.

• Scatter/Gather data from all members to all members of a group (also called complete
exchange or all-to-all) (Sec. 4.8). This is shown as “alltoall” in figure 4.1.

• Global reduction operations such as sum, max, min, or user-defined functions, where
the result is returned to all group members and a variation where the result is returned
to only one member (Sec. 4.9).

• A combined reduction and scatter operation (Sec. 4.10).

• Scan across all members of a group (also called prefix) (Sec. 4.11).

A collective operation is executed by having all processes in the group call the com-
munication routine, with matching arguments. The syntax and semantics of the collective
operations are defined to be consistent with the syntax and semantics of the point-to-point
operations. Thus, general datatypes are allowed and must match between sending and re-
ceiving processes as specified in Chapter 3. One of the key arguments is a communicator
that defines the group of participating processes and provides a context for the operation.
Several collective routines such as broadcast and gather have a single originating or receiv-
ing process. Such processes are called the root. Some arguments in the collective functions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

94 CHAPTER 4. COLLECTIVE COMMUNICATION

A0 A1 A2 A3 A4 A5 scatter

gather

A0

A1

A2

A3

A4

A5

A0 A1 A2 A3 A4 A5

B0 B1 B2 B3 B4 B5

C0 C1 C2 C3 C4 C5

D0 D1 D2 D3 D4 D5

E0 E1 E2 E3 E4 E5

F0 F1 F2 F3 F4 F5

A0 B0 C0 D0 E0 F0

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

alltoall

A0

B0

C0

D0

E0

F0

allgather

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0

data

broadcast
pr

oc
es

se
s

A0

A0

A0

A0

A0

A0

Figure 4.1: Collective move functions illustrated for a group of six processes. In each case,
each row of boxes represents data locations in one process. Thus, in the broadcast, initially
just the first process contains the data A0, but after the broadcast all processes contain it.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. INTRODUCTION AND OVERVIEW 95

are specified as “significant only at root,” and are ignored for all participants except the
root. The reader is referred to Chapter 3 for information concerning communication buffers,
general datatypes and type matching rules, and to Chapter 5 for information on how to
define groups and create communicators.

The type-matching conditions for the collective operations are more strict than the cor-
responding conditions between sender and receiver in point-to-point. Namely, for collective
operations, the amount of data sent must exactly match the amount of data specified by
the receiver. Distinct type maps (the layout in memory, see Sec. 3.12) between sender and
receiver are still allowed.

Collective routine calls can (but are not required to) return as soon as their participa-
tion in the collective communication is complete. The completion of a call indicates that the
caller is now free to access locations in the communication buffer. It does not indicate that
other processes in the group have completed or even started the operation (unless otherwise
indicated in the description of the operation). Thus, a collective communication call may,
or may not, have the effect of synchronizing all calling processes. This statement excludes,
of course, the barrier function.

Collective communication calls may use the same communicators as point-to-point
communication; MPI guarantees that messages generated on behalf of collective communi-
cation calls will not be confused with messages generated by point-to-point communication.
A more detailed discussion of correct use of collective routines is found in Sec. 4.12.

Rationale. The equal-data restriction (on type matching) was made so as to avoid
the complexity of providing a facility analogous to the status argument of MPI RECV
for discovering the amount of data sent. Some of the collective routines would require
an array of status values.

The statements about synchronization are made so as to allow a variety of implemen-
tations of the collective functions.

The collective operations do not accept a message tag argument. If future revisions of
MPI define non-blocking collective functions, then tags (or a similar mechanism) will
need to be added so as to allow the dis-ambiguation of multiple, pending, collective
operations. (End of rationale.)

Advice to users. It is dangerous to rely on synchronization side-effects of the col-
lective operations for program correctness. For example, even though a particular
implementation may provide a broadcast routine with a side-effect of synchroniza-
tion, the standard does not require this, and a program that relies on this will not be
portable.

On the other hand, a correct, portable program must allow for the fact that a collective
call may be synchronizing. Though one cannot rely on any synchronization side-effect,
one must program so as to allow it. These issues are discussed further in Sec. 4.12.
(End of advice to users.)

Advice to implementors. While vendors may write optimized collective routines
matched to their architectures, a complete library of the collective communication
routines can be written entirely using the MPI point-to-point communication func-
tions and a few auxiliary functions. If implementing on top of point-to-point, a hidden,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

96 CHAPTER 4. COLLECTIVE COMMUNICATION

special communicator must be created for the collective operation so as to avoid inter-
ference with any on-going point-to-point communication at the time of the collective
call. This is discussed further in Sec. 4.12. (End of advice to implementors.)

4.2 Communicator argument

The key concept of the collective functions is to have a “group” of participating processes.
The routines do not have a group identifier as an explicit argument. Instead, there is a com-
municator argument. For the purposes of this chapter, a communicator can be thought of
as a group identifier linked with a context. An inter-communicator, that is, a communicator
that spans two groups, is not allowed as an argument to a collective function.

4.3 Barrier synchronization

MPI BARRIER(comm)

IN comm communicator (handle)

int MPI Barrier(MPI Comm comm)

MPI BARRIER(COMM, IERROR)
INTEGER COMM, IERROR

MPI BARRIER blocks the caller until all group members have called it. The call returns
at any process only after all group members have entered the call.

4.4 Broadcast

MPI BCAST(buffer, count, datatype, root, comm)

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer (integer)

IN datatype data type of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

int MPI Bcast(void* buffer, int count, MPI Datatype datatype, int root,
MPI Comm comm)

MPI BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI BCAST broadcasts a message from the process with rank root to all processes of
the group, itself included. It is called by all members of group using the same arguments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. GATHER 97

for comm, root. On return, the contents of root’s communication buffer has been copied to
all processes.

General, derived datatypes are allowed for datatype. The type signature of count,
datatype on any process must be equal to the type signature of count, datatype at the root.
This implies that the amount of data sent must be equal to the amount received, pairwise
between each process and the root. MPI BCAST and all other data-movement collective
routines make this restriction. Distinct type maps between sender and receiver are still
allowed.

4.4.1 Example using MPI BCAST

Example 4.1 Broadcast 100 ints from process 0 to every process in the group.

MPI_Comm comm;
int array[100];
int root=0;
...
MPI_Bcast(array, 100, MPI_INT, root, comm);

As in many of our example code fragments, we assume that some of the variables (such as
comm in the above) have been assigned appropriate values.

4.5 Gather

MPI GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at
root)

IN recvcount number of elements for any single receive (integer, sig-
nificant only at root)

IN recvtype data type of recv buffer elements (significant only at
root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

int MPI Gather(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int recvcount, MPI Datatype recvtype, int root,
MPI Comm comm)

MPI GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

98 CHAPTER 4. COLLECTIVE COMMUNICATION

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

Each process (root process included) sends the contents of its send buffer to the root
process. The root process receives the messages and stores them in rank order. The outcome
is as if each of the n processes in the group (including the root process) had executed a call
to

MPI Send(sendbuf, sendcount, sendtype, root, ...),

and the root had executed n calls to

MPI Recv(recvbuf + i · recvcount · extent(recvtype), recvcount, recvtype, i, ...),

where extent(recvtype) is the type extent obtained from a call to MPI Type extent().
An alternative description is that the n messages sent by the processes in the group

are concatenated in rank order, and the resulting message is received by the root as if by a
call to MPI RECV(recvbuf, recvcount·n, recvtype, ...).

The receive buffer is ignored for all non-root processes.
General, derived datatypes are allowed for both sendtype and recvtype. The type sig-

nature of sendcount, sendtype on process i must be equal to the type signature of recvcount,
recvtype at the root. This implies that the amount of data sent must be equal to the amount
of data received, pairwise between each process and the root. Distinct type maps between
sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments sendbuf, sendcount, sendtype, root, comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be
written more than once. Such a call is erroneous.

Note that the recvcount argument at the root indicates the number of items it receives
from each process, not the total number of items it receives.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. GATHER 99

MPI GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,
comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at
root)

IN recvcounts integer array (of length group size) containing the num-
ber of elements that are received from each process
(significant only at root)

IN displs integer array (of length group size). Entry i specifies
the displacement relative to recvbuf at which to place
the incoming data from process i (significant only at
root)

IN recvtype data type of recv buffer elements (significant only at
root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

int MPI Gatherv(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI Datatype recvtype, int root, MPI Comm comm)

MPI GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
COMM, IERROR

MPI GATHERV extends the functionality of MPI GATHER by allowing a varying count
of data from each process, since recvcounts is now an array. It also allows more flexibility
as to where the data is placed on the root, by providing the new argument, displs.

The outcome is as if each process, including the root process, sends a message to the
root,

MPI Send(sendbuf, sendcount, sendtype, root, ...),

and the root executes n receives,

MPI Recv(recvbuf + displs[i] · extent(recvtype), recvcounts[i], recvtype, i, ...).

Messages are placed in the receive buffer of the root process in rank order, that is, the
data sent from process j is placed in the jth portion of the receive buffer recvbuf on process
root. The jth portion of recvbuf begins at offset displs[j] elements (in terms of recvtype) into
recvbuf.

The receive buffer is ignored for all non-root processes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

100 CHAPTER 4. COLLECTIVE COMMUNICATION

100 100 100

100 100

all processes

100

rbuf

at root

Figure 4.2: The root process gathers 100 ints from each process in the group.

The type signature implied by sendcount, sendtype on process i must be equal to the
type signature implied by recvcounts[i], recvtype at the root. This implies that the amount
of data sent must be equal to the amount of data received, pairwise between each process
and the root. Distinct type maps between sender and receiver are still allowed, as illustrated
in Example 4.6.

All arguments to the function are significant on process root, while on other processes,
only arguments sendbuf, sendcount, sendtype, root, comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on
the root to be written more than once. Such a call is erroneous.

4.5.1 Examples using MPI GATHER, MPI GATHERV

Example 4.2 Gather 100 ints from every process in group to root. See figure 4.2.

MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf;
...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 4.3 Previous example modified – only the root allocates memory for the receive
buffer.

MPI_Comm comm;
int gsize,sendarray[100];
int root, myrank, *rbuf;
...
MPI_Comm_rank(comm, myrank);
if (myrank == root) {

MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
}

MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. GATHER 101

Example 4.4 Do the same as the previous example, but use a derived datatype. Note
that the type cannot be the entire set of gsize*100 ints since type matching is defined
pairwise between the root and each process in the gather.

MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf;
MPI_Datatype rtype;
...
MPI_Comm_size(comm, &gsize);
MPI_Type_contiguous(100, MPI_INT, &rtype);
MPI_Type_commit(&rtype);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 1, rtype, root, comm);

Example 4.5 Now have each process send 100 ints to root, but place each set (of 100)
stride ints apart at receiving end. Use MPI GATHERV and the displs argument to achieve
this effect. Assume stride ≥ 100. See figure 4.3.

MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf, stride;
int *displs,i,*rcounts;

...

MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {

displs[i] = i*stride;
rcounts[i] = 100;

}
MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT,

root, comm);

Note that the program is erroneous if stride < 100.

Example 4.6 Same as Example 4.5 on the receiving side, but send the 100 ints from the
0th column of a 100×150 int array, in C. See figure 4.4.

MPI_Comm comm;
int gsize,sendarray[100][150];
int root, *rbuf, stride;
MPI_Datatype stype;
int *displs,i,*rcounts;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

102 CHAPTER 4. COLLECTIVE COMMUNICATION

100 100 100

100 100 100

stride
rbuf

at root

all processes

Figure 4.3: The root process gathers 100 ints from each process in the group, each set is
placed stride ints apart.

100 100 100

150

rbuf

at root

stride

all processes100

150

100

150

100

Figure 4.4: The root process gathers column 0 of a 100×150 C array, and each set is placed
stride ints apart.

...

MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {

displs[i] = i*stride;
rcounts[i] = 100;

}
/* Create datatype for 1 column of array
*/
MPI_Type_vector(100, 1, 150, MPI_INT, &stype);
MPI_Type_commit(&stype);
MPI_Gatherv(sendarray, 1, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Example 4.7 Process i sends (100-i) ints from the ith column of a 100 × 150 int array, in
C. It is received into a buffer with stride, as in the previous two examples. See figure 4.5.

MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, stride, myrank;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. GATHER 103

100 99

rbuf

at root

stride

all processes100

150

100

150

100

150

98

Figure 4.5: The root process gathers 100-i ints from column i of a 100×150 C array, and
each set is placed stride ints apart.

MPI_Datatype stype;
int *displs,i,*rcounts;

...

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {

displs[i] = i*stride;
rcounts[i] = 100-i; /* note change from previous example */

}
/* Create datatype for the column we are sending
*/
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit(&stype);
/* sptr is the address of start of "myrank" column
*/
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Note that a different amount of data is received from each process.

Example 4.8 Same as Example 4.7, but done in a different way at the sending end. We
create a datatype that causes the correct striding at the sending end so that that we read
a column of a C array. A similar thing was done in Example 3.33, Section 3.12.7.

MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, stride, myrank, disp[2], blocklen[2];
MPI_Datatype stype,type[2];
int *displs,i,*rcounts;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

104 CHAPTER 4. COLLECTIVE COMMUNICATION

...

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {

displs[i] = i*stride;
rcounts[i] = 100-i;

}
/* Create datatype for one int, with extent of entire row
*/
disp[0] = 0; disp[1] = 150*sizeof(int);
type[0] = MPI_INT; type[1] = MPI_UB;
blocklen[0] = 1; blocklen[1] = 1;
MPI_Type_struct(2, blocklen, disp, type, &stype);
MPI_Type_commit(&stype);
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 100-myrank, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Example 4.9 Same as Example 4.7 at sending side, but at receiving side we make the
stride between received blocks vary from block to block. See figure 4.6.

MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, *stride, myrank, bufsize;
MPI_Datatype stype;
int *displs,i,*rcounts,offset;

...

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);

stride = (int *)malloc(gsize*sizeof(int));
...
/* stride[i] for i = 0 to gsize-1 is set somehow
*/

/* set up displs and rcounts vectors first
*/
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
offset = 0;
for (i=0; i<gsize; ++i) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. GATHER 105

100

stride[1]
rbuf

at root

all processes100

150

100

150

100

150

99 98

Figure 4.6: The root process gathers 100-i ints from column i of a 100×150 C array, and
each set is placed stride[i] ints apart (a varying stride).

displs[i] = offset;
offset += stride[i];
rcounts[i] = 100-i;

}
/* the required buffer size for rbuf is now easily obtained
*/
bufsize = displs[gsize-1]+rcounts[gsize-1];
rbuf = (int *)malloc(bufsize*sizeof(int));
/* Create datatype for the column we are sending
*/
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit(&stype);
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Example 4.10 Process i sends num ints from the ith column of a 100 × 150 int array, in
C. The complicating factor is that the various values of num are not known to root, so a
separate gather must first be run to find these out. The data is placed contiguously at the
receiving end.

MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, stride, myrank, disp[2], blocklen[2];
MPI_Datatype stype,types[2];
int *displs,i,*rcounts,num;

...

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);

/* First, gather nums to root
*/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

106 CHAPTER 4. COLLECTIVE COMMUNICATION

rcounts = (int *)malloc(gsize*sizeof(int));
MPI_Gather(&num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);
/* root now has correct rcounts, using these we set displs[] so
* that data is placed contiguously (or concatenated) at receive end
*/
displs = (int *)malloc(gsize*sizeof(int));
displs[0] = 0;
for (i=1; i<gsize; ++i) {

displs[i] = displs[i-1]+rcounts[i-1];
}
/* And, create receive buffer
*/
rbuf = (int *)malloc(gsize*(displs[gsize-1]+rcounts[gsize-1])

*sizeof(int));
/* Create datatype for one int, with extent of entire row
*/
disp[0] = 0; disp[1] = 150*sizeof(int);
type[0] = MPI_INT; type[1] = MPI_UB;
blocklen[0] = 1; blocklen[1] = 1;
MPI_Type_struct(2, blocklen, disp, type, &stype);
MPI_Type_commit(&stype);
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, num, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

4.6 Scatter

MPI SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcount number of elements sent to each process (integer, sig-
nificant only at root)

IN sendtype data type of send buffer elements (significant only at
root) (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (integer)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

int MPI Scatter(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int recvcount, MPI Datatype recvtype, int root,
MPI Comm comm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.6. SCATTER 107

MPI SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI SCATTER is the inverse operation to MPI GATHER.
The outcome is as if the root executed n send operations,

MPI Send(sendbuf + i · sendcount · extent(sendtype), sendcount, sendtype, i, ...),

and each process executed a receive,

MPI Recv(recvbuf, recvcount, recvtype, i, ...).

An alternative description is that the root sends a message with MPI Send(sendbuf,
sendcount·n, sendtype, ...). This message is split into n equal segments, the ith segment is
sent to the ith process in the group, and each process receives this message as above.

The send buffer is ignored for all non-root processes.
The type signature associated with sendcount, sendtype at the root must be equal to

the type signature associated with recvcount, recvtype at all processes (however, the type
maps may be different). This implies that the amount of data sent must be equal to the
amount of data received, pairwise between each process and the root. Distinct type maps
between sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments recvbuf, recvcount, recvtype, root, comm are significant. The arguments root
and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be
read more than once.

Rationale. Though not needed, the last restriction is imposed so as to achieve
symmetry with MPI GATHER, where the corresponding restriction (a multiple-write
restriction) is necessary. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

108 CHAPTER 4. COLLECTIVE COMMUNICATION

MPI SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,
comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcounts integer array (of length group size) specifying the num-
ber of elements to send to each processor

IN displs integer array (of length group size). Entry i specifies
the displacement (relative to sendbuf from which to
take the outgoing data to process i

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (integer)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

int MPI Scatterv(void* sendbuf, int *sendcounts, int *displs,
MPI Datatype sendtype, void* recvbuf, int recvcount,
MPI Datatype recvtype, int root, MPI Comm comm)

MPI SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
COMM, IERROR

MPI SCATTERV is the inverse operation to MPI GATHERV.
MPI SCATTERV extends the functionality of MPI SCATTER by allowing a varying

count of data to be sent to each process, since sendcounts is now an array. It also allows
more flexibility as to where the data is taken from on the root, by providing the new
argument, displs.

The outcome is as if the root executed n send operations,

MPI Send(sendbuf + displs[i] · extent(sendtype), sendcounts[i], sendtype, i, ...),
and each process executed a receive,

MPI Recv(recvbuf, recvcount, recvtype, i, ...).

The send buffer is ignored for all non-root processes.
The type signature implied by sendcount[i], sendtype at the root must be equal to the

type signature implied by recvcount, recvtype at process i (however, the type maps may be
different). This implies that the amount of data sent must be equal to the amount of data
received, pairwise between each process and the root. Distinct type maps between sender
and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments recvbuf, recvcount, recvtype, root, comm are significant. The arguments root
and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on
the root to be read more than once.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.6. SCATTER 109

100 100 100

100 100

sendbuf

100

at root

all processes

Figure 4.7: The root process scatters sets of 100 ints to each process in the group.

4.6.1 Examples using MPI SCATTER, MPI SCATTERV

Example 4.11 The reverse of Example 4.2. Scatter sets of 100 ints from the root to each
process in the group. See figure 4.7.

MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100];
...
MPI_Comm_size(comm, &gsize);
sendbuf = (int *)malloc(gsize*100*sizeof(int));
...
MPI_Scatter(sendbuf, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 4.12 The reverse of Example 4.5. The root process scatters sets of 100 ints to
the other processes, but the sets of 100 are stride ints apart in the sending buffer. Requires
use of MPI SCATTERV. Assume stride ≥ 100. See figure 4.8.

MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100], i, *displs, *scounts;

...

MPI_Comm_size(comm, &gsize);
sendbuf = (int *)malloc(gsize*stride*sizeof(int));
...
displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {

displs[i] = i*stride;
scounts[i] = 100;

}
MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rbuf, 100, MPI_INT,

root, comm);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

110 CHAPTER 4. COLLECTIVE COMMUNICATION

100 100 100

100 100 100

sendbuf

at root

all processes

stride

Figure 4.8: The root process scatters sets of 100 ints, moving by stride ints from send to
send in the scatter.

Example 4.13 The reverse of Example 4.9. We have a varying stride between blocks at
sending (root) side, at the receiving side we receive into the ith column of a 100×150 C
array. See figure 4.9.

MPI_Comm comm;
int gsize,recvarray[100][150],*rptr;
int root, *sendbuf, myrank, bufsize, *stride;
MPI_Datatype rtype;
int i, *displs, *scounts, offset;
...
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);

stride = (int *)malloc(gsize*sizeof(int));
...
/* stride[i] for i = 0 to gsize-1 is set somehow
* sendbuf comes from elsewhere
*/
...
displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *)malloc(gsize*sizeof(int));
offset = 0;
for (i=0; i<gsize; ++i) {

displs[i] = offset;
offset += stride[i];
scounts[i] = 100 - i;

}
/* Create datatype for the column we are receiving
*/
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &rtype);
MPI_Type_commit(&rtype);
rptr = &recvarray[0][myrank];
MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rptr, 1, rtype,

root, comm);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.7. GATHER-TO-ALL 111

100

sendbuf

at root

all processes100

150

100

150

100

150

99 98

stride[1]

Figure 4.9: The root scatters blocks of 100-i ints into column i of a 100×150 C array. At
the sending side, the blocks are stride[i] ints apart.

4.7 Gather-to-all

MPI ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (inte-
ger)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI Allgather(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int recvcount, MPI Datatype recvtype,
MPI Comm comm)

MPI ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI ALLGATHER can be thought of as MPI GATHER, but where all processes receive
the result, instead of just the root. The block of data sent from the jth process is received
by every process and placed in the jth block of the buffer recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process.

The outcome of a call to MPI ALLGATHER(...) is as if all processes executed n calls to

MPI_GATHER(sendbuf,sendcount,sendtype,recvbuf,recvcount,
recvtype,root,comm),

for root = 0 , ..., n-1. The rules for correct usage of MPI ALLGATHER are easily found
from the corresponding rules for MPI GATHER.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

112 CHAPTER 4. COLLECTIVE COMMUNICATION

MPI ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts integer array (of length group size) containing the num-
ber of elements that are received from each process

IN displs integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf) at which to place
the incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI Allgatherv(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI Datatype recvtype, MPI Comm comm)

MPI ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
IERROR

MPI ALLGATHERV can be thought of as MPI GATHERV, but where all processes receive
the result, instead of just the root. The block of data sent from the jth process is received
by every process and placed in the jth block of the buffer recvbuf. These blocks need not
all be the same size.

The type signature associated with sendcount, sendtype, at process j must be equal to
the type signature associated with recvcounts[j], recvtype at any other process.

The outcome is as if all processes executed calls to

MPI_GATHERV(sendbuf,sendcount,sendtype,recvbuf,recvcounts,displs,
recvtype,root,comm),

for root = 0 , ..., n-1. The rules for correct usage of MPI ALLGATHERV are easily
found from the corresponding rules for MPI GATHERV.

4.7.1 Examples using MPI ALLGATHER, MPI ALLGATHERV

Example 4.14 The all-gather version of Example 4.2. Using MPI ALLGATHER, we will
gather 100 ints from every process in the group to every process.

MPI_Comm comm;
int gsize,sendarray[100];
int *rbuf;
...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.8. ALL-TO-ALL SCATTER/GATHER 113

MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Allgather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, comm);

After the call, every process has the group-wide concatenation of the sets of data.

4.8 All-to-All Scatter/Gather

MPI ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each process (integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (inte-
ger)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI Alltoall(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int recvcount, MPI Datatype recvtype,
MPI Comm comm)

MPI ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI ALLTOALL is an extension of MPI ALLGATHER to the case where each process
sends distinct data to each of the receivers. The jth block sent from process i is received
by process j and is placed in the ith block of recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. As usual, however, the type maps may be different.

The outcome is as if each process executed a send to each process (itself included) with
a call to,

MPI Send(sendbuf + i · sendcount · extent(sendtype), sendcount, sendtype, i, ...),

and a receive from every other process with a call to,

MPI Recv(recvbuf + i · recvcount · extent(recvtype), recvcount, i, ...).

All arguments on all processes are significant. The argument comm must have identical
values on all processes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

114 CHAPTER 4. COLLECTIVE COMMUNICATION

MPI ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype,
comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts integer array equal to the group size specifying the
number of elements to send to each processor

IN sdispls integer array (of length group size). Entry j specifies
the displacement (relative to sendbuf from which to
take the outgoing data destined for process j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts integer array equal to the group size specifying the
number of elements that can be received from each
processor

IN rdispls integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf at which to place
the incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,
MPI Datatype sendtype, void* recvbuf, int *recvcounts,
int *rdispls, MPI Datatype recvtype, MPI Comm comm)

MPI ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
RECVTYPE, COMM, IERROR

MPI ALLTOALLV adds flexibility to MPI ALLTOALL in that the location of data for the
send is specified by sdispls and the location of the placement of the data on the receive side
is specified by rdispls.

The jth block sent from process i is received by process j and is placed in the ith
block of recvbuf. These blocks need not all have the same size.

The type signature associated with sendcount[j], sendtype at process i must be equal
to the type signature associated with recvcount[i], recvtype at process j. This implies that
the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with,

MPI Send(sendbuf + displs[i] · extent(sendtype), sendcounts[i], sendtype, i, ...),

and received a message from every other process with a call to

MPI Recv(recvbuf + displs[i] · extent(recvtype), recvcounts[i], recvtype, i, ...).

All arguments on all processes are significant. The argument comm must have identical
values on all processes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.9. GLOBAL REDUCTION OPERATIONS 115

Rationale. The definitions of MPI ALLTOALL and MPI ALLTOALLV give as much
flexibility as one would achieve by specifying n independent, point-to-point communi-
cations, with two exceptions: all messages use the same datatype, and messages are
scattered from (or gathered to) sequential storage. (End of rationale.)

Advice to implementors. Although the discussion of collective communication in
terms of point-to-point operation implies that each message is transferred directly
from sender to receiver, implementations may use a tree communication pattern.
Messages can be forwarded by intermediate nodes where they are split (for scatter) or
concatenated (for gather), if this is more efficient. (End of advice to implementors.)

4.9 Global Reduction Operations

The functions in this section perform a global reduce operation (such as sum, max, logical
AND, etc.) across all the members of a group. The reduction operation can be either one of
a predefined list of operations, or a user-defined operation. The global reduction functions
come in several flavors: a reduce that returns the result of the reduction at one node, an
all-reduce that returns this result at all nodes, and a scan (parallel prefix) operation. In
addition, a reduce-scatter operation combines the functionality of a reduce and of a scatter
operation.

4.9.1 Reduce

MPI REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer (choice, significant only at
root)

IN count number of elements in send buffer (integer)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

int MPI Reduce(void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, int root, MPI Comm comm)

MPI REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

MPI REDUCE combines the elements provided in the input buffer of each process in
the group, using the operation op, and returns the combined value in the output buffer of
the process with rank root. The input buffer is defined by the arguments sendbuf, count
and datatype; the output buffer is defined by the arguments recvbuf, count and datatype;
both have the same number of elements, with the same type. The routine is called by all

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

116 CHAPTER 4. COLLECTIVE COMMUNICATION

group members using the same arguments for count, datatype, op, root and comm. Thus, all
processes provide input buffers and output buffers of the same length, with elements of the
same type. Each process can provide one element, or a sequence of elements, in which case
the combine operation is executed element-wise on each entry of the sequence. For example,
if the operation is MPI MAX and the send buffer contains two elements that are floating point
numbers (count = 2 and datatype = MPI FLOAT), then recvbuf(1) = globalmax(sendbuf(1))
and recvbuf(2) = globalmax(sendbuf(2)).

Sec. 4.9.2, lists the set of predefined operations provided by MPI. That section also
enumerates the datatypes each operation can be applied to. In addition, users may define
their own operations that can be overloaded to operate on several datatypes, either basic
or derived. This is further explained in Sec. 4.9.4.

The operation op is always assumed to be associative. All predefined operations are also
assumed to be commutative. Users may define operations that are assumed to be associative,
but not commutative. The “canonical” evaluation order of a reduction is determined by the
ranks of the processes in the group. However, the implementation can take advantage of
associativity, or associativity and commutativity in order to change the order of evaluation.
This may change the result of the reduction for operations that are not strictly associative
and commutative, such as floating point addition.

Advice to implementors. It is strongly recommended that MPI REDUCE be imple-
mented so that the same result be obtained whenever the function is applied on the
same arguments, appearing in the same order. Note that this may prevent optimiza-
tions that take advantage of the physical location of processors. (End of advice to
implementors.)

The datatype argument of MPI REDUCE must be compatible with op. Predefined op-
erators work only with the MPI types listed in Sec. 4.9.2 and Sec. 4.9.3. Furthermore, the
datatype and op given for predefined operators must be the same on all processes.

Note that it is possible for users to supply different user-defined operations to MPI REDUCE
in each process. MPI does not define which operations are used on which operands in this
case. User-defined operators may operate on general, derived datatypes. In this case,
each argument that the reduce operation is applied to is one element described by such a
datatype, which may contain several basic values. This is further explained in Section 4.9.4.

Advice to users. Users should make no assumptions about how MPI REDUCE is
implemented. Safest is to ensure that the same function is passed to MPI REDUCE
by each process. (End of advice to users.)

Overlapping datatypes are permitted in “send” buffers. Overlapping datatypes in “re-
ceive” buffers are erroneous and may give unpredictable results.

4.9.2 Predefined reduce operations

The following predefined operations are supplied for MPI REDUCE and related functions
MPI ALLREDUCE, MPI REDUCE SCATTER, and MPI SCAN. These operations are invoked
by placing the following in op.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.9. GLOBAL REDUCTION OPERATIONS 117

Name Meaning

MPI MAX maximum
MPI MIN minimum
MPI SUM sum
MPI PROD product
MPI LAND logical and
MPI BAND bit-wise and
MPI LOR logical or
MPI BOR bit-wise or
MPI LXOR logical xor
MPI BXOR bit-wise xor
MPI MAXLOC max value and location
MPI MINLOC min value and location

The two operations MPI MINLOC and MPI MAXLOC are discussed separately in Sec.
4.9.3. For the other predefined operations, we enumerate below the allowed combinations
of op and datatype arguments. First, define groups of MPI basic datatypes in the following
way.

C integer: MPI INT, MPI LONG, MPI SHORT,
MPI UNSIGNED SHORT, MPI UNSIGNED,
MPI UNSIGNED LONG

Fortran integer: MPI INTEGER
Floating point: MPI FLOAT, MPI DOUBLE, MPI REAL,

MPI DOUBLE PRECISION, MPI LONG DOUBLE
Logical: MPI LOGICAL
Complex: MPI COMPLEX
Byte: MPI BYTE

Now, the valid datatypes for each option is specified below.

Op Allowed Types

MPI MAX, MPI MIN C integer, Fortran integer, Floating point

MPI SUM, MPI PROD C integer, Fortran integer, Floating point, Complex

MPI LAND, MPI LOR, MPI LXOR C integer, Logical

MPI BAND, MPI BOR, MPI BXOR C integer, Fortran integer, Byte

Example 4.15 A routine that computes the dot product of two vectors that are distributed
across a group of processes and returns the answer at node zero.

SUBROUTINE PAR_BLAS1(m, a, b, c, comm)
REAL a(m), b(m) ! local slice of array
REAL c ! result (at node zero)
REAL sum
INTEGER m, comm, i, ierr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

118 CHAPTER 4. COLLECTIVE COMMUNICATION

! local sum
sum = 0.0
DO i = 1, m

sum = sum + a(i)*b(i)
END DO

! global sum
CALL MPI_REDUCE(sum, c, 1, MPI_REAL, MPI_SUM, 0, comm, ierr)
RETURN

Example 4.16 A routine that computes the product of a vector and an array that are
distributed across a group of processes and returns the answer at node zero.

SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
REAL a(m), b(m,n) ! local slice of array
REAL c(n) ! result
REAL sum(n)
INTEGER n, comm, i, j, ierr

! local sum
DO j= 1, n
sum(j) = 0.0
DO i = 1, m
sum(j) = sum(j) + a(i)*b(i,j)

END DO
END DO

! global sum
CALL MPI_REDUCE(sum, c, n, MPI_REAL, MPI_SUM, 0, comm, ierr)

! return result at node zero (and garbage at the other nodes)
RETURN

4.9.3 MINLOC and MAXLOC

The operator MPI MINLOC is used to compute a global minimum and also an index attached
to the minimum value. MPI MAXLOC similarly computes a global maximum and index. One
application of these is to compute a global minimum (maximum) and the rank of the process
containing this value.

The operation that defines MPI MAXLOC is:(
u
i

)
◦
(

v
j

)
=

(
w
k

)

where

w = max(u, v)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.9. GLOBAL REDUCTION OPERATIONS 119

and

k =

i if u > v
min(i, j) if u = v
j if u < v

MPI MINLOC is defined similarly:(
u
i

)
◦
(

v
j

)
=

(
w
k

)

where

w = min(u, v)

and

k =

i if u < v
min(i, j) if u = v
j if u > v

Both operations are associative and commutative. Note that if MPI MAXLOC is applied
to reduce a sequence of pairs (u0, 0), (u1, 1), . . . , (un−1, n − 1), then the value returned is
(u, r), where u = maxi ui and r is the index of the first global maximum in the sequence.
Thus, if each process supplies a value and its rank within the group, then a reduce operation
with op = MPI MAXLOC will return the maximum value and the rank of the first process
with that value. Similarly, MPI MINLOC can be used to return a minimum and its index.
More generally, MPI MINLOC computes a lexicographic minimum, where elements are ordered
according to the first component of each pair, and ties are resolved according to the second
component.

The reduce operation is defined to operate on arguments that consist of a pair: value
and index. For both Fortran and C, types are provided to describe the pair. The potentially
mixed-type nature of such arguments is a problem in Fortran. The problem is circumvented,
for Fortran, by having the MPI-provided type consist of a pair of the same type as value,
and coercing the index to this type also. In C, the MPI-provided pair type has distinct
types and the index is an int.

In order to use MPI MINLOC and MPI MAXLOC in a reduce operation, one must provide
a datatype argument that represents a pair (value and index). MPI provides nine such
predefined datatypes. The operations MPI MAXLOC and MPI MINLOC can be used with each
of the following datatypes.

Fortran:

Name Description
MPI 2REAL pair of REALs
MPI 2DOUBLE PRECISION pair of DOUBLE PRECISION variables
MPI 2INTEGER pair of INTEGERs

C:

Name Description
MPI FLOAT INT float and int

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

120 CHAPTER 4. COLLECTIVE COMMUNICATION

MPI DOUBLE INT double and int
MPI LONG INT long and int
MPI 2INT pair of int
MPI SHORT INT short and int
MPI LONG DOUBLE INT long double and int

The datatype MPI 2REAL is as if defined by the following (see Section 3.12).

MPI_TYPE_CONTIGUOUS(2, MPI_REAL, MPI_2REAL)

Similar statements apply for MPI 2INTEGER, MPI 2DOUBLE PRECISION, and MPI 2INT.
The datatype MPI FLOAT INT is as if defined by the following sequence of instructions.

type[0] = MPI_FLOAT
type[1] = MPI_INT
disp[0] = 0
disp[1] = sizeof(float)
block[0] = 1
block[1] = 1
MPI_TYPE_STRUCT(2, block, disp, type, MPI_FLOAT_INT)

Similar statements apply for MPI LONG INT and MPI DOUBLE INT.

Example 4.17 Each process has an array of 30 doubles, in C. For each of the 30 locations,
compute the value and rank of the process containing the largest value.

...
/* each process has an array of 30 double: ain[30]
*/
double ain[30], aout[30];
int ind[30];
struct {

double val;
int rank;

} in[30], out[30];
int i, myrank, root;

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
for (i=0; i<30; ++i) {

in[i].val = ain[i];
in[i].rank = myrank;

}
MPI_Reduce(in, out, 30, MPI_DOUBLE_INT, MPI_MAXLOC, root, comm);
/* At this point, the answer resides on process root
*/
if (myrank == root) {

/* read ranks out
*/
for (i=0; i<30; ++i) {

aout[i] = out[i].val;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.9. GLOBAL REDUCTION OPERATIONS 121

ind[i] = out[i].rank;
}

}

Example 4.18 Same example, in Fortran.

...
! each process has an array of 30 double: ain(30)

DOUBLE PRECISION ain(30), aout(30)
INTEGER ind(30);
DOUBLE PRECISION in(2,30), out(2,30)
INTEGER i, myrank, root, ierr;

MPI_COMM_RANK(MPI_COMM_WORLD, myrank);
DO I=1, 30

in(1,i) = ain(i)
in(2,i) = myrank ! myrank is coerced to a double

END DO

MPI_REDUCE(in, out, 30, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, root,
comm, ierr);

! At this point, the answer resides on process root

IF (myrank .EQ. root) THEN
! read ranks out
DO I= 1, 30

aout(i) = out(1,i)
ind(i) = out(2,i) ! rank is coerced back to an integer

END DO
END IF

Example 4.19 Each process has a non-empty array of values. Find the minimum global
value, the rank of the process that holds it and its index on this process.

#define LEN 1000

float val[LEN]; /* local array of values */
int count; /* local number of values */
int myrank, minrank, minindex;
float minval;

struct {
float value;
int index;

} in, out;

/* local minloc */
in.value = val[0];

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

122 CHAPTER 4. COLLECTIVE COMMUNICATION

in.index = 0;
for (i=1; i < count; i++)

if (in.value > val[i]) {
in.value = val[i];
in.index = i;

}

/* global minloc */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
in.index = myrank*LEN + in.index;
MPI_Reduce(in, out, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm);

/* At this point, the answer resides on process root
*/

if (myrank == root) {
/* read answer out
*/
minval = out.value;
minrank = out.index / LEN;
minindex = out.index % LEN;

}

Rationale. The definition of MPI MINLOC and MPI MAXLOC given here has the
advantage that it does not require any special-case handling of these two operations:
they are handled like any other reduce operation. A programmer can provide his or
her own definition of MPI MAXLOC and MPI MINLOC, if so desired. The disadvantage
is that values and indices have to be first interleaved, and that indices and values have
to be coerced to the same type, in Fortran. (End of rationale.)

4.9.4 User-Defined Operations

MPI OP CREATE(function, commute, op)

IN function user defined function (function)

IN commute true if commutative; false otherwise.

OUT op operation (handle)

int MPI Op create(MPI User function *function, int commute, MPI Op *op)

MPI OP CREATE(FUNCTION, COMMUTE, OP, IERROR)
EXTERNAL FUNCTION
LOGICAL COMMUTE
INTEGER OP, IERROR

MPI OP CREATE binds a user-defined global operation to an op handle that can
subsequently be used in MPI REDUCE, MPI ALLREDUCE, MPI REDUCE SCATTER, and
MPI SCAN. The user-defined operation is assumed to be associative. If commute = true,
then the operation should be both commutative and associative. If commute = false,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.9. GLOBAL REDUCTION OPERATIONS 123

then the order of operands is fixed and is defined to be in ascending, process rank order,
beginning with process zero. The order of evaluation can be changed, talking advantage of
the associativity of the operation. If commute = true then the order of evaluation can be
changed, taking advantage of commutativity and associativity.

function is the user-defined function, which must have the following four arguments:
invec, inoutvec, len and datatype.

The ANSI-C prototype for the function is the following.

typedef void MPI_User_function(void *invec, void *inoutvec, int *len,
MPI_Datatype *datatype);

The Fortran declaration of the user-defined function appears below.

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)
<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, TYPE

The datatype argument is a handle to the data type that was passed into the call to
MPI REDUCE. The user reduce function should be written such that the following holds:
Let u[0], ... , u[len-1] be the len elements in the communication buffer described by the
arguments invec, len and datatype when the function is invoked; let v[0], ... , v[len-1] be len
elements in the communication buffer described by the arguments inoutvec, len and datatype
when the function is invoked; let w[0], ... , w[len-1] be len elements in the communication
buffer described by the arguments inoutvec, len and datatype when the function returns;
then w[i] = u[i]◦v[i], for i=0 , ... , len-1, where ◦ is the reduce operation that the function
computes.

Informally, we can think of invec and inoutvec as arrays of len elements that function
is combining. The result of the reduction over-writes values in inoutvec, hence the name.
Each invocation of the function results in the pointwise evaluation of the reduce operator
on len elements: I.e, the function returns in inoutvec[i] the value invec[i] ◦ inoutvec[i], for
i = 0, . . . , count− 1, where ◦ is the combining operation computed by the function.

Rationale. The len argument allows MPI REDUCE to avoid calling the function for
each element in the input buffer. Rather, the system can choose to apply the function
to chunks of input. In C, it is passed in as a reference for reasons of compatibility
with Fortran.

By internally comparing the value of the datatype argument to known, global handles,
it is possible to overload the use of a single user-defined function for several, different
data types. (End of rationale.)

General datatypes may be passed to the user function. However, use of datatypes that
are not contiguous is likely to lead to inefficiencies.

No MPI communication function may be called inside the user function. MPI ABORT
may be called inside the function in case of an error.

Advice to users. Suppose one defines a library of user-defined reduce functions that
are overloaded: the datatype argument is used to select the right execution path at each
invocation, according to the types of the operands. The user-defined reduce function
cannot “decode” the datatype argument that it is passed, and cannot identify, by itself,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

124 CHAPTER 4. COLLECTIVE COMMUNICATION

the correspondence between the datatype handles and the datatype they represent.
This correspondence was established when the datatypes were created. Before the
library is used, a library initialization preamble must be executed. This preamble
code will define the datatypes that are used by the library, and store handles to these
datatypes in global, static variables that are shared by the user code and the library
code.

The Fortran version of MPI REDUCE will invoke a user-defined reduce function using
the Fortran calling conventions and will pass a Fortran-type datatype argument; the
C version will use C calling convention and the C representation of a datatype handle.
Users who plan to mix languages should define their reduction functions accordingly.
(End of advice to users.)

Advice to implementors. We outline below a naive and inefficient implementation of
MPI REDUCE.

if (rank > 0) {
RECV(tempbuf, count, datatype, rank-1,...)
User_reduce(tempbuf, sendbuf, count, datatype)

}
if (rank < groupsize-1) {

SEND(sendbuf, count, datatype, rank+1, ...)
}
/* answer now resides in process groupsize-1 ... now send to root
*/
if (rank == groupsize-1) {

SEND(sendbuf, count, datatype, root, ...)
}
if (rank == root) {

RECV(recvbuf, count, datatype, groupsize-1,...)
}

The reduction computation proceeds, sequentially, from process 0 to process group-size-1.
This order is chosen so as to respect the order of a possibly non-commutative operator
defined by the function User reduce(). A more efficient implementation is achieved
by taking advantage of associativity and using a logarithmic tree reduction. Commu-
tativity can be used to advantage, for those cases in which the commute argument
to MPI OP CREATE is true. Also, the amount of temporary buffer required can be
reduced, and communication can be pipelined with computation, by transferring and
reducing the elements in chunks of size len <count.

The predefined reduce operations can be implemented as a library of user-defined
operations. However, better performance might be achieved if MPI REDUCE handles
these functions as a special case. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.9. GLOBAL REDUCTION OPERATIONS 125

MPI OP FREE(op)

INOUT op operation (handle)

int MPI op free(MPI Op *op)

MPI OP FREE(OP, IERROR)
INTEGER OP, IERROR

Marks a user-defined reduction operation for deallocation and sets op to MPI OP NULL.

Example of User-defined Reduce

It is time for an example of user-defined reduction.

Example 4.20 Compute the product of an array of complex numbers, in C.

typedef struct {
double real,imag;

} Complex;

/* the user-defined function
*/
void myProd(Complex *in, Complex *inout, int *len, MPI_Datatype *dptr)
{

int i;
Complex c;

for (i=0; i< *len; ++i) {
c.real = inout->real*in->real -

inout->imag*in->imag;
c.imag = inout->real*in->imag +

inout->imag*in->real;
*inout = c;
in++; inout++;

}
}

/* and, to call it...
*/
...

/* each process has an array of 100 Complexes
*/
Complex a[100], answer[100];
MPI_Op myOp;
MPI_Datatype ctype;

/* explain to MPI how type Complex is defined
*/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

126 CHAPTER 4. COLLECTIVE COMMUNICATION

MPI_Type_contiguous(2, MPI_DOUBLE, &ctype);
MPI_Type_commit(&ctype);
/* create the complex-product user-op
*/
MPI_Op_create(myProd, True, &myOp);

MPI_Reduce(a, answer, 100, ctype, myOp, root, comm);

/* At this point, the answer, which consists of 100 Complexes,
* resides on process root
*/

4.9.5 All-Reduce

MPI includes variants of each of the reduce operations where the result is returned to all
processes in the group. MPI requires that all processes participating in these operations
receive identical results.

MPI ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in send buffer (integer)

IN datatype data type of elements of send buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI Allreduce(void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm)

MPI ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

Same as MPI REDUCE except that the result appears in the receive buffer of all the
group members.

Advice to implementors. The all-reduce operations can be implemented as a re-
duce, followed by a broadcast. However, a direct implementation can lead to better
performance. (End of advice to implementors.)

Example 4.21 A routine that computes the product of a vector and an array that are
distributed across a group of processes and returns the answer at all nodes (see also Example
4.16).

SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
REAL a(m), b(m,n) ! local slice of array
REAL c(n) ! result

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.10. REDUCE-SCATTER 127

REAL sum(n)
INTEGER n, comm, i, j, ierr

! local sum
DO j= 1, n
sum(j) = 0.0
DO i = 1, m
sum(j) = sum(j) + a(i)*b(i,j)

END DO
END DO

! global sum
CALL MPI_ALLREDUCE(sum, c, n, MPI_REAL, MPI_SUM, comm, ierr)

! return result at all nodes
RETURN

4.10 Reduce-Scatter

MPI includes variants of each of the reduce operations where the result is scattered to all
processes in the group on return.

MPI REDUCE SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts integer array specifying the number of elements in re-
sult distributed to each process. Array must be iden-
tical on all calling processes.

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI Reduce scatter(void* sendbuf, void* recvbuf, int *recvcounts,
MPI Datatype datatype, MPI Op op, MPI Comm comm)

MPI REDUCE SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

MPI REDUCE SCATTER first does an element-wise reduction on vector of count =∑
i recvcounts[i] elements in the send buffer defined by sendbuf, count and datatype. Next,

the resulting vector of results is split into n disjoint segments, where n is the number of
members in the group. Segment i contains recvcounts[i] elements. The ith segment is sent
to process i and stored in the receive buffer defined by recvbuf, recvcounts[i] and datatype.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

128 CHAPTER 4. COLLECTIVE COMMUNICATION

Advice to implementors. The MPI REDUCE SCATTER routine is functionally equiva-
lent to: A MPI REDUCE operation function with count equal to the sum of recvcounts[i]
followed by MPI SCATTERV with sendcounts equal to recvcounts. However, a direct
implementation may run faster. (End of advice to implementors.)

4.11 Scan

MPI SCAN(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (integer)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI Scan(void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm)

MPI SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI SCAN is used to perform a prefix reduction on data distributed across the group.
The operation returns, in the receive buffer of the process with rank i, the reduction of
the values in the send buffers of processes with ranks 0,...,i (inclusive). The type of
operations supported, their semantics, and the constraints on send and receive buffers are
as for MPI REDUCE.

Rationale. We have defined an inclusive scan, that is, the prefix reduction on process
i includes the data from process i. An alternative is to define scan in an exclusive
manner, where the result on i only includes data up to i-1. Both definitions are useful.
The latter has some advantages: the inclusive scan can always be computed from the
exclusive scan with no additional communication; for non-invertible operations such
as max and min, communication is required to compute the exclusive scan from the
inclusive scan. There is, however, a complication with exclusive scan since one must
define the “unit” element for the reduction in this case. That is, one must explicitly
say what occurs for process 0. This was thought to be complex for user-defined
operations and hence, the exclusive scan was dropped. (End of rationale.)

4.11.1 Example using MPI SCAN

Example 4.22 This example uses a user-defined operation to produce a segmented scan.
A segmented scan takes, as input, a set of values and a set of logicals, and the logicals

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.11. SCAN 129

delineate the various segments of the scan. For example:

values v1 v2 v3 v4 v5 v6 v7 v8

logicals 0 0 1 1 1 0 0 1
result v1 v1 + v2 v3 v3 + v4 v3 + v4 + v5 v6 v6 + v7 v8

The operator that produces this effect is,(
u
i

)
◦
(

v
j

)
=

(
w
j

)
,

where,

w =

{
u + v if i = j
v if i 6= j

.

Note that this is a non-commutative operator. C code that implements it is given
below.

typedef struct {
double val;
int log;

} SegScanPair;

/* the user-defined function
*/
void segScan(SegScanPair *in, SegScanPair *inout, int *len,

MPI_Datatype *dptr)
{

int i;
SegScanPair c;

for (i=0; i< *len; ++i) {
if (in->log == inout->log)

c.val = in->val + inout->val;
else

c.val = inout->val;
c.log = inout->log;
*inout = c;
in++; inout++;

}
}

Note that the inout argument to the user-defined function corresponds to the right-
hand operand of the operator. When using this operator, we must be careful to specify that
it is non-commutative, as in the following.

int i,base;
SeqScanPair a, answer;
MPI_Op myOp;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

130 CHAPTER 4. COLLECTIVE COMMUNICATION

MPI_Datatype type[2] = {MPI_DOUBLE, MPI_INT};
MPI_Aint disp[2];
int blocklen[2] = { 1, 1};
MPI_Datatype sspair;

/* explain to MPI how type SegScanPair is defined
*/
MPI_Address(a, disp);
MPI_Address(a.log, disp+1);
base = disp[0];
for (i=0; i<2; ++i) disp[i] -= base;
MPI_Type_struct(2, blocklen, disp, type, &sspair);
MPI_Type_commit(&sspair);
/* create the segmented-scan user-op
*/
MPI_Op_create(segScan, False, &myOp);
...
MPI_Scan(a, answer, 1, sspair, myOp, comm);

4.12 Correctness

A correct, portable program must invoke collective communications so that deadlock will not
occur, whether collective communications are synchronizing or not. The following examples
illustrate dangerous use of collective routines.

Example 4.23 The following is erroneous.

switch(rank) {
case 0:

MPI_Bcast(buf1, count, type, 0, comm);
MPI_Bcast(buf2, count, type, 1, comm);
break;

case 1:
MPI_Bcast(buf2, count, type, 1, comm);
MPI_Bcast(buf1, count, type, 0, comm);
break;

}

We assume that the group of comm is {0,1}. Two processes execute two broadcast
operations in reverse order. If the operation is synchronizing then a deadlock will occur.

Collective operations must be executed in the same order at all members of the com-
munication group.

Example 4.24 The following is erroneous.

switch(rank) {
case 0:

MPI_Bcast(buf1, count, type, 0, comm0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.12. CORRECTNESS 131

MPI_Bcast(buf2, count, type, 2, comm2);
break;

case 1:
MPI_Bcast(buf1, count, type, 1, comm1);
MPI_Bcast(buf2, count, type, 0, comm0);
break;

case 2:
MPI_Bcast(buf1, count, type, 2, comm2);
MPI_Bcast(buf2, count, type, 1, comm1);
break;

}

Assume that the group of comm0 is {0,1}, of comm1 is {1, 2} and of comm2 is {2,0}. If
the broadcast is a synchronizing operation, then there is a cyclic dependency: the broadcast
in comm2 completes only after the broadcast in comm0; the broadcast in comm0 completes
only after the broadcast in comm1; and the broadcast in comm1 completes only after the
broadcast in comm2. Thus, the code will deadlock.

Collective operations must be executed in an order so that no cyclic dependences occur.

Example 4.25 The following is erroneous.

switch(rank) {
case 0:

MPI_Bcast(buf1, count, type, 0, comm);
MPI_Send(buf2, count, type, 1, tag, comm);
break;

case 1:
MPI_Recv(buf2, count, type, 0, tag, comm, status);
MPI_Bcast(buf1, count, type, 0, comm);
break;

}

Process zero executes a broadcast, followed by a blocking send operation. Process one
first executes a blocking receive that matches the send, followed by broadcast call that
matches the broadcast of process zero. This program may deadlock. The broadcast call on
process zero may block until process one executes the matching broadcast call, so that the
send is not executed. Process one will definitely block on the receive and so, in this case,
never executes the broadcast.

The relative order of execution of collective operations and point-to-point operations
should be such, so that even if the collective operations and the point-to-point operations
are synchronizing, no deadlock will occur.

Example 4.26 A correct, but non-deterministic program.

switch(rank) {
case 0:

MPI_Bcast(buf1, count, type, 0, comm);
MPI_Send(buf2, count, type, 1, tag, comm);
break;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

132 CHAPTER 4. COLLECTIVE COMMUNICATION

First Execution

Second Execution

0 1 2

recv

broadcast broadcast broadcast

send

recv

process:

send

match

match

broadcast

recv

recv send

broadcast

send

broadcast
match

match

Figure 4.10: A race condition causes non-deterministic matching of sends and receives. One
cannot rely on synchronization from a broadcast to make the program deterministic.

case 1:
MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
MPI_Bcast(buf1, count, type, 0, comm);
MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
break;

case 2:
MPI_Send(buf2, count, type, 1, tag, comm);
MPI_Bcast(buf1, count, type, 0, comm);
break;

}

All three processes participate in a broadcast. Process 0 sends a message to process
1 after the broadcast, and process 2 sends a message to process 1 before the broadcast.
Process 1 receives before and after the broadcast, with a wildcard source argument.

Two possible executions of this program, with different matchings of sends and receives,
are illustrated in figure 4.10. Note that the second execution has the peculiar effect that a
send executed after the broadcast is received at another node before the broadcast. This
example illustrates the fact that one should not rely on collective communication functions
to have particular synchronization effects. A program that works correctly only when the
first execution occurs (only when broadcast is synchronizing) is erroneous.

Finally, in multithreaded implementations, one can have more than one, concurrently
executing, collective communication call at a process. In these situations, it is the user’s re-
sponsibility to ensure that the same communicator is not used concurrently by two different
collective communication calls at the same process.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.12. CORRECTNESS 133

Advice to implementors. Assume that broadcast is implemented using point-to-point
MPI communication. Suppose the following two rules are followed.

1. All receives specify their source explicitly (no wildcards).

2. Each process sends all messages that pertain to one collective call before sending
any message that pertain to a subsequent collective call.

Then, messages belonging to successive broadcasts cannot be confused, as the order
of point-to-point messages is preserved.

It is the implementor’s responsibility to ensure that point-to-point messages are not
confused with collective messages. One way to accomplish this is, whenever a commu-
nicator is created, to also create a “hidden communicator” for collective communica-
tion. One could achieve a similar effect more cheaply, for example, by using a hidden
tag or context bit to indicate whether the communicator is used for point-to-point or
collective communication. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 5

Groups, Contexts, and
Communicators

5.1 Introduction

This chapter introduces MPI features that support the development of parallel libraries.
Parallel libraries are needed to encapsulate the distracting complications inherent in paral-
lel implementations of key algorithms. They help to ensure consistent correctness of such
procedures, and provide a “higher level” of portability than MPI itself can provide. As
such, libraries prevent each programmer from repeating the work of defining consistent
data structures, data layouts, and methods that implement key algorithms (such as matrix
operations). Since the best libraries come with several variations on parallel systems (dif-
ferent data layouts, different strategies depending on the size of the system or problem, or
type of floating point), this too needs to be hidden from the user.

We refer the reader to [26] and [3] for further information on writing libraries in MPI,
using the features described in this chapter.

5.1.1 Features Needed to Support Libraries

The key features needed to support the creation of robust parallel libraries are as follows:

• Safe communication space, that guarantees that libraries can communicate as they
need to, without conflicting with communication extraneous to the library,

• Group scope for collective operations, that allow libraries to avoid unnecessarily syn-
chronizing uninvolved processes (potentially running unrelated code),

• Abstract process naming to allow libraries to describe their communication in terms
suitable to their own data structures and algorithms,

• The ability to “adorn” a set of communicating processes with additional user-defined
attributes, such as extra collective operations. This mechanism should provide a
means for the user or library writer effectively to extend a message-passing notation.

In addition, a unified mechanism or object is needed for conveniently denoting communica-
tion context, the group of communicating processes, to house abstract process naming, and
to store adornments.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.1. INTRODUCTION 135

5.1.2 MPI’s Support for Libraries

The corresponding concepts that MPI provides, specifically to support robust libraries, are
as follows:

• Contexts of communication,

• Groups of processes,

• Virtual topologies,

• Attribute caching,

• Communicators.

Communicators (see [16, 24, 27]) encapsulate all of these ideas in order to provide the
appropriate scope for all communication operations in MPI. Communicators are divided
into two kinds: intra-communicators for operations within a single group of processes, and
inter-communicators, for point-to-point communication between two groups of processes.

Caching. Communicators (see below) provide a “caching” mechanism that allows one to
associate new attributes with communicators, on a par with MPI built-in features. This
can be used by advanced users to adorn communicators further, and by MPI to implement
some communicator functions. For example, the virtual-topology functions described in
Chapter 6 are likely to be supported this way.

Groups. Groups define an ordered collection of processes, each with a rank, and it is this
group that defines the low-level names for inter-process communication (ranks are used for
sending and receiving). Thus, groups define a scope for process names in point-to-point
communication. In addition, groups define the scope of collective operations. Groups may
be manipulated separately from communicators in MPI, but only communicators can be
used in communication operations.

Intra-communicators. The most commonly used means for message passing in MPI is via
intra-communicators. Intra-communicators contain an instance of a group, contexts of
communication for both point-to-point and collective communication, and the ability to
include virtual topology and other attributes. These features work as follows:

• Contexts provide the ability to have separate safe “universes” of message passing in
MPI. A context is akin to an additional tag that differentiates messages. The system
manages this differentiation process. The use of separate communication contexts
by distinct libraries (or distinct library invocations) insulates communication internal
to the library execution from external communication. This allows the invocation of
the library even if there are pending communications on “other” communicators, and
avoids the need to synchronize entry or exit into library code. Pending point-to-point
communications are also guaranteed not to interfere with collective communications
within a single communicator.

• Groups define the participants in the communication (see above) of a communicator.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

136 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

• A virtual topology defines a special mapping of the ranks in a group to and from a
topology. Special constructors for communicators are defined in chapter 6 to provide
this feature. Intra-communicators as described in this chapter do not have topologies.

• Attributes define the local information that the user or library has added to a com-
municator for later reference.

Advice to users. The current practice in many communication libraries is that there
is a unique, predefined communication universe that includes all processes available
when the parallel program is initiated; the processes are assigned consecutive ranks.
Participants in a point-to-point communication are identified by their rank; a collec-
tive communication (such as broadcast) always involves all processes. This practice
can be followed in MPI by using the predefined communicator MPI COMM WORLD.
Users who are satisfied with this practice can plug in MPI COMM WORLD wherever
a communicator argument is required, and can consequently disregard the rest of this
chapter. (End of advice to users.)

Inter-communicators. The discussion has dealt so far with intra-communication: com-
munication within a group. MPI also supports inter-communication: communication
between two non-overlapping groups. When an application is built by composing several
parallel modules, it is convenient to allow one module to communicate with another using
local ranks for addressing within the second module. This is especially convenient in a
client-server computing paradigm, where either client or server are parallel. The support
of inter-communication also provides a mechanism for the extension of MPI to a dynamic
model where not all processes are preallocated at initialization time. In such a situation,
it becomes necessary to support communication across “universes.” Inter-communication
is supported by objects called inter-communicators. These objects bind two groups to-
gether with communication contexts shared by both groups. For inter-communicators, these
features work as follows:

• Contexts provide the ability to have a separate safe “universe” of message passing
between the two groups. A send in the local group is always a receive in the re-
mote group, and vice versa. The system manages this differentiation process. The
use of separate communication contexts by distinct libraries (or distinct library in-
vocations) insulates communication internal to the library execution from external
communication. This allows the invocation of the library even if there are pending
communications on “other” communicators, and avoids the need to synchronize entry
or exit into library code. There is no general-purpose collective communication on
inter-communicators, so contexts are used just to isolate point-to-point communica-
tion.

• A local and remote group specify the recipients and destinations for an inter-com-
municator.

• Virtual topology is undefined for an inter-communicator.

• As before, attributes cache defines the local information that the user or library has
added to a communicator for later reference.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.2. BASIC CONCEPTS 137

MPI provides mechanisms for creating and manipulating inter-communicators. They
are used for point-to-point communication in an related manner to intra-communicators.
Users who do not need inter-communication in their applications can safely ignore this
extension. Users who need collective operations via inter-communicators must layer it on
top of MPI. Users who require inter-communication between overlapping groups must also
layer this capability on top of MPI.

5.2 Basic Concepts

In this section, we turn to a more formal definition of the concepts introduced above.

5.2.1 Groups

A group is an ordered set of process identifiers (henceforth processes); processes are
implementation-dependent objects. Each process in a group is associated with an inte-
ger rank. Ranks are contiguous and start from zero. Groups are represented by opaque
group objects, and hence cannot be directly transferred from one process to another. A
group is used within a communicator to describe the participants in a communication “uni-
verse” and to rank such participants (thus giving them unique names within that “universe”
of communication).

There is a special pre-defined group: MPI GROUP EMPTY, which is a group with no
members. The predefined constant MPI GROUP NULL is the value used for invalid group
handles.

Advice to users. MPI GROUP EMPTY, which is a valid handle to an empty group,
should not be confused with MPI GROUP NULL, which in turn is an invalid handle.
The former may be used as an argument to group operations; the latter, which is
returned when a group is freed, in not a valid argument. (End of advice to users.)

Advice to implementors. A group may be represented by a virtual-to-real process-
address-translation table. Each communicator object (see below) would have a pointer
to such a table.

Simple implementations of MPI will enumerate groups, such as in a table. However,
more advanced data structures make sense in order to improve scalability and memory
usage with large numbers of processes. Such implementations are possible with MPI.
(End of advice to implementors.)

5.2.2 Contexts

A context is a property of communicators (defined next) that allows partitioning of the
communication space. A message sent in one context cannot be received in another context.
Furthermore, where permitted, collective operations are independent of pending point-to-
point operations. Contexts are not explicit MPI objects; they appear only as part of the
realization of communicators (below).

Advice to implementors. Distinct communicators in the same process have distinct
contexts. A context is essentially a system-managed tag (or tags) needed to make
a communicator safe for point-to-point and MPI-defined collective communication.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

138 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

Safety means that collective and point-to-point communication within one commu-
nicator do not interfere, and that communication over distinct communicators don’t
interfere.

A possible implementation for a context is as a supplemental tag attached to messages
on send and matched on receive. Each intra-communicator stores the value of its two
tags (one for point-to-point and one for collective communication). Communicator-
generating functions use a collective communication to agree on a new group-wide
unique context.

Analogously, in inter-communication (which is strictly point-to-point communication),
two context tags are stored per communicator, one used by group A to send and group
B to receive, and a second used by group B to send and for group A to receive.

Since contexts are not explicit objects, other implementations are also possible. (End
of advice to implementors.)

5.2.3 Intra-Communicators

Intra-communicators bring together the concepts of group and context. To support
implementation-specific optimizations, and application topologies (defined in the next chap-
ter, chapter 6), communicators may also “cache” additional information (see section 5.7).
MPI communication operations reference communicators to determine the scope and the
“communication universe” in which a point-to-point or collective operation is to operate.

Each communicator contains a group of valid participants; this group always includes
the local process. The source and destination of a message is identified by process rank
within that group.

For collective communication, the intra-communicator specifies the set of processes that
participate in the collective operation (and their order, when significant). Thus, the commu-
nicator restricts the “spatial” scope of communication, and provides machine-independent
process addressing through ranks.

Intra-communicators are represented by opaque intra-communicator objects, and
hence cannot be directly transferred from one process to another.

5.2.4 Predefined Intra-Communicators

An initial intra-communicator MPI COMM WORLD of all processes the local process can
communicate with after initialization (itself included) is defined once MPI INIT has been
called. In addition, the communicator MPI COMM SELF is provided, which includes only the
process itself.

The predefined constant MPI COMM NULL is the value used for invalid communicator
handles.

In a static-process-model implementation of MPI, all processes that participate in the
computation are available after MPI is initialized. For this case, MPI COMM WORLD is a
communicator of all processes available for the computation; this communicator has the
same value in all processes. In an implementation of MPI where processes can dynami-
cally join an MPI execution, it may be the case that a process starts an MPI computation
without having access to all other processes. In such situations, MPI COMM WORLD is a
communicator incorporating all processes with which the joining process can immediately

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.3. GROUP MANAGEMENT 139

communicate. Therefore, MPI COMM WORLD may simultaneously have different values in
different processes.

All MPI implementations are required to provide the MPI COMM WORLD communica-
tor. It cannot be deallocated during the life of a process. The group corresponding to
this communicator does not appear as a pre-defined constant, but it may be accessed using
MPI COMM GROUP (see below). MPI does not specify the correspondence between the
process rank in MPI COMM WORLD and its (machine-dependent) absolute address. Neither
does MPI specify the function of the host process, if any. Other implementation-dependent,
predefined communicators may also be provided.

5.3 Group Management

This section describes the manipulation of process groups in MPI. These operations are
local and their execution do not require interprocess communication.

5.3.1 Group Accessors

MPI GROUP SIZE(group, size)

IN group group (handle)

OUT size number of processes in the group (integer)

int MPI Group size(MPI Group group, int *size)

MPI GROUP SIZE(GROUP, SIZE, IERROR)
INTEGER GROUP, SIZE, IERROR

MPI GROUP RANK(group, rank)

IN group group (handle)

OUT rank rank of the calling process in group, or
MPI UNDEFINED if the process is not a member (in-
teger)

int MPI Group rank(MPI Group group, int *rank)

MPI GROUP RANK(GROUP, RANK, IERROR)
INTEGER GROUP, RANK, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

140 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

MPI GROUP TRANSLATE RANKS (group1, n, ranks1, group2, ranks2)

IN group1 group1 (handle)

IN n number of ranks in ranks1 and ranks2 arrays (integer)

IN ranks1 array of zero or more valid ranks in group1

IN group2 group2 (handle)

OUT ranks2 array of corresponding ranks in group2, MPI UNDE-

FINED when no correspondence exists.

int MPI Group translate ranks (MPI Group group1, int n, int *ranks1,
MPI Group group2, int *ranks2)

MPI GROUP TRANSLATE RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)
INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR

This function is important for determining the relative numbering of the same processes
in two different groups. For instance, if one knows the ranks of certain processes in the group
of MPI COMM WORLD, one might want to know their ranks in a subset of that group.

MPI GROUP COMPARE(group1, group2, result)

IN group1 first group (handle)

IN group2 second group (handle)

OUT result result (integer)

int MPI Group compare(MPI Group group1,MPI Group group2, int *result)

MPI GROUP COMPARE(GROUP1, GROUP2, RESULT, IERROR)
INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI IDENT results if the group members and group order is exactly the same in both groups.
This happens for instance if group1 and group2 are the same handle. MPI SIMILAR results if
the group members are the same but the order is different. MPI UNEQUAL results otherwise.

5.3.2 Group Constructors

Group constructors are used to subset and superset existing groups. These constructors
construct new groups from existing groups. These are local operations, and distinct groups
may be defined on different processes; a process may also define a group that does not
include itself. Consistent definitions are required when groups are used as arguments in
communicator-building functions. MPI does not provide a mechanism to build a group
from scratch, but only from other, previously defined groups. The base group, upon
which all other groups are defined, is the group associated with the initial communica-
tor MPI COMM WORLD (accessible through the function MPI COMM GROUP).

Rationale. In what follows, there is no group duplication function analogous to
MPI COMM DUP, defined later in this chapter. There is no need for a group dupli-
cator. A group, once created, can have several references to it by making copies of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.3. GROUP MANAGEMENT 141

the handle. The following constructors address the need for subsets and supersets of
existing groups. (End of rationale.)

Advice to implementors. Each group constructor behaves as if it returned a new
group object. When this new group is a copy of an existing group, then one can
avoid creating such new objects, using a reference-count mechanism. (End of advice
to implementors.)

MPI COMM GROUP(comm, group)

IN comm communicator (handle)

OUT group group corresponding to comm (handle)

int MPI Comm group(MPI Comm comm, MPI Group *group)

MPI COMM GROUP(COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

MPI COMM GROUP returns in group a handle to the group of comm.

MPI GROUP UNION(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup union group (handle)

int MPI Group union(MPI Group group1, MPI Group group2, MPI Group *newgroup)

MPI GROUP UNION(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI GROUP INTERSECTION(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup intersection group (handle)

int MPI Group intersection(MPI Group group1, MPI Group group2,
MPI Group *newgroup)

MPI GROUP INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

142 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

MPI GROUP DIFFERENCE(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup difference group (handle)

int MPI Group difference(MPI Group group1, MPI Group group2,
MPI Group *newgroup)

MPI GROUP DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

The set-like operations are defined as follows:

union All elements of the first group (group1), followed by all elements of second group
(group2) not in first.

intersect all elements of the first group that are also in the second group, ordered as in
first group.

difference all elements of the first group that are not in the second group, ordered as in
the first group.

Note that for these operations the order of processes in the output group is determined
primarily by order in the first group (if possible) and then, if necessary, by order in the
second group. Neither union nor intersection are commutative, but both are associative.

The new group can be empty, that is, equal to MPI GROUP EMPTY.

MPI GROUP INCL(group, n, ranks, newgroup)

IN group group (handle)

IN n number of elements in array ranks (and size of new-

group) (integer)

IN ranks ranks of processes in group to appear in newgroup (ar-
ray of integers)

OUT newgroup new group derived from above, in the order defined by
ranks (handle)

int MPI Group incl(MPI Group group, int n, int *ranks, MPI Group *newgroup)

MPI GROUP INCL(GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

The function MPI GROUP INCL creates a group newgroup that consists of the n pro-
cesses in group with ranks rank[0],. . ., rank[n-1]; the process with rank i in newgroup is the
process with rank ranks[i] in group. Each of the n elements of ranks must be a valid rank
in group and all elements must be distinct, or else the program is erroneous. If n = 0,
then newgroup is MPI GROUP EMPTY. This function can, for instance, be used to reorder
the elements of a group. See also MPI GROUP COMPARE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.3. GROUP MANAGEMENT 143

MPI GROUP EXCL(group, n, ranks, newgroup)

IN group group (handle)

IN n number of elements in array ranks (integer)

IN ranks array of integer ranks in group not to appear in new-

group

OUT newgroup new group derived from above, preserving the order
defined by group (handle)

int MPI Group excl(MPI Group group, int n, int *ranks, MPI Group *newgroup)

MPI GROUP EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

The function MPI GROUP EXCL creates a group of processes newgroup that is obtained
by deleting from group those processes with ranks ranks[0] ,. . . ranks[n-1]. The ordering of
processes in newgroup is identical to the ordering in group. Each of the n elements of ranks
must be a valid rank in group and all elements must be distinct; otherwise, the program is
erroneous. If n = 0, then newgroup is identical to group.

MPI GROUP RANGE INCL(group, n, ranges, newgroup)

IN group group (handle)

IN n number of triplets in array ranges (integer)

IN ranges a one-dimensional array of integer triplets, of the form
(first rank, last rank, stride) indicating ranks in group

of processes to be included in newgroup

OUT newgroup new group derived from above, in the order defined by
ranges (handle)

int MPI Group range incl(MPI Group group, int n, int ranges[][3],
MPI Group *newgroup)

MPI GROUP RANGE INCL(GROUP, N, RANGES, NEWGROUP, IERROR)
INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

If ranges consist of the triplets

(first1, last1, stride1), ..., (firstn, lastn, striden)

then newgroup consists of the sequence of processes in group with ranks

first1, first1 + stride1, ..., first1 +
⌊
last1 − first1

stride1

⌋
stride1, ...

firstn, firstn + striden, ..., firstn +
⌊
lastn − firstn

striden

⌋
striden.

Each computed rank must be a valid rank in group and all computed ranks must be
distinct, or else the program is erroneous. Note that we may have firsti > lasti, and stridei

may be negative, but cannot be zero.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

144 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

The functionality of this routine is specified to be equivalent to expanding the array
of ranges to an array of the included ranks and passing the resulting array of ranks and
other arguments to MPI GROUP INCL. A call to MPI GROUP INCL is equivalent to a call
to MPI GROUP RANGE INCL with each rank i in ranks replaced by the triplet (i,i,1) in
the argument ranges.

MPI GROUP RANGE EXCL(group, n, ranges, newgroup)

IN group group (handle)

IN n number of elements in array ranges (integer)

IN ranges a one-dimensional array of integer triplets of the form
(first rank, last rank, stride), indicating the ranks in
group of processes to be excluded from the output
group newgroup.

OUT newgroup new group derived from above, preserving the order
in group (handle)

int MPI Group range excl(MPI Group group, int n, int ranges[][3],
MPI Group *newgroup)

MPI GROUP RANGE EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)
INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

Each computed rank must be a valid rank in group and all computed ranks must be distinct,
or else the program is erroneous.

The functionality of this routine is specified to be equivalent to expanding the array
of ranges to an array of the excluded ranks and passing the resulting array of ranks and
other arguments to MPI GROUP EXCL. A call to MPI GROUP EXCL is equivalent to a call
to MPI GROUP RANGE EXCL with each rank i in ranks replaced by the triplet (i,i,1) in
the argument ranges.

Advice to users. The range operations do not explicitly enumerate ranks, and
therefore are more scalable if implemented efficiently. Hence, we recommend MPI
programmers to use them whenenever possible, as high-quality implementations will
take advantage of this fact. (End of advice to users.)

Advice to implementors. The range operations should be implemented, if possible,
without enumerating the group members, in order to obtain better scalability (time
and space). (End of advice to implementors.)

5.3.3 Group Destructors

MPI GROUP FREE(group)

INOUT group group (handle)

int MPI Group free(MPI Group *group)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.4. COMMUNICATOR MANAGEMENT 145

MPI GROUP FREE(GROUP, IERROR)
INTEGER GROUP, IERROR

This operation marks a group object for deallocation. The handle group is set to
MPI GROUP NULL by the call. Any on-going operation using this group will complete nor-
mally.

Advice to implementors. One can keep a reference count that is incremented for each
call to MPI COMM CREATE and MPI COMM DUP, and decremented for each call to
MPI GROUP FREE or MPI COMM FREE; the group object is ultimately deallocated
when the reference count drops to zero. (End of advice to implementors.)

5.4 Communicator Management

This section describes the manipulation of communicators in MPI. Operations that access
communicators are local and their execution does not require interprocess communication.
Operations that create communicators are collective and may require interprocess commu-
nication.

Advice to implementors. High-quality implementations should amortize the over-
heads associated with the creation of communicators (for the same group, or subsets
thereof) over several calls, by allocating multiple contexts with one collective commu-
nication. (End of advice to implementors.)

5.4.1 Communicator Accessors

The following are all local operations.

MPI COMM SIZE(comm, size)

IN comm communicator (handle)

OUT size number of processes in the group of comm (integer)

int MPI Comm size(MPI Comm comm, int *size)

MPI COMM SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

Rationale. This function is equivalent to accessing the communicator’s group with
MPI COMM GROUP (see above), computing the size using MPI GROUP SIZE, and
then freeing the temporary group via MPI GROUP FREE. However, this function is so
commonly used, that this shortcut was introduced. (End of rationale.)

Advice to users. This function indicates the number of processes involved in a
communicator. For MPI COMM WORLD, it indicates the total number of processes
available (for this version of MPI, there is no standard way to change the number of
processes once initialization has taken place).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

146 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

This call is often used with the next call to determine the amount of concurrency
available for a specific library or program. The following call, MPI COMM RANK
indicates the rank of the process that calls it in the range from 0 . . .size−1, where size
is the return value of MPI COMM SIZE.(End of advice to users.)

MPI COMM RANK(comm, rank)

IN comm communicator (handle)

OUT rank rank of the calling process in group of comm (integer)

int MPI Comm rank(MPI Comm comm, int *rank)

MPI COMM RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

Rationale. This function is equivalent to accessing the communicator’s group with
MPI COMM GROUP (see above), computing the rank using MPI GROUP RANK, and
then freeing the temporary group via MPI GROUP FREE. However, this function is so
commonly used, that this shortcut was introduced. (End of rationale.)

Advice to users. This function gives the rank of the process in the particular commu-
nicator’s group. It is useful, as noted above, in conjunction with MPI COMM SIZE.

Many programs will be written with the master-slave model, where one process (such
as the rank-zero process) will play a supervisory role, and the other processes will
serve as compute nodes. In this framework, the two preceding calls are useful for
determining the roles of the various processes of a communicator. (End of advice to
users.)

MPI COMM COMPARE(comm1, comm2, result)

IN comm1 first communicator (handle)

IN comm2 second communicator (handle)

OUT result result (integer)

int MPI Comm compare(MPI Comm comm1,MPI Comm comm2, int *result)

MPI COMM COMPARE(COMM1, COMM2, RESULT, IERROR)
INTEGER COMM1, COMM2, RESULT, IERROR

MPI IDENT results if and only if comm1 and comm2 are handles for the same object (identical
groups and same contexts). MPI CONGRUENT results if the underlying groups are identical
in constituents and rank order; these communicators differ only by context. MPI SIMILAR

results if the group members of both communicators are the same but the rank order differs.
MPI UNEQUAL results otherwise.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.4. COMMUNICATOR MANAGEMENT 147

5.4.2 Communicator Constructors

The following are collective functions that are invoked by all processes in the group associ-
ated with comm.

Rationale. Note that there is a chicken-and-egg aspect to MPI in that a communicator
is needed to create a new communicator. The base communicator for all MPI com-
municators is predefined outside of MPI, and is MPI COMM WORLD. This model was
arrived at after considerable debate, and was chosen to increase “safety” of programs
written in MPI. (End of rationale.)

MPI COMM DUP(comm, newcomm)

IN comm communicator (handle)

OUT newcomm copy of comm (handle)

int MPI Comm dup(MPI Comm comm, MPI Comm *newcomm)

MPI COMM DUP(COMM, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR

MPI COMM DUP Duplicates the existing communicator comm with associated key val-
ues. For each key value, the respective copy callback function determines the attribute value
associated with this key in the new communicator; one particular action that a copy callback
may take is to delete the attribute from the new communicator. Returns in newcomm a
new communicator with the same group, any copied cached information, but a new context
(see section 5.7.1).

Advice to users. This operation is used to provide a parallel library call with a dupli-
cate communication space that has the same properties as the original communicator.
This includes any attributes (see below), and topologies (see chapter 6). This call is
valid even if there are pending point-to-point communications involving the commu-
nicator comm. A typical call might involve a MPI COMM DUP at the beginning of
the parallel call, and an MPI COMM FREE of that duplicated communicator at the
end of the call. Other models of communicator management are also possible.

This call applies to both intra- and inter-communicators. (End of advice to users.)

Advice to implementors. One need not actually copy the group information, but only
add a new reference and increment the reference count. Copy on write can be used
for the cached information.(End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

148 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

MPI COMM CREATE(comm, group, newcomm)

IN comm communicator (handle)

IN group Group, which is a subset of the group of comm (han-
dle)

OUT newcomm new communicator (handle)

int MPI Comm create(MPI Comm comm, MPI Group group, MPI Comm *newcomm)

MPI COMM CREATE(COMM, GROUP, NEWCOMM, IERROR)
INTEGER COMM, GROUP, NEWCOMM, IERROR

This function creates a new communicator newcomm with communication group defined by
group and a new context. No cached information propagates from comm to newcomm. The
function returns MPI COMM NULL to processes that are not in group. The call is erroneous
if not all group arguments have the same value, or if group is not a subset of the group
associated with comm. Note that the call is to be executed by all processes in comm, even
if they do not belong to the new group. This call applies only to intra-communicators.

Rationale. The requirement that the entire group of comm participate in the call
stems from the following considerations:

• It allows the implementation to layer MPI COMM CREATE on top of regular
collective communications.

• It provides additional safety, in particular in the case where partially overlapping
groups are used to create new communicators.

• It permits implementations sometimes to avoid communication related to context
creation.

(End of rationale.)

Advice to users. MPI COMM CREATE provides a means to subset a group of pro-
cesses for the purpose of separate MIMD computation, with separate communication
space. newcomm, which emerges from MPI COMM CREATE can be used in subse-
quent calls to MPI COMM CREATE (or other communicator constructors) further to
subdivide a computation into parallel sub-computations. A more general service is
provided by MPI COMM SPLIT, below. (End of advice to users.)

Advice to implementors. Since all processes calling MPI COMM DUP or
MPI COMM CREATE provide the same group argument, it is theoretically possible
to agree on a group-wide unique context with no communication. However, local exe-
cution of these functions requires use of a larger context name space and reduces error
checking. Implementations may strike various compromises between these conflicting
goals, such as bulk allocation of multiple contexts in one collective operation.

Important: If new communicators are created without synchronizing the processes
involved then the communication system should be able to cope with messages arriving
in a context that has not yet been allocated at the receiving process. (End of advice
to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.4. COMMUNICATOR MANAGEMENT 149

MPI COMM SPLIT(comm, color, key, newcomm)

IN comm communicator (handle)

IN color control of subset assignment (integer)

IN key control of rank assigment (integer)

OUT newcomm new communicator (handle)

int MPI Comm split(MPI Comm comm, int color, int key, MPI Comm *newcomm)

MPI COMM SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)
INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

This function partitions the group associated with comm into disjoint subgroups, one for
each value of color. Each subgroup contains all processes of the same color. Within each
subgroup, the processes are ranked in the order defined by the value of the argument
key, with ties broken according to their rank in the old group. A new communicator is
created for each subgroup and returned in newcomm. A process may supply the color value
MPI UNDEFINED, in which case newcomm returns MPI COMM NULL. This is a collective
call, but each process is permitted to provide different values for color and key.

A call to MPI COMM CREATE(comm, group, newcomm) is equivalent to
a call to MPI COMM SPLIT(comm, color, key, newcomm), where all members of group pro-
vide color = 0 and key = rank in group, and all processes that are not members of
group provide color = MPI UNDEFINED. The function MPI COMM SPLIT allows more
general partitioning of a group into one or more subgroups with optional reordering. This
call applies only intra-communicators.

The value of color must be nonnegative.

Advice to users. This is an extremely powerful mechanism for dividing a single com-
municating group of processes into k subgroups, with k chosen implicitly by the user
(by the number of colors asserted over all the processes). Each resulting communica-
tor will be non-overlapping. Such a division could be useful for defining a hierarchy
of computations, such as for multigrid, or linear algebra.

Multiple calls to MPI COMM SPLIT can be used to overcome the requirement that
any call have no overlap of the resulting communicators (each process is of only one
color per call). In this way, multiple overlapping communication structures can be
created. Creative use of the color and key in such splitting operations is encouraged.

Note that, for a fixed color, the keys need not be unique. It is MPI COMM SPLIT’s
responsibility to sort processes in ascending order according to this key, and to break
ties in a consistent way. If all the keys are specified in the same way, then all the
processes in a given color will have the relative rank order as they did in their parent
group. (In general, they will have different ranks.)

Essentially, making the key value zero for all processes of a given color means that one
doesn’t really care about the rank-order of the processes in the new communicator.
(End of advice to users.)

Rationale. color is restricted to be nonnegative, so as not to confict with the value
assigned to MPI UNDEFINED. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

150 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

5.4.3 Communicator Destructors

MPI COMM FREE(comm)

INOUT comm communicator to be destroyed (handle)

int MPI Comm free(MPI Comm *comm)

MPI COMM FREE(COMM, IERROR)
INTEGER COMM, IERROR

This collective operation marks the communication object for deallocation. The handle
is set to MPI COMM NULL. Any pending operations that use this communicator will complete
normally; the object is actually deallocated only if there are no other active references to
it. This call applies to intra- and inter-communicators. The delete callback functions for
all cached attributes (see section 5.7) are called in arbitrary order.

Advice to implementors. A reference-count mechanism may be used: the reference
count is incremented by each call to MPI COMM DUP, and decremented by each call
to MPI COMM FREE. The object is ultimately deallocated when the count reaches
zero.

Though collective, it is anticipated that this operation will normally be implemented to
be local, though the debugging version of an MPI library might choose to synchronize.
(End of advice to implementors.)

5.5 Motivating Examples

5.5.1 Current Practice #1

Example #1a:

main(int argc, char **argv)
{
int me, size;
...
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &me);
MPI_Comm_size (MPI_COMM_WORLD, &size);

(void)printf ("Process %d size %d\n", me, size);
...
MPI_Finalize();

}

Example #1a is a do-nothing program that initializes itself legally, and refers to the “all”
communicator, and prints a message. It terminates itself legally too. This example does
not imply that MPI supports printf-like communication itself.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. MOTIVATING EXAMPLES 151

Example #1b (supposing that size is even):

main(int argc, char **argv)
{

int me, size;
int SOME_TAG = 0;
...
MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */
MPI_Comm_size(MPI_COMM_WORLD, &size); /* local */

if((me % 2) == 0)
{

/* send unless highest-numbered process */
if((me + 1) < size)

MPI_Send(..., me + 1, SOME_TAG, MPI_COMM_WORLD);
}
else

MPI_Recv(..., me - 1, SOME_TAG, MPI_COMM_WORLD);

...
MPI_Finalize();

}

Example #1b schematically illustrates message exchanges between “even” and “odd” pro-
cesses in the “all” communicator.

5.5.2 Current Practice #2

main(int argc, char **argv)
{
int me, count;
void *data;
...
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

if(me == 0)
{

/* get input, create buffer ‘‘data’’ */
...

}

MPI_Bcast(data, count, MPI_BYTE, 0, MPI_COMM_WORLD);

...
MPI_Finalize();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

152 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

This example illustrates the use of a collective communication.

5.5.3 (Approximate) Current Practice #3

main(int argc, char **argv)
{
int me, count, count2;
void *send_buf, *recv_buf, *send_buf2, *recv_buf2;
MPI_Group MPI_GROUP_WORLD, grprem;
MPI_Comm commslave;
static int ranks[] = {0};
...
MPI_Init(&argc, &argv);
MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);
MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */

MPI_Group_excl(MPI_GROUP_WORLD, 1, ranks, &grprem); /* local */
MPI_Comm_create(MPI_COMM_WORLD, grprem, &commslave);

if(me != 0)
{
/* compute on slave */
...
MPI_Reduce(send_buf,recv_buff,count, MPI_INT, MPI_SUM, 1, commslave);
...

}
/* zero falls through immediately to this reduce, others do later... */
MPI_Reduce(send_buf2, recv_buff2, count2,

MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Comm_free(&commslave);
MPI_Group_free(&MPI_GROUP_WORLD);
MPI_Group_free(&grprem);
MPI_Finalize();

}

This example illustrates how a group consisting of all but the zeroth process of the “all”
group is created, and then how a communicator is formed (commslave) for that new group.
The new communicator is used in a collective call, and all processes execute a collective call
in the MPI COMM WORLD context. This example illustrates how the two communicators
(that inherently possess distinct contexts) protect communication. That is, communication
in MPI COMM WORLD is insulated from communication in commslave, and vice versa.

In summary, “group safety” is achieved via communicators because distinct contexts
within communicators are enforced to be unique on any process.

5.5.4 Example #4

The following example is meant to illustrate “safety” between point-to-point and collective
communication. MPI guarantees that a single communicator can do safe point-to-point and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. MOTIVATING EXAMPLES 153

collective communication.

#define TAG_ARBITRARY 12345
#define SOME_COUNT 50

main(int argc, char **argv)
{
int me;
MPI_Request request[2];
MPI_Status status[2];
MPI_Group MPI_GROUP_WORLD, subgroup;
int ranks[] = {2, 4, 6, 8};
MPI_Comm the_comm;
...
MPI_Init(&argc, &argv);
MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);

MPI_Group_incl(MPI_GROUP_WORLD, 4, ranks, &subgroup); /* local */
MPI_Group_rank(subgroup, &me); /* local */

MPI_Comm_create(MPI_COMM_WORLD, subgroup, &the_comm);

if(me != MPI_UNDEFINED)
{

MPI_Irecv(buff1, count, MPI_DOUBLE, MPI_ANY_SOURCE, TAG_ARBITRARY,
the_comm, request);

MPI_Isend(buff2, count, MPI_DOUBLE, (me+1)%4, TAG_ARBITRARY,
the_comm, request+1);

}

for(i = 0; i < SOME_COUNT, i++)
MPI_Reduce(..., the_comm);

MPI_Waitall(2, request, status);

MPI_Comm_free(t&he_comm);
MPI_Group_free(&MPI_GROUP_WORLD);
MPI_Group_free(&subgroup);
MPI_Finalize();

}

5.5.5 Library Example #1

The main program:

main(int argc, char **argv)
{
int done = 0;
user_lib_t *libh_a, *libh_b;
void *dataset1, *dataset2;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

154 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

...
MPI_Init(&argc, &argv);
...
init_user_lib(MPI_COMM_WORLD, &libh_a);
init_user_lib(MPI_COMM_WORLD, &libh_b);
...
user_start_op(libh_a, dataset1);
user_start_op(libh_b, dataset2);
...
while(!done)
{

/* work */
...
MPI_Reduce(..., MPI_COMM_WORLD);
...
/* see if done */
...

}
user_end_op(libh_a);
user_end_op(libh_b);

uninit_user_lib(libh_a);
uninit_user_lib(libh_b);
MPI_Finalize();

}

The user library initialization code:

void init_user_lib(MPI_Comm comm, user_lib_t **handle)
{
user_lib_t *save;

user_lib_initsave(&save); /* local */
MPI_Comm_dup(comm, &(save -> comm));

/* other inits */
...

*handle = save;
}

User start-up code:

void user_start_op(user_lib_t *handle, void *data)
{
MPI_Irecv(..., handle->comm, &(handle -> irecv_handle));
MPI_Isend(..., handle->comm, &(handle -> isend_handle));

}

User communication clean-up code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. MOTIVATING EXAMPLES 155

void user_end_op(user_lib_t *handle)
{
MPI_Status *status;
MPI_Wait(handle -> isend_handle, status);
MPI_Wait(handle -> irecv_handle, status);

}

User object clean-up code:

void uninit_user_lib(user_lib_t *handle)
{
MPI_Comm_free(&(handle -> comm));
free(handle);

}

5.5.6 Library Example #2

The main program:

main(int argc, char **argv)
{
int ma, mb;
MPI_Group MPI_GROUP_WORLD, group_a, group_b;
MPI_Comm comm_a, comm_b;

static int list_a[] = {0, 1};
#if defined(EXAMPLE_2B) | defined(EXAMPLE_2C)

static int list_b[] = {0, 2 ,3};
#else/* EXAMPLE_2A */

static int list_b[] = {0, 2};
#endif

int size_list_a = sizeof(list_a)/sizeof(int);
int size_list_b = sizeof(list_b)/sizeof(int);

...
MPI_Init(&argc, &argv);
MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);

MPI_Group_incl(MPI_GROUP_WORLD, size_list_a, list_a, &group_a);
MPI_Group_incl(MPI_GROUP_WORLD, size_list_b, list_b, &group_b);

MPI_Comm_create(MPI_COMM_WORLD, group_a, &comm_a);
MPI_Comm_create(MPI_COMM_WORLD, group_b, &comm_b);

if(comm_a != MPI_COMM_NULL)
MPI_Comm_rank(comm_a, &ma);

if(comm_b != MPI_COMM_NULL)
MPI_Comm_rank(comm_b, &mb);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

156 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

if(comm_a != MPI_COMM_NULL)
lib_call(comm_a);

if(comm_b != MPI_COMM_NULL)
{
lib_call(comm_b);
lib_call(comm_b);

}

if(comm_a != MPI_COMM_NULL)
MPI_Comm_free(&comm_a);

if(comm_b != MPI_COMM_NULL)
MPI_Comm_free(&comm_b);

MPI_Group_free(&group_a);
MPI_Group_free(&group_b);
MPI_Group_free(&MPI_GROUP_WORLD);
MPI_Finalize();

}

The library:

void lib_call(MPI_Comm comm)
{
int me, done = 0;
MPI_Comm_rank(comm, &me);
if(me == 0)

while(!done)
{

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, comm);
...

}
else
{
/* work */
MPI_Send(..., 0, ARBITRARY_TAG, comm);
....

}
#ifdef EXAMPLE_2C

/* include (resp, exclude) for safety (resp, no safety): */
MPI_Barrier(comm);

#endif
}

The above example is really three examples, depending on whether or not one includes rank
3 in list b, and whether or not a synchronize is included in lib call. This example illustrates
that, despite contexts, subsequent calls to lib call with the same context need not be safe
from one another (colloquially, “back-masking”). Safety is realized if the MPI Barrier is
added. What this demonstrates is that libraries have to be written carefully, even with
contexts. When rank 3 is excluded, then the synchronize is not needed to get safety from
back masking.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.6. INTER-COMMUNICATION 157

Algorithms like “reduce” and “allreduce” have strong enough source selectivity prop-
erties so that they are inherently okay (no backmasking), provided that MPI provides basic
guarantees. So are multiple calls to a typical tree-broadcast algorithm with the same root
or different roots (see [27]). Here we rely on two guarantees of MPI: pairwise ordering of
messages between processes in the same context, and source selectivity — deleting either
feature removes the guarantee that backmasking cannot be required.

Algorithms that try to do non-deterministic broadcasts or other calls that include wild-
card operations will not generally have the good properties of the deterministic implemen-
tations of “reduce,” “allreduce,” and “broadcast.” Such algorithms would have to utilize
the monotonically increasing tags (within a communicator scope) to keep things straight.

All of the foregoing is a supposition of “collective calls” implemented with point-to-
point operations. MPI implementations may or may not implement collective calls using
point-to-point operations. These algorithms are used to illustrate the issues of correctness
and safety, independent of how MPI implements its collective calls. See also section 5.8.

5.6 Inter-Communication

This section introduces the concept of inter-communication and describes the portions of
MPI that support it. It describes support for writing programs that contain user-level
servers.

All point-to-point communication described thus far has involved communication be-
tween processes that are members of the same group. This type of communication is called
“intra-communication” and the communicator used is called an “intra-communicator,” as
we have noted earlier in the chapter.

In modular and multi-disciplinary applications, different process groups execute distinct
modules and processes within different modules communicate with one another in a pipeline
or a more general module graph. In these applications, the most natural way for a process
to specify a target process is by the rank of the target process within the target group. In
applications that contain internal user-level servers, each server may be a process group that
provides services to one or more clients, and each client may be a process group that uses
the services of one or more servers. It is again most natural to specify the target process
by rank within the target group in these applications. This type of communication is called
“inter-communication” and the communicator used is called an “inter-communicator,” as
introduced earlier.

An inter-communication is a point-to-point communication between processes in differ-
ent groups. The group containing a process that initiates an inter-communication operation
is called the “local group,” that is, the sender in a send and the receiver in a receive. The
group containing the target process is called the “remote group,” that is, the receiver in a
send and the sender in a receive. As in intra-communication, the target process is specified
using a (communicator, rank) pair. Unlike intra-communication, the rank is relative to a
second, remote group.

All inter-communicator constructors are blocking and require that the local and remote
groups be disjoint.

Advice to users. The groups must be disjoint for several reasons. Primarily, this is the
intent of the intercommunicators — to provide a communicator for communication be-
tween disjoint groups. This is reflected in the definition of MPI INTERCOMM MERGE,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

158 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

which allows the user to control the ranking of the processes in the created intracom-
municator; this ranking makes little sense if the groups are not disjoint. In addition,
the natural extension of collective operations to intercommunicators makes the most
sense when the groups are disjoint. (End of advice to users.)

Here is a summary of the properties of inter-communication and inter-communicators:

• The syntax of point-to-point communication is the same for both inter- and intra-
communication. The same communicator can be used both for send and for receive
operations.

• A target process is addressed by its rank in the remote group, both for sends and for
receives.

• Communications using an inter-communicator are guaranteed not to conflict with any
communications that use a different communicator.

• An inter-communicator cannot be used for collective communication.

• A communicator will provide either intra- or inter-communication, never both.

The routine MPI COMM TEST INTER may be used to determine if a communicator is an
inter- or intra-communicator. Inter-communicators can be used as arguments to some of the
other communicator access routines. Inter-communicators cannot be used as input to some
of the constructor routines for intra-communicators (for instance, MPI COMM CREATE).

Advice to implementors. For the purpose of point-to-point communication, commu-
nicators can be represented in each process by a tuple consisting of:

group

send context

receive context

source

For inter-communicators, group describes the remote group, and source is the rank of
the process in the local group. For intra-communicators, group is the communicator
group (remote=local), source is the rank of the process in this group, and send
context and receive context are identical. A group is represented by a rank-to-
absolute-address translation table.

The inter-communicator cannot be discussed sensibly without considering processes in
both the local and remote groups. Imagine a process P in group P, which has an inter-
communicator CP , and a process Q in group Q, which has an inter-communicator
CQ. Then

• CP .group describes the group Q and CQ.group describes the group P.

• CP .send context = CQ.receive context and the context is unique in Q;
CP .receive context = CQ.send context and this context is unique in P.

• CP .source is rank of P in P and CQ.source is rank of Q in Q.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.6. INTER-COMMUNICATION 159

Assume that P sends a message to Q using the inter-communicator. Then P uses
the group table to find the absolute address of Q; source and send context are
appended to the message.

Assume that Q posts a receive with an explicit source argument using the inter-
communicator. Then Q matches receive context to the message context and source
argument to the message source.

The same algorithm is appropriate for intra-communicators as well.

In order to support inter-communicator accessors and constructors, it is necessary to
supplement this model with additional structures, that store information about the
local communication group, and additional safe contexts. (End of advice to imple-
mentors.)

5.6.1 Inter-communicator Accessors

MPI COMM TEST INTER(comm, flag)

IN comm communicator (handle)

OUT flag (logical)

int MPI Comm test inter(MPI Comm comm, int *flag)

MPI COMM TEST INTER(COMM, FLAG, IERROR)
INTEGER COMM, IERROR
LOGICAL FLAG

This local routine allows the calling process to determine if a communicator is an inter-
communicator or an intra-communicator. It returns true if it is an inter-communicator,
otherwise false.

When an inter-communicator is used as an input argument to the communicator ac-
cessors described above under intra-communication, the following table describes behavior.

MPI COMM * Function Behavior
(in Inter-Communication Mode)

MPI COMM SIZE returns the size of the local group.
MPI COMM GROUP returns the local group.
MPI COMM RANK returns the rank in the local group

Furthermore, the operation MPI COMM COMPARE is valid for inter-communicators. Both
communicators must be either intra- or inter-communicators, or else MPI UNEQUAL results.
Both corresponding local and remote groups must compare correctly to get the results
MPI CONGRUENT and MPI SIMILAR. In particular, it is possible for MPI SIMILAR to result
because either the local or remote groups were similar but not identical.

The following accessors provide consistent access to the remote group of an inter-
communicator:

The following are all local operations.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

160 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

MPI COMM REMOTE SIZE(comm, size)

IN comm inter-communicator (handle)

OUT size number of processes in the remote group of comm

(integer)

int MPI Comm remote size(MPI Comm comm, int *size)

MPI COMM REMOTE SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

MPI COMM REMOTE GROUP(comm, group)

IN comm inter-communicator (handle)

OUT group remote group corresponding to comm (handle)

int MPI Comm remote group(MPI Comm comm, MPI Group *group)

MPI COMM REMOTE GROUP(COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

Rationale. Symmetric access to both the local and remote groups of an inter-
communicator is important, so this function, as well as MPI COMM REMOTE SIZE
have been provided. (End of rationale.)

5.6.2 Inter-communicator Operations

This section introduces four blocking inter-communicator operations.
MPI INTERCOMM CREATE is used to bind two intra-communicators into an inter-commun-
icator; the function MPI INTERCOMM MERGE creates an intra-communicator by merging
the local and remote groups of an inter-communicator. The functions MPI COMM DUP
and MPI COMM FREE, introduced previously, duplicate and free an inter-communicator,
respectively.

Overlap of local and remote groups that are bound into an inter-communicator is
prohibited. If there is overlap, then the program is erroneous and is likely to deadlock. (If
a process is multithreaded, and MPI calls block only a thread, rather than a process, then
“dual membership” can be supported. It is then the user’s responsibility to make sure that
calls on behalf of the two “roles” of a process are executed by two independent threads.)

The function MPI INTERCOMM CREATE can be used to create an inter-communicator
from two existing intra-communicators, in the following situation: At least one selected
member from each group (the “group leader”) has the ability to communicate with the
selected member from the other group; that is, a “peer” communicator exists to which both
leaders belong, and each leader knows the rank of the other leader in this peer communicator.
Furthermore, members of each group know the rank of their leader.

Construction of an inter-communicator from two intra-communicators requires separate
collective operations in the local group and in the remote group, as well as a point-to-point
communication between a process in the local group and a process in the remote group.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.6. INTER-COMMUNICATION 161

In standard MPI implementations (with static process allocation at initialization), the
MPI COMM WORLD communicator (or preferably a dedicated duplicate thereof) can be
this peer communicator. In dynamic MPI implementations, where, for example, a process
may spawn new child processes during an MPI execution, the parent process may be the
“bridge” between the old communication universe and the new communication world that
includes the parent and its children.

The application topology functions described in chapter 6 do not apply to inter-
communicators. Users that require this capability should utilize MPI INTERCOMM MERGE
to build an intra-communicator, then apply the graph or cartesian topology capabilities to
that intra-communicator, creating an appropriate topology-oriented intra-communicator.
Alternatively, it may be reasonable to devise one’s own application topology mechanisms
for this case, without loss of generality.

MPI INTERCOMM CREATE(local comm, local leader, peer comm, remote leader, tag,
newintercomm)

IN local comm local intra-communicator (handle)

IN local leader rank of local group leader in local comm (integer)

IN peer comm “peer” communicator; significant only at the local leader

(handle)

IN remote leader rank of remote group leader in peer comm; significant
only at the local leader (integer)

IN tag “safe” tag (integer)

OUT newintercomm new inter-communicator (handle)

int MPI Intercomm create(MPI Comm local comm, int local leader,
MPI Comm peer comm, int remote leader, int tag,
MPI Comm *newintercomm)

MPI INTERCOMM CREATE(LOCAL COMM, LOCAL LEADER, PEER COMM, REMOTE LEADER, TAG,
NEWINTERCOMM, IERROR)

INTEGER LOCAL COMM, LOCAL LEADER, PEER COMM, REMOTE LEADER, TAG,
NEWINTERCOMM, IERROR

This call creates an inter-communicator. It is collective over the union of the local and
remote groups. Processes should provide identical local comm and local leader arguments
within each group. Wildcards are not permitted for remote leader, local leader, and tag.

This call uses point-to-point communication with communicator peer comm, and with
tag tag between the leaders. Thus, care must be taken that there be no pending communi-
cation on peer comm that could interfere with this communication.

Advice to users. We recommend using a dedicated peer communicator, such as a
duplicate of MPI COMM WORLD, to avoid trouble with peer communicators. (End
of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

162 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

Group 1 Group 2Group 0

Figure 5.1: Three-group pipeline.

MPI INTERCOMM MERGE(intercomm, high, newintracomm)

IN intercomm Inter-Communicator (handle)

IN high (logical)

OUT newintracomm new intra-communicator (handle)

int MPI Intercomm merge(MPI Comm intercomm, int high,
MPI Comm *newintracomm)

MPI INTERCOMM MERGE(INTERCOMM, HIGH, INTRACOMM, IERROR)
INTEGER INTERCOMM, INTRACOMM, IERROR
LOGICAL HIGH

This function creates an intra-communicator from the union of the two groups that are
associated with intercomm. All processes should provide the same high value within each
of the two groups. If processes in one group provided the value high = false and processes
in the other group provided the value high = true then the union orders the “low” group
before the “high” group. If all processes provided the same high argument then the order
of the union is arbitrary. This call is blocking and collective within the union of the two
groups.

The error handler on the new intercommunicator in each process is inherited from
the communicator that contributes the local group. Note that this can result in different
processes in the same communicator having different error handlers.

Advice to implementors. The implementation of MPI INTERCOMM MERGE,
MPI COMM FREE and MPI COMM DUP are similar to the implementation of
MPI INTERCOMM CREATE, except that contexts private to the input inter-commun-
icator are used for communication between group leaders rather than contexts inside
a bridge communicator. (End of advice to implementors.)

5.6.3 Inter-Communication Examples

Example 1: Three-Group “Pipeline”

Groups 0 and 1 communicate. Groups 1 and 2 communicate. Therefore, group 0 requires
one inter-communicator, group 1 requires two inter-communicators, and group 2 requires 1
inter-communicator.

main(int argc, char **argv)
{
MPI_Comm myComm; /* intra-communicator of local sub-group */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.6. INTER-COMMUNICATION 163

MPI_Comm myFirstComm; /* inter-communicator */
MPI_Comm mySecondComm; /* second inter-communicator (group 1 only) */
int membershipKey;
int rank;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* User code must generate membershipKey in the range [0, 1, 2] */
membershipKey = rank % 3;

/* Build intra-communicator for local sub-group */
MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);

/* Build inter-communicators. Tags are hard-coded. */
if (membershipKey == 0)
{ /* Group 0 communicates with group 1. */
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

1, &myFirstComm);
}
else if (membershipKey == 1)
{ /* Group 1 communicates with groups 0 and 2. */
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,

1, &myFirstComm);
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,

12, &mySecondComm);
}
else if (membershipKey == 2)
{ /* Group 2 communicates with group 1. */
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

12, &myFirstComm);
}

/* Do work ... */

switch(membershipKey) /* free communicators appropriately */
{
case 1:

MPI_Comm_free(&mySecondComm);
case 0:
case 2:

MPI_Comm_free(&myFirstComm);
break;

}

MPI_Finalize();
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

164 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

Group 1 Group 2Group 0

Figure 5.2: Three-group ring.

Example 2: Three-Group “Ring”

Groups 0 and 1 communicate. Groups 1 and 2 communicate. Groups 0 and 2 communicate.
Therefore, each requires two inter-communicators.

main(int argc, char **argv)
{
MPI_Comm myComm; /* intra-communicator of local sub-group */
MPI_Comm myFirstComm; /* inter-communicators */
MPI_Comm mySecondComm;
MPI_Status status;
int membershipKey;
int rank;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
...

/* User code must generate membershipKey in the range [0, 1, 2] */
membershipKey = rank % 3;

/* Build intra-communicator for local sub-group */
MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);

/* Build inter-communicators. Tags are hard-coded. */
if (membershipKey == 0)
{ /* Group 0 communicates with groups 1 and 2. */
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

1, &myFirstComm);
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,

2, &mySecondComm);
}
else if (membershipKey == 1)
{ /* Group 1 communicates with groups 0 and 2. */
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,

1, &myFirstComm);
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,

12, &mySecondComm);
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.6. INTER-COMMUNICATION 165

else if (membershipKey == 2)
{ /* Group 2 communicates with groups 0 and 1. */
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,

2, &myFirstComm);
MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

12, &mySecondComm);
}

/* Do some work ... */

/* Then free communicators before terminating... */
MPI_Comm_free(&myFirstComm);
MPI_Comm_free(&mySecondComm);
MPI_Comm_free(&myComm);
MPI_Finalize();

}

Example 3: Building Name Service for Intercommunication

The following procedures exemplify the process by which a user could create name service
for building intercommunicators via a rendezvous involving a server communicator, and a
tag name selected by both groups.

After all MPI processes execute MPI INIT, every process calls the example function,
Init server(), defined below. Then, if the new world returned is NULL, the process getting
NULL is required to implement a server function, in a reactive loop, Do server(). Everyone
else just does their prescribed computation, using new world as the new effective “global”
communicator. One designated process calls Undo Server() to get rid of the server when it
is not needed any longer.

Features of this approach include:

• Support for multiple name servers

• Ability to scope the name servers to specific processes

• Ability to make such servers come and go as desired.

#define INIT_SERVER_TAG_1 666
#define UNDO_SERVER_TAG_1 777

static int server_key_val;

/* for attribute management for server_comm, copy callback: */
void handle_copy_fn(MPI_Comm *oldcomm, int *keyval, void *extra_state,
void *attribute_val_in, void **attribute_val_out, int *flag)
{

/* copy the handle */
*attribute_val_out = attribute_val_in;
flag = 1; / indicate that copy to happen */

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

166 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

int Init_server(peer_comm, rank_of_server, server_comm, new_world)
MPI_Comm peer_comm;
int rank_of_server;
MPI_Comm *server_comm;
MPI_Comm *new_world; /* new effective world, sans server */
{

MPI_Comm temp_comm, lone_comm;
MPI_Group peer_group, temp_group;
int rank_in_peer_comm, size, color, key = 0;
int peer_leader, peer_leader_rank_in_temp_comm;

MPI_Comm_rank(peer_comm, &rank_in_peer_comm);
MPI_Comm_size(peer_comm, &size);

if ((size < 2) || (0 > rank_of_server) || (rank_of_server >= size))
return (MPI_ERR_OTHER);

/* create two communicators, by splitting peer_comm
into the server process, and everyone else */

peer_leader = (rank_of_server + 1) % size; /* arbitrary choice */

if ((color = (rank_in_peer_comm == rank_of_server)))
{

MPI_Comm_split(peer_comm, color, key, &lone_comm);

MPI_Intercomm_create(lone_comm, 0, peer_comm, peer_leader,
INIT_SERVER_TAG_1, server_comm);

MPI_Comm_free(&lone_comm);
*new_world = MPI_COMM_NULL;

}
else
{

MPI_Comm_Split(peer_comm, color, key, &temp_comm);

MPI_Comm_group(peer_comm, &peer_group);
MPI_Comm_group(temp_comm, &temp_group);
MPI_Group_translate_ranks(peer_group, 1, &peer_leader,

temp_group, &peer_leader_rank_in_temp_comm);

MPI_Intercomm_create(temp_comm, peer_leader_rank_in_temp_comm,
peer_comm, rank_of_server,
INIT_SERVER_TAG_1, server_comm);

/* attach new_world communication attribute to server_comm: */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.6. INTER-COMMUNICATION 167

/* CRITICAL SECTION FOR MULTITHREADING */
if(server_keyval == MPI_KEYVAL_INVALID)
{

/* acquire the process-local name for the server keyval */
MPI_keyval_create(handle_copy_fn, NULL,

&server_keyval, NULL);
}

*new_world = temp_comm;

/* Cache handle of intra-communicator on inter-communicator: */
MPI_Attr_put(server_comm, server_keyval, (void *)(*new_world));

}

return (MPI_SUCCESS);
}

The actual server process would commit to running the following code:

int Do_server(server_comm)
MPI_Comm server_comm;
{

void init_queue();
int en_queue(), de_queue(); /* keep triplets of integers

for later matching (fns not shown) */

MPI_Comm comm;
MPI_Status status;
int client_tag, client_source;
int client_rank_in_new_world, pairs_rank_in_new_world;
int buffer[10], count = 1;

void *queue;
init_queue(&queue);

for (;;)
{

MPI_Recv(buffer, count, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
server_comm, &status); /* accept from any client */

/* determine client: */
client_tag = status.MPI_TAG;
client_source = status.MPI_SOURCE;
client_rank_in_new_world = buffer[0];

if (client_tag == UNDO_SERVER_TAG_1) /* client that
terminates server */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

168 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

{
while (de_queue(queue, MPI_ANY_TAG, &pairs_rank_in_new_world,

&pairs_rank_in_server))
;

MPI_Intercomm_free(&server_comm);
break;

}

if (de_queue(queue, client_tag, &pairs_rank_in_new_world,
&pairs_rank_in_server))

{
/* matched pair with same tag, tell them

about each other! */
buffer[0] = pairs_rank_in_new_world;
MPI_Send(buffer, 1, MPI_INT, client_src, client_tag,

server_comm);

buffer[0] = client_rank_in_new_world;
MPI_Send(buffer, 1, MPI_INT, pairs_rank_in_server, client_tag,

server_comm);
}
else

en_queue(queue, client_tag, client_source,
client_rank_in_new_world);

}
}

A particular process would be responsible for ending the server when it is no longer
needed. Its call to Undo server would terminate server function.

int Undo_server(server_comm) /* example client that ends server */
MPI_Comm *server_comm;
{

int buffer = 0;
MPI_Send(&buffer, 1, MPI_INT, 0, UNDO_SERVER_TAG_1, *server_comm);
MPI_Intercomm_free(server_comm);

}

The following is a blocking name-service for inter-communication, with same semantic
restrictions as MPI Intercomm create, but simplified syntax. It uses the functionality just
defined to create the name service.

int Intercomm_name_create(local_comm, server_comm, tag, comm)
MPI_Comm local_comm, server_comm;
int tag;
MPI_Comm *comm;
{

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. CACHING 169

int error;
int found; /* attribute acquisition mgmt for new_world */

/* comm in server_comm */
void *val;

MPI_Comm new_world;

int buffer[10], rank;
int local_leader = 0;

MPI_Attr_get(server_comm, server_keyval, &val, &found);
new_world = (MPI_Comm)val; /* retrieve cached handle */

MPI_Comm_rank(server_comm, &rank); /* rank in local group */

if (rank == local_leader)
{

buffer[0] = rank;
MPI_Send(&buffer, 1, MPI_INT, 0, tag, server_comm);
MPI_Recv(&buffer, 1, MPI_INT, 0, tag, server_comm);

}

error = MPI_Intercomm_create(local_comm, local_leader, new_world,
buffer[0], tag, comm);

return(error);
}

5.7 Caching

MPI provides a “caching” facility that allows an application to attach arbitrary pieces of
information, called attributes, to communicators. More precisely, the caching facility
allows a portable library to do the following:

• pass information between calls by associating it with an MPI intra- or inter-commun-
icator,

• quickly retrieve that information, and

• be guaranteed that out-of-date information is never retrieved, even if the communi-
cator is freed and its handle subsequently reused by MPI.

The caching capabilities, in some form, are required by built-in MPI routines such as
collective communication and application topology. Defining an interface to these capa-
bilities as part of the MPI standard is valuable because it permits routines like collective
communication and application topologies to be implemented as portable code, and also
because it makes MPI more extensible by allowing user-written routines to use standard
MPI calling sequences.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

170 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

Advice to users. The communicator MPI COMM SELF is a suitable choice for posting
process-local attributes, via this attributing-caching mechanism. (End of advice to
users.)

5.7.1 Functionality

Attributes are attached to communicators. Attributes are local to the process and specific
to the communicator to which they are attached. Attributes are not propagated by MPI
from one communicator to another except when the communicator is duplicated using
MPI COMM DUP (and even then the application must give specific permission through
callback functions for the attribute to be copied).

Advice to users. Attributes in C are of type void *. Typically, such an attribute will
be a pointer to a structure that contains further information, or a handle to an MPI
object. In Fortran, attributes are of type INTEGER. Such attribute can be a handle to
an MPI object, or just an integer-valued attribute. (End of advice to users.)

Advice to implementors. Attributes are scalar values, equal in size to, or larger than
a C-language pointer. Attributes can always hold an MPI handle. (End of advice to
implementors.)

The caching interface defined here represents that attributes be stored by MPI opaquely
within a communicator. Accessor functions include the following:

• obtain a key value (used to identify an attribute); the user specifies “callback” func-
tions by which MPI informs the application when the communicator is destroyed or
copied.

• store and retrieve the value of an attribute;

Advice to implementors. Caching and callback functions are only called synchronously,
in response to explicit application requests. This avoid problems that result from re-
peated crossings between user and system space. (This synchronous calling rule is a
general property of MPI.)

The choice of key values is under control of MPI. This allows MPI to optimize its
implementation of attribute sets. It also avoids conflict between independent modules
caching information on the same communicators.

A much smaller interface, consisting of just a callback facility, would allow the entire
caching facility to be implemented by portable code. However, with the minimal call-
back interface, some form of table searching is implied by the need to handle arbitrary
communicators. In contrast, the more complete interface defined here permits rapid
access to attributes through the use of pointers in communicators (to find the attribute
table) and cleverly chosen key values (to retrieve individual attributes). In light of the
efficiency “hit” inherent in the minimal interface, the more complete interface defined
here is seen to be superior. (End of advice to implementors.)

MPI provides the following services related to caching. They are all process local.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. CACHING 171

MPI KEYVAL CREATE(copy fn, delete fn, keyval, extra state)

IN copy fn Copy callback function for keyval

IN delete fn Delete callback function for keyval

OUT keyval key value for future access (integer)

IN extra state Extra state for callback functions

int MPI Keyval create(MPI Copy function *copy fn, MPI Delete function
*delete fn, int *keyval, void* extra state)

MPI KEYVAL CREATE(COPY FN, DELETE FN, KEYVAL, EXTRA STATE, IERROR)
EXTERNAL COPY FN, DELETE FN
INTEGER KEYVAL, EXTRA STATE, IERROR

Generates a new attribute key. Keys are locally unique in a process, and opaque to
user, though they are explicitly stored in integers. Once allocated, the key value can be
used to associate attributes and access them on any locally defined communicator.

The copy fn function is invoked when a communicator is duplicated by MPI COMM DUP.
copy fn should be of type MPI Copy function, which is defined as follows:

typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag)

A Fortran declaration for such a function is as follows:
SUBROUTINE COPY FUNCTION(OLDCOMM, KEYVAL, EXTRA STATE, ATTRIBUTE VAL IN,

ATTRIBUTE VAL OUT, FLAG, IERR)
INTEGER OLDCOMM, KEYVAL, EXTRA STATE, ATTRIBUTE VAL IN,
ATTRIBUTE VAL OUT, IERR
LOGICAL FLAG

The copy callback function is invoked for each key value in oldcomm in arbitrary order.
Each call to the copy callback is made with a key value and its corresponding attribute.
If it returns flag = 0, then the attribute is deleted in the duplicated communicator. Oth-
erwise (flag = 1), the new attribute value is set to the value returned in attribute val out.
The function returns MPI SUCCESS on success and an error code on failure (in which case
MPI COMM DUP will fail).

copy fn may be specified as MPI NULL COPY FN or MPI DUP FN from either C or
FORTRAN; MPI NULL COPY FN is a function that does nothing other than returning flag

= 0 and MPI SUCCESS. MPI DUP FN is a simple-minded copy function that sets flag = 1,
returns the value of attribute val in in attribute val out, and returns MPI SUCCESS.

Advice to users. Even though both formal arguments attribute val in and attribute val out
are of type void *, their usage differs. The C copy function is passed by MPI in at-
tribute val in the value of the attribute, and in attribute val out the address of the
attribute, so as to allow the function to return the (new) attribute value. The use of
type void * for both is to avoid messy type casts.

A valid copy function is one that completely duplicates the information by making
a full duplicate copy of the data structures implied by an attribute; another might

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

172 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

just make another reference to that data structure, while using a reference-count
mechanism. Other types of attributes might not copy at all (they might be specific
to oldcomm only). (End of advice to users.)

Advice to implementors. A C interface should be assumed for copy and delete
functions associated with key values created in C; a Fortran calling interface should
be assumed for key values created in Fortran. (End of advice to implementors.)

Analogous to copy fn is a callback deletion function, defined as follows. The delete fn
function is invoked when a communicator is deleted by MPI COMM FREE or when a call
is made explicitly to MPI ATTR DELETE. delete fn should be of type MPI Delete function,
which is defined as follows:

typedef int MPI_Delete_function(MPI_Comm comm, int keyval,
void *attribute_val, void *extra_state);

A Fortran declaration for such a function is as follows:
SUBROUTINE DELETE FUNCTION(COMM, KEYVAL, ATTRIBUTE VAL, EXTRA STATE, IERR)

INTEGER COMM, KEYVAL, ATTRIBUTE VAL, EXTRA STATE, IERR

This function is called by MPI COMM FREE, MPI ATTR DELETE, and MPI ATTR PUT
to do whatever is needed to remove an attribute. The function returns MPI SUCCESS on
success and an error code on failure (in which case MPI COMM FREE will fail).

delete fn may be specified as MPI NULL DELETE FN from either C or FORTRAN;
MPI NULL DELETE FN is a function that does nothing, other than returning MPI SUCCESS.

If an attribute copy function or attribute delete function returns other than MPI SUCCESS,
then the call that caused it to be invoked (for example, MPI COMM FREE), is erroneous.

The special key value MPI KEYVAL INVALID is never returned by MPI KEYVAL CREATE.
Therefore, it can be used for static initialization of key values.

MPI KEYVAL FREE(keyval)

INOUT keyval Frees the integer key value (integer)

int MPI Keyval free(int *keyval)

MPI KEYVAL FREE(KEYVAL, IERROR)
INTEGER KEYVAL, IERROR

Frees an extant attribute key. This function sets the value of keyval to
MPI KEYVAL INVALID. Note that it is not erroneous to free an attribute key that is in use,
because the actual free does not transpire until after all references (in other communicators
on the process) to the key have been freed. These references need to be explictly freed
by the program, either via calls to MPI ATTR DELETE that free one attribute instance,
or by calls to MPI COMM FREE that free all attribute instances associated with the freed
communicator.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. CACHING 173

MPI ATTR PUT(comm, keyval, attribute val)

IN comm communicator to which attribute will be attached (han-
dle)

IN keyval key value, as returned by
MPI KEYVAL CREATE (integer)

IN attribute val attribute value

int MPI Attr put(MPI Comm comm, int keyval, void* attribute val)

MPI ATTR PUT(COMM, KEYVAL, ATTRIBUTE VAL, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE VAL, IERROR

This function stores the stipulated attribute value attribute val for subsequent retrieval
by MPI ATTR GET. If the value is already present, then the outcome is as if MPI ATTR DELETE
was first called to delete the previous value (and the callback function delete fn was exe-
cuted), and a new value was next stored. The call is erroneous if there is no key with value
keyval; in particular MPI KEYVAL INVALID is an erroneous key value. The call will fail if the
delete fn function returned an error code other than MPI SUCCESS.

MPI ATTR GET(comm, keyval, attribute val, flag)

IN comm communicator to which attribute is attached (handle)

IN keyval key value (integer)

OUT attribute val attribute value, unless flag = false

OUT flag true if an attribute value was extracted; false if no
attribute is associated with the key

int MPI Attr get(MPI Comm comm, int keyval, void *attribute val, int *flag)

MPI ATTR GET(COMM, KEYVAL, ATTRIBUTE VAL, FLAG, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE VAL, IERROR
LOGICAL FLAG

Retrieves attribute value by key. The call is erroneous if there is no key with value
keyval. On the other hand, the call is correct if the key value exists, but no attribute is
attached on comm for that key; in such case, the call returns flag = false. In particular
MPI KEYVAL INVALID is an erroneous key value.

Advice to users. The call to MPI Attr put passes in attribute val the value of the
attribute; the call to MPI Attr get passes in attribute val the address of the the location
where the attribute value is to be returned. Thus, if the attribute value itself is a
pointer of type void*, then the actual attribute val parameter to MPI Attr put will be
of type void* and the actual attribute val parameter to MPI Attr put will be of type
void**. (End of advice to users.)

Rationale. The use of a formal parameter attribute val or type void* (rather than
void**) avoids the messy type casting that would be needed if the attribute value is
declared with a type other than void*. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

174 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

MPI ATTR DELETE(comm, keyval)

IN comm communicator to which attribute is attached (handle)

IN keyval The key value of the deleted attribute (integer)

int MPI Attr delete(MPI Comm comm, int keyval)

MPI ATTR DELETE(COMM, KEYVAL, IERROR)
INTEGER COMM, KEYVAL, IERROR

Delete attribute from cache by key. This function invokes the attribute delete function
delete fn specified when the keyval was created. The call will fail if the delete fn function
returns an error code other than MPI SUCCESS.

Whenever a communicator is replicated using the function MPI COMM DUP, all call-
back copy functions for attributes that are currently set are invoked (in arbitrary order).
Whenever a communicator is deleted using the function MPI COMM FREE all callback
delete functions for attributes that are currently set are invoked.

5.7.2 Attributes Example

Advice to users. This example shows how to write a collective communication
operation that uses caching to be more efficient after the first call. The coding style
assumes that MPI function results return only error statuses. (End of advice to users.)

/* key for this module’s stuff: */
static int gop_key = MPI_KEYVAL_INVALID;

typedef struct
{

int ref_count; /* reference count */
/* other stuff, whatever else we want */

} gop_stuff_type;

Efficient_Collective_Op (comm, ...)
MPI_Comm comm;
{
gop_stuff_type *gop_stuff;
MPI_Group group;
int foundflag;

MPI_Comm_group(comm, &group);

if (gop_key == MPI_KEYVAL_INVALID) /* get a key on first call ever */
{
if (! MPI_Keyval_create(gop_stuff_copier,

gop_stuff_destructor,
&gop_key, (void *)0));

/* get the key while assigning its copy and delete callback
behavior. */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. CACHING 175

MPI_Abort (comm, 99);
}

MPI_Attr_get (comm, gop_key, &gop_stuff, &foundflag);
if (foundflag)
{ /* This module has executed in this group before.

We will use the cached information */
}
else
{ /* This is a group that we have not yet cached anything in.

We will now do so.
*/

/* First, allocate storage for the stuff we want,
and initialize the reference count */

gop_stuff = (gop_stuff_type *) malloc (sizeof(gop_stuff_type));
if (gop_stuff == NULL) { /* abort on out-of-memory error */ }

gop_stuff -> ref_count = 1;

/* Second, fill in *gop_stuff with whatever we want.
This part isn’t shown here */

/* Third, store gop_stuff as the attribute value */
MPI_Attr_put (comm, gop_key, gop_stuff);

}
/* Then, in any case, use contents of *gop_stuff

to do the global op ... */
}

/* The following routine is called by MPI when a group is freed */

gop_stuff_destructor (comm, keyval, gop_stuff, extra)
MPI_Comm comm;
int keyval;
gop_stuff_type *gop_stuff;
void *extra;
{
if (keyval != gop_key) { /* abort -- programming error */ }

/* The group’s being freed removes one reference to gop_stuff */
gop_stuff -> ref_count -= 1;

/* If no references remain, then free the storage */
if (gop_stuff -> ref_count == 0) {
free((void *)gop_stuff);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

176 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS

}
}

/* The following routine is called by MPI when a group is copied */
gop_stuff_copier (comm, keyval, extra, gop_stuff_in, gop_stuff_out, flag)
MPI_Comm comm;
int keyval;
gop_stuff_type *gop_stuff_in, *gop_stuff_out;
void *extra;
{
if (keyval != gop_key) { /* abort -- programming error */ }

/* The new group adds one reference to this gop_stuff */
gop_stuff -> ref_count += 1;
gop_stuff_out = gop_stuff_in;

}

5.8 Formalizing the Loosely Synchronous Model

In this section, we make further statements about the loosely synchronous model, with
particular attention to intra-communication.

5.8.1 Basic Statements

When a caller passes a communicator (that contains a context and group) to a callee, that
communicator must be free of side effects throughout execution of the subprogram: there
should be no active operations on that communicator that might involve the process. This
provides one model in which libraries can be written, and work “safely.” For libraries
so designated, the callee has permission to do whatever communication it likes with the
communicator, and under the above guarantee knows that no other communications will
interfere. Since we permit good implementations to create new communicators without
synchronization (such as by preallocated contexts on communicators), this does not impose
a significant overhead.

This form of safety is analogous to other common computer-science usages, such as
passing a descriptor of an array to a library routine. The library routine has every right to
expect such a descriptor to be valid and modifiable.

5.8.2 Models of Execution

In the loosely synchronous model, transfer of control to a parallel procedure is effected by
having each executing process invoke the procedure. The invocation is a collective operation:
it is executed by all processes in the execution group, and invocations are similarly ordered
at all processes. However, the invocation need not be synchronized.

We say that a parallel procedure is active in a process if the process belongs to a group
that may collectively execute the procedure, and some member of that group is currently
executing the procedure code. If a parallel procedure is active in a process, then this process
may be receiving messages pertaining to this procedure, even if it does not currently execute
the code of this procedure.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.8. FORMALIZING THE LOOSELY SYNCHRONOUS MODEL 177

Static communicator allocation

This covers the case where, at any point in time, at most one invocation of a parallel
procedure can be active at any process, and the group of executing processes is fixed. For
example, all invocations of parallel procedures involve all processes, processes are single-
threaded, and there are no recursive invocations.

In such a case, a communicator can be statically allocated to each procedure. The
static allocation can be done in a preamble, as part of initialization code. If the parallel
procedures can be organized into libraries, so that only one procedure of each library can
be concurrently active in each processor, then it is sufficient to allocate one communicator
per library.

Dynamic communicator allocation

Calls of parallel procedures are well-nested if a new parallel procedure is always invoked in
a subset of a group executing the same parallel procedure. Thus, processes that execute
the same parallel procedure have the same execution stack.

In such a case, a new communicator needs to be dynamically allocated for each new
invocation of a parallel procedure. The allocation is done by the caller. A new communicator
can be generated by a call to MPI COMM DUP, if the callee execution group is identical to
the caller execution group, or by a call to MPI COMM SPLIT if the caller execution group
is split into several subgroups executing distinct parallel routines. The new communicator
is passed as an argument to the invoked routine.

The need for generating a new communicator at each invocation can be alleviated or
avoided altogether in some cases: If the execution group is not split, then one can allocate
a stack of communicators in a preamble, and next manage the stack in a way that mimics
the stack of recursive calls.

One can also take advantage of the well-ordering property of communication to avoid
confusing caller and callee communication, even if both use the same communicator. To do
so, one needs to abide by the following two rules:

• messages sent before a procedure call (or before a return from the procedure) are also
received before the matching call (or return) at the receiving end;

• messages are always selected by source (no use is made of MPI ANY SOURCE).

The General case

In the general case, there may be multiple concurrently active invocations of the same
parallel procedure within the same group; invocations may not be well-nested. A new
communicator needs to be created for each invocation. It is the user’s responsibility to make
sure that, should two distinct parallel procedures be invoked concurrently on overlapping
sets of processes, then communicator creation be properly coordinated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 6

Process Topologies

6.1 Introduction

This chapter discusses the MPI topology mechanism. A topology is an extra, optional
attribute that one can give to an intra-communicator; topologies cannot be added to inter-
communicators. A topology can provide a convenient naming mechanism for the processes
of a group (within a communicator), and additionally, may assist the runtime system in
mapping the processes onto hardware.

As stated in chapter 5, a process group in MPI is a collection of n processes. Each
process in the group is assigned a rank between 0 and n-1. In many parallel applications
a linear ranking of processes does not adequately reflect the logical communication pattern
of the processes (which is usually determined by the underlying problem geometry and
the numerical algorithm used). Often the processes are arranged in topological patterns
such as two- or three-dimensional grids. More generally, the logical process arrangement is
described by a graph. In this chapter we will refer to this logical process arrangement as
the “virtual topology.”

A clear distinction must be made between the virtual process topology and the topology
of the underlying, physical hardware. The virtual topology can be exploited by the system
in the assignment of processes to physical processors, if this helps to improve the commu-
nication performance on a given machine. How this mapping is done, however, is outside
the scope of MPI. The description of the virtual topology, on the other hand, depends only
on the application, and is machine-independent. The functions that are proposed in this
chapter deal only with machine-independent mapping.

Rationale. Though physical mapping is not discussed, the existence of the virtual
topology information may be used as advice by the runtime system. There are well-
known techniques for mapping grid/torus structures to hardware topologies such as
hypercubes or grids. For more complicated graph structures good heuristics often
yield nearly optimal results [20]. On the other hand, if there is no way for the user
to specify the logical process arrangement as a “virtual topology,” a random mapping
is most likely to result. On some machines, this will lead to unnecessary contention
in the interconnection network. Some details about predicted and measured perfor-
mance improvements that result from good process-to-processor mapping on modern
wormhole-routing architectures can be found in [10, 9].

Besides possible performance benefits, the virtual topology can function as a con-
venient, process-naming structure, with tremendous benefits for program readability

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.2. VIRTUAL TOPOLOGIES 179

and notational power in message-passing programming. (End of rationale.)

6.2 Virtual Topologies

The communication pattern of a set of processes can be represented by a graph. The
nodes stand for the processes, and the edges connect processes that communicate with each
other. MPI provides message-passing between any pair of processes in a group. There
is no requirement for opening a channel explicitly. Therefore, a “missing link” in the
user-defined process graph does not prevent the corresponding processes from exchanging
messages. It means rather that this connection is neglected in the virtual topology. This
strategy implies that the topology gives no convenient way of naming this pathway of
communication. Another possible consequence is that an automatic mapping tool (if one
exists for the runtime environment) will not take account of this edge when mapping. Edges
in the communication graph are not weighted, so that processes are either simply connected
or not connected at all.

Rationale. Experience with similar techniques in PARMACS [5, 8] show that this
information is usually sufficient for a good mapping. Additionally, a more precise
specification is more difficult for the user to set up, and it would make the interface
functions substantially more complicated. (End of rationale.)

Specifying the virtual topology in terms of a graph is sufficient for all applications.
However, in many applications the graph structure is regular, and the detailed set-up of the
graph would be inconvenient for the user and might be less efficient at run time. A large frac-
tion of all parallel applications use process topologies like rings, two- or higher-dimensional
grids, or tori. These structures are completely defined by the number of dimensions and
the numbers of processes in each coordinate direction. Also, the mapping of grids and tori
is generally an easier problem then that of general graphs. Thus, it is desirable to address
these cases explicitly.

Process coordinates in a cartesian structure begin their numbering at 0. Row-major
numbering is always used for the processes in a cartesian structure. This means that, for
example, the relation between group rank and coordinates for four processes in a (2 × 2)
grid is as follows.

coord (0,0): rank 0
coord (0,1): rank 1
coord (1,0): rank 2
coord (1,1): rank 3

6.3 Embedding in MPI

The support for virtual topologies as defined in this chapter is consistent with other parts of
MPI, and, whenever possible, makes use of functions that are defined elsewhere. Topology
information is associated with communicators. It is added to communicators using the
caching mechanism described in Chapter 5.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

180 CHAPTER 6. PROCESS TOPOLOGIES

6.4 Overview of the Functions

The functions MPI GRAPH CREATE and MPI CART CREATE are used to create general
(graph) virtual topologies and cartesian topologies, respectively. These topology creation
functions are collective. As with other collective calls, the program must be written to work
correctly, whether the call synchronizes or not.

The topology creation functions take as input an existing communicator comm old,
which defines the set of processes on which the topology is to be mapped. A new communi-
cator comm topol is created that carries the topological structure as cached information (see
Chapter 5). In analogy to function MPI COMM CREATE, no cached information propagates
from comm old to comm topol.

MPI CART CREATE can be used to describe cartesian structures of arbitrary dimen-
sion. For each coordinate direction one specifies whether the process structure is periodic or
not. Note that an n-dimensional hypercube is an n-dimensional torus with 2 processes per
coordinate direction. Thus, special support for hypercube structures is not necessary. The
local auxiliary function MPI DIMS CREATE can be used to compute a balanced distribution
of processes among a given number of dimensions.

Rationale. Similar functions are contained in EXPRESS [22] and PARMACS. (End
of rationale.)

The function MPI TOPO TEST can be used to inquire about the topology associated
with a communicator. The topological information can be extracted from the communica-
tor using the functions MPI GRAPHDIMS GET and MPI GRAPH GET, for general graphs,
and MPI CARTDIM GET and MPI CART GET, for cartesian topologies. Several additional
functions are provided to manipulate cartesian topologies: the functions MPI CART RANK
and MPI CART COORDS translate cartesian coordinates into a group rank, and vice-versa;
the function MPI CART SUB can be used to extract a cartesian subspace (analogous to
MPI COMM SPLIT). The function MPI CART SHIFT provides the information needed to
communicate with neighbors in a cartesian dimension. The two functions
MPI GRAPH NEIGHBORS COUNT and MPI GRAPH NEIGHBORS can be used to extract
the neighbors of a node in a graph. The function MPI CART SUB is collective over the
input communicator’s group; all other functions are local.

Two additional functions, MPI GRAPH MAP and MPI CART MAP are presented in the
last section. In general these functions are not called by the user directly. However, together
with the communicator manipulation functions presented in Chapter 5, they are sufficient
to implement all other topology functions. Section 6.5.7 outlines such an implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.5. TOPOLOGY CONSTRUCTORS 181

6.5 Topology Constructors

6.5.1 Cartesian Constructor

MPI CART CREATE(comm old, ndims, dims, periods, reorder, comm cart)

IN comm old input communicator (handle)

IN ndims number of dimensions of cartesian grid (integer)

IN dims integer array of size ndims specifying the number of
processes in each dimension

IN periods logical array of size ndims specifying whether the grid
is periodic (true) or not (false) in each dimension

IN reorder ranking may be reordered (true) or not (false) (logical)

OUT comm cart communicator with new cartesian topology (handle)

int MPI Cart create(MPI Comm comm old, int ndims, int *dims, int *periods,
int reorder, MPI Comm *comm cart)

MPI CART CREATE(COMM OLD, NDIMS, DIMS, PERIODS, REORDER, COMM CART, IERROR)
INTEGER COMM OLD, NDIMS, DIMS(*), COMM CART, IERROR
LOGICAL PERIODS(*), REORDER

MPI CART CREATE returns a handle to a new communicator to which the cartesian
topology information is attached. If reorder = false then the rank of each process in the new
group is identical to its rank in the old group. Otherwise, the function may reorder the pro-
cesses (possibly so as to choose a good embedding of the virtual topology onto the physical
machine). If the total size of the cartesian grid is smaller than the size of the group of comm,
then some processes are returned MPI COMM NULL, in analogy to MPI COMM SPLIT. The
call is erroneous if it specifies a grid that is larger than the group size.

6.5.2 Cartesian Convenience Function: MPI DIMS CREATE

For cartesian topologies, the function MPI DIMS CREATE helps the user select a balanced
distribution of processes per coordinate direction, depending on the number of processes
in the group to be balanced and optional constraints that can be specified by the user.
One use is to partition all the processes (the size of MPI COMM WORLD’s group) into an
n-dimensional topology.

MPI DIMS CREATE(nnodes, ndims, dims)

IN nnodes number of nodes in a grid (integer)

IN ndims number of cartesian dimensions (integer)

INOUT dims integer array of size ndims specifying the number of
nodes in each dimension

int MPI Dims create(int nnodes, int ndims, int *dims)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

182 CHAPTER 6. PROCESS TOPOLOGIES

MPI DIMS CREATE(NNODES, NDIMS, DIMS, IERROR)
INTEGER NNODES, NDIMS, DIMS(*), IERROR

The entries in the array dims are set to describe a cartesian grid with ndims dimensions
and a total of nnodes nodes. The dimensions are set to be as close to each other as possible,
using an appropriate divisibility algorithm. The caller may further constrain the operation
of this routine by specifying elements of array dims. If dims[i] is set to a positive number,
the routine will not modify the number of nodes in dimension i; only those entries where
dims[i] = 0 are modified by the call.

Negative input values of dims[i] are erroneous. An error will occur if nnodes is not a
multiple of

∏
i,dims[i] 6=0

dims[i].

For dims[i] set by the call, dims[i] will be ordered in non-increasing order. Array
dims is suitable for use as input to routine MPI CART CREATE. MPI DIMS CREATE is
local.

Example 6.1

dims function call dims
before call on return
(0,0) MPI DIMS CREATE(6, 2, dims) (3,2)
(0,0) MPI DIMS CREATE(7, 2, dims) (7,1)
(0,3,0) MPI DIMS CREATE(6, 3, dims) (2,3,1)
(0,3,0) MPI DIMS CREATE(7, 3, dims) erroneous call

6.5.3 General (Graph) Constructor

MPI GRAPH CREATE(comm old, nnodes, index, edges, reorder, comm graph)

IN comm old input communicator (handle)

IN nnodes number of nodes in graph (integer)

IN index array of integers describing node degrees (see below)

IN edges array of integers describing graph edges (see below)

IN reorder ranking may be reordered (true) or not (false) (logical)

OUT comm graph communicator with graph topology added (handle)

int MPI Graph create(MPI Comm comm old, int nnodes, int *index, int *edges,
int reorder, MPI Comm *comm graph)

MPI GRAPH CREATE(COMM OLD, NNODES, INDEX, EDGES, REORDER, COMM GRAPH,
IERROR)

INTEGER COMM OLD, NNODES, INDEX(*), EDGES(*), COMM GRAPH, IERROR
LOGICAL REORDER

MPI GRAPH CREATE returns a handle to a new communicator to which the graph
topology information is attached. If reorder = false then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, the function may reorder the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.5. TOPOLOGY CONSTRUCTORS 183

processes. If the size, nnodes, of the graph is smaller than the size of the group of comm,
then some processes are returned MPI COMM NULL, in analogy to MPI CART CREATE and
MPI COMM SPLIT. The call is erroneous if it specifies a graph that is larger than the group
size of the input communicator.

The three parameters nnodes, index and edges define the graph structure. nnodes is the
number of nodes of the graph. The nodes are numbered from 0 to nnodes-1. The ith entry
of array index stores the total number of neighbors of the first i graph nodes. The lists
of neighbors of nodes 0, 1, ..., nnodes-1 are stored in consecutive locations in array
edges. The array edges is a flattened representation of the edge lists. The total number of
entries in index is nnodes and the total number of entries in edges is equal to the number of
graph edges.

The definitions of the arguments nnodes, index, and edges are illustrated with the
following simple example.

Example 6.2 Assume there are four processes 0, 1, 2, 3 with the following adjacency
matrix:

process neighbors
0 1, 3
1 0
2 3
3 0, 2

Then, the input arguments are:

nnodes = 4
index = 2, 3, 4, 6
edges = 1, 3, 0, 3, 0, 2

Thus, in C, index[0] is the degree of node zero, and index[i] - index[i-1] is the
degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in
edges[j], for 0 ≤ j ≤ index[0]− 1 and the list of neighbors of node i, i > 0, is stored in
edges[j], index[i− 1] ≤ j ≤ index[i]− 1.

In Fortran, index(1) is the degree of node zero, and index(i+1) - index(i) is the
degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in
edges(j), for 1 ≤ j ≤ index(1) and the list of neighbors of node i, i > 0, is stored in
edges(j), index(i) + 1 ≤ j ≤ index(i + 1).

Advice to implementors. The following topology information is likely to be stored
with a communicator:

• Type of topology (cartesian/graph),

• For a cartesian topology:

1. ndims (number of dimensions),
2. dims (numbers of processes per coordinate direction),
3. periods (periodicity information),
4. own_position (own position in grid, could also be computed from rank and

dims)

• For a graph topology:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

184 CHAPTER 6. PROCESS TOPOLOGIES

1. index,
2. edges,

which are the vectors defining the graph structure.

For a graph structure the number of nodes is equal to the number of processes in
the group. Therefore, the number of nodes does not have to be stored explicitly.
An additional zero entry at the start of array index simplifies access to the topology
information. (End of advice to implementors.)

6.5.4 Topology inquiry functions

If a topology has been defined with one of the above functions, then the topology information
can be looked up using inquiry functions. They all are local calls.

MPI TOPO TEST(comm, status)

IN comm communicator (handle)

OUT status topology type of communicator comm (state)

int MPI Topo test(MPI Comm comm, int *status)

MPI TOPO TEST(COMM, STATUS, IERROR)
INTEGER COMM, STATUS, IERROR

The function MPI TOPO TEST returns the type of topology that is assigned to a
communicator.

The output value status is one of the following:

MPI GRAPH graph topology
MPI CART cartesian topology
MPI UNDEFINED no topology

MPI GRAPHDIMS GET(comm, nnodes, nedges)

IN comm communicator for group with graph structure (handle)

OUT nnodes number of nodes in graph (integer) (same as number
of processes in the group)

OUT nedges number of edges in graph (integer)

int MPI Graphdims get(MPI Comm comm, int *nnodes, int *nedges)

MPI GRAPHDIMS GET(COMM, NNODES, NEDGES, IERROR)
INTEGER COMM, NNODES, NEDGES, IERROR

Functions MPI GRAPHDIMS GET and MPI GRAPH GET retrieve the graph-topology
information that was associated with a communicator by MPI GRAPH CREATE.

The information provided by MPI GRAPHDIMS GET can be used to dimension the
vectors index and edges correctly for the following call to MPI GRAPH GET.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.5. TOPOLOGY CONSTRUCTORS 185

MPI GRAPH GET(comm, maxindex, maxedges, index, edges)

IN comm communicator with graph structure (handle)

IN maxindex length of vector index in the calling program
(integer)

IN maxedges length of vector edges in the calling program
(integer)

OUT index array of integers containing the graph structure (for
details see the definition of MPI GRAPH CREATE)

OUT edges array of integers containing the graph structure

int MPI Graph get(MPI Comm comm, int maxindex, int maxedges, int *index,
int *edges)

MPI GRAPH GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)
INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR

MPI CARTDIM GET(comm, ndims)

IN comm communicator with cartesian structure (handle)

OUT ndims number of dimensions of the cartesian structure (inte-
ger)

int MPI Cartdim get(MPI Comm comm, int *ndims)

MPI CARTDIM GET(COMM, NDIMS, IERROR)
INTEGER COMM, NDIMS, IERROR

The functions MPI CARTDIM GET and MPI CART GET return the cartesian topology
information that was associated with a communicator by MPI CART CREATE.

MPI CART GET(comm, maxdims, dims, periods, coords)

IN comm communicator with cartesian structure (handle)

IN maxdims length of vectors dims, periods, and coords in the
calling program (integer)

OUT dims number of processes for each cartesian dimension (ar-
ray of integer)

OUT periods periodicity (true/false) for each cartesian dimension
(array of logical)

OUT coords coordinates of calling process in cartesian structure
(array of integer)

int MPI Cart get(MPI Comm comm, int maxdims, int *dims, int *periods,
int *coords)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

186 CHAPTER 6. PROCESS TOPOLOGIES

MPI CART GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)
INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR
LOGICAL PERIODS(*)

MPI CART RANK(comm, coords, rank)

IN comm communicator with cartesian structure (handle)

IN coords integer array (of size ndims) specifying the cartesian
coordinates of a process

OUT rank rank of specified process (integer)

int MPI Cart rank(MPI Comm comm, int *coords, int *rank)

MPI CART RANK(COMM, COORDS, RANK, IERROR)
INTEGER COMM, COORDS(*), RANK, IERROR

For a process group with cartesian structure, the function MPI CART RANK translates
the logical process coordinates to process ranks as they are used by the point-to-point
routines.

For dimension i with periods(i) = true, if the coordinate, coords(i), is out of
range, that is, coords(i) < 0 or coords(i) ≥ dims(i), it is shifted back to the interval
0 ≤ coords(i) < dims(i) automatically. Out-of-range coordinates are erroneous for
non-periodic dimensions.

MPI CART COORDS(comm, rank, maxdims, coords)

IN comm communicator with cartesian structure (handle)

IN rank rank of a process within group of comm (integer)

IN maxdims length of vector coords in the calling program (inte-
ger)

OUT coords integer array (of size ndims) containing the cartesian
coordinates of specified process (array of integers)

int MPI Cart coords(MPI Comm comm, int rank, int maxdims, int *coords)

MPI CART COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)
INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

The inverse mapping, rank-to-coordinates translation is provided by MPI CART COORDS.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.5. TOPOLOGY CONSTRUCTORS 187

MPI GRAPH NEIGHBORS COUNT(comm, rank, nneighbors)

IN comm communicator with graph topology (handle)

IN rank rank of process in group of comm (integer)

OUT nneighbors number of neighbors of specified process (integer)

int MPI Graph neighbors count(MPI Comm comm, int rank, int *nneighbors)

MPI GRAPH NEIGHBORS COUNT(COMM, RANK, NNEIGHBORS, IERROR)
INTEGER COMM, RANK, NNEIGHBORS, IERROR

MPI GRAPH NEIGHBORS COUNT and MPI GRAPH NEIGHBORS provide adjacency
information for a general, graph topology.

MPI GRAPH NEIGHBORS(comm, rank, maxneighbors, neighbors)

IN comm communicator with graph topology (handle)

IN rank rank of process in group of comm (integer)

IN maxneighbors size of array neighbors (integer)

OUT neighbors ranks of processes that are neighbors to specified pro-
cess (array of integer)

int MPI Graph neighbors(MPI Comm comm, int rank, int maxneighbors,
int *neighbors)

MPI GRAPH NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)
INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

Example 6.3 Suppose that comm is a communicator with a shuffle-exchange topology. The
group has 2n members. Each process is labeled by a1, . . . , an with ai ∈ {0, 1}, and has
three neighbors: exchange(a1, . . . , an) = a1, . . . , an−1, ān (ā = 1 − a), shuffle(a1, . . . , an) =
a2, . . . , an, a1, and unshuffle(a1, . . . , an) = an, a1, . . . , an−1. The graph adjacency list is
illustrated below for n = 3.

node exchange shuffle unshuffle
neighbors(1) neighbors(2) neighbors(3)

0 (000) 1 0 0
1 (001) 0 2 4
2 (010) 3 4 1
3 (011) 2 6 5
4 (100) 5 1 2
5 (101) 4 3 6
6 (110) 7 5 3
7 (111) 6 7 7

Suppose that the communicator comm has this topology associated with it. The follow-
ing code fragment cycles through the three types of neighbors and performs an appropriate
permutation for each.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

188 CHAPTER 6. PROCESS TOPOLOGIES

C assume: each process has stored a real number A.
C extract neighborhood information

CALL MPI_COMM_RANK(comm, myrank, ierr)
CALL MPI_GRAPH_NEIGHBORS(comm, myrank, 3, neighbors, ierr)

C perform exchange permutation
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(1), 0,
+ neighbors(1), 0, comm, status, ierr)

C perform shuffle permutation
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(2), 0,
+ neighbors(3), 0, comm, status, ierr)

C perform unshuffle permutation
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(3), 0,
+ neighbors(2), 0, comm, status, ierr)

6.5.5 Cartesian Shift Coordinates

If the process topology is a cartesian structure, a MPI SENDRECV operation is likely to be
used along a coordinate direction to perform a shift of data. As input, MPI SENDRECV
takes the rank of a source process for the receive, and the rank of a destination process for
the send. If the function MPI CART SHIFT is called for a cartesian process group, it provides
the calling process with the above identifiers, which then can be passed to MPI SENDRECV.
The user specifies the coordinate direction and the size of the step (positive or negative).
The function is local.

MPI CART SHIFT(comm, direction, disp, rank source, rank dest)

IN comm communicator with cartesian structure (handle)

IN direction coordinate dimension of shift (integer)

IN disp displacement (> 0: upwards shift, < 0: downwards
shift) (integer)

OUT rank source rank of source process (integer)

OUT rank dest rank of destination process (integer)

int MPI Cart shift(MPI Comm comm, int direction, int disp, int *rank source,
int *rank dest)

MPI CART SHIFT(COMM, DIRECTION, DISP, RANK SOURCE, RANK DEST, IERROR)
INTEGER COMM, DIRECTION, DISP, RANK SOURCE, RANK DEST, IERROR

The direction argument indicates the dimension of the shift, i.e., the coordinate which
value is modified by the shift. The coordinates are numbered from 0 to ndims-1, when
ndims is the number of dimensions.

Depending on the periodicity of the cartesian group in the specified coordinate direc-
tion, MPI CART SHIFT provides the identifiers for a circular or an end-off shift. In the case
of an end-off shift, the value MPI PROC NULL may be returned in rank source or rank dest,
indicating that the source or the destination for the shift is out of range.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.5. TOPOLOGY CONSTRUCTORS 189

Example 6.4 The communicator, comm, has a two-dimensional, periodic, cartesian topol-
ogy associated with it. A two-dimensional array of REALs is stored one element per process,
in variable A. One wishes to skew this array, by shifting column i (vertically, i.e., along the
column) by i steps.

....
C find process rank

CALL MPI_COMM_RANK(comm, rank, ierr))
C find cartesian coordinates

CALL MPI_CART_COORDS(comm, rank, maxdims, coords, ierr)
C compute shift source and destination

CALL MPI_CART_SHIFT(comm, 0, coords(2), source, dest, ierr)
C skew array

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, dest, 0, source, 0, comm,
+ status, ierr)

Advice to users. In Fortran, the dimension indicated by DIRECTION = i has DIMS(i+1)

nodes, where DIMS is the array that was used to create the grid. In C, the dimension
indicated by direction = i is the dimension specified by dims[i]. (End of advice to users.)

6.5.6 Partitioning of Cartesian structures

MPI CART SUB(comm, remain dims, newcomm)

IN comm communicator with cartesian structure (handle)

IN remain dims the ith entry of remain dims specifies whether the
ith dimension is kept in the subgrid (true) or is drop-
ped (false) (logical vector)

OUT newcomm communicator containing the subgrid that includes
the calling process (handle)

int MPI Cart sub(MPI Comm comm, int *remain dims, MPI Comm *newcomm)

MPI CART SUB(COMM, REMAIN DIMS, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR
LOGICAL REMAIN DIMS(*)

If a cartesian topology has been created with MPI CART CREATE, the function
MPI CART SUB can be used to partition the communicator group into subgroups that
form lower-dimensional cartesian subgrids, and to build for each subgroup a communica-
tor with the associated subgrid cartesian topology. (This function is closely related to
MPI COMM SPLIT.)

Example 6.5 Assume that MPI CART CREATE(..., comm) has defined a (2×3×4) grid.
Let remain dims = (true, false, true). Then a call to,

MPI_CART_SUB(comm, remain_dims, comm_new),

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

190 CHAPTER 6. PROCESS TOPOLOGIES

will create three communicators each with eight processes in a 2 × 4 cartesian topol-
ogy. If remain dims = (false, false, true) then the call to MPI CART SUB(comm,
remain dims, comm new) will create six non-overlapping communicators, each with four
processes, in a one-dimensional cartesian topology.

6.5.7 Low-level topology functions

The two additional functions introduced in this section can be used to implement all other
topology functions. In general they will not be called by the user directly, unless he or she
is creating additional virtual topology capability other than that provided by MPI.

MPI CART MAP(comm, ndims, dims, periods, newrank)

IN comm input communicator (handle)

IN ndims number of dimensions of cartesian structure (integer)

IN dims integer array of size ndims specifying the number of
processes in each coordinate direction

IN periods logical array of size ndims specifying the periodicity
specification in each coordinate direction

OUT newrank reordered rank of the calling process; MPI UNDEFINED

if calling process does not belong to grid (integer)

int MPI Cart map(MPI Comm comm, int ndims, int *dims, int *periods,
int *newrank)

MPI CART MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)
INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR
LOGICAL PERIODS(*)

MPI CART MAP computes an “optimal” placement for the calling process on the phys-
ical machine. A possible implementation of this function is to always return the rank of the
calling process, that is, not to perform any reordering.

Advice to implementors. The function MPI CART CREATE(comm, ndims, dims,
periods, reorder, comm cart), with reorder = true can be implemented by calling
MPI CART MAP(comm, ndims, dims, periods, newrank), then calling
MPI COMM SPLIT(comm, color, key, comm cart), with color = 0 if newrank 6=
MPI UNDEFINED, color = MPI UNDEFINED otherwise, and key = newrank.

The function MPI CART SUB(comm, remain dims, comm new) can be implemented
by a call to MPI COMM SPLIT(comm, color, key, comm new), using a single number
encoding of the lost dimensions as color and a single number encoding of the preserved
dimensions as key.

All other cartesian topology functions can be implemented locally, using the topology
information that is cached with the communicator. (End of advice to implementors.)

The corresponding new function for general graph structures is as follows.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.6. AN APPLICATION EXAMPLE 191

MPI GRAPH MAP(comm, nnodes, index, edges, newrank)

IN comm input communicator (handle)

IN nnodes number of graph nodes (integer)

IN index integer array specifying the graph structure, see
MPI GRAPH CREATE

IN edges integer array specifying the graph structure

OUT newrank reordered rank of the calling process; MPI UNDEFINED

if the calling process does not belong to graph (inte-
ger)

int MPI Graph map(MPI Comm comm, int nnodes, int *index, int *edges,
int *newrank)

MPI GRAPH MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)
INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

Advice to implementors. The function MPI GRAPH CREATE(comm, nnodes, index,
edges, reorder, comm graph), with reorder = true can be implemented by calling
MPI GRAPH MAP(comm, nnodes, index, edges, newrank), then calling
MPI COMM SPLIT(comm, color, key, comm graph), with color = 0 if newrank 6=
MPI UNDEFINED, color = MPI UNDEFINED otherwise, and key = newrank.

All other graph topology functions can be implemented locally, using the topology
information that is cached with the communicator. (End of advice to implementors.)

6.6 An Application Example

Example 6.6 The example in figure 6.1 shows how the grid definition and inquiry functions
can be used in an application program. A partial differential equation, for instance the
Poisson equation, is to be solved on a rectangular domain. First, the processes organize
themselves in a two-dimensional structure. Each process then inquires about the ranks of
its neighbors in the four directions (up, down, right, left). The numerical problem is solved
by an iterative method, the details of which are hidden in the subroutine relax.

In each relaxation step each process computes new values for the solution grid function
at all points owned by the process. Then the values at inter-process boundaries have to be
exchanged with neighboring processes. For example, the exchange subroutine might contain
a call like MPI SEND(...,neigh rank(1),...) to send updated values to the left-hand neighbor
(i-1,j).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

192 CHAPTER 6. PROCESS TOPOLOGIES

integer ndims, num neigh
logical reorder
parameter (ndims=2, num neigh=4, reorder=.true.)
integer comm, comm cart, dims(ndims), neigh def(ndims), ierr
integer neigh rank(num neigh), own position(ndims), i, j
logical periods(ndims)
real∗8 u(0:101,0:101), f(0:101,0:101)
data dims / ndims ∗ 0 /
comm = MPI COMM WORLD

C Set process grid size and periodicity
call MPI DIMS CREATE(comm, ndims, dims,ierr)
periods(1) = .TRUE.
periods(2) = .TRUE.

C Create a grid structure in WORLD group and inquire about own position
call MPI CART CREATE (comm, ndims, dims, periods, reorder, comm cart,ierr)
call MPI CART GET (comm cart, ndims, dims, periods, own position,ierr)

C Look up the ranks for the neighbors. Own process coordinates are (i,j).
C Neighbors are (i-1,j), (i+1,j), (i,j-1), (i,j+1)

i = own position(1)
j = own position(2)
neigh def(1) = i-1
neigh def(2) = j
call MPI CART RANK (comm cart, neigh def, neigh rank(1),ierr)
neigh def(1) = i+1
neigh def(2) = j
call MPI CART RANK (comm cart, neigh def, neigh rank(2),ierr)
neigh def(1) = i
neigh def(2) = j-1
call MPI CART RANK (comm cart, neigh def, neigh rank(3),ierr)
neigh def(1) = i
neigh def(2) = j+1
call MPI CART RANK (comm cart, neigh def, neigh rank(4),ierr)

C Initialize the grid functions and start the iteration
call init (u, f)
do 10 it=1,100
call relax (u, f)

C Exchange data with neighbor processes
call exchange (u, comm cart, neigh rank, num neigh)

10 continue
call output (u)
end

Figure 6.1: Set-up of process structure for two-dimensional parallel Poisson solver.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 7

MPI Environmental Management

This chapter discusses routines for getting and, where appropriate, setting various param-
eters that relate to the MPI implementation and the execution environment (such as error
handling). The procedures for entering and leaving the MPI execution environment are also
described here.

7.1 Implementation information

7.1.1 Version Inquiries

In order to cope with changes to the MPI Standard, there are both compile-time and run-
time ways to determine which version of the standard is in use in the environment one is
using.

The “version” will be represented by two separate integers, for the version and subver-
sion: In C and C++,

#define MPI_VERSION 1
#define MPI_SUBVERSION 2

in Fortran,

INTEGER MPI_VERSION, MPI_SUBVERSION
PARAMETER (MPI_VERSION = 1)
PARAMETER (MPI_SUBVERSION = 2)

For runtime determination,

MPI GET VERSION(version, subversion)

OUT version version number (integer)

OUT subversion subversion number (integer)

int MPI Get version(int *version, int *subversion)

MPI GET VERSION(VERSION, SUBVERSION, IERROR)
INTEGER VERSION, SUBVERSION, IERROR

MPI GET VERSION is one of the few functions that can be called before MPI INIT and
after MPI FINALIZE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

194 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENT

7.1.2 Environmental Inquiries

A set of attributes that describe the execution environment are attached to the commu-
nicator MPI COMM WORLD when MPI is initialized. The value of these attributes can be
inquired by using the function MPI ATTR GET described in Chapter 5. It is erroneous to
delete these attributes, free their keys, or change their values.

The list of predefined attribute keys include

MPI TAG UB Upper bound for tag value.

MPI HOST Host process rank, if such exists, MPI PROC NULL, otherwise.

MPI IO rank of a node that has regular I/O facilities (possibly myrank). Nodes in the same
communicator may return different values for this parameter.

MPI WTIME IS GLOBAL Boolean variable that indicates whether clocks are synchronized.

Vendors may add implementation specific parameters (such as node number, real mem-
ory size, virtual memory size, etc.)

These predefined attributes do not change value between MPI initialization (MPI INIT
and MPI completion (MPI FINALIZE), and cannot be updated or deleted by users.

Advice to users. Note that in the C binding, the value returned by these attributes
is a pointer to an int containing the requested value. (End of advice to users.)

The required parameter values are discussed in more detail below:

Tag values

Tag values range from 0 to the value returned for MPI TAG UB inclusive. These values are
guaranteed to be unchanging during the execution of an MPI program. In addition, the tag
upper bound value must be at least 32767. An MPI implementation is free to make the
value of MPI TAG UB larger than this; for example, the value 230− 1 is also a legal value for
MPI TAG UB.

The attribute MPI TAG UB has the same value on all processes of MPI COMM WORLD.

Host rank

The value returned for MPI HOST gets the rank of the HOST process in the group associated
with communicator MPI COMM WORLD, if there is such. MPI PROC NULL is returned if
there is no host. MPI does not specify what it means for a process to be a HOST, nor does
it requires that a HOST exists.

The attribute MPI HOST has the same value on all processes of MPI COMM WORLD.

IO rank

The value returned for MPI IO is the rank of a processor that can provide language-standard
I/O facilities. For Fortran, this means that all of the Fortran I/O operations are supported
(e.g., OPEN, REWIND, WRITE). For C, this means that all of the ANSI-C I/O operations are
supported (e.g., fopen, fprintf, lseek).

If every process can provide language-standard I/O, then the value MPI ANY SOURCE

will be returned. Otherwise, if the calling process can provide language-standard I/O,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.1. IMPLEMENTATION INFORMATION 195

then its rank will be returned. Otherwise, if some process can provide language-standard
I/O then the rank of one such process will be returned. The same value need not be
returned by all processes. If no process can provide language-standard I/O, then the value
MPI PROC NULL will be returned.

Advice to users. Note that input is not collective, and this attribute does not indicate
which process can or does provide input. (End of advice to users.)

Clock synchronization

The value returned for MPI WTIME IS GLOBAL is 1 if clocks at all processes in
MPI COMM WORLD are synchronized, 0 otherwise. A collection of clocks is considered syn-
chronized if explicit effort has been taken to synchronize them. The expectation is that
the variation in time, as measured by calls to MPI WTIME, will be less then one half the
round-trip time for an MPI message of length zero. If time is measured at a process just
before a send and at another process just after a matching receive, the second time should
be always higher than the first one.

The attribute MPI WTIME IS GLOBAL need not be present when the clocks are not
synchronized (however, the attribute key MPI WTIME IS GLOBAL is always valid). This
attribute may be associated with communicators other then MPI COMM WORLD.

The attribute MPI WTIME IS GLOBAL has the same value on all processes of MPI COMM WORLD.

MPI GET PROCESSOR NAME(name, resultlen)

OUT name A unique specifier for the actual (as opposed to vir-
tual) node.

OUT resultlen Length (in printable characters) of the result returned
in name

int MPI Get processor name(char *name, int *resultlen)

MPI GET PROCESSOR NAME(NAME, RESULTLEN, IERROR)
CHARACTER*(*) NAME
INTEGER RESULTLEN,IERROR

This routine returns the name of the processor on which it was called at the moment
of the call. The name is a character string for maximum flexibility. From this value it
must be possible to identify a specific piece of hardware; possible values include “processor
9 in rack 4 of mpp.cs.org” and “231” (where 231 is the actual processor number in the
running homogeneous system). The argument name must represent storage that is at least
MPI MAX PROCESSOR NAME characters long. MPI GET PROCESSOR NAME may write up
to this many characters into name.

The number of characters actually written is returned in the output argument, resultlen.
In C, a null character is additionally stored at name[resultlen]. The resultlen cannot
be larger then MPI MAX PROCESSOR NAME-1. In Fortran, name is padded on the right with
blank characters. The resultlen cannot be larger then MPI MAX PROCESSOR NAME.

Rationale. This function allows MPI implementations that do process migration
to return the current processor. Note that nothing in MPI requires or defines pro-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

196 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENT

cess migration; this definition of MPI GET PROCESSOR NAME simply allows such
an implementation. (End of rationale.)

Advice to users. The user must provide at least MPI MAX PROCESSOR NAME space
to write the processor name — processor names can be this long. The user should
examine the output argument, resultlen, to determine the actual length of the name.
(End of advice to users.)

The constant MPI BSEND OVERHEAD provides an upper bound on the fixed overhead
per message buffered by a call to MPI BSEND (see Section 3.6.1).

7.2 Error handling

An MPI implementation cannot or may choose not to handle some errors that occur during
MPI calls. These can include errors that generate exceptions or traps, such as floating point
errors or access violations. The set of errors that are handled by MPI is implementation-
dependent. Each such error generates an MPI exception.

The above text takes precedence over any text on error handling within this document.
Specifically, text that states that errors will be handled should be read as may be handled.

A user can associate an error handler with a communicator. The specified error han-
dling routine will be used for any MPI exception that occurs during a call to MPI for a
communication with this communicator. MPI calls that are not related to any communica-
tor are considered to be attached to the communicator MPI COMM WORLD. The attachment
of error handlers to communicators is purely local: different processes may attach different
error handlers to the same communicator.

A newly created communicator inherits the error handler that is associated with the
“parent” communicator. In particular, the user can specify a “global” error handler for
all communicators by associating this handler with the communicator MPI COMM WORLD

immediately after initialization.
Several predefined error handlers are available in MPI:

MPI ERRORS ARE FATAL The handler, when called, causes the program to abort on all exe-
cuting processes. This has the same effect as if MPI ABORT was called by the process
that invoked the handler.

MPI ERRORS RETURN The handler has no effect other than returning the error code to the
user.

Implementations may provide additional predefined error handlers and programmers
can code their own error handlers.

The error handler MPI ERRORS ARE FATAL is associated by default with MPI COMM-

WORLD after initialization. Thus, if the user chooses not to control error handling, every
error that MPI handles is treated as fatal. Since (almost) all MPI calls return an error code,
a user may choose to handle errors in its main code, by testing the return code of MPI calls
and executing a suitable recovery code when the call was not successful. In this case, the
error handler MPI ERRORS RETURN will be used. Usually it is more convenient and more
efficient not to test for errors after each MPI call, and have such error handled by a non
trivial MPI error handler.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.2. ERROR HANDLING 197

After an error is detected, the state of MPI is undefined. That is, using a user-defined
error handler, or MPI ERRORS RETURN, does not necessarily allow the user to continue to
use MPI after an error is detected. The purpose of these error handlers is to allow a user to
issue user-defined error messages and to take actions unrelated to MPI (such as flushing I/O
buffers) before a program exits. An MPI implementation is free to allow MPI to continue
after an error but is not required to do so.

Advice to implementors. A good quality implementation will, to the greatest possible
extent, circumscribe the impact of an error, so that normal processing can continue
after an error handler was invoked. The implementation documentation will provide
information on the possible effect of each class of errors. (End of advice to implemen-
tors.)

An MPI error handler is an opaque object, which is accessed by a handle. MPI calls
are provided to create new error handlers, to associate error handlers with communicators,
and to test which error handler is associated with a communicator.

MPI ERRHANDLER CREATE(function, errhandler)

IN function user defined error handling procedure

OUT errhandler MPI error handler (handle)

int MPI Errhandler create(MPI Handler function *function,
MPI Errhandler *errhandler)

MPI ERRHANDLER CREATE(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

Register the user routine function for use as an MPI exception handler. Returns in
errhandler a handle to the registered exception handler.

In the C language, the user routine should be a C function of type MPI Handler function,
which is defined as:

typedef void (MPI_Handler_function)(MPI_Comm *, int *, ...);

The first argument is the communicator in use. The second is the error code to be re-
turned by the MPI routine that raised the error. If the routine would have returned
MPI ERR IN STATUS, it is the error code returned in the status for the request that caused
the error handler to be invoked. The remaining arguments are “stdargs” arguments whose
number and meaning is implementation-dependent. An implementation should clearly doc-
ument these arguments. Addresses are used so that the handler may be written in Fortran.

In the Fortran language, the user routine should be of the form:

SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE,)
INTEGER COMM, ERROR_CODE

Advice to users. Users are discouraged from using a Fortran HANDLER FUNCTION
since the routine expects a variable number of arguments. Some Fortran systems

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

198 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENT

may allow this but some may fail to give the correct result or compile/link this code.
Thus, it will not, in general, be possible to create portable code with a Fortran HAN-
DLER FUNCTION. (End of advice to users.)

Rationale. The variable argument list is provided because it provides an ANSI-
standard hook for providing additional information to the error handler; without this
hook, ANSI C prohibits additional arguments. (End of rationale.)

MPI ERRHANDLER SET(comm, errhandler)

IN comm communicator to set the error handler for (handle)

IN errhandler new MPI error handler for communicator (handle)

int MPI Errhandler set(MPI Comm comm, MPI Errhandler errhandler)

MPI ERRHANDLER SET(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

Associates the new error handler errorhandler with communicator comm at the calling
process. Note that an error handler is always associated with the communicator.

MPI ERRHANDLER GET(comm, errhandler)

IN comm communicator to get the error handler from (handle)

OUT errhandler MPI error handler currently associated with commu-
nicator (handle)

int MPI Errhandler get(MPI Comm comm, MPI Errhandler *errhandler)

MPI ERRHANDLER GET(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

Returns in errhandler (a handle to) the error handler that is currently associated with
communicator comm.

Example: A library function may register at its entry point the current error handler
for a communicator, set its own private error handler for this communicator, and restore
before exiting the previous error handler.

MPI ERRHANDLER FREE(errhandler)

INOUT errhandler MPI error handler (handle)

int MPI Errhandler free(MPI Errhandler *errhandler)

MPI ERRHANDLER FREE(ERRHANDLER, IERROR)
INTEGER ERRHANDLER, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. ERROR CODES AND CLASSES 199

Marks the error handler associated with errhandler for deallocation and sets errhandler
to MPI ERRHANDLER NULL. The error handler will be deallocated after all communicators
associated with it have been deallocated.

MPI ERROR STRING(errorcode, string, resultlen)

IN errorcode Error code returned by an MPI routine

OUT string Text that corresponds to the errorcode

OUT resultlen Length (in printable characters) of the result returned
in string

int MPI Error string(int errorcode, char *string, int *resultlen)

MPI ERROR STRING(ERRORCODE, STRING, RESULTLEN, IERROR)
INTEGER ERRORCODE, RESULTLEN, IERROR
CHARACTER*(*) STRING

Returns the error string associated with an error code or class. The argument string
must represent storage that is at least MPI MAX ERROR STRING characters long.

The number of characters actually written is returned in the output argument, resultlen.

Rationale. The form of this function was chosen to make the Fortran and C bindings
similar. A version that returns a pointer to a string has two difficulties. First, the
return string must be statically allocated and different for each error message (allowing
the pointers returned by successive calls to MPI ERROR STRING to point to the correct
message). Second, in Fortran, a function declared as returning CHARACTER*(*) can
not be referenced in, for example, a PRINT statement. (End of rationale.)

7.3 Error codes and classes

The error codes returned by MPI are left entirely to the implementation (with the exception
of MPI SUCCESS). This is done to allow an implementation to provide as much information
as possible in the error code (for use with MPI ERROR STRING).

To make it possible for an application to interpret an error code, the routine MPI ERROR CLASS
converts any error code into one of a small set of standard error codes, called error classes.
Valid error classes include

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

200 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENT

MPI SUCCESS No error
MPI ERR BUFFER Invalid buffer pointer
MPI ERR COUNT Invalid count argument
MPI ERR TYPE Invalid datatype argument
MPI ERR TAG Invalid tag argument
MPI ERR COMM Invalid communicator
MPI ERR RANK Invalid rank
MPI ERR REQUEST Invalid request (handle)
MPI ERR ROOT Invalid root
MPI ERR GROUP Invalid group
MPI ERR OP Invalid operation
MPI ERR TOPOLOGY Invalid topology
MPI ERR DIMS Invalid dimension argument
MPI ERR ARG Invalid argument of some other kind
MPI ERR UNKNOWN Unknown error
MPI ERR TRUNCATE Message truncated on receive
MPI ERR OTHER Known error not in this list
MPI ERR INTERN Internal MPI (implementation) error
MPI ERR IN STATUS Error code is in status
MPI ERR PENDING Pending request
MPI ERR LASTCODE Last error code

The error classes are a subset of the error codes: an MPI function may return an
error class number; and the function MPI ERROR STRING can be used to compute the
error string associated with an error class. An MPI error class is a valid MPI error code.
Specifically, the values defined for MPI error classes are valid MPI error codes.

The error codes satisfy,

0 = MPI SUCCESS < MPI ERR ... ≤ MPI ERR LASTCODE.

Rationale. The difference between MPI ERR UNKNOWN and MPI ERR OTHER is that
MPI ERROR STRING can return useful information about MPI ERR OTHER.

Note that MPI SUCCESS = 0 is necessary to be consistent with C practice; the sepa-
ration of error classes and error codes allows us to define the error classes this way.
Having a known LASTCODE is often a nice sanity check as well. (End of rationale.)

MPI ERROR CLASS(errorcode, errorclass)

IN errorcode Error code returned by an MPI routine

OUT errorclass Error class associated with errorcode

int MPI Error class(int errorcode, int *errorclass)

MPI ERROR CLASS(ERRORCODE, ERRORCLASS, IERROR)
INTEGER ERRORCODE, ERRORCLASS, IERROR

The function MPI ERROR CLASS maps each standard error code (error class) onto
itself.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.4. TIMERS AND SYNCHRONIZATION 201

7.4 Timers and synchronization

MPI defines a timer. A timer is specified even though it is not “message-passing,” because
timing parallel programs is important in “performance debugging” and because existing
timers (both in POSIX 1003.1-1988 and 1003.4D 14.1 and in Fortran 90) are either incon-
venient or do not provide adequate access to high-resolution timers.

MPI WTIME()

double MPI Wtime(void)

DOUBLE PRECISION MPI WTIME()

MPI WTIME returns a floating-point number of seconds, representing elapsed wall-clock
time since some time in the past.

The “time in the past” is guaranteed not to change during the life of the process.
The user is responsible for converting large numbers of seconds to other units if they are
preferred.

This function is portable (it returns seconds, not “ticks”), it allows high-resolution,
and carries no unnecessary baggage. One would use it like this:

{
double starttime, endtime;
starttime = MPI_Wtime();
.... stuff to be timed ...
endtime = MPI_Wtime();
printf("That took %f seconds\n",endtime-starttime);

}

The times returned are local to the node that called them. There is no requirement that
different nodes return “the same time.” (But see also the discussion of MPI WTIME IS GLOBAL).

MPI WTICK()

double MPI Wtick(void)

DOUBLE PRECISION MPI WTICK()

MPI WTICK returns the resolution of MPI WTIME in seconds. That is, it returns,
as a double precision value, the number of seconds between successive clock ticks. For
example, if the clock is implemented by the hardware as a counter that is incremented
every millisecond, the value returned by MPI WTICK should be 10−3.

7.5 Startup

One goal of MPI is to achieve source code portability. By this we mean that a program written
using MPI and complying with the relevant language standards is portable as written, and
must not require any source code changes when moved from one system to another. This
explicitly does not say anything about how an MPI program is started or launched from

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

202 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENT

the command line, nor what the user must do to set up the environment in which an MPI
program will run. However, an implementation may require some setup to be performed
before other MPI routines may be called. To provide for this, MPI includes an initialization
routine MPI INIT.

MPI INIT()

int MPI Init(int *argc, char ***argv)

MPI INIT(IERROR)
INTEGER IERROR

This routine must be called before any other MPI routine. It must be called at most
once; subsequent calls are erroneous (see MPI INITIALIZED).

All MPI programs must contain a call to MPI INIT; this routine must be called before
any other MPI routine (apart from MPI INITIALIZED) is called. The version for ANSI C
accepts the argc and argv that are provided by the arguments to main:

int main(argc, argv)
int argc;
char **argv;
{

MPI_Init(&argc, &argv);

/* parse arguments */
/* main program */

MPI_Finalize(); /* see below */
}

The Fortran version takes only IERROR.
An MPI implementation is free to require that the arguments in the C binding must

be the arguments to main.

Rationale. The command line arguements are provided to MPI Init to allow an MPI
implementation to use them in initializing the MPI environment. They are passed by
reference to allow an MPI implementation to provide them in environments where the
command-line arguments are not provided to main. (End of rationale.)

MPI FINALIZE()

int MPI Finalize(void)

MPI FINALIZE(IERROR)
INTEGER IERROR

This routine cleans up all MPI state. Each process must call MPI FINALIZE before
it exits. Unless there has been a call to MPI ABORT, each process must ensure that all
pending non-blocking communications are (locally) complete before calling MPI FINALIZE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. STARTUP 203

Further, at the instant at which the last process calls MPI FINALIZE, all pending sends
must be matched by a receive, and all pending receives must be matched by a send.

For example, the following program is correct:

Process 0 Process 1
--------- ---------
MPI_Init(); MPI_Init();
MPI_Send(dest=1); MPI_Recv(src=0);
MPI_Finalize(); MPI_Finalize();

Without the matching receive, the program is erroneous:

Process 0 Process 1
----------- -----------
MPI_Init(); MPI_Init();
MPI_Send (dest=1);
MPI_Finalize(); MPI_Finalize();

A successful return from a blocking communication operation or from MPI WAIT or
MPI TEST tells the user that the buffer can be reused and means that the communication
is completed by the user, but does not guarantee that the local process has no more work
to do. A successful return from MPI REQUEST FREE with a request handle generated by
an MPI ISEND nullifies the handle but provides no assurance of operation completion. The
MPI ISEND is complete only when it is known by some means that a matching receive has
completed. MPI FINALIZE guarantees that all local actions required by communications
the user has completed will, in fact, occur before it returns.

MPI FINALIZE guarantees nothing about pending communications that have not been
completed (completion is assured only by MPI WAIT, MPI TEST, or MPI REQUEST FREE
combined with some other verification of completion).

Example 7.1 This program is correct:

rank 0 rank 1
===
... ...
MPI_Isend(); MPI_Recv();
MPI_Request_free(); MPI_Barrier();
MPI_Barrier(); MPI_Finalize();
MPI_Finalize(); exit();
exit();

Example 7.2 This program is erroneous and its behavior is undefined:

rank 0 rank 1
===
... ...
MPI_Isend(); MPI_Recv();
MPI_Request_free(); MPI_Finalize();
MPI_Finalize(); exit();
exit();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

204 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENT

If no MPI BUFFER DETACH occurs between an MPI BSEND (or other buffered send)
and MPI FINALIZE, the MPI FINALIZE implicitly supplies the MPI BUFFER DETACH.

Example 7.3 This program is correct, and after the MPI Finalize, it is as if the buffer had
been detached.

rank 0 rank 1
===
... ...
buffer = malloc(1000000); MPI_Recv();
MPI_Buffer_attach(); MPI_Finalize();
MPI_Bsend(); exit();
MPI_Finalize();
free(buffer);
exit();

Example 7.4 In this example, MPI Iprobe() must return a FALSE flag. MPI Test cancelled()
must return a TRUE flag, independent of the relative order of execution of MPI Cancel() in
process 0 and MPI Finalize() in process 1.

The MPI Iprobe() call is there to make sure the implementation knows that the “tag1”
message exists at the destination, without being able to claim that the user knows about
it.

rank 0 rank 1
==
MPI_Init(); MPI_Init();
MPI_Isend(tag1);
MPI_Barrier(); MPI_Barrier();

MPI_Iprobe(tag2);
MPI_Barrier(); MPI_Barrier();

MPI_Finalize();
exit();

MPI_Cancel();
MPI_Wait();
MPI_Test_cancelled();
MPI_Finalize();
exit();

Advice to implementors. An implementation may need to delay the return from
MPI FINALIZE until all potential future message cancellations have been processed.
One possible solution is to place a barrier inside MPI FINALIZE (End of advice to
implementors.)

Once MPI FINALIZE returns, no MPI routine (not even MPI INIT) may be called, except
for MPI GET VERSION, MPI INITIALIZED, and the MPI-2 function MPI FINALIZED. Each
process must complete any pending communication it initiated before it calls MPI FINALIZE.
If the call returns, each process may continue local computations, or exit, without partici-
pating in further MPI communication with other processes. MPI FINALIZE is collective on
MPI COMM WORLD.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. STARTUP 205

Advice to implementors. Even though a process has completed all the communication
it initiated, such communication may not yet be completed from the viewpoint of the
underlying MPI system. E.g., a blocking send may have completed, even though the
data is still buffered at the sender. The MPI implementation must ensure that a
process has completed any involvement in MPI communication before MPI FINALIZE
returns. Thus, if a process exits after the call to MPI FINALIZE, this will not cause
an ongoing communication to fail. (End of advice to implementors.)

Although it is not required that all processes return from MPI FINALIZE, it is required
that at least process 0 in MPI COMM WORLD return, so that users can know that the MPI
portion of the computation is over. In addition, in a POSIX environment, they may desire
to supply an exit code for each process that returns from MPI FINALIZE.

Example 7.5 The following illustrates the use of requiring that at least one process return
and that it be known that process 0 is one of the processes that return. One wants code
like the following to work no matter how many processes return.

...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
...
MPI_Finalize();
if (myrank == 0) {

resultfile = fopen("outfile","w");
dump_results(resultfile);
fclose(resultfile);

}
exit(0);

MPI INITIALIZED(flag)

OUT flag Flag is true if MPI INIT has been called and false
otherwise.

int MPI Initialized(int *flag)

MPI INITIALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

This routine may be used to determine whether MPI INIT has been called. MPI INITIALIZED
returns true if the calling process has called MPI INIT. Whether MPI FINALIZE has been
called does not affect the behavior of MPI INITIALIZED. It is one of the few routines that
may be called before MPI INIT is called.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

206 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENT

MPI ABORT(comm, errorcode)

IN comm communicator of tasks to abort

IN errorcode error code to return to invoking environment

int MPI Abort(MPI Comm comm, int errorcode)

MPI ABORT(COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR

This routine makes a “best attempt” to abort all tasks in the group of comm. This
function does not require that the invoking environment take any action with the error
code. However, a Unix or POSIX environment should handle this as a return errorcode
from the main program.

It may not be possible for an MPI implementation to abort only the processes repre-
sented by comm if this is a subset of the processes. In this case, the MPI implementation
should attempt to abort all the connected processes but should not abort any unconnected
processes. If no processes were spawned, accepted or connected then this has the effect of
aborting all the processes associated with MPI COMM WORLD.

Rationale. The communicator argument is provided to allow for future extensions
of MPI to environments with, for example, dynamic process management. In par-
ticular, it allows but does not require an MPI implementation to abort a subset of
MPI COMM WORLD. (End of rationale.)

Advice to users. Whether the errorcode is returned from the executable or from the
MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the MPI
library but not mandatory. (End of advice to users.)

Advice to implementors. Where possible, a high quality implementation will try
to return the errorcode from the MPI process startup mechanism (e.g. mpiexec or
singleton init). (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 8

Profiling Interface

8.1 Requirements

To meet the MPI profiling interface, an implementation of the MPI functions must

1. provide a mechanism through which all of the MPI defined functions may be accessed
with a name shift. Thus all of the MPI functions (which normally start with the prefix
“MPI ”) should also be accessible with the prefix “PMPI ”.

2. ensure that those MPI functions which are not replaced may still be linked into an
executable image without causing name clashes.

3. document the implementation of different language bindings of the MPI interface if
they are layered on top of each other, so that the profiler developer knows whether
she must implement the profile interface for each binding, or can economise by imple-
menting it only for the lowest level routines.

4. where the implementation of different language bindings is done through a layered
approach (e.g. the Fortran binding is a set of “wrapper” functions which call the C
implementation), ensure that these wrapper functions are separable from the rest of
the library.

This is necessary to allow a separate profiling library to be correctly implemented,
since (at least with Unix linker semantics) the profiling library must contain these
wrapper functions if it is to perform as expected. This requirement allows the person
who builds the profiling library to extract these functions from the original MPI library
and add them into the profiling library without bringing along any other unnecessary
code.

5. provide a no-op routine MPI PCONTROL in the MPI library.

8.2 Discussion

The objective of the MPI profiling interface is to ensure that it is relatively easy for authors
of profiling (and other similar) tools to interface their codes to MPI implementations on
different machines.

Since MPI is a machine independent standard with many different implementations,
it is unreasonable to expect that the authors of profiling tools for MPI will have access to

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

208 CHAPTER 8. PROFILING INTERFACE

the source code which implements MPI on any particular machine. It is therefore necessary
to provide a mechanism by which the implementors of such tools can collect whatever
performance information they wish without access to the underlying implementation.

We believe that having such an interface is important if MPI is to be attractive to end
users, since the availability of many different tools will be a significant factor in attracting
users to the MPI standard.

The profiling interface is just that, an interface. It says nothing about the way in which
it is used. There is therefore no attempt to lay down what information is collected through
the interface, or how the collected information is saved, filtered, or displayed.

While the initial impetus for the development of this interface arose from the desire to
permit the implementation of profiling tools, it is clear that an interface like that specified
may also prove useful for other purposes, such as “internetworking” multiple MPI imple-
mentations. Since all that is defined is an interface, there is no objection to its being used
wherever it is useful.

As the issues being addressed here are intimately tied up with the way in which ex-
ecutable images are built, which may differ greatly on different machines, the examples
given below should be treated solely as one way of implementing the objective of the MPI
profiling interface. The actual requirements made of an implementation are those detailed
in the Requirements section above, the whole of the rest of this chapter is only present as
justification and discussion of the logic for those requirements.

The examples below show one way in which an implementation could be constructed
to meet the requirements on a Unix system (there are doubtless others which would be
equally valid).

8.3 Logic of the design

Provided that an MPI implementation meets the requirements above, it is possible for the
implementor of the profiling system to intercept all of the MPI calls which are made by
the user program. She can then collect whatever information she requires before calling
the underlying MPI implementation (through its name shifted entry points) to achieve the
desired effects.

8.3.1 Miscellaneous control of profiling

There is a clear requirement for the user code to be able to control the profiler dynamically
at run time. This is normally used for (at least) the purposes of

• Enabling and disabling profiling depending on the state of the calculation.

• Flushing trace buffers at non-critical points in the calculation

• Adding user events to a trace file.

These requirements are met by use of the MPI PCONTROL.

MPI PCONTROL(level, . . .)

IN level Profiling level

int MPI Pcontrol(const int level, ...)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.4. EXAMPLES 209

MPI PCONTROL(LEVEL)
INTEGER LEVEL, ...

MPI libraries themselves make no use of this routine, and simply return immediately
to the user code. However the presence of calls to this routine allows a profiling package to
be explicitly called by the user.

Since MPI has no control of the implementation of the profiling code, we are unable
to specify precisely the semantics which will be provided by calls to MPI PCONTROL. This
vagueness extends to the number of arguments to the function, and their datatypes.

However to provide some level of portability of user codes to different profiling libraries,
we request the following meanings for certain values of level.

• level==0 Profiling is disabled.

• level==1 Profiling is enabled at a normal default level of detail.

• level==2 Profile buffers are flushed. (This may be a no-op in some profilers).

• All other values of level have profile library defined effects and additional arguments.

We also request that the default state after MPI INIT has been called is for profiling
to be enabled at the normal default level. (i.e. as if MPI PCONTROL had just been called
with the argument 1). This allows users to link with a profiling library and obtain profile
output without having to modify their source code at all.

The provision of MPI PCONTROL as a no-op in the standard MPI library allows them
to modify their source code to obtain more detailed profiling information, but still be able
to link exactly the same code against the standard MPI library.

8.4 Examples

8.4.1 Profiler implementation

Suppose that the profiler wishes to accumulate the total amount of data sent by the
MPI SEND function, along with the total elapsed time spent in the function. This could
trivially be achieved thus

static int totalBytes;
static double totalTime;

int MPI_SEND(void * buffer, const int count, MPI_Datatype datatype,
int dest, int tag, MPI_comm comm)

{
double tstart = MPI_Wtime(); /* Pass on all the arguments */
int extent;
int result = PMPI_Send(buffer,count,datatype,dest,tag,comm);

MPI_Type_size(datatype, &extent); /* Compute size */
totalBytes += count*extent;

totalTime += MPI_Wtime() - tstart; /* and time */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

210 CHAPTER 8. PROFILING INTERFACE

return result;
}

8.4.2 MPI library implementation

On a Unix system, in which the MPI library is implemented in C, then there are various
possible options, of which two of the most obvious are presented here. Which is better
depends on whether the linker and compiler support weak symbols.

Systems with weak symbols

If the compiler and linker support weak external symbols (e.g. Solaris 2.x, other system
V.4 machines), then only a single library is required through the use of #pragma weak thus

#pragma weak MPI_Example = PMPI_Example

int PMPI_Example(/* appropriate args */)
{

/* Useful content */
}

The effect of this #pragma is to define the external symbol MPI Example as a weak
definition. This means that the linker will not complain if there is another definition of the
symbol (for instance in the profiling library), however if no other definition exists, then the
linker will use the weak definition.

Systems without weak symbols

In the absence of weak symbols then one possible solution would be to use the C macro
pre-processor thus

#ifdef PROFILELIB
ifdef __STDC__
define FUNCTION(name) P##name
else
define FUNCTION(name) P/**/name
endif
#else
define FUNCTION(name) name
#endif

Each of the user visible functions in the library would then be declared thus

int FUNCTION(MPI_Example)(/* appropriate args */)
{

/* Useful content */
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.4. EXAMPLES 211

The same source file can then be compiled to produce both versions of the library,
depending on the state of the PROFILELIB macro symbol.

It is required that the standard MPI library be built in such a way that the inclusion of
MPI functions can be achieved one at a time. This is a somewhat unpleasant requirement,
since it may mean that each external function has to be compiled from a separate file.
However this is necessary so that the author of the profiling library need only define those
MPI functions which she wishes to intercept, references to any others being fulfilled by the
normal MPI library. Therefore the link step can look something like this

% cc ... -lmyprof -lpmpi -lmpi

Here libmyprof.a contains the profiler functions which intercept some of the MPI
functions. libpmpi.a contains the “name shifted” MPI functions, and libmpi.a contains
the normal definitions of the MPI functions.

8.4.3 Complications

Multiple counting

Since parts of the MPI library may themselves be implemented using more basic MPI func-
tions (e.g. a portable implementation of the collective operations implemented using point
to point communications), there is potential for profiling functions to be called from within
an MPI function which was called from a profiling function. This could lead to “double
counting” of the time spent in the inner routine. Since this effect could actually be useful
under some circumstances (e.g. it might allow one to answer the question “How much time
is spent in the point to point routines when they’re called from collective functions ?”), we
have decided not to enforce any restrictions on the author of the MPI library which would
overcome this. Therefore the author of the profiling library should be aware of this problem,
and guard against it herself. In a single threaded world this is easily achieved through use of
a static variable in the profiling code which remembers if you are already inside a profiling
routine. It becomes more complex in a multi-threaded environment (as does the meaning
of the times recorded !)

Linker oddities

The Unix linker traditionally operates in one pass : the effect of this is that functions from
libraries are only included in the image if they are needed at the time the library is scanned.
When combined with weak symbols, or multiple definitions of the same function, this can
cause odd (and unexpected) effects.

Consider, for instance, an implementation of MPI in which the Fortran binding is
achieved by using wrapper functions on top of the C implementation. The author of the
profile library then assumes that it is reasonable only to provide profile functions for the C
binding, since Fortran will eventually call these, and the cost of the wrappers is assumed
to be small. However, if the wrapper functions are not in the profiling library, then none
of the profiled entry points will be undefined when the profiling library is called. Therefore
none of the profiling code will be included in the image. When the standard MPI library
is scanned, the Fortran wrappers will be resolved, and will also pull in the base versions of
the MPI functions. The overall effect is that the code will link successfully, but will not be
profiled.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

212 CHAPTER 8. PROFILING INTERFACE

To overcome this we must ensure that the Fortran wrapper functions are included in
the profiling version of the library. We ensure that this is possible by requiring that these
be separable from the rest of the base MPI library. This allows them to be ared out of the
base library and into the profiling one.

8.5 Multiple levels of interception

The scheme given here does not directly support the nesting of profiling functions, since it
provides only a single alternative name for each MPI function. Consideration was given to
an implementation which would allow multiple levels of call interception, however we were
unable to construct an implementation of this which did not have the following disadvan-
tages

• assuming a particular implementation language.

• imposing a run time cost even when no profiling was taking place.

Since one of the objectives of MPI is to permit efficient, low latency implementations, and
it is not the business of a standard to require a particular implementation language, we
decided to accept the scheme outlined above.

Note, however, that it is possible to use the scheme above to implement a multi-level
system, since the function called by the user may call many different profiling functions
before calling the underlying MPI function.

Unfortunately such an implementation may require more cooperation between the dif-
ferent profiling libraries than is required for the single level implementation detailed above.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] V. Bala and S. Kipnis. Process groups: a mechanism for the coordination of and com-
munication among processes in the Venus collective communication library. Technical
report, IBM T. J. Watson Research Center, October 1992. Preprint. 1.1

[2] V. Bala, S. Kipnis, L. Rudolph, and Marc Snir. Designing efficient, scalable, and
portable collective communication libraries. Technical report, IBM T. J. Watson Re-
search Center, October 1992. Preprint. 1.1

[3] Purushotham V. Bangalore, Nathan E. Doss, and Anthony Skjellum. MPI++: Issues
and Features. In OON-SKI ’94, page in press, 1994. 5.1

[4] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Visualization and
debugging in a heterogeneous environment. IEEE Computer, 26(6):88–95, June 1993.
1.1

[5] Luc Bomans and Rolf Hempel. The Argonne/GMD macros in FORTRAN for portable
parallel programming and their implementation on the Intel iPSC/2. Parallel Com-
puting, 15:119–132, 1990. 1.1, 6.2

[6] R. Butler and E. Lusk. User’s guide to the p4 programming system. Technical Report
TM-ANL–92/17, Argonne National Laboratory, 1992. 1.1

[7] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel
programming system. Parallel Computing, 20(4):547–564, April 1994. Also Argonne
National Laboratory Mathematics and Computer Science Division preprint P362-0493.
1.1

[8] Robin Calkin, Rolf Hempel, Hans-Christian Hoppe, and Peter Wypior. Portable
programming with the PARMACS message-passing library. Parallel Computing,
20(4):615–632, April 1994. 1.1, 6.2

[9] S. Chittor and R. J. Enbody. Performance evaluation of mesh–connected wormhole–
routed networks for interprocessor communication in multicomputers. In Proceedings
of the 1990 Supercomputing Conference, pages 647–656, 1990. 6.1

[10] S. Chittor and R. J. Enbody. Predicting the effect of mapping on the communica-
tion performance of large multicomputers. In Proceedings of the 1991 International
Conference on Parallel Processing, vol. II (Software), pages II–1 – II–4, 1991. 6.1

[11] J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Integrated PVM framework
supports heterogeneous network computing. Computers in Physics, 7(2):166–75, April
1993. 1.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

214 BIBLIOGRAPHY

[12] J. J. Dongarra, R. Hempel, A. J. G. Hey, and D. W. Walker. A proposal for a user-
level, message passing interface in a distributed memory environment. Technical Report
TM-12231, Oak Ridge National Laboratory, February 1993. 1.1

[13] Nathan Doss, William Gropp, Ewing Lusk, and Anthony Skjellum. A model imple-
mentation of MPI. Technical report, Argonne National Laboratory, 1993. 1.3

[14] Edinburgh Parallel Computing Centre, University of Edinburgh. CHIMP Concepts,
June 1991. 1.1

[15] Edinburgh Parallel Computing Centre, University of Edinburgh. CHIMP Version 1.0
Interface, May 1992. 1.1

[16] D. Feitelson. Communicators: Object-based multiparty interactions for parallel pro-
gramming. Technical Report 91-12, Dept. Computer Science, The Hebrew University
of Jerusalem, November 1991. 5.1.2

[17] Hubertus Franke, Peter Hochschild, Pratap Pattnaik, and Marc Snir. An efficient
implementation of MPI. In 1994 International Conference on Parallel Processing,
1994. 1.3

[18] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A user’s guide to PICL: a
portable instrumented communication library. Technical Report TM-11616, Oak Ridge
National Laboratory, October 1990. 1.1

[19] William D. Gropp and Barry Smith. Chameleon parallel programming tools users
manual. Technical Report ANL-93/23, Argonne National Laboratory, March 1993. 1.1

[20] O. Krämer and H. Mühlenbein. Mapping strategies in message–based multiprocessor
systems. Parallel Computing, 9:213–225, 1989. 6.1

[21] nCUBE Corporation. nCUBE 2 Programmers Guide, r2.0, December 1990. 1.1

[22] Parasoft Corporation, Pasadena, CA. Express User’s Guide, version 3.2.5 edition, 1992.
1.1, 6.4

[23] Paul Pierce. The NX/2 operating system. In Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications, pages 384–390. ACM Press, 1988.
1.1

[24] A. Skjellum and A. Leung. Zipcode: a portable multicomputer communication library
atop the reactive kernel. In D. W. Walker and Q. F. Stout, editors, Proceedings of the
Fifth Distributed Memory Concurrent Computing Conference, pages 767–776. IEEE
Press, 1990. 1.1, 5.1.2

[25] A. Skjellum, S. Smith, C. Still, A. Leung, and M. Morari. The Zipcode message passing
system. Technical report, Lawrence Livermore National Laboratory, September 1992.
1.1

[26] Anthony Skjellum, Nathan E. Doss, and Purushotham V. Bangalore. Writing Libraries
in MPI. In Anthony Skjellum and Donna S. Reese, editors, Proceedings of the Scalable
Parallel Libraries Conference, pages 166–173. IEEE Computer Society Press, October
1993. 5.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

BIBLIOGRAPHY 215

[27] Anthony Skjellum, Steven G. Smith, Nathan E. Doss, Alvin P. Leung, and Manfred
Morari. The Design and Evolution of Zipcode. Parallel Computing, 20(4):565–596,
April 1994. 5.1.2, 5.5.6

[28] D. Walker. Standards for message passing in a distributed memory environment. Tech-
nical Report TM-12147, Oak Ridge National Laboratory, August 1992. 1.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Language Binding

Annex A

A.1 Introduction

In this section we summarize the specific bindings for both Fortran and C. We present first
the C bindings, then the Fortran bindings. Listings are alphabetical within chapter.

A.2 Defined Constants for C and Fortran

These are required defined constants, to be defined in the files mpi.h (for C) and mpif.h
(for Fortran).

/* return codes (both C and Fortran) */
MPI_SUCCESS
MPI_ERR_BUFFER
MPI_ERR_COUNT
MPI_ERR_TYPE
MPI_ERR_TAG
MPI_ERR_COMM
MPI_ERR_RANK
MPI_ERR_REQUEST
MPI_ERR_ROOT
MPI_ERR_GROUP
MPI_ERR_OP
MPI_ERR_TOPOLOGY
MPI_ERR_DIMS
MPI_ERR_ARG
MPI_ERR_UNKNOWN
MPI_ERR_TRUNCATE
MPI_ERR_OTHER
MPI_ERR_INTERN
MPI_ERR_PENDING
MPI_ERR_IN_STATUS
MPI_ERR_LASTCODE

/* assorted constants (both C and Fortran) */
MPI_BOTTOM
MPI_PROC_NULL
MPI_ANY_SOURCE
MPI_ANY_TAG

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. DEFINED CONSTANTS FOR C AND FORTRAN 217

MPI_UNDEFINED
MPI_BSEND_OVERHEAD
MPI_KEYVAL_INVALID

/* status size and reserved index values (Fortran) */
MPI_STATUS_SIZE
MPI_SOURCE
MPI_TAG
MPI_ERROR

/* Error-handling specifiers (C and Fortran) */
MPI_ERRORS_ARE_FATAL
MPI_ERRORS_RETURN

/* Maximum sizes for strings */
MPI_MAX_PROCESSOR_NAME
MPI_MAX_ERROR_STRING

/* elementary datatypes (C) */
MPI_CHAR
MPI_SHORT
MPI_INT
MPI_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_BYTE
MPI_PACKED

/* elementary datatypes (Fortran) */
MPI_INTEGER
MPI_REAL
MPI_DOUBLE_PRECISION
MPI_COMPLEX
MPI_LOGICAL
MPI_CHARACTER
MPI_BYTE
MPI_PACKED

/* datatypes for reduction functions (C) */
MPI_FLOAT_INT
MPI_DOUBLE_INT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

218 LANGUAGE BINDING

MPI_LONG_INT
MPI_2INT
MPI_SHORT_INT
MPI_LONG_DOUBLE_INT

/* datatypes for reduction functions (Fortran) */
MPI_2REAL
MPI_2DOUBLE_PRECISION
MPI_2INTEGER

/* optional datatypes (Fortran) */
MPI_DOUBLE_COMPLEX
MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_REAL2
MPI_REAL4
MPI_REAL8
etc.

/* optional datatypes (C) */
MPI_LONG_LONG_INT
etc.

/* special datatypes for constructing derived datatypes
MPI_UB
MPI_LB

/* reserved communicators (C and Fortran) */
MPI_COMM_WORLD
MPI_COMM_SELF

/* results of communicator and group comparisons */

MPI_IDENT
MPI_CONGRUENT
MPI_SIMILAR
MPI_UNEQUAL

/* environmental inquiry keys (C and Fortran) */
MPI_TAG_UB
MPI_IO
MPI_HOST
MPI_WTIME_IS_GLOBAL

/* collective operations (C and Fortran) */
MPI_MAX
MPI_MIN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. DEFINED CONSTANTS FOR C AND FORTRAN 219

MPI_SUM
MPI_PROD
MPI_MAXLOC
MPI_MINLOC
MPI_BAND
MPI_BOR
MPI_BXOR
MPI_LAND
MPI_LOR
MPI_LXOR

/* Null handles */
MPI_GROUP_NULL
MPI_COMM_NULL
MPI_DATATYPE_NULL
MPI_REQUEST_NULL
MPI_OP_NULL
MPI_ERRHANDLER_NULL

/* Empty group */
MPI_GROUP_EMPTY

/* topologies (C and Fortran) */
MPI_GRAPH
MPI_CART

/* Predefined functions in C and Fortran */
MPI_NULL_COPY_FN
MPI_NULL_DELETE_FN
MPI_DUP_FN

The following are defined C type definitions, also included in the file mpi.h.

/* opaque types (C) */
MPI_Aint
MPI_Status

/* handles to assorted structures (C) */
MPI_Group
MPI_Comm
MPI_Datatype
MPI_Request
MPI_Op
MPI_Errhandler

/* prototypes for user-defined functions (C) */
typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

220 LANGUAGE BINDING

void *extra_state, void *attribute_val_in,
void *attribute_val_out, int *flag);

typedef int MPI_Delete_function(MPI_Comm comm, int keyval,
void *attribute_val, void *extra_state)

typedef void MPI_Handler_function(MPI_Comm *, int *, ...);
typedef void MPI_User_function(void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

For Fortran, here are examples of how each of the user-defined functions should be
declared.

The user-function argument to MPI OP CREATE should be declared like this:

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)
<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, TYPE

The copy-function argument to MPI KEYVAL CREATE should be declared like this:

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

The delete-function argument to MPI KEYVAL CREATE should be declared like this:

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

The handler-function for error handlers should be declared like this:

SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE,)
INTEGER COMM, ERROR_CODE

A.3 C bindings for Point-to-Point Communication

These are presented here in the order of their appearance in the chapter.
int MPI Send(void* buf, int count, MPI Datatype datatype, int dest,

int tag, MPI Comm comm)

int MPI Recv(void* buf, int count, MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Status *status)

int MPI Get count(MPI Status *status, MPI Datatype datatype, int *count)

int MPI Bsend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

int MPI Ssend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

int MPI Rsend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. C BINDINGS FOR POINT-TO-POINT COMMUNICATION 221

int MPI Buffer attach(void* buffer, int size)

int MPI Buffer detach(void* buffer, int* size)

int MPI Isend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

int MPI Ibsend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

int MPI Issend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

int MPI Irsend(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

int MPI Irecv(void* buf, int count, MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Request *request)

int MPI Wait(MPI Request *request, MPI Status *status)

int MPI Test(MPI Request *request, int *flag, MPI Status *status)

int MPI Request free(MPI Request *request)

int MPI Waitany(int count, MPI Request *array of requests, int *index,
MPI Status *status)

int MPI Testany(int count, MPI Request *array of requests, int *index,
int *flag, MPI Status *status)

int MPI Waitall(int count, MPI Request *array of requests,
MPI Status *array of statuses)

int MPI Testall(int count, MPI Request *array of requests, int *flag,
MPI Status *array of statuses)

int MPI Waitsome(int incount, MPI Request *array of requests, int *outcount,
int *array of indices, MPI Status *array of statuses)

int MPI Testsome(int incount, MPI Request *array of requests, int *outcount,
int *array of indices, MPI Status *array of statuses)

int MPI Iprobe(int source, int tag, MPI Comm comm, int *flag,
MPI Status *status)

int MPI Probe(int source, int tag, MPI Comm comm, MPI Status *status)

int MPI Cancel(MPI Request *request)

int MPI Test cancelled(MPI Status *status, int *flag)

int MPI Send init(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

int MPI Bsend init(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

222 LANGUAGE BINDING

int MPI Ssend init(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

int MPI Rsend init(void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request *request)

int MPI Recv init(void* buf, int count, MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Request *request)

int MPI Start(MPI Request *request)

int MPI Startall(int count, MPI Request *array of requests)

int MPI Sendrecv(void *sendbuf, int sendcount, MPI Datatype sendtype,
int dest, int sendtag, void *recvbuf, int recvcount,
MPI Datatype recvtype, int source, int recvtag, MPI Comm comm,
MPI Status *status)

int MPI Sendrecv replace(void* buf, int count, MPI Datatype datatype,
int dest, int sendtag, int source, int recvtag, MPI Comm comm,
MPI Status *status)

int MPI Type contiguous(int count, MPI Datatype oldtype,
MPI Datatype *newtype)

int MPI Type vector(int count, int blocklength, int stride,
MPI Datatype oldtype, MPI Datatype *newtype)

int MPI Type hvector(int count, int blocklength, MPI Aint stride,
MPI Datatype oldtype, MPI Datatype *newtype)

int MPI Type indexed(int count, int *array of blocklengths,
int *array of displacements, MPI Datatype oldtype,
MPI Datatype *newtype)

int MPI Type hindexed(int count, int *array of blocklengths,
MPI Aint *array of displacements, MPI Datatype oldtype,
MPI Datatype *newtype)

int MPI Type struct(int count, int *array of blocklengths,
MPI Aint *array of displacements, MPI Datatype *array of types,
MPI Datatype *newtype)

int MPI Address(void* location, MPI Aint *address)

int MPI Type extent(MPI Datatype datatype, MPI Aint *extent)

int MPI Type size(MPI Datatype datatype, int *size)

int MPI Type lb(MPI Datatype datatype, MPI Aint* displacement)

int MPI Type ub(MPI Datatype datatype, MPI Aint* displacement)

int MPI Type commit(MPI Datatype *datatype)

int MPI Type free(MPI Datatype *datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. C BINDINGS FOR COLLECTIVE COMMUNICATION 223

int MPI Get elements(MPI Status *status, MPI Datatype datatype, int *count)

int MPI Pack(void* inbuf, int incount, MPI Datatype datatype, void *outbuf,
int outsize, int *position, MPI Comm comm)

int MPI Unpack(void* inbuf, int insize, int *position, void *outbuf,
int outcount, MPI Datatype datatype, MPI Comm comm)

int MPI Pack size(int incount, MPI Datatype datatype, MPI Comm comm,
int *size)

A.4 C Bindings for Collective Communication

int MPI Barrier(MPI Comm comm)

int MPI Bcast(void* buffer, int count, MPI Datatype datatype, int root,
MPI Comm comm)

int MPI Gather(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int recvcount, MPI Datatype recvtype, int root,
MPI Comm comm)

int MPI Gatherv(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI Datatype recvtype, int root, MPI Comm comm)

int MPI Scatter(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int recvcount, MPI Datatype recvtype, int root,
MPI Comm comm)

int MPI Scatterv(void* sendbuf, int *sendcounts, int *displs,
MPI Datatype sendtype, void* recvbuf, int recvcount,
MPI Datatype recvtype, int root, MPI Comm comm)

int MPI Allgather(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int recvcount, MPI Datatype recvtype,
MPI Comm comm)

int MPI Allgatherv(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI Datatype recvtype, MPI Comm comm)

int MPI Alltoall(void* sendbuf, int sendcount, MPI Datatype sendtype,
void* recvbuf, int recvcount, MPI Datatype recvtype,
MPI Comm comm)

int MPI Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,
MPI Datatype sendtype, void* recvbuf, int *recvcounts,
int *rdispls, MPI Datatype recvtype, MPI Comm comm)

int MPI Reduce(void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, int root, MPI Comm comm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

224 LANGUAGE BINDING

int MPI Op create(MPI User function *function, int commute, MPI Op *op)

int MPI Op free(MPI Op *op)

int MPI Allreduce(void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm)

int MPI Reduce scatter(void* sendbuf, void* recvbuf, int *recvcounts,
MPI Datatype datatype, MPI Op op, MPI Comm comm)

int MPI Scan(void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm)

A.5 C Bindings for Groups, Contexts, and Communicators

int MPI Group size(MPI Group group, int *size)

int MPI Group rank(MPI Group group, int *rank)

int MPI Group translate ranks (MPI Group group1, int n, int *ranks1,
MPI Group group2, int *ranks2)

int MPI Group compare(MPI Group group1,MPI Group group2, int *result)

int MPI Comm group(MPI Comm comm, MPI Group *group)

int MPI Group union(MPI Group group1, MPI Group group2, MPI Group *newgroup)

int MPI Group intersection(MPI Group group1, MPI Group group2,
MPI Group *newgroup)

int MPI Group difference(MPI Group group1, MPI Group group2,
MPI Group *newgroup)

int MPI Group incl(MPI Group group, int n, int *ranks, MPI Group *newgroup)

int MPI Group excl(MPI Group group, int n, int *ranks, MPI Group *newgroup)

int MPI Group range incl(MPI Group group, int n, int ranges[][3],
MPI Group *newgroup)

int MPI Group range excl(MPI Group group, int n, int ranges[][3],
MPI Group *newgroup)

int MPI Group free(MPI Group *group)

int MPI Comm size(MPI Comm comm, int *size)

int MPI Comm rank(MPI Comm comm, int *rank)

int MPI Comm compare(MPI Comm comm1,MPI Comm comm2, int *result)

int MPI Comm dup(MPI Comm comm, MPI Comm *newcomm)

int MPI Comm create(MPI Comm comm, MPI Group group, MPI Comm *newcomm)

int MPI Comm split(MPI Comm comm, int color, int key, MPI Comm *newcomm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.6. C BINDINGS FOR PROCESS TOPOLOGIES 225

int MPI Comm free(MPI Comm *comm)

int MPI Comm test inter(MPI Comm comm, int *flag)

int MPI Comm remote size(MPI Comm comm, int *size)

int MPI Comm remote group(MPI Comm comm, MPI Group *group)

int MPI Intercomm create(MPI Comm local comm, int local leader,
MPI Comm peer comm, int remote leader, int tag,
MPI Comm *newintercomm)

int MPI Intercomm merge(MPI Comm intercomm, int high,
MPI Comm *newintracomm)

int MPI Keyval create(MPI Copy function *copy fn, MPI Delete function
*delete fn, int *keyval, void* extra state)

int MPI Keyval free(int *keyval)

int MPI Attr put(MPI Comm comm, int keyval, void* attribute val)

int MPI Attr get(MPI Comm comm, int keyval, void* attribute val, int *flag)

int MPI Attr delete(MPI Comm comm, int keyval)

A.6 C Bindings for Process Topologies

int MPI Cart create(MPI Comm comm old, int ndims, int *dims, int *periods,
int reorder, MPI Comm *comm cart)

int MPI Dims create(int nnodes, int ndims, int *dims)

int MPI Graph create(MPI Comm comm old, int nnodes, int *index, int *edges,
int reorder, MPI Comm *comm graph)

int MPI Topo test(MPI Comm comm, int *status)

int MPI Graphdims get(MPI Comm comm, int *nnodes, int *nedges)

int MPI Graph get(MPI Comm comm, int maxindex, int maxedges, int *index,
int *edges)

int MPI Cartdim get(MPI Comm comm, int *ndims)

int MPI Cart get(MPI Comm comm, int maxdims, int *dims, int *periods,
int *coords)

int MPI Cart rank(MPI Comm comm, int *coords, int *rank)

int MPI Cart coords(MPI Comm comm, int rank, int maxdims, int *coords)

int MPI Graph neighbors count(MPI Comm comm, int rank, int *nneighbors)

int MPI Graph neighbors(MPI Comm comm, int rank, int maxneighbors,
int *neighbors)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

226 LANGUAGE BINDING

int MPI Cart shift(MPI Comm comm, int direction, int disp, int *rank source,
int *rank dest)

int MPI Cart sub(MPI Comm comm, int *remain dims, MPI Comm *newcomm)

int MPI Cart map(MPI Comm comm, int ndims, int *dims, int *periods,
int *newrank)

int MPI Graph map(MPI Comm comm, int nnodes, int *index, int *edges,
int *newrank)

A.7 C bindings for Environmental Inquiry

int MPI Get processor name(char *name, int *resultlen)

int MPI Errhandler create(MPI Handler function *function,
MPI Errhandler *errhandler)

int MPI Errhandler set(MPI Comm comm, MPI Errhandler errhandler)

int MPI Errhandler get(MPI Comm comm, MPI Errhandler *errhandler)

int MPI Errhandler free(MPI Errhandler *errhandler)

int MPI Error string(int errorcode, char *string, int *resultlen)

int MPI Error class(int errorcode, int *errorclass)

double MPI Wtime(void)

double MPI Wtick(void)

int MPI Init(int *argc, char ***argv)

int MPI Finalize(void)

int MPI Initialized(int *flag)

int MPI Abort(MPI Comm comm, int errorcode)

int MPI Get version(int *version, int *subversion)

A.8 C Bindings for Profiling

int MPI Pcontrol(const int level, ...)

A.9 Fortran Bindings for Point-to-Point Communication

MPI SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.9. FORTRAN BINDINGS FOR POINT-TO-POINT COMMUNICATION 227

<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE),
IERROR

MPI GET COUNT(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERROR

MPI BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI BUFFER ATTACH(BUFFER, SIZE, IERROR)
<type> BUFFER(*)
INTEGER SIZE, IERROR

MPI BUFFER DETACH(BUFFER, SIZE, IERROR)
<type> BUFFER(*)
INTEGER SIZE, IERROR

MPI ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI STATUS SIZE), IERROR

MPI TEST(REQUEST, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER REQUEST, STATUS(MPI STATUS SIZE), IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

228 LANGUAGE BINDING

MPI REQUEST FREE(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI WAITANY(COUNT, ARRAY OF REQUESTS, INDEX, STATUS, IERROR)
INTEGER COUNT, ARRAY OF REQUESTS(*), INDEX, STATUS(MPI STATUS SIZE),
IERROR

MPI TESTANY(COUNT, ARRAY OF REQUESTS, INDEX, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY OF REQUESTS(*), INDEX, STATUS(MPI STATUS SIZE),
IERROR

MPI WAITALL(COUNT, ARRAY OF REQUESTS, ARRAY OF STATUSES, IERROR)
INTEGER COUNT, ARRAY OF REQUESTS(*),
ARRAY OF STATUSES(MPI STATUS SIZE,*), IERROR

MPI TESTALL(COUNT, ARRAY OF REQUESTS, FLAG, ARRAY OF STATUSES, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY OF REQUESTS(*),
ARRAY OF STATUSES(MPI STATUS SIZE,*), IERROR

MPI WAITSOME(INCOUNT, ARRAY OF REQUESTS, OUTCOUNT, ARRAY OF INDICES,
ARRAY OF STATUSES, IERROR)

INTEGER INCOUNT, ARRAY OF REQUESTS(*), OUTCOUNT, ARRAY OF INDICES(*),
ARRAY OF STATUSES(MPI STATUS SIZE,*), IERROR

MPI TESTSOME(INCOUNT, ARRAY OF REQUESTS, OUTCOUNT, ARRAY OF INDICES,
ARRAY OF STATUSES, IERROR)

INTEGER INCOUNT, ARRAY OF REQUESTS(*), OUTCOUNT, ARRAY OF INDICES(*),
ARRAY OF STATUSES(MPI STATUS SIZE,*), IERROR

MPI IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE), IERROR

MPI PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE), IERROR

MPI CANCEL(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI TEST CANCELLED(STATUS, FLAG, IERROR)
LOGICAL FLAG
INTEGER STATUS(MPI STATUS SIZE), IERROR

MPI SEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI BSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI SSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.9. FORTRAN BINDINGS FOR POINT-TO-POINT COMMUNICATION 229

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI RSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI RECV INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI START(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI STARTALL(COUNT, ARRAY OF REQUESTS, IERROR)
INTEGER COUNT, ARRAY OF REQUESTS(*), IERROR

MPI SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
SOURCE, RECVTAG, COMM, STATUS(MPI STATUS SIZE), IERROR

MPI SENDRECV REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
COMM, STATUS, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
STATUS(MPI STATUS SIZE), IERROR

MPI TYPE CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

MPI TYPE VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI TYPE HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI TYPE INDEXED(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

MPI TYPE HINDEXED(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

MPI TYPE STRUCT(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,
ARRAY OF TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),
ARRAY OF TYPES(*), NEWTYPE, IERROR

MPI ADDRESS(LOCATION, ADDRESS, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

230 LANGUAGE BINDING

<type> LOCATION(*)
INTEGER ADDRESS, IERROR

MPI TYPE EXTENT(DATATYPE, EXTENT, IERROR)
INTEGER DATATYPE, EXTENT, IERROR

MPI TYPE SIZE(DATATYPE, SIZE, IERROR)
INTEGER DATATYPE, SIZE, IERROR

MPI TYPE LB(DATATYPE, DISPLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR

MPI TYPE UB(DATATYPE, DISPLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR

MPI TYPE COMMIT(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

MPI TYPE FREE(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

MPI GET ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERROR

MPI PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
<type> INBUF(*), OUTBUF(*)
INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

MPI UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,
IERROR)

<type> INBUF(*), OUTBUF(*)
INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

MPI PACK SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

A.10 Fortran Bindings for Collective Communication

MPI BARRIER(COMM, IERROR)
INTEGER COMM, IERROR

MPI BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.10. FORTRAN BINDINGS FOR COLLECTIVE COMMUNICATION 231

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
COMM, IERROR

MPI SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
COMM, IERROR

MPI ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
IERROR

MPI ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
RECVTYPE, COMM, IERROR

MPI REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

MPI OP CREATE(FUNCTION, COMMUTE, OP, IERROR)
EXTERNAL FUNCTION
LOGICAL COMMUTE
INTEGER OP, IERROR

MPI OP FREE(OP, IERROR)
INTEGER OP, IERROR

MPI ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI REDUCE SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

232 LANGUAGE BINDING

IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

MPI SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

A.11 Fortran Bindings for Groups, Contexts, etc.

MPI GROUP SIZE(GROUP, SIZE, IERROR)
INTEGER GROUP, SIZE, IERROR

MPI GROUP RANK(GROUP, RANK, IERROR)
INTEGER GROUP, RANK, IERROR

MPI GROUP TRANSLATE RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)
INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR

MPI GROUP COMPARE(GROUP1, GROUP2, RESULT, IERROR)
INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI COMM GROUP(COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

MPI GROUP UNION(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI GROUP INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI GROUP DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI GROUP INCL(GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI GROUP EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI GROUP RANGE INCL(GROUP, N, RANGES, NEWGROUP, IERROR)
INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI GROUP RANGE EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)
INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI GROUP FREE(GROUP, IERROR)
INTEGER GROUP, IERROR

MPI COMM SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

MPI COMM RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.11. FORTRAN BINDINGS FOR GROUPS, CONTEXTS, ETC. 233

MPI COMM COMPARE(COMM1, COMM2, RESULT, IERROR)
INTEGER COMM1, COMM2, RESULT, IERROR

MPI COMM DUP(COMM, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR

MPI COMM CREATE(COMM, GROUP, NEWCOMM, IERROR)
INTEGER COMM, GROUP, NEWCOMM, IERROR

MPI COMM SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)
INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

MPI COMM FREE(COMM, IERROR)
INTEGER COMM, IERROR

MPI COMM TEST INTER(COMM, FLAG, IERROR)
INTEGER COMM, IERROR
LOGICAL FLAG

MPI COMM REMOTE SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

MPI COMM REMOTE GROUP(COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

MPI INTERCOMM CREATE(LOCAL COMM, LOCAL LEADER, PEER COMM, REMOTE LEADER, TAG,
NEWINTERCOMM, IERROR)

INTEGER LOCAL COMM, LOCAL LEADER, PEER COMM, REMOTE LEADER, TAG,
NEWINTERCOMM, IERROR

MPI INTERCOMM MERGE(INTERCOMM, HIGH, NEWINTRACOMM, IERROR)
INTEGER INTERCOMM, NEWINTRACOMM, IERROR
LOGICAL HIGH

MPI KEYVAL CREATE(COPY FN, DELETE FN, KEYVAL, EXTRA STATE, IERROR)
EXTERNAL COPY FN, DELETE FN
INTEGER KEYVAL, EXTRA STATE, IERROR

MPI KEYVAL FREE(KEYVAL, IERROR)
INTEGER KEYVAL, IERROR

MPI ATTR PUT(COMM, KEYVAL, ATTRIBUTE VAL, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE VAL, IERROR

MPI ATTR GET(COMM, KEYVAL, ATTRIBUTE VAL, FLAG, IERROR)
INTEGER COMM, KEYVAL, ATTRIBUTE VAL, IERROR
LOGICAL FLAG

MPI ATTR DELETE(COMM, KEYVAL, IERROR)
INTEGER COMM, KEYVAL, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

234 LANGUAGE BINDING

A.12 Fortran Bindings for Process Topologies

MPI CART CREATE(COMM OLD, NDIMS, DIMS, PERIODS, REORDER, COMM CART, IERROR)
INTEGER COMM OLD, NDIMS, DIMS(*), COMM CART, IERROR
LOGICAL PERIODS(*), REORDER

MPI DIMS CREATE(NNODES, NDIMS, DIMS, IERROR)
INTEGER NNODES, NDIMS, DIMS(*), IERROR

MPI GRAPH CREATE(COMM OLD, NNODES, INDEX, EDGES, REORDER, COMM GRAPH,
IERROR)

INTEGER COMM OLD, NNODES, INDEX(*), EDGES(*), COMM GRAPH, IERROR
LOGICAL REORDER

MPI TOPO TEST(COMM, STATUS, IERROR)
INTEGER COMM, STATUS, IERROR

MPI GRAPHDIMS GET(COMM, NNODES, NEDGES, IERROR)
INTEGER COMM, NNODES, NEDGES, IERROR

MPI GRAPH GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)
INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR

MPI CARTDIM GET(COMM, NDIMS, IERROR)
INTEGER COMM, NDIMS, IERROR

MPI CART GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)
INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR
LOGICAL PERIODS(*)

MPI CART RANK(COMM, COORDS, RANK, IERROR)
INTEGER COMM, COORDS(*), RANK, IERROR

MPI CART COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)
INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

MPI GRAPH NEIGHBORS COUNT(COMM, RANK, NNEIGHBORS, IERROR)
INTEGER COMM, RANK, NNEIGHBORS, IERROR

MPI GRAPH NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)
INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI CART SHIFT(COMM, DIRECTION, DISP, RANK SOURCE, RANK DEST, IERROR)
INTEGER COMM, DIRECTION, DISP, RANK SOURCE, RANK DEST, IERROR

MPI CART SUB(COMM, REMAIN DIMS, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR
LOGICAL REMAIN DIMS(*)

MPI CART MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)
INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR
LOGICAL PERIODS(*)

MPI GRAPH MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)
INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.13. FORTRAN BINDINGS FOR ENVIRONMENTAL INQUIRY 235

A.13 Fortran Bindings for Environmental Inquiry

MPI GET PROCESSOR NAME(NAME, RESULTLEN, IERROR)
CHARACTER*(*) NAME
INTEGER RESULTLEN, IERROR

MPI ERRHANDLER CREATE(FUNCTION, ERRHANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERROR

MPI ERRHANDLER SET(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

MPI ERRHANDLER GET(COMM, ERRHANDLER, IERROR)
INTEGER COMM, ERRHANDLER, IERROR

MPI ERRHANDLER FREE(ERRHANDLER, IERROR)
INTEGER ERRHANDLER, IERROR

MPI ERROR STRING(ERRORCODE, STRING, RESULTLEN, IERROR)
INTEGER ERRORCODE, RESULTLEN, IERROR
CHARACTER*(*) STRING

MPI ERROR CLASS(ERRORCODE, ERRORCLASS, IERROR)
INTEGER ERRORCODE, ERRORCLASS, IERROR

DOUBLE PRECISION MPI WTIME()

DOUBLE PRECISION MPI WTICK()

MPI INIT(IERROR)
INTEGER IERROR

MPI FINALIZE(IERROR)
INTEGER IERROR

MPI INITIALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

MPI ABORT(COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR

MPI GET VERSION(VERSION, SUBVERSION, IERROR)
INTEGER VERSION, SUBVERSION, IERROR

A.14 Fortran Bindings for Profiling

MPI PCONTROL(LEVEL)
INTEGER LEVEL, ...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Function Index

MPI ABORT, 206
MPI ADDRESS, 70
MPI ALLGATHER, 111
MPI ALLGATHERV, 112
MPI ALLREDUCE, 126
MPI ALLTOALL, 113
MPI ALLTOALLV, 114
MPI ATTR DELETE, 174
MPI ATTR GET, 173
MPI ATTR PUT, 173
MPI BARRIER, 96
MPI BCAST, 96
MPI BSEND, 29
MPI BSEND INIT, 57
MPI BUFFER ATTACH, 34
MPI BUFFER DETACH, 35
MPI CANCEL, 54
MPI CART COORDS, 186
MPI CART CREATE, 181
MPI CART GET, 185
MPI CART MAP, 190
MPI CART RANK, 186
MPI CART SHIFT, 188
MPI CART SUB, 189
MPI CARTDIM GET, 185
MPI COMM COMPARE, 146
MPI COMM CREATE, 148
MPI COMM DUP, 147
MPI COMM FREE, 150
MPI COMM GROUP, 141
MPI COMM RANK, 146
MPI COMM REMOTE GROUP, 160
MPI COMM REMOTE SIZE, 160
MPI COMM SIZE, 145
MPI COMM SPLIT, 149
MPI COMM TEST INTER, 159
MPI DIMS CREATE, 181
MPI ERRHANDLER CREATE, 197
MPI ERRHANDLER FREE, 198
MPI ERRHANDLER GET, 198

MPI ERRHANDLER SET, 198
MPI ERROR CLASS, 200
MPI ERROR STRING, 199
MPI FINALIZE, 202
MPI GATHER, 97
MPI GATHERV, 99
MPI GET COUNT, 22
MPI GET ELEMENTS, 76
MPI GET PROCESSOR NAME, 195
MPI GET VERSION, 193
MPI GRAPH CREATE, 182
MPI GRAPH GET, 185
MPI GRAPH MAP, 191
MPI GRAPH NEIGHBORS, 187
MPI GRAPH NEIGHBORS COUNT, 187
MPI GRAPHDIMS GET, 184
MPI GROUP COMPARE, 140
MPI GROUP DIFFERENCE, 142
MPI GROUP EXCL, 143
MPI GROUP FREE, 144
MPI GROUP INCL, 142
MPI GROUP INTERSECTION, 141
MPI GROUP RANGE EXCL, 144
MPI GROUP RANGE INCL, 143
MPI GROUP RANK, 139
MPI GROUP SIZE, 139
MPI GROUP TRANSLATE RANKS, 140
MPI GROUP UNION, 141
MPI IBSEND, 39
MPI INIT, 202
MPI INITIALIZED, 205
MPI INTERCOMM CREATE, 161
MPI INTERCOMM MERGE, 162
MPI IPROBE, 52
MPI IRECV, 41
MPI IRSEND, 40
MPI ISEND, 39
MPI ISSEND, 40
MPI KEYVAL CREATE, 171
MPI KEYVAL FREE, 172

236

MPI Function Index 237

MPI OP CREATE, 122
MPI OP FREE, 125
MPI PACK, 87
MPI PACK SIZE, 89
MPI PCONTROL, 208
MPI PROBE, 53
MPI RECV, 20
MPI RECV INIT, 58
MPI REDUCE, 115
MPI REDUCE SCATTER, 127
MPI REQUEST FREE, 44
MPI RSEND, 30
MPI RSEND INIT, 58
MPI SCAN, 128
MPI SCATTER, 106
MPI SCATTERV, 108
MPI SEND, 17
MPI SEND INIT, 56
MPI SENDRECV, 60
MPI SENDRECV REPLACE, 61
MPI SSEND, 29
MPI SSEND INIT, 57
MPI START, 59
MPI STARTALL, 59
MPI TEST, 43
MPI TEST CANCELLED, 55
MPI TESTALL, 48
MPI TESTANY, 47
MPI TESTSOME, 50
MPI TOPO TEST, 184
MPI TYPE COMMIT, 73
MPI TYPE CONTIGUOUS, 64
MPI TYPE EXTENT, 71
MPI TYPE FREE, 74
MPI TYPE HINDEXED, 68
MPI TYPE HVECTOR, 66
MPI TYPE INDEXED, 67
MPI TYPE LB, 73
MPI TYPE SIZE, 71
MPI TYPE STRUCT, 69
MPI TYPE UB, 73
MPI TYPE VECTOR, 65
MPI UNPACK, 87
MPI WAIT, 42
MPI WAITALL, 48
MPI WAITANY, 46
MPI WAITSOME, 49
MPI WTICK, 201

MPI WTIME, 2011

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	Acknowledgments
	Introduction to MPI
	Overview and Goals
	Who Should Use This Standard?
	What Platforms Are Targets For Implementation?
	What Is Included In The Standard?
	What Is Not Included In The Standard?
	Organization of this Document

	MPI Terms and Conventions
	Document Notation
	Procedure Specification
	Semantic Terms
	Data Types
	Opaque objects
	Array arguments
	State
	Named constants
	Choice
	Addresses

	Language Binding
	Fortran 77 Binding Issues
	C Binding Issues

	Processes
	Error Handling
	Implementation issues
	Independence of Basic Runtime Routines
	Interaction with signals in POSIX

	Examples

	Point-to-Point Communication
	Introduction
	Blocking Send and Receive Operations
	Blocking send
	Message data
	Message envelope
	Blocking receive
	Return status

	Data type matching and data conversion
	Type matching rules
	Data conversion

	Communication Modes
	Semantics of point-to-point communication
	Buffer allocation and usage
	Model implementation of buffered mode

	Nonblocking communication
	Communication Objects
	Communication initiation
	Communication Completion
	Semantics of Nonblocking Communications
	Multiple Completions

	Probe and Cancel
	Persistent communication requests
	Send-receive
	Null processes
	Derived datatypes
	Datatype constructors
	Address and extent functions
	Lower-bound and upper-bound markers
	Commit and free
	Use of general datatypes in communication
	Correct use of addresses
	Examples

	Pack and unpack

	Collective Communication
	Introduction and Overview
	Communicator argument
	Barrier synchronization
	Broadcast
	Example using MPI_BCAST

	Gather
	Examples using MPI_GATHER, MPI_GATHERV

	Scatter
	Examples using MPI_SCATTER, MPI_SCATTERV

	Gather-to-all
	Examples using MPI_ALLGATHER, MPI_ALLGATHERV

	All-to-All Scatter/Gather
	Global Reduction Operations
	Reduce
	Predefined reduce operations
	MINLOC and MAXLOC
	User-Defined Operations
	All-Reduce

	Reduce-Scatter
	Scan
	Example using MPI_SCAN

	Correctness

	Groups, Contexts, and Communicators
	Introduction
	Features Needed to Support Libraries
	MPI's Support for Libraries

	Basic Concepts
	Groups
	Contexts
	Intra-Communicators
	Predefined Intra-Communicators

	Group Management
	Group Accessors
	Group Constructors
	Group Destructors

	Communicator Management
	Communicator Accessors
	Communicator Constructors
	Communicator Destructors

	Motivating Examples
	Current Practice #1
	Current Practice #2
	(Approximate) Current Practice #3
	Example #4
	Library Example #1
	Library Example #2

	Inter-Communication
	Inter-communicator Accessors
	Inter-communicator Operations
	Inter-Communication Examples

	Caching
	Functionality
	Attributes Example

	Formalizing the Loosely Synchronous Model
	Basic Statements
	Models of Execution

	Process Topologies
	Introduction
	Virtual Topologies
	Embedding in MPI
	Overview of the Functions
	Topology Constructors
	Cartesian Constructor
	Cartesian Convenience Function: MPI_DIMS_CREATE
	General (Graph) Constructor
	Topology inquiry functions
	Cartesian Shift Coordinates
	Partitioning of Cartesian structures
	Low-level topology functions

	An Application Example

	MPI Environmental Management
	Implementation information
	Version Inquiries
	Environmental Inquiries

	Error handling
	Error codes and classes
	Timers and synchronization
	Startup

	Profiling Interface
	Requirements
	Discussion
	Logic of the design
	Miscellaneous control of profiling

	Examples
	Profiler implementation
	MPI library implementation
	Complications

	Multiple levels of interception

	Bibliography
	Language Binding
	Introduction
	Defined Constants for C and Fortran
	C bindings for Point-to-Point Communication
	C Bindings for Collective Communication
	C Bindings for Groups, Contexts, and Communicators
	C Bindings for Process Topologies
	C bindings for Environmental Inquiry
	C Bindings for Profiling
	Fortran Bindings for Point-to-Point Communication
	Fortran Bindings for Collective Communication
	Fortran Bindings for Groups, Contexts, etc.
	Fortran Bindings for Process Topologies
	Fortran Bindings for Environmental Inquiry
	Fortran Bindings for Profiling

	MPI Function Index

