
Martin Schulz, Technische Universität München
Chair of the MPI Forum

Panelists:
l Ignacio Laguna, LLNL
l Wesley Bland, Intel
l Howard Pritchard, LANL
l Jim Dinan, NVIDIA
l Ryan Grant, Queen’s University, Canada
l Anthony Skjellum,

University of Tennessee at Chattanooga

+ the entire MPI Forum

SC 2021 BoF, November 2021

The Message Passing Interface:
Version 4.0 and Beyond

Available at http://www.mpi-forum.org/

MPI 4.0 got Ratified on June 9th 2021

http://www.mpi-forum.org/

Major additions for MPI 4.0
• Partitioned Communication
• New tool interface for events
• Solution for “Big Count” operations
• Persistent Collectives
• New init options via MPI Sessions
• Topology Solutions
• And much more …

MPI 4.0 Implementations in the Works
• The major implementations are already working towards MPI 4.0
• Several features already supported
• Full support across most implementations soon

The work of the MPI Forum Continues
• Next step: MPI 4.1 – minor changes/clarifications and cleanup/reorg
• Work on MPI 5.0 has begun as well
• http://www.mpi-forum.org/

MPI 4.0 (and what‘s Next)

Good Time to Join the MPI-Forum
The MPI-Forum is open to all interested in MPI.

http://www.mpi-forum.org/

Coarse-Grained Fault Recovery
Ignacio Laguna, Giorgis Georgakoudis
LLNL

Reinitialize MPI

• Cleans up MPI state and jumps
to a specified point in the code

• This constructs a global roll-
back error recovery

MPI_Init()
…initialize…
MPI_Reinit()

…do things…

MPI_Allreduce()
/* ERROR */

Jump and
“Clean up” MPI

Formal text has been drafted and is getting close to a plenary:
https://reinit.github.io/reinit/

https://reinit.github.io/reinit/

Coarse-grained Recovery (Reinit)

User s
ubmits

 jo
b

Progra
m begin

s

Main
 lo

op begin
s

En
d of it

erat
ion 1

Resources allocated

En
d of it

erat
ion 2

Program data initialized

Proce
ss

fai
lure

MPI state is created,
e.g., communicators

MPI is setup

Checkpoint stored

Reinit
Failure

Recovery
Program checkpoint loaded

Recovery time

Time

Checkpoint stored

Program checkpoint loaded
Traditional

CPR

Recovery time

Checkpoint MPI State & Return to
Previous State X
• More generic case of

reinitializing MPI by allowing
multiple reinitialization points

• Still in early discussions

• Likely to not be its own
model, but will be a “building
block” that can be used
independently

MPI_Init()
…initialize…

for () {
MPI_Save_state()
…do things…

MPI_Allreduce()
/* ERROR */

}

Jump and
“Clean up” MPI

Reinit Function

2 CHAPTER 1. GLOBAL-RESTART FAULT TOLERANCE

1.2 Fault Model

The Reinit model provides a pre-defined fault-tolerance mechanism to surviveMPI process

failures. We use the definition of process failures used in Section 2.8, i.e., a process failure
occurs when an MPI process unexpectedly and permanently stops communicating (e.g., a
software or hardware crash results in an MPI process terminating unexpectedly). In the
rest of the chapter, when we refer to failures we mean MPI process failures.

The Reinit model assumes that the application’s data will be recovered after a failure.
The application can use di↵erent mechanisms to recover its data, for example, reloading a
checkpoint that was saved before the failure occurred or re-generating the data.

1.3 Reinit MPI Interface

The Reinit interface for global-restart fault tolerance is composed of two MPI functions:
MPI_REINIT and MPI_TEST_FAILURE. This section describes the syntax of these MPI func-
tions.

MPI Reinit

int MPI_Reinit(resilient_fn, void *data)

IN resilient fn user defined procedure (function)
IN data pointer to user defined data

The user-defined procedure should be in C, a function of type MPI Reinit function
which is defined as:

typedef MPI_Reinit_fn void (*)(void *data));

The first argument is a user defined procedure, resilient_fn, which is called by the
MPI Reinit procedure. The second argument is a pointer to user defined data. This pointer
is passed as an argument to the user defined procedure, resilient_fn, when the procedure
is called. A valid MPI program must contain at most one call to the MPI Reinit procedure.
Calling MPI Reinit more than one time results in undefined behavior.

The purpose of the user defined resilient_fn procedure is to specify a rollback loca-
tion, i.e., a program location to resume execution after a process failure occurs. Depending
on the error handler being used, upon the detection of a process failure, MPI will cause
the execution of the program to resume at the resilient_fn procedure synchronously or
asynchronously (see the Error Handling section for more details).

After the resilient_fn procedure is re-executed due to failure recovery, the only valid
communication objects are the communicators MPI COMM WORLD, MPI COMM SELF, MPI -

COMM NULL.

Advice to users. MPI objects that are created before MPI Reinit is called will not
be valid when the resilient_fn procedure is re-executed due to a failure. (End of
advice to users.)

Calling the MPI Reinit procedure sets the resilient_fn procedure to be a rollback
location and makes this rollback location active. After activating the rollback location,
MPI Reinit calls the resilient_fn procedure. After the MPI Reinit procedure returns, the
rollback location becomes inactive. If a failure occurs during an inactive rollback location,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only

More at https://reinit.github.io/reinit/

Specifies a
Rollback Location

https://reinit.github.io/reinit/

Error Handling

• MPI_ERRORS_REINIT_ASY
NC
a) The handler is called

immediately after a process
failure is detected

b) Causes the execution of the
program to resume at (or
jump back to) the active
rollback location

• MPI_ERRORS_REINIT_SYNC
a) The handler has two effects.
b) It enables the MPI Test

failure function to cause the
execution of the program to
resume at (or jump back to)
the active rollback location

c) It returns the error code to
the user.

1 2

Different Scenarios for SYNC Error
Handling

4 CHAPTER 1. GLOBAL-RESTART FAULT TOLERANCE

• MPI ERRORS REINIT SYNC: The handler has two e↵ects. The first e↵ect is
that it enables the MPI Test failure function to cause the execution of the program
to resume at (or jump back to) the active rollback location when MPI Test failure is
called. The second e↵ect is that it returns the error code to the user.

Using the MPI ERRORS REINIT ASYNC handler causes MPI to resume execution
of the program when an error is detected whether or not the error is detected during a call
to MPI. On the other hand, using the MPI ERRORS REINIT SYNC handler causes MPI
to resume execution only after MPI Test failure function is called if an error was detected.

1.4.1 Association of Error Handlers

The Reinit error handlers must be associated to MPI COMM WORLD before the MPI -

Reinit procedure is called. Calling MPI Reinit before associating any of the Reinit error
handlers produces undefined behavior.

After a Reinit error handler has been associated to MPI COMM WORLD, it is invalid
to associate a di↵erent Reinit error handler to MPI COMM WORLD.

Figure 1.2: Di↵erent error scenarios for the MPI ERRORS REINIT SYNC error handler.

1.4.2 Behavior for Specific Error Conditions

If an error occurs and one of the Reinit error handlers has been set but there is no ac-
tive Reinit rollback location, MPI will behave as if the MPI ERRORS ARE FATAL error
handler is set (see Figure 1.2).

Errors can occur between the moment the MPI ERRORS REINIT SYNC handler is
set and the MPI Test failure function is called. If an error occurs in such period of time,
MPI behaves as if the MPI ERRORS RETURN handler is set.

1.5 Tools

The Reinit interface supports the use of MPI tools. The following must be taken into
consideration when writing MPI tools:

• The Reinit interface assumes that, when a process failure occurs, data may be lost.
If a tool requires data that can be lost due to failures, the tool must implement a
mechanism to recover such data, for example, reloading a checkpoint.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only

Reinit Specification Document

More at https://reinit.github.io/reinit/

https://reinit.github.io/reinit/

Fault Tolerance WG Mission Statement
• Commissioned to work on fault tolerance.
• Work has expanded to include all error handling.
• The focus includes more than just the well-known ULFM proposal:

• Finer control on what gets aborted after an error
• Let programs fallback to TCP/other if MPI has an error; increase the appeal

to non-HPC folks
• Clarification of what the state of the MPI library should be after an error (i.e.,

POSIX-like error handling)
• Consult on error management in new additions (MPI Sessions, MPI_INFO

before MPI_INIT, etc.)

New Error Handling Features is MPI 4.0

• New MPI Error Handler - MPI_ERRORS_ABORT
• Add MPI_ERR_PROC_ABORTED error code.
• Localize error impact of some MPI operations, raise an error on

MPI_COMM_SELF, not MPI_COMM_WORLD
• Errors do not ”break MPI” but indicate the operation didn’t work.

Other operations may still succeed.
• Specify that MPI_SUCCESS indicates only the result(s) of the

operation, not the state of the MPI library.
• Allow the user to specify the default error handler at mpiexec time.

Levels of Composability
• Level 0 – Models coexist but do not

interoperate
• Level 1 – Models can be used in the same

application, but not at the same time.
• E.g., Use fine-grained recovery, then coarse-

grained, then fine-grained again
• Level 2 – Models used in the same

application, but not all processes are using
the same models
• E.g., One communicator uses coarse-grained

recovery, another uses fine-grained
• Level 3 – Models are fully integrated and

can be used interchangeably.

Tools - Function Interception
Current State of the Art

• Name-shifted interface (PMPI)
• Relatively simple to use
• Supports a single tool at a time without resorting to non-standard

workarounds (PnMPI)

• Tools implement their own versions of functions and intercept MPI
calls with tricks like weak symbols

• Calls PMPI_<foo> when done

Tools - Function Interception
Desired Features

• Support for multiple, simultaneous tools
• Support for multiple copies of the same tool (e.g., one instance for

rows and another for columns)
• A way for users to specify the set and order of tools
• Intercept all functions provided by an MPI library (including non-

standard functions
• Interoperability with existing “PMPI” tools

Desired Features

üSupport for multiple, simultaneous tools
üSupport for multiple copies of the same tool (e.g., one instance for

rows and another for columns)
üA way for users to specify the set and order of tools
üIntercept all functions provided by an MPI library (including non-

standard functions
üInteroperability with existing “PMPI” tools

QMPI!

Function Pointer Interception (QMPI)
• Allows tools to insert themselves

between the application and the
MPI implementation

• Allows multiple tools to be used
simultaneously

• Useful to layer complementary tools
at the same time.

• Long-term Replacement for PMPI
• Can co-exist with PMPI short-term

• Prototype available in MPICH

Application MPI
Library

MPI_Send

Regular MPI Calls

MPI Calls with PMPI

PMPI_SendApplication MPI LibraryMPI_Send
PMPI
Tool

MPI Calls with PMPI & QMPI

Application MPI
Library

MPI_Send

PMP
I

Tool

QMPI
Tool

QMPI
Tool

MPI Sessions WG Update

Howard Pritchard
Los Alamos National Laboratory

LA-UR-21-31331

MPI Sessions – current state

2

• In the MPI 4.0 standard
• Consider this as first step for Sessions

MPI_Session_init

Query runtime for process sets

MPI_Group_from_session_pset

MPI_Comm_create_from_group

MPI Sessions – current state in MPI implementations

2

• Available in MPICH 4.0 release stream
• Prototype based on Open MPI is available at

https://github.com/hpc/ompi/tree/sessions_pr
(this branch is subject to rebasing!)

• Set of simple tests are available at
https://github.com/open-mpi/ompi-tests-public

https://github.com/hpc/ompi/tree/sessions_pr
https://github.com/open-mpi/ompi-tests-public

MPI WG Sessions – current activities

2

• For MPI 4.1 standard - clarifications of Sessions related
text

• For MPI 5.0 - investigating requirements for more
dynamic use of Sessions:
• Presentation of available process sets in a manner

more suitable for dynamic environments
• Mechanisms for runtime notifying application of

resource changes
• Mechanisms for application to notify runtime about

changing resource requirements
• Adding/removing MPI processes (beyond

MPI_Comm_spawn)
• Working with FT WG to develop FT approaches that

leverage Sessions functionality

24

MPI HYBRID & ACCELERATOR
WORKING GROUP UPDATE

James Dinan, NVIDIA
HACC WG Chair

SC ‘21 MPI Forum BoF

25

Mission: Improve interoperability of MPI with other programming models

Active topics:
1. Continuations proposal #6
2. Clarification of thread ordering rules #117
3. Integration with accelerator programming models:

1. Accelerator info keys #3
2. Stream/Graph Based MPI Operations #5
3. Accelerator bindings for partitioned communication #4
4. Partitioned communication buffer preparation (shared with Persistence WG) #264

More information: https://github.com/mpiwg-hybrid/hybrid-issues/wiki

HYBRID & ACCELERATOR WORKING GROUP

https://github.com/mpiwg-hybrid/hybrid-issues/issues/6
https://github.com/mpi-forum/mpi-issues/issues/117
https://github.com/mpiwg-hybrid/hybrid-issues/issues/3
https://github.com/mpiwg-hybrid/hybrid-issues/issues/5
https://github.com/mpiwg-hybrid/hybrid-issues/issues/4
https://github.com/mpi-forum/mpi-standard/pull/264
https://github.com/mpiwg-hybrid/hybrid-issues/wiki

26

COMPLETION CONTINUATIONS
Treat the completion of an MPI operation as continuation of some activity
● Interoperability with asynchronous and multithreaded programming models
● Register callbacks that continue the activity upon completion of an MPI operation

“Callback-based completion notification using MPI Continuations,”
Joseph Schuchart, Christoph Niethammer, José Gracia, George Bosilca, Parallel Computing, 2021.

“MPI Detach - Asynchronous Local Completion,”
Joachim Protze, Marc-André Hermanns, Ali Demiralp, Matthias S. Müller, Torsten Kuhlen. EuroMPI ‘20.

27

STREAM TRIGGERED NEIGHBOR EXCHANGE
Simple Ring Exchange Using a CUDA Stream

MPI_Request send_req, recv_req;
MPI_Status sstatus, rstatus;

for (i = 0; i < NITER; i++) {
if (i > 0) {

MPI_Wait_enqueue(recv_req, &rstatus, MPI_CUDA_STREAM, stream);
MPI_Wait_enqueue(send_req, &sstatus, MPI_CUDA_STREAM, stream);

}

kernel<<<..., stream>>>(send_buf, recv_buf, …);

if (i < NITER – 1) {
MPI_Irecv_enqueue(&recv_buf, …, &recv_req, MPI_CUDA_STREAM, stream);
MPI_Isend_enqueue(&send_buf, …, &send_req, MPI_CUDA_STREAM, stream);

}
}
cudaStreamSynchronize(stream);

kerne
l

Isend

Irecv

Wait

Wait
kerne

l
Isend

Irecv
…

stream

28

CUDA BINDINGS FOR MPI PARTITIONED APIS

int MPI_Psend_init(const void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_Precv_init(void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_[start,wait][_all](...)

__device__ int MPI_Pready(int partition, MPI_Request request)

__device__ int MPI_Pready_range(int partition_low, int partition_high, MPI_Request request)

__device__ int MPI_Pready_list(int length, const int array_of_partitions[], MPI_Request request)

__device__ int MPI_Parrived(MPI_Request request, int partition, int *flag)

Keep host only
Add device

bindings

29

KERNEL TRIGGERED COMMUNICATION USAGE

Device Code

__device__
void MPI_Pready(int idx, MPI_Request req);

__global__ kernel(..., MPI_Request *req) {
int i = my_partition(...);
// Compute and fill partition i
// then mark i as ready
MPI_Pready(i, req[0]);

}

Partitioned Neighbor Exchange

Host Code
MPI_Request req[2];
MPI_Psend_init(..., &req[0]);
MPI_Precv_init(..., &req[1]);
while (...) {

MPI_Startall(2, req);
MPI_Pbuf_prepare_all(2, req);
kernel<<<..., s>>>(..., req);
cudaStreamSynchronize(s);
MPI_Waitall(2, req);

}
MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);

30

KERNEL & STREAM TRIGGERED COMMUNICATION USAGE

Device Code

__device__
void MPI_Pready(int idx, MPI_Request req);

__global__ kernel(..., MPI_Request *req) {
int i = my_partition(...);
// Compute and fill partition i
// then mark i as ready
MPI_Pready(i, req[0]);

}

Partitioned Neighbor Exchange

Host Code
MPI_Request req[2];
MPI_Psend_init(..., &req[0]);
MPI_Precv_init(..., &req[1]);
while (...) {

MPI_Startall_enqueue(2, req, …);
MPI_Pbuf_prepare_all_enqueue(2, req, …);
kernel<<<..., s>>>(..., req);
cudaStreamSynchronize(s);
MPI_Waitall_enqueue(2, req, …);

}
MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]); Moving to stream eliminates overhead

from stream synchronization

31

Thank you!

Wednesdays 10-11am US Eastern Time

https://github.com/mpiwg-hybrid/hybrid-issues/wiki

Partitioned Communication
SC21 MPI BoF

Ryan Grant, Queen’s University, Canada

MPI Partitioned Communication Concepts

• Many actors (threads) contributing to a larger operation in MPI
• Same number of messages as today!
• No new ranks – no need to understand target thread

• Many threads work together to assemble a message
• MPI only has to manage knowing when completion happens
• These are actor/action counts, not thread level collectives

• Persistent-style communication
• Init…(Start…test/wait)…free

• No heavy MPI thread concurrency handling required
• Leave the placement/management of the data to the user

• No more complicated packing of data, send structures when they become
available

33

New in MPI 4.0

Partitioned Communication & GPUs
Partitioned Communication aimed at multi-threaded multi-core devices – improve for GPUs

34

Host (CPU) side

MPI_Psend_init(..., &request);

for (...) {

MPI_Start(&request);

kernel<<<...>>>(..., request);

MPI_Wait(&request);

}

MPI_Request_free(&request);

Kernel:

__device__ kernel(..., MPI_Request request)
{

int i = my_partition[my_id];

/* Compute and fill partition i then mark
ready: */

MPI_Pready(i, request);

}

Note: CPU does communication setup and completion steps for MPI. Setup commands on NIC and poll for completion of entire
operation. Kernel just indicates when NIC/MPI can send data. Ideally want to trigger communication from GPU to fire off when
data is ready without communication setup/completion in kernel

Pbuf_prepare Example

MPI_PSEND_INIT
MPI_START
MPI_PBUF_PREPARE (blocking/non-local)

MPI_PREADY…(nonblocking)
MPI_WAIT (completing)

MPI_START, MPI_PSYNC

MPI_PREADY...MPI_PREADY
MPI_WAIT

MPI_PRECV_INIT
MPI_START
MPI_PBUF_PREPARE (blocking/non-local)

Optional - parrived (nonblocking)
MPI_WAIT (completing)

MPI_START, MPI_PSYNC

MPI_PARRIVED...MPI_PARRIVED
MPI_WAIT

Send-side receive-side

Proposed for MPI 4.1

Major additions for MPI 4.0
• Partitioned Communication
• New tool interface for events
• Solution for “Big Count” operations
• Persistent Collectives
• New init options via MPI Sessions
• Topology Solutions
• And much more …

MPI 4.0 Implementations in the Works
• The major implementations are already working towards MPI 4.0
• Several features already supported
• Full support across most implementations soon

The work of the MPI Forum Continues
• Next step: MPI 4.1 – minor changes/clarifications and cleanup/reorg
• Work on MPI 5.0 has begun as well
• http://www.mpi-forum.org/

MPI: Version 4.0 and Beyond – Q&A

Good Time to Join the MPI-Forum
The MPI-Forum is open to all interested in MPI.

http://www.mpi-forum.org/

Standardization body for MPI
• Discusses additions and new directions
• Oversees the correctness and quality of the standard
• Represents MPI to the community

Organization consists of:
• Chair (Martin Schulz, TUM/LRZ)
• Secretary (Wesley Bland, Intel)
• Treasurer (Brian Smith, ORNL)
• Editor (Bill Gropp, UIUC/NCSA)

Open membership
• Any organization is welcome to participate
• Consists of working groups and the actual MPI forum (plenary)
• Voting (plenary) meetings 4 times each year (3 in the US, one with EuroMPI/Asia/USA)
• Voting rights depend on attendance

The MPI Forum Drives MPI

Collective Communication, Topology, Communicators, Groups
• Torsten Hoefler, Andrew Lumsdaine and Anthony Skjellum

Fault Tolerance
• Wesley Bland, Aurélien Bouteiller

HW Topologies
• Guillaume Mercier

Hybrid and Accelerator Programming
• Jim Dinan

Language Bindungs
• Martin Ruefenacht

Persistence
• Anthony Skjellum

Point to Point Communication
• Rich Graham and Dan Holmes

Remote Memory Access
• Bill Gropp and Rajeev Thakur

Semantic Terms
• Rolf Rabenseifner and Purushotham Bangalore

Sessions
• Dan Holmes, Howard Pritchard

Tools
• Marc-Andre Hermanns

The Bulk of Work is in the Working Groups

Major additions for MPI 4.0
• Partitioned Communication
• New tool interface for events
• Solution for “Big Count” operations
• Persistent Collectives
• New init options via MPI Sessions
• Topology Solutions
• And much more …

MPI 4.0 Implementations in the Works
• The major implementations are already working towards MPI 4.0
• Several features already supported
• Full support across most implementations soon

The work of the MPI Forum Continues
• Next step: MPI 4.1 – minor changes/clarifications and cleanup/reorg
• Work on MPI 5.0 has begun as well
• http://www.mpi-forum.org/

MPI: Version 4.0 and Beyond – Q&A

Good Time to Join the MPI-Forum
The MPI-Forum is open to all interested in MPI.

http://www.mpi-forum.org/

