MPI-4 BOF

Anthony Skjellum, PhD
University of Tennessee at Chattanooga
tony-skjellum@utc.edu

SC’18

30



Standardization Topic areas

Persistent Collective Communication
Big MPI (64-bit clean MPI)

Additions for Collective Communication —

Nonblocking Constructors/Destructors
“WITH _INFO” proposals
“Other” clarifying tickets in the works

All targeted for the MPI-Next (MPI-4) Release
of MPI

31



Persistent Collective Operations

Use-case: a collective operation is done many times in an
application

The specific sends and receives represented never change (size,
type, lengths, transfers)

A persistent collective operation can take the time to apply a
heuristic and choose a faster way to move that data

Fixed cost of making those decisions could be high but can be
amortized over all the times the operation is used

Static resource allocation can be done

Choose fast(er) algorithm, take advantage of special cases
Reduce queueing costs

Special limited hardware can be allocated if available

Choice of multiple transfer paths could also be performed
32



Basics

= Mirror regular nonblocking collective operations
= For each nonblocking MPI collective, add a persistent variant
= Forevery MPI_I<coll>, add MPI_<coll>_init

= Parameters are identical to the corresponding nonblocking variant — plus additional
MPI_INFO parameter

= All arguments “fixed” for subsequent uses

= Persistent collective operations cannot be matched with blocking or nonblocking
collective calls

33



Example
Nonblocking

for (i = 0; -CQ’WK’{
compute (bufA) ;
MPI Ibcast(bufA, .., rowcomm, &req[O0]);
compute (bufB) ;
MPI Ireduce (bufB, .., colcomm,

&req[l]) ;
MPI Waitall(2, req, ..);

}

Persistent collectives

MPI Bcast init (bufa, A,P Lowcomm, &req|O0]) ;
MPI Reduce init(bufB, .., colcomm,
&req[l]);
for (i = 0; i < MAXITER; i++) {
compute (bufa) ;
MPI_Start(req[0]);
compute (bufB) ;
MPI Start(req[l]):
MPI Waitall(2, req, ..);

34



Init/Start

The init function calls only perform initialization; do not start the operation

Ex: MPI_Allreduce _init

— Produces a persistent request (not destroyed by completion)
Requests work with MPI_Start/MPI_Startall

Only inactive requests can be started

MPI_Request_free can free inactive requests

35



Ordering of Inits and Starts

= |nits must be ordered like all other collective operations

= Persistent collective operations can be started in the same order, or different
orders, at all processes

= MPI_Startall can contain multiple operations on the same communicatordue to
ordering freedom

= A new communicator INFO key will be added that asserts persistent collectives
starts will be strictly ordered

" |n some cases, this may improve performance

= NB: INFO keyincompatible with starting multiple persistent collective operations
using MPI_Startall

36



Big MPI

Idea: Finally make MPI fully 64-bit clean
More 2 Gi element transfers “is a pain”
Solve issue across API: Collectives, Point-to-point, I/0, and RMA

Started with a significant study and prototyping effort by Jeff
Hammond that yielded a proposal for Collective communication
— Workarounds possible for pt2pt do not work well for collectives

— v/w-collectives and reductions have the most concerns

Neighborhood collectives fixed the large-displacement problem
(for these new ops)

Produces _X APl variants names that are “64-bit clean”
MPI_Rank vs. int rank is a controversial part of this discussion

Alternatives: Alternative/new APIs or polymorphic APIs
37



Nonblocking Collective Constructors/Destructors

Idea: Make initialization/de-initialization fully nonblocking
Support asynchronous libraries better

Ex: Add nonblocking variants (wherever missing)
— MPI_COMM_CREATE ->MP|_COMM_ICREATE

— MPI_COMM_FREE ->MP|_COMM _IFREE

— MPI_WIN_CREATE ->MPI_WIN_ICREATE

— MPI_WIN_FREE ->MPI_WIN_IFREE

— MPI_FILE_CLOSE ->MPI_FILE_ICLOSE

Plus other collective operations that lack a nonblocking analog (except we avoid RMA at
present)

Ex: MPI_FILE_SET_INFO -> MPI_FILE_ISET_INFO

38



Standardization of Persistence

= https://github.com/mpi-forum/mpi-issues/issues/25

= Ticket #25 approved for MPI-4 in September (Barcelona)
= https://github.com/mpi-forum/mpi-issues/issues/83

= Ticket #83 — reread in December (San Jose)

= https://github.com/mpi-forum/mpi-issues/issues/90

= Ticket #90 clarifies text throughout the standard properly to
introduce “persistence” in several places where itis not fully
mentioned or documented order — to be read again in
December, 2018

39




Standardization of “Big MPI”

= https://github.com/mpi-forum/mpi-issues/issues/80

= Ticket #80 addresses “Large Count support” and 64-bit clean
displacements for collective ops —read in Barcelona — Sept.
2018 —reread in December 2018

= https://github.com/mpi-forum/mpi-issues/issues/98
= Applies Ticket #80 concepts to I/O chapter — maybe 12/18
= https://github.com/mpi-forum/mpi-issues/issues/99

= Applies Ticket #80 concepts to RMA chapter —to be read in
Barcelona — maybe 12/18

= https://github.com/mpi-forum/mpi-issues/issues/100

= Applies Ticket #80 concepts to point-to-point operations — to
be read in Barcelona — maybe 12/18

40



Standardization of “Big MPI” cont’d

= https://github.com/mpi-forum/mpi-issues/issues/97

= Ticket #97 proposes a new MPI_Rank type in all APIs that use
ranks — Reading TBD

= Int rank -> MPI_rank rank [globally in API]

= Highly controversial

41



Standardization of “Nonblocking”

= https://github.com/mpi-forum/mpi-issues/issues/78

= Ticket #78 addresses Communicator, File, and Win nonblocking
operations —to be read in Barcelona — Sept. 2018

= https://github.com/mpi-forum/mpi-issues/issues/81

= Ticket #81 addresses nonblocking constructors/destructor for
the Dynamic Process Management Chapter — to be read in
Barcelona — Sept. 2018

= https://github.com/mpi-forum/mpi-issues/issues/82

= Ticket #82 addresses nonblocking constructors/destructor for
the RMA Chapter —to be read in Barcelona — Sept. 2018

42



WITH_INFO API modifications

= |dea: Make MPI operations that omit “info” have “info”
= Focus:

— Blocking and Nonblocking collective operations
— Constructors

= Allow MPI programs to hint to operations more uniformly throughout the API

= Alimited number of these functions already are present, such as MPI_DUP_WITH_INFO,
MPI_IDUP_WITH_INFO

= Ex:

MPI_Ibcast(void™ buffer, int count, MPI Datatype datatype,
int root, MPI _Comm comm, MPI_Request *request)

MPI_lbcast_with_info(void* buffer, int count, MPI _Datatype datatype,
int root, MPI _Comm comm, MPI_Info info, MPI_Request *request)

43



Standardization of “WITH_INFO”

= https://github.com/mpi-forum/mpi-issues/issues/84

= Ticket #84 addresses GRAPH and CART constructors in
Topologies chapter — to be read in Barcelona — Sept. 2018

[generalizes 2 APIs]

= https://github.com/mpi-forum/mpi-issues/issues/85

= Ticket #85 “Collective and Topologies Chapters”— blocking
and nonblocking operations — to be read in Barcelona — Sept.

2018 [generalizes 31 APlIs]

44



Other [Collective] Tickets

https://github.com/mpi-forum/mpi-issues/issues/87

Allow MPI_PROC_NULL as neighborin (distributed) graph
topologies — likely will be read in Barcelona, Sept. 2018

https://github.com/mpi-forum/mpi-issues/issues/89

Deprecate MPI_Graph — likely will be read in Barcelona, Sept.
2018 --Advise users to move to MPI_Dist_graph_create() and
associated functions instead

45



ﬂwank iOM

Contact:
tony-skjellum@utc.edu




