
MPI-4 BOF

Anthony Skjellum, PhD
University of Tennessee at Chattanooga

tony-skjellum@utc.edu

SC’18

30



Standardization	Topic	areas

§ Persistent	 Collective	 Communication

§ Big	MPI	(64-bit	clean	MPI)

§ Additions	 for	Collective	 Communication	 –
Nonblocking Constructors/Destructors

§ “WITH_INFO”	 proposals

§ “Other”	 clarifying	 tickets	 in	the	works

§ All	targeted	 for	the	MPI-Next	 (MPI-4)	Release	
of	MPI

31



Persistent Collective Operations
§ Use-case:	 a	collective	operation	 is	done	many	times	 in	an	

application

§ The	specific	sends	and	receives	represented	never	change	(size,	
type,	lengths,	transfers)

§ A	persistent	 collective	 operation	can	take	the	time	to	apply	a	
heuristic	and	choose	a	faster	way	to	move	that	data

§ Fixed	cost	of	making	those	decisions	could	be	high	but	can	be	
amortized	over	all	the	times	the	operation	 is	used

§ Static	resource	allocation	can	be	done

§ Choose	fast(er)	algorithm,	take	advantage	of	special	cases

§ Reduce	queueing	costs

§ Special	limited	 hardware	can	be	allocated	 if	available

§ Choice	of	multiple	transfer	paths	could	also	be	performed
32



Basics

§ Mirror	regular	nonblocking collective	operations

§ For	each	nonblockingMPI	collective,	add	a	persistent	variant

§ For	every	MPI_I<coll>,	add	MPI_<coll>_init

§ Parameters	are	identical	to	the	corresponding	nonblocking	variant	– plus	additional	
MPI_INFO	parameter

§ All	arguments	“fixed”	for	subsequent	uses

§ Persistent	collective	operations	cannot	be	matched	with	blocking	or	nonblocking
collective	calls

33



Example

34

for (i = 0; i < MAXITER; i++) {
compute(bufA);
MPI_Ibcast(bufA, …, rowcomm, &req[0]);
compute(bufB);

MPI_Ireduce(bufB, …, colcomm, 
&req[1]);

MPI_Waitall(2, req, …);
}

MPI_Bcast_init(bufA, …, rowcomm, &req[0]);
MPI_Reduce_init(bufB, …, colcomm, 
&req[1]);
for (i = 0; i < MAXITER; i++) {

compute(bufA);
MPI_Start(req[0]);
compute(bufB);
MPI_Start(req[1]);
MPI_Waitall(2, req, …);

}

Nonblocking
collectives	API

Persistent	collectives	
API



Init/Start

§ The	init function	calls	only	perform	initialization;	do	not	start	the	operation

§ Ex:	MPI_Allreduce_init
– Produces	a	persistent	request	(not	destroyed	by	completion)

§ Requests	work	with	MPI_Start/MPI_Startall

§ Only	inactive	requests	can	be	started

§ MPI_Request_free can	free	inactive	requests

35



Ordering of Inits and Starts

§ Inits must	be	ordered	like	all	other	collective	operations

§ Persistent	collective	operations	can	be	started	in	the	same	order,	or	different	
orders,	at	all	processes

§ MPI_Startall can	contain	multiple	operations	on	the	same	communicator	due	to	
ordering	freedom

§ A	new	communicator	INFO	key	will	be	added	that	asserts	persistent	collectives	
starts	will	be	strictly	ordered

§ In	some	cases,	this	may	improve	performance

§ NB:	INFO	key	incompatible	with	starting	multiple	persistent	collective	operations	
using	MPI_Startall

36



Big MPI

§ Idea:	Finally	make	MPI	fully	64-bit	clean

§ More	2	Gi element	transfers	“is	a	pain”

§ Solve	issue	across	API:	Collectives,	Point-to-point,	I/O,	and	RMA

§ Started	with	a	significant	study	and	prototyping	effort	by	Jeff	
Hammond	that	yielded	a	proposal	for	Collective	communication	
– Workarounds	possible	for	pt2pt	do	not	work	well	for	collectives

– v/w-collectives	 and	reductions	have	the	most	concerns

§ Neighborhood	collectives	fixed	the	large-displacement	problem	
(for	these	new	ops)

§ Produces	_X	API	variants	names	that	are	“64-bit	clean”

§ MPI_Rank vs.	int rank	is	a	controversial	part	of	this	discussion

§ Alternatives:		Alternative/new	APIs	or	polymorphic	APIs
37



Nonblocking Collective Constructors/Destructors

§ Idea:	Make	initialization/de-initialization	 fully	nonblocking

§ Support	asynchronous	libraries	better

§ Ex:	Add	nonblocking variants	(wherever	missing)
– MPI_COMM_CREATE	 ->	MPI_COMM_ICREATE

– MPI_COMM_FREE	 ->	MPI_COMM_IFREE

– MPI_WIN_CREATE	 ->	MPI_WIN_ICREATE

– MPI_WIN_FREE	 ->	MPI_WIN_IFREE

– MPI_FILE_CLOSE	 ->	MPI_FILE_ICLOSE
…

§ Plus	other	collective	operations	that	lack	a	nonblocking analog	(except	we	avoid	RMA	at	
present)

§ Ex:	MPI_FILE_SET_INFO	->	MPI_FILE_ISET_INFO

38



Standardization of Persistence

§ https://github.com/mpi-forum/mpi-issues/issues/25

§ Ticket	#25	approved	for	MPI-4	in	September	(Barcelona)

§ https://github.com/mpi-forum/mpi-issues/issues/83

§ Ticket	#83	– reread	in	December	(San	Jose)

§ https://github.com/mpi-forum/mpi-issues/issues/90

§ Ticket	#90	clarifies	text	throughout	the	standard	properly	to	
introduce	“persistence”	in	several	places	where	it	is	not	fully	
mentioned	or	documented	order	– to	be	read	again	in	
December,	2018

39



Standardization of “Big MPI”

§ https://github.com/mpi-forum/mpi-issues/issues/80
§ Ticket	#80	addresses	“Large	Count	support”	and	64-bit	clean	

displacements	for	collective	ops	–read	in	Barcelona	– Sept.	
2018	– reread	in	December	2018

§ https://github.com/mpi-forum/mpi-issues/issues/98
§ Applies	Ticket	#80	concepts	to	I/O	chapter	– maybe	12/18
§ https://github.com/mpi-forum/mpi-issues/issues/99
§ Applies	Ticket	#80	concepts	to	RMA	chapter	– to	be	read	in	

Barcelona	– maybe	12/18
§ https://github.com/mpi-forum/mpi-issues/issues/100
§ Applies	Ticket	#80	concepts	to	point-to-point	operations	– to	

be	read	in	Barcelona	– maybe	12/18

40



Standardization of “Big MPI” cont’d

§ https://github.com/mpi-forum/mpi-issues/issues/97

§ Ticket	#97	proposes	a	new	MPI_Rank type	in	all	APIs	that	use	
ranks	– Reading	TBD

§ Int rank	->	MPI_rank rank	[globally	in	API]

§ Highly	controversial

41



Standardization of “Nonblocking”

§ https://github.com/mpi-forum/mpi-issues/issues/78
§ Ticket	#78	addresses	Communicator,	File,	and	Win	nonblocking

operations	– to	be	read	in	Barcelona	– Sept.	2018
§ https://github.com/mpi-forum/mpi-issues/issues/81
§ Ticket	#81	addresses	nonblocking constructors/destructor	for	

the	Dynamic	Process	Management	Chapter	– to	be	read	in	
Barcelona	– Sept.	2018

§ https://github.com/mpi-forum/mpi-issues/issues/82
§ Ticket	#82	addresses	nonblocking constructors/destructor	for	

the	RMA	Chapter	– to	be	read	in	Barcelona	– Sept.	2018

42



WITH_INFO API modifications

§ Idea:	Make	MPI	operations	that	omit	“info”	have	“info”
§ Focus:

– Blocking	 and	Nonblocking collective	 operations
– Constructors

§ Allow	MPI	programs	to	hint	to	operations	more	uniformly	throughout	the	API
§ A	limited	number	of	these	functions	already	are	present,	such	as	MPI_DUP_WITH_INFO,	

MPI_IDUP_WITH_INFO
§ Ex:		

MPI_Ibcast(void*	buffer,	 int count,	MPI	_Datatype datatype,	
int root,	MPI	_Comm comm,	MPI_Request *request)

MPI_Ibcast_with_info(void*	 buffer,	 int count,	MPI	_Datatype datatype,	
int root,	MPI	_Comm comm,	MPI_Info info,	MPI_Request *request)

43



Standardization of “WITH_INFO”

§ https://github.com/mpi-forum/mpi-issues/issues/84

§ Ticket	#84	addresses	GRAPH	and	CART	constructors	in	
Topologies	chapter	– to	be	read	in	Barcelona	– Sept.	2018	
[generalizes	2	APIs]

§ https://github.com/mpi-forum/mpi-issues/issues/85

§ Ticket	#85	“Collective	and	Topologies	Chapters”– blocking	
and	nonblocking operations	– to	be	read	in	Barcelona	– Sept.	
2018		[generalizes	31	APIs]

44



Other [Collective] Tickets

§ https://github.com/mpi-forum/mpi-issues/issues/87

§ Allow	MPI_PROC_NULL	as	neighbor	in	(distributed)	graph	
topologies	– likely	will	be	read	in	Barcelona,	Sept.	2018	

§ https://github.com/mpi-forum/mpi-issues/issues/89

§ Deprecate	MPI_Graph – likely	will	be	read	in	Barcelona,	Sept.	
2018		--Advise	users	to	move	to	MPI_Dist_graph_create()	and	
associated	functions	instead

45



46

Contact:	
tony-skjellum@utc.edu


